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Purpose: To describe and mathematically validate the superiorization methodol-14

ogy, which is a recently-developed heuristic approach to optimization, and to discuss15

its applicability to medical physics problem formulations that specify the desired16

solution (of physically given or otherwise obtained constraints) by an optimization17

criterion.18

Methods: The superiorization methodology is presented as a heuristic solver for19

a large class of constrained optimization problems. The constraints come from the20

desire to produce a solution that is constraints-compatible, in the sense of meeting21

requirements provided by physically or otherwise obtained constraints. The underly-22

ing idea is that many iterative algorithms for finding such a solution are perturbation23

resilient in the sense that, even if certain kinds of changes are made at the end of24

each iterative step, the algorithm still produces a constraints-compatible solution.25

This property is exploited by using permitted changes to steer the algorithm to a26

solution that is not only constraints-compatible, but is also desirable according to27

a specified optimization criterion. The approach is very general, it is applicable to28
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many iterative procedures and optimization criteria used in medical physics.29

Results: The main practical contribution is a procedure for automatically pro-30

ducing from any given iterative algorithm its superiorized version, which will supply31

solutions that are superior according to a given optimization criterion. It is shown32

that if the original iterative algorithm satisfies certain mathematical conditions, then33

the output of its superiorized version is guaranteed to be as constraints-compatible as34

the output of the original algorithm, but it is superior to the latter according to the35

optimization criterion. This intuitive description is made precise in the paper and36

the stated claims are rigorously proved. Superiorization is illustrated on simulated37

computerized tomography data of a head cross-section and, in spite of its general-38

ity, superiorization is shown to be competitive to an optimization algorithm that is39

specifically designed to minimize total variation.40

Conclusions: The range of applicability of superiorization to constrained opti-41

mization problems is very large. Its major utility is in the automatic nature of42

producing a superiorization algorithm from an algorithm aimed at only constraints-43

compatibility; while non-heuristic (exact) approaches need to be redesigned for a new44

optimization criterion. Thus superiorization provides a quick route to algorithms for45

the practical solution of constrained optimization problems.46

Keywords: superiorization, constrained optimization, heuristic optimization, tomography,47

total variation48

I. INTRODUCTION49

Optimization is a tool that is used in many areas of Medical Physics. Prime examples are50

radiation therapy treatment planning and tomographic reconstruction, but there are others51

such as image registration. Some well-cited classical publications on the topic are1–12 and52

some recent articles are13–26.53

In a typical medical physics application, one uses constrained optimization, where the54

constraints come from the desire to produce a solution that is constraints-compatible, in55

the sense of meeting the requirements provided by physically or otherwise obtained con-56

straints. In radiation therapy treatment planning, the requirements are usually in the form57
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of constraints prescribed by the treatment planner on the doses to be delivered at specific58

locations in the body. These doses in turn depend on information provided by an imaging59

instrument, typically a Magnetic Resonance Imaging (MRI) or a Computerized Tomogra-60

phy (CT) scanner. In tomography, the constraints come from the detector readings of the61

instrument. In such applications, it is typically the case that a large number of solutions62

would be considered good enough from the point of view of being constraints-compatible;63

to a large extent, but not entirely, due to the fact that there is uncertainty as to the exact64

nature of the constraints (for example, due to noise in the data collection). In such a case,65

an optimization criterion is introduced that helps us to distinguish the “better” constraints-66

compatible solutions (for example, this criterion could be the total dose to be delivered to67

the body, which may vary quite a bit between radiation therapy treatment plans that are68

compatible with the constraints on the doses delivered to individual locations).69

The superiorization methodology (see, for example,22,27–32) is a recently-developed heuris-70

tic approach to optimization. The word heuristic is used here in the sense that the process71

is not guaranteed to lead to an optimum according to the given criterion; approaches aimed72

at processes that are guaranteed in that sense are usually referred to as exact. Heuristic73

approaches have been found useful in practical applications of optimization, mainly because74

they are often computationally much less expensive than their exact counterparts, but nev-75

ertheless provide solutions that are appropriate for the application at hand33–35.76

The underlying idea of the superiorization approach is the following. In many applica-77

tions there exists a computationally-efficient iterative algorithm that produces a constraints-78

compatible solution for the given constraints. (An example of this for radiation therapy79

treatment planning is reported in36, its clinical use is discussed in15.) Furthermore, often80

the algorithm is perturbation resilient in the sense that, even if certain kinds of changes are81

made at the end of each iterative step, the algorithm still produces a constraints-compatible82

solution27–30. This property is exploited in the superiorization approach by using such per-83

turbations to steer the algorithm to a solution that is not only constraints-compatible, but is84

also desirable according to a specified optimization criterion. The approach is very general,85

it is applicable to many iterative procedures and optimization criteria.86

The current paper presents a major advance in the practice and theory of superiorization.87

The previous publications22,27–32 used the intuitive idea to present some superiorization88

algorithms, in this paper the reader will find a totally automatic procedure that turns an89
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iterative algorithm into its superiorized version. This version will produce an output that90

is as constraints-compatible as the output of the original algorithm, but it is superior to91

that according to an optimization criterion. This claim is mathematically shown to be92

true for a very large class of iterative algorithms and for optimization criteria in general,93

typical restrictions (such as convexity) on the optimization criterion are not essential for94

the material presented below. In order to make precise and validate this broad claim, we95

present here a new theoretical framework. The framework of29 is a precursor of what we96

present here, but it is a restricted one, since it assumes that the constraints can be all97

satisfied simultaneously, which is often false in medical physics applications. There is no98

such restriction in the presentation below.99

The idea of designing algorithms that use interlacing steps of two different kinds (in our100

case, one kind of steps aim at constraints-compatibility and the other kind of steps aim at101

improvement of the optimization criterion) is well-established and, in fact, is made use of102

in many approaches that have been proposed with exact constrained optimization in mind;103

see, for example, the works of Helou Neto and De Pierro37,38, of Nurminski39, of Combettes104

and coworkers40,41, of Sidky and Pan and coworkers23,42,43 and of Defrise and coworkers44.105

However, none of these approaches can do what can be done by the superiorization approach106

as presented below, namely the automatic production of a heuristic constrained optimization107

algorithm from an iterative algorithm for constraints-compatibility. For example, in37 it is108

assumed (just as in the theory presented in our29) that all the constraints can be satisfied109

simultaneously.110

A major motivator for the additional theory presented in the current paper is to get rid111

of this assumption, which is not reasonable when handling real problems of medical physics.112

Motivated by similar considerations, Helou Neto and De Pierro38 present an alternative113

approach that does not require this unreasonable assumption. However, in order to solve114

such a problem, they end up with iterative algorithms of a particular form rather than having115

the generality of being able to turn any constraints-compatibility seeking algorithm into a116

superiorized one capable of handling constrained optimization. Also, the assumptions they117

have to make in order to prove their convergence result (their Theorem 15) indicate that118

their approach is applicable to a smaller class of constrained optimization problems than119

the superiorization approach whose applicability seems to be more general. However, for120

the mathematical purist, we point out that they present an exact constrained optimization121
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algorithm, while superiorization is a heuristic approach. Whether this is relevant to medical122

physics practice is not clear: exact algorithms are not run forever, but are stopped according123

to some stopping-rule, the relevant questions in comparing two algorithms are the quality124

of the actual output and the computation time needed to obtain it.125

Ultimately, the quality of the outputs should be evaluated by some figures of merit126

relevant to the medical task at hand. An example of a careful study of this kind that127

involves superiorization is in30 (Section 4.3), which reports on comparing in CT the efficacy128

of constrained optimization reconstruction algorithms for the detection of low-contrast brain129

tumors by using the method of statistical hypothesis testing (which provides a P-value that130

indicates the significance by which we can reject the null hypothesis that the two algorithms131

are equally efficacious in favor of the alternative that one is preferable). Such studies bundle132

together two things: (i) the formulation of the constrained optimization task and (ii) the133

performance of the algorithm in performing that task. The first of these requires a translation134

of the medical aim into a mathematical model, it is important that this model should be135

appropriately chosen.136

The superiorization approach is not about choosing this model, it kicks in once the model137

is chosen and aims at producing an output that is “good” according to the mathematical138

specifications of the constraints and of the optimization criterion. Thus superiorization has139

been used to compare the effects on the quality of the output in CT when the optimization140

criterion is specified by total variation (TV) versus by entropy28 or versus by the `1-norm141

of the Haar transform32. However, the current paper is not about discussing how to trans-142

late the underlying medical physics task into a constrained optimization problem. For our143

purposes here, we are assuming that the mathematical model has been worked out and144

concentrate on the algorithmic approach for solving the resulting constrained optimization145

problem. We claim that the evaluation of such algorithms should not be based on the146

medical figures of merit mentioned at the beginning of the previous paragraph, but rather147

on their performance in solving the mathematical problem. If “good” solutions to the con-148

strained optimization problem are not medically efficacious, that indicates that something is149

wrong with the mathematical model and not that something is wrong with the algorithmic150

approach. For this reason, in this paper we will not carry out a careful investigation of the151

medical efficacy of any algorithm in the manner that we have done in30 (Section 4.3), but will152

restrict ourselves to a simple illustration of the performance of the superiorization approach153
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as compared to the previously published algorithm of42 that is aimed at performing exact154

minimization.155

Examples of such studies already exist. Superiorization was compared in27 with Algorithm156

6 of40 and in45 with the algorithm of Goldstein and Osher that they refer to as TwIST46 with157

split Bregman47 as the substep. In both cases the implementation was done by the proposers158

of the algorithms. In these reported instances superiorization did well: the constraints-159

compatibility and the value of the function to be minimized were very similar for the outputs160

produced by the algorithms being compared, but the superiorization algorithm produced its161

output four times faster than the alternative. It would be unjustified to draw any general162

conclusions on the mathematical performance and speed of superiorization based on just a163

few experiments, but the reported results are encouraging.164

However, the main reason why we advocate superiorization is different from what is165

discussed above. The reason why we claim it to be helpful in medical physics research is166

that it has the potential of saving a lot of time and effort for the researcher. Let us consider167

a historical example. Likelihood optimization using the iterative process of expectation168

maximization (EM)48 gained immediate and wide acceptance in the emission tomography169

community. It was observed that irregular high amplitude patterns occurred in the image170

with a large number of iterations, but it was not until five years later that this problem171

was corrected49 by the use of a maximum a posteriority probability (MAP) algorithm with172

a multivariate Gaussian prior. Had we had at our disposal the superiorization approach,173

then the introduction of an optimization criterion (Gaussian or other) into the iterative174

expectation maximization (EM) process would have been a simple matter and we would175

have saved the time and effort spent on designing a special purpose algorithm for the MAP176

formulation. A TV -superiorization of the EM algorithm is presented in50.177

Even though our major claim for superiorization is that it provides a quick route to178

algorithms for the practical solution of constrained optimization problems, before leaving179

this introduction let us bring up a question that has to do with the performance of the180

resulting algorithms: Will superiorization produce superior results to those produced by181

contemporary MAP methods or is it faster than the better of such methods? At this stage182

we have not yet developed the mathematical notation to discuss this question in a rigorous183

manner, we return to it in Subsection II F.184

In the next section we present in detail the superiorization methodology. In the subse-185
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quent section we provide an illustrative example by reporting on reconstructions produced186

by algorithms applied to simulated computerized tomography data of a head cross-section.187

In the final section we discuss our results and present our conclusions.188

II. THE SUPERIORIZATION METHODOLOGY189

A. Problem sets, proximity functions and ε-compatibility190

Although optimization is often studied in a more general context (such as in Hilbert or191

Banach spaces), in medical physics we usually deal with a special case, where optimization192

is performed in a Euclidean space RJ (the space of J-dimensional vectors of real numbers,193

where J is a positive integer). As often appropriate in practice, we further restrict the194

domain of optimization to a nonempty subset Ω of RJ (such as the nonnegative orthant RJ
+195

that consists of vectors all of whose components are nonnegative).196

We now turn to formalizing the notion of being compatible with given constraints, a197

notion that we have used informally in the previous section. In any application, there is a198

problem set T; each problem T ∈ T is essentially a description of the constraints in that199

particular case. For example, for a tomographic scanner, the problem of reconstruction for200

a particular patient at a particular time is determined by the measurements taken by the201

scanner for that patient at that time. The intuitive notion of constraints-compatibility is202

formalized by the use of a proximity function Pr on T such that, for every T ∈ T, PrT203

maps Ω into R+, the set of nonnegative real numbers; i.e., PrT : Ω → R+. Intuitively we204

think of PrT (x) as an indicator of how incompatible x is with the constraints of T . For205

example, in tomography, PrT (x) should indicate by how much a proposed reconstruction206

that is described by an x in Ω violates the constraints of the problem T that are provided207

by the measurements taken by the scanner. For example, if we use b to denote the vector208

of estimated line integrals based on the measurements obtained by the scanner and by A209

the system matrix of the scanner, then a possible choice for the proximity function is the210

norm-distance ‖b − Ax‖, which we will use as an example in the discussions that follow.211

An alternative legitimate choice for the proximity function is the Kullback-Leibler distance212

KL(b,Ax), which is the negative log-likelihood of a statistical model in tomography. The213

special case PrT (x) = 0 is interpreted by saying that x is perfectly compatible with the214
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constraints; due to the presence of noise in practical applications, it is quite conceivable215

that there is no x that is perfectly compatible with the constraints, and we accept an x216

as constraints-compatible as long as the value of PrT (x) is considered to be small enough217

to justify that decision. Combining these two concepts leads to the notion of a problem218

structure, which is a pair 〈T,Pr〉, where T is a nonempty problem set and Pr is a proximity219

function on T. For a problem structure 〈T,Pr〉, a problem T ∈ T, a nonnegative ε and an220

x ∈ Ω, we say that x is ε-compatible with T provided that PrT (x) ≤ ε.221

As an example (whose applicability to tomographic reconstruction is illustrated in Section222

III), consider the problem structure that arises from the desire to find nonnegative solutions223

of sequences of blocks of linear equations. Then the appropriate choices are Ω = RJ
+ and224

the problem structure is 〈S, Res〉, where the problem set S is225

S =
{({

(a1, b1) , . . . ,
(
a`1 , b`1

)}
, . . . ,{(

a`1+...+`W−1+1, b`1+...+`W−1+1

)
, . . . ,

(
a`1+...+`W , b`1+...+`W

)})∣∣
W is a positive integer and,

for 1 ≤ w ≤ W, `w is a positive integer and,

for 1 ≤ i ≤ `1 + . . .+ `W , a
i ∈ RJ and bi ∈ R

}
(1)

and the proximity function Res on S is defined, for any problem S = ({(a1, b1) ,226

. . . ,
(
a`1 , b`1

)}
, . . . ,

{(
a`1+...+`W−1+1, b`1+...+`W−1+1

)
, . . . ,

(
a`1+...+`W , b`1+...+`W

)})
in S and227

for any x ∈ Ω, by228

ResS(x) =

√√√√`1+...+`W∑
i=1

(bi − 〈ai,x〉)2. (2)

Note that each element of this problem set S specifies an ordered sequence of W blocks229

of linear equations of the form 〈ai,x〉 = bi where 〈∗, ∗〉 denotes the inner product in RJ230

(and thus S is an appropriate representation of the so-called “ordered subsets” approach to231

tomographic reconstruction51, as well as of other earlier-published block-iterative methods232

that proposed essentially the same idea52–54). The proximity function Res on S is the residual233

that we get when a particular x is substituted into all the equations of a particular problem234

S.235
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B. Algorithms and outputs236

We now define the concept of an algorithm in the general context of problem structures.237

For technical reasons that will become clear as we proceed with our development, we intro-238

duce an additional set ∆, such that Ω ⊆ ∆ ⊆ RJ . (Both Ω and ∆ are assumed to be known239

and fixed for any particular problem structure 〈T,Pr〉.) An algorithm P for a problem240

structure 〈T,Pr〉 assigns to each problem T ∈ T an operator PT : ∆→ Ω. This definition is241

used to define iterative processes that, for any initial point x ∈ Ω, produce the (potentially)242

infinite sequence
(

(PT )k x
)∞
k=0

(that is, the sequence x,PTx,PT (PTx) , · · · ) of points in243

Ω. We discuss below how such a potentially infinite process is terminated in practice.244

Selecting Ω = RJ
+ and ∆ = RJ for the problem structure 〈S, Res〉 of the previous subsec-245

tion, an example of an algorithm R is specified by246

RSx = QBSW
· · ·BS1x, (3)

where S is the problem specified above (2) and, for 1 ≤ w ≤ W, BSw : ∆→ ∆ is defined by247

BSwx = x +
1

`w

`1+...+`w∑
i=`1+...+`w−1+1

bi − 〈ai,x〉
‖ai‖2

ai, (4)

where ‖a‖ denotes the norm of the vector a in RJ , and Q : ∆→ Ω is defined by248

(Qx)j = max {0,xj} , for 1 ≤ j ≤ J. (5)

Note that RS : ∆→ Ω. This specific algorithm R is a typical example of the so-called block-249

iterative methods mentioned above. Except for the presence of Q in (3), which enforces250

nonnegativity of the components, it is identical to an algorithm used and illustrated in31.251

With the Q absent from the definition of the algorithm, Ω has to be the whole of RJ ; the252

practical consequence of the presence versus the absence of Q in the tomographic application253

is illustrated in Subsection IIID. We note also that special cases of the presented algorithm254

include the classical reconstruction methods ART (if `w = 1, for 1 ≤ w ≤ W ) and SIRT (if255

W = 1); see, for example, Chapters 11 and 12 of55.256

For a problem structure 〈T,Pr〉, a T ∈ T, an ε ∈ R+ and a sequence R =
(
xk
)∞
k=0

257

of points in Ω, we use O (T, ε, R) to denote the x ∈ Ω that has the following properties:258

PrT (x) ≤ ε and there is a nonnegative integer K such that xK = x and, for all nonnegative259

integers k < K, PrT
(
xk
)
> ε. Clearly, if there is such an x, then it is unique. If there is no260
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such x, then we say that O (T, ε, R) is undefined, otherwise we say that it is defined. The261

intuition behind this definition is the following: if we think of R as the (infinite) sequence of262

points that is produced by an algorithm (intended for the problem T ) without a termination263

criterion, then O (T, ε, R) is the output produced by that algorithm when we add to it264

instructions that make it terminate as soon as it reaches a point that is ε-compatible with265

T .266

C. Bounded perturbation resilience267

The notion of a bounded perturbations resilient algorithm P for a problem structure268

〈T,Pr〉 has been defined in a mathematically precise manner29. However, that definition269

is not satisfactory from the point of view of applications in medical physics (or indeed in270

any area involving noisy data), because it is useful only for problems T for which there is271

a perfectly compatible solution (that is, an x such that PrT (x) = 0). We therefore extend272

here that notion as follows. An algorithm P for a problem structure 〈T,Pr〉 is said to be273

strongly perturbation resilient if, for all T ∈ T,274

(i) there exists an ε ∈ R+ such that O
(
T, ε,

(
(PT )k x

)∞
k=0

)
is defined for every x ∈ Ω;275

(ii) for all ε ∈ R+ such that O
(
T, ε,

(
(PT )k x

)∞
k=0

)
is defined for every x ∈ Ω, we also276

have that O (T, ε′, R) is defined for every ε′ > ε and for every sequence R =
(
xk
)∞
k=0

277

of points in Ω generated by278

xk+1 = PT

(
xk + βkv

k
)
, for all k ≥ 0, (6)

where βkvk are bounded perturbations, meaning that the sequence (βk)
∞
k=0 of nonnega-279

tive real numbers is summable (that is,
∞∑
k=0

βk <∞), the sequence
(
vk
)∞
k=0

of vectors280

in RJ is bounded and, for all k ≥ 0, xk + βkv
k ∈ ∆.281

In less formal terms, the second of these properties says that for a strongly perturbation282

resilient algorithm we have that, for every problem and any nonnegative real number ε, if it283

is the case that for all initial points from Ω the infinite sequence produced by the algorithm284

contains an ε-compatible point, then it will also be the case that all perturbed sequences285

satisfying (6) contain an ε′-compatible point, for any ε′ > ε.286
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Having defined the notion of a strongly perturbation resilient algorithm, we next show287

that this notion is of relevance to problems in medical physics. We illustrate the use of this288

in tomography in the next section. We first need to introduce some mathematical concepts.289

Given an algorithm P for a problem structure 〈T,Pr〉 and a T ∈ T, we say that290

P is convergent for T if, for every x ∈ Ω, there exists a unique y (x) ∈ Ω such that,291

limk→∞ (PT )k x = y (x), meaning that for every positive real number δ, there exist a non-292

negative integer K, such that
∥∥∥(PT )k x− y (x)

∥∥∥ ≤ δ, for all nonnegative integers k ≥ K.293

If, in addition, there exists a γ ∈ R+ such that PrT (y (x)) ≤ γ, for every x ∈ Ω, then we294

say that P is boundedly convergent for T .295

A function f : Ω → R is uniformly continuous if, for every ε > 0 there exists a δ > 0,296

such that, for all x,y ∈ Ω, |f(x)− f(y)| ≤ ε provided that ‖x− y‖ ≤ δ. An example of a297

uniformly continuous function is ResS of (2), for any S ∈ S. This can be proved by observing298

that the right-hand side of (2) can be rewritten in vector/matrix form as ‖b − Ax‖ and299

then selecting, for any given ε > 0, δ to be ε/ ‖A‖, where ‖A‖ denotes the matrix norm of300

A.301

An operator O : ∆ → Ω, is nonexpansive if ‖Ox−Oy‖ ≤ ‖x− y‖, for all x,y ∈ ∆.302

An example of a nonexpansive operator is the RS of (3). The proof of this is also simple.303

It follows from discussions regarding similar claims in27 that the BSw : RJ → RJ of (4) is a304

nonexpansive operator, for 1 ≤ w ≤ W, and that the operator Q of (5) is also nonexpansive.305

Obviously, a sequential application of nonexpansive operators results in a nonexpansive306

operator and thus RS is nonexpansive.307

Now we state an important new result that gives sufficient conditions for strong perturba-308

tion resilience: If P is an algorithm for a problem structure 〈T,Pr〉 such that,309

for all T ∈ T, P is boundedly convergent for T, PrT : Ω → R is uniformly310

continuous and PT : ∆ → Ω is nonexpansive, then P is strongly perturbation311

resilient. The importance of this result lies in the fact that the rather ordinary condition312

of uniform continuity for the proximity function and the reasonable conditions of bounded313

convergence and nonexpansiveness of the algorithmic operators guarantee that we end up314

with a strongly perturbation resilient algorithm. The proof of this new result involves some315

mathematical technicalities and is therefore presented in the Appendix as Theorem 1.316
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D. Optimization criterion and nonascending vector317

Now suppose, as is indeed the case for the constrained optimization problems discussed318

in the previous section, that in addition to a problem structure 〈T,Pr〉 we are also provided319

with an optimization criterion, which is specified by a function φ : ∆ → R, with the320

convention that a point in ∆ for which the value of φ is smaller is considered superior (from321

the point of view of our application) to a point in ∆ for which the value of φ is larger. In the322

tomography context, any of the functions of x that are listed as a “secondary optimization323

criterion” (an alternative name is a “regularizer”) in Section 6.4 of55 is an acceptable choice324

for the optimization criterion φ. These include weighted norms, the negative of Shannon’s325

entropy and total variation. It is the last of these that we discuss in detail in the illustrative326

example below. The essential idea of the superiorization methodology presented in this paper327

is to make use of the perturbations of (6) to transform a strongly perturbation resilient328

algorithm that seeks a constraints-compatible solution into one whose outputs are equally329

good from the point of view of constraints-compatibility, but are superior according to the330

optimization criterion. We do this by producing from the algorithm another one, called its331

superiorized version, by making sure not only that the βkvk are bounded perturbations, but332

also that φ
(
xk + βkv

k
)
≤ φ

(
xk
)
, for all k ≥ 0.333

In order to ensure this we introduce a new concept (closely related to the concept of a334

“descent direction” that is widely used in optimization). Given a function φ : ∆→ R and a335

point x ∈ ∆, we say that a vector d ∈ RJ is nonascending for φ at x if ‖d‖ ≤ 1 and336

there is a δ > 0 such that for all λ ∈ [0, δ] ,

(x + λd) ∈ ∆ and φ (x + λd) ≤ φ (x) .
(7)

Note that irrespective of the choices of φ and x, there is always at least one nonascending337

vector d for φ at x, namely the zero-vector, all of whose components are zero. This is a useful338

fact for proving results concerning the guaranteed behavior of our proposed procedures.339

However, in order to steer our algorithms toward a point at which the value of φ is small,340

we need to find a d such that φ (x + λd) < φ (x) rather than just φ (x + λd) ≤ φ (x) as in341

(7). In some earlier papers on superiorization27–31 it was assumed that ∆ = RJ and that φ342

is a convex function. This implied that, for any point x ∈ ∆, φ had a subgradient g ∈ RJ at343

the point x. It was suggested that if there is such a g with a positive norm, then d should344

be chosen to be −g/ ‖g‖, otherwise d should be chosen to be the zero vector. However,345
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there are approaches (not involving subgradients) to selecting an appropriate d; an example346

can be found in32 in which d is found without using subgradients for the case when φ is the347

`1-norm of the Haar transform. The method we used for selecting a nonascending vector in348

the experiments reported in this paper is specified at the end of Subsection IIIA.349

E. Superiorized version of an algorithm350

We now make precise the ingredients needed for transforming an algorithm into its su-351

periorized version. Let Ω and ∆ be the underlying sets for a problem structure 〈T,Pr〉352

(Ω ⊆ ∆ ⊆ RJ , as discussed at the beginning of Subsection II B), P be an algorithm for353

〈T,Pr〉 and φ : ∆→ R. The following description of the Superiorized Version of Algorithm354

P produces, for any problem T ∈ T, a sequence RT =
(
xk
)∞
k=0

of points in Ω for which, for355

all k ≥ 0, (6) is satisfied. We show this to be true, for any algorithm P, after the description356

of the Superiorized Version of Algorithm P. Furthermore, since the sequence RT is steered357

by Superiorized Version of Algorithm P toward a reduced value of φ, there is an intuitive358

expectation that the output of the superiorized version is likely to be superior (from the359

point of view of the optimization criterion φ) to the output of the original unperturbed360

algorithm. This last statement is not precise and so it cannot be proved in a mathematical361

sense for an arbitrary algorithm P; however, that should not stop us from applying the362

easy procedure given below for automatically producing the Superiorized Version of P and363

experimentally checking whether it indeed provides us with outputs superior to those of the364

original algorithm. The well-demonstrated nature of heuristic optimization approaches is365

that they often work in practice even when their performance cannot be guaranteed to be366

optimal33–35.367

Nevertheless, we can push our theory further than the hope expressed in the last para-368

graph, by considering superiorized versions of algorithms that satisfy some condition. In369

this paper, the condition that we discuss is strong perturbation resilience. We show below370

that if P is strongly perturbation resilient, then, for any problem T ∈ T, a sequence RT371

produced by its superiorized version has the following desirable property: For all ε ∈ R+, if372

O
(
T, ε,

(
(PT )k x

)∞
k=0

)
is defined for every x ∈ Ω, then O (T, ε′, RT ) is also defined for every373

ε′ > ε; in other words, the Superiorized Version of Algorithm P provides an ε′-compatible374

output. As stated above, the advantage of the superiorized version is that its output is375
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likely to be superior to the output of the original unperturbed algorithm. We point out that376

strong perturbation resilience is a sufficient, but not necessary, condition for guaranteeing377

such desirable behavior of the superiorized version, finding additional sufficient conditions378

and proving that algorithms that we wish to superiorize satisfy such conditions is part of379

our ongoing research.380

The superiorized version assumes that we have available a summable sequence (γ`)
∞
`=0 of381

positive real numbers (for example, γ` = a`, where 0 < a < 1) and it generates, simultane-382

ously with the sequence
(
xk
)∞
k=0

, sequences
(
vk
)∞
k=0

and (βk)
∞
k=0. The latter is generated as383

a subsequence of (γ`)
∞
`=0, resulting in a summable sequence (βk)

∞
k=0. The algorithm further384

depends on a specified initial point x̄ ∈ Ω and on a positive integer N . It makes use of a385

logical variable called loop.386

Superiorized Version of Algorithm P387

(i) set k = 0388

(ii) set xk = x̄389

(iii) set ` = −1390

(iv) repeat391

(v) set n = 0392

(vi) set xk,n = xk393

(vii) while n < N394

(viii) set vk,n to be a nonascending vector for φ at xk,n395

(ix) set loop=true396

(x) while loop397

(xi) set ` = `+ 1398

(xii) set βk,n = γ`399

(xiii) set z = xk,n + βk,nv
k,n400

(xiv) if z ∈ ∆ and φ (z) ≤ φ
(
xk
)

then401
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(xv) set n = n+ 1402

(xvi) set xk,n = z403

(xvii) set loop = false404

(xviii) set xk+1 = PTx
k,N405

(xix) set k = k + 1406

Next we analyze the behavior of the Superiorized Version of Algorithm P.407

The iteration number k is set to 0 in (i) and xk = x0 is set to its initial value x̄ in (ii). The408

integer index ` for picking the next element from the sequence (γ`)
∞
`=0 is initialized to −1 by409

line (iii), it is repeatedly increased by line (xi). The lines (v) - (xix) that follow the repeat410

in (iv) perform a complete iterative step from xk to xk+1, infinite repetitions of such steps411

provide the sequence RT =
(
xk
)∞
k=0

. During one iterative step, there is one application of412

the operator PT , in line (xviii), but there are N steering steps aimed at reducing the value of413

φ; the latter are done by lines (v) - (xvii). These lines produce a sequence of points414

xk,n, where 0 ≤ n ≤ N with xk,0 = xk, xk,n ∈ ∆ and φ
(
xk,n

)
≤ φ

(
xk
)
.415

We prove the truth of the last sentence by induction on the nonnegative integers. For416

n = 0, we have by lines (v) and (vi) that xk,0 = xk. But xk ∈ Ω , since it is either x̄ that is417

assumed to be in Ω due to lines (i) and (ii) or it is in the range Ω of PT due to lines (xviii)418

and (xix). Now we assume, for any 0 ≤ n < N , that xk,n ∈ ∆ and φ
(
xk,n

)
≤ φ

(
xk
)
and419

show that lines (viii) - (xvii) perform a computation that leads from xk,n to an xk,n+1 ∈ ∆420

that satisfies φ
(
xk,n+1

)
≤ φ

(
xk
)
. To see this, observe that line (viii) sets vk,n to be a421

nonascending vector for φ at xk,n, which implies that (7) is satisfied with x = xk,n and422

d = vk,n. Line (ix) sets loop to true, and it remains true while searching for the desired423

xk,n+1, by repeatedly executing the loop sequence that follows line (x). In this sequence,424

line (xi) increases ` by 1 and line (xii) sets βk,n to γ`. Thus for the vector z defined by line425

(xiii), z ∈ ∆ and φ (z) ≤ φ
(
xk,n

)
, provided that βk,n is not greater than the δ in (7). Since426

(γ`)
∞
`=0 is a summable sequence of positive real numbers, there must be a positive integer L427

such that γ` ≤ δ, for all ` ≥ L. This implies that if we applied lines (xi) - (xiii) often enough,428

we would reach a vector z that satisfies z ∈ ∆ and φ (z) ≤ φ
(
xk,n

)
. If the condition in line429

(xiv) is not satisfied when the process gets to it, then lines (xi) - (xiii) are again executed430

and eventually we get a vector z for which the condition in line (xiv) is satisfied due to the431
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induction hypothesis that φ
(
xk,n

)
≤ φ

(
xk
)
. By lines (xv) and (xvi) we see that at that432

time xk,n+1 is set to z and so we obtain that xk,n+1 ∈ ∆ and φ
(
xk,n+1

)
≤ φ

(
xk
)
, as desired.433

Line (xvii) sets loop to false and so control is returned to line (vii). When this happens for434

the Nth time, it will be the case that n = N and therefore line (xviii) is used to produce435

xk+1 ∈ Ω and the increasing of k by line (xix) allows us then to move on to the next iterative436

step. Infinite repetition of such steps produces the sequence RT =
(
xk
)∞
k=0

of points in Ω.437

We now show that if O
(
T, ε,

(
(PT )k x

)∞
k=0

)
is defined for every x ∈ Ω, then, for any438

ε′ > ε, the Superiorized Version of Algorithm P produces an ε′-compatible output. Since P439

is assumed to be strongly perturbation resilient, this desired result follows if we can show440

that there exists a summable sequence (βk)
∞
k=0 of nonnegative real numbers and a bounded441

sequence
(
vk
)∞
k=0

of vectors in RJ such that (6) is satisfied for all k ≥ 0. In view of line442

(xviii), this is achieved if we can define the βk and the vk so that xk,N = xk + βkv
k. This443

is done by setting444

βk = max {βk,n | 0 ≤ n < N} , (8)

vk =
N−1∑
n=0

βk,n
βk

vk,n. (9)

That these assignments result in xk,N = xk + βkv
k follows from lines (v) - (xvii). From line445

(xii) follows that (βk)
∞
k=0 is a subsequence of (γ`)

∞
`=0 and, hence, it is a summable sequence446

of nonnegative real numbers. Since each
∥∥vk,n∥∥ ≤ 1 by the definition of a nonascending447

vector, it follows from (8) and (9) that
∥∥vk∥∥ ≤ N and so

(
vk
)∞
k=0

is bounded. Part of the448

condition expressed in (6) is that, for all k ≥ 0, xk + βkv
k ∈ ∆. This follows from the fact449

that xk,N = xk +βkv
k is assigned its value by line (xvi), but only if the condition expressed450

in line (xiv) is satisfied.451

In conclusion, we have shown that the superiorized version of a strongly perturbation452

resilient algorithm produces outputs that are essentially as constraints-compatible as those453

produced by the original version of the algorithm. However, due to the repeated steering of454

the process by lines (vii) - (xvii) toward reducing the value of the optimization criterion φ,455

we can expect that the output of the superiorized version will be superior (from the point456

of view of φ) to the output of the original algorithm.457
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F. Information on performance comparison with MAP methods458

Using our notation, the constrained minimization formulation that we are considering is:459

Given an ε ∈ R+,460

minimize φ(x), subject to PrT (x) ≤ ε. (10)

The aim of superiorization is not identical with the aim of constrained minimization in (10).461

One difference is that ε is not “given” in the superiorization context. The superiorization462

of an algorithm produces a sequence and, for any ε, the associated output of the algorithm463

is considered to be the first x in the sequence for which PrT (x) ≤ ε. The other difference464

is that we do not claim that this output is a minimizer of φ among all points that satisfy465

the constraint, but hope only that it is usually an x for which φ(x) is at the small end466

of its range of values over the set of constraint-satisfying points. This latter difference is467

generally shared by comparisons of a heuristic approach with an exact approach to solving468

a constrained minimization problem.469

The MAP (or regularized) formulation of a physical problem that leads to the constrained470

minimization problem (10) is the unconstrained minimization problem of the form: Given471

a β ∈ R+,472

minimize [φ(x) + βPrT (x)] . (11)

Formulations of both kinds (i.e, the ones of (10) and of (11)) are widely used for solving473

medical physics problems and the question “Which of these two formulations leads to faster or474

better solutions of the underlying physical problem?” is open. Examples of both formulations475

with various choices for PrT and φ are listed in the beginning parts of the paper of Goldstein476

and Osher47.477

We now return to the question raised near the end of Section I: Will superiorization pro-478

duce superior results to those produced by contemporary MAP methods or is it faster than479

the better of such methods? As yet, there is very little information available regarding this480

general question; in fact, we are aware of only one published study45. That study compared481

a superiorization algorithm with the algorithm of Goldstein and Osher that they refer to482

as TwIST46 with split Bregman47 as the substep, which is indeed a contemporary method483

that uses the MAP formulation. (For example, see the discussion of the split Bregman484

method in56.) The problem S to which the two algorithms were applied was one from the485

tomographic problem set S defined in (1). ResS as defined in (2) was used as the proximity486
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function and total variation, TV as defined below in (12), was the choice for φ. It is reported487

in45 that for the outputs of the two algorithms that were being compared, the values of ResS488

and TV were very similar, but the superiorization algorithm produced its output four times489

faster than the MAP method.490

III. AN ILLUSTRATIVE EXAMPLE491

A. Application to tomography492

We use tomography to refer to the process of reconstructing a function over a Euclidean493

space from estimated values of its integrals along lines (that are usually, but not necessarily,494

straight). The particular reconstruction processes to which our discussion applies are the495

series expansion methods, see Section 6.3 of55, in which it is assumed that the function to496

be reconstructed can be approximated by a linear combination of a finite number (say J)497

of basis functions and the reconstruction task becomes one of estimating the coefficients of498

the basis functions in the expansion. Sometimes, prior knowledge about the nature of the499

function to be reconstructed allows us to confine the sought-after vector x of coefficients to500

a subset Ω of RJ (such as the nonnegative orthant RJ
+). We use i to index the lines along501

which we integrate, ai ∈ RJ to denote the vector whose jth component is the integral of the502

jth basis function along the ith line, and bi to denote the measured integral of the function503

to be reconstructed along the ith line. Under these circumstances the constraints come from504

the desire that, for each of the lines, 〈ai,x〉 should be close (in some sense) to bi.505

To make this concrete, consider (1). Such a description of the constraints arises in506

tomography by grouping the lines of integration intoW blocks, with `w lines in the wth block.507

Such groupings often (but not always) are done according to some geometrical condition on508

the lines (for example, in case of straight lines, we may decide that all the lines that are509

parallel to each other form one block). In this framework the proximity function Res defined510

by (2) provides a reasonable measure of the incompatibility of a vector x with the constraints.511

The algorithm R described by (3) - (5) is applicable to this concrete formulation.512

There are many optimization criteria that have been used in tomography, see Section513

6.4 of55, here we discuss the one called total variation (TV ), whose use has been popular514

in medical physics recently, see as examples20,22,23,41–44. The definition of TV that we use515
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here requires a certain way of selecting the basis functions. It is assumed that the function516

to be reconstructed is defined in the plane R2 and is zero-valued outside a square-shaped517

region in the plane. This region is subdivided into J smaller equal-sized squares (pixels)518

and the J basis functions are defined by having value one in exactly one pixel and value519

zero everywhere else. We index the pixels by j and we let C denote the set of all indices of520

pixels that are not in the rightmost column or the bottom row of the pixel array. For any521

pixel with index j in C, let r(j) and b(j) be the index of the pixel to its right and below it,522

respectively. We define TV : RJ → R by523

TV (x) =
∑
j∈C

√(
xj − xr(j)

)2
+
(
xj − xb(j)

)2
. (12)

The method we adopted to generate a nonascending vector for the TV function at an524

x ∈ RJ is based on Theorem 2 of the Appendix. It is applicable since TV : RJ → R is a525

convex function; see, for example, the end of the Proof of Proposition 1 of41. Now consider526

an integer j′ such that 1 ≤ j′ ≤ J . Looking at the sum in (12), we see that xj′ appears in527

at most three terms, in which j′ must be either j, or r(j), or b(j) for some j ∈ C. By taking528

the formal partial derivatives of these three terms, we see that ∂TV
∂xj′

(x) is well-defined if the529

denominator in the formal derivative of any of the three terms is not zero for x. In view of530

this, we define the g in Theorem 2 as follows. If the denominator in any of the three formal531

partial derivatives with respect to xj′ has an absolute value less than a very small positive532

number (we used 10−20 ), then we set gj′ to zero, otherwise we set it to ∂TV
∂xj′

(x). Clearly533

the resulting g ∈ RJ satisfies the condition in Theorem 2 and hence provides a d that is a534

nonascending vector for TV at x.535

Previously reported reconstructions using TV -superiorization selected the d using sub-536

gradients as discussed in the paragraph following (7); such a d is not guaranteed to be a537

nonascending vector for the TV function. What we are proposing here is not only mathe-538

matically rigorous (in the sense that it is guaranteed to produce a nonascending vector for539

the TV function), but it can also lead to a better reconstructions, as illustrated in Subsection540

IIID.541
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B. The data generation for the experiments542

The data sets used in the experiments reported in this paper were generated in such a543

way that they share the noise-characteristics of CT scanners when used for scanning the544

human head and brain; as discussed, for example, in Chapter 5 of55. They were generated545

using the software SNARK0957.546

The head phantom that was used for data generation is based on an actual cross-section547

of the human head. It is described as a collection of geometrical objects (such as ellipses,548

triangles and segments of circles) whose combination accurately resembles the anatomical549

features of the actual head cross-section. In addition, the basic phantom contains a large550

tumor. The actual phantom used was obtained by a random variation of the basic phantom,551

by incorporating into it local inhomogeneities and small low-contrast tumors at random552

locations. This phantom is represented by the image in figure 1. That image comprises553

485× 485 pixels each of size 0.376 mm by 0.376 mm. The values assigned to the pixels are554

obtained by an 11× 11 sub-sampling of the pixels and averaging the values assigned to the555

sub-samples by the geometrical objects that are used to describe the anatomical features556

and the tumors. Those values are approximate linear attenuation coefficients per cm at 60557

keV (0.416 for bone, 0.210 for brain, 0.207 for cerebrospinal fluid). The contrast of the small558

tumors with their background is 0.003 cm-1. In order to clearly see the low-contrast details559

in the interior of the skull, we use zero (black) to represent the value 0.204 (or anything560

less) and 255 (white) to represent 0.21675 or anything more). The same is true for all the561

images in the rest of this paper, with the exception of those in figure ??.562

For the selected head phantom we generated parallel projection data, in which one view563

comprises estimates of integrals through the phantom for a set of 693 equally-spaced parallel564

lines with a spacing of 0.0376 cm between them. (We chose to simulate parallel rather565

than divergent projection data, since the reconstruction by the method of42 with which566

we wish to compare the superiorization approach were performed for us by the authors567

of42 on parallel data. Even though contemporary CT scanners use divergent projection568

data, results obtained by the use of parallel projection data are relevant to them, since it569

is known that the quality of reconstructions from these two modes of data collection are570

very similar as long as the data generations use similar frequencies of sampling of lines and571

similar noise characteristics in the estimated integrals for those lines; see, for example, the572
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Figure 1: (a) A head phantom. (b) Reconstruction of the head phantom from realistically

simulated projection data for 360 views using ART with blob basis functions.

reconstructions from divergent and parallel projection data in figure 5.15 of55.) In calculating573

these estimates we take into consideration the effects of photon statistics, detector width574

and scatter. Details of how we do this exactly can be found in Sections 5.5 and 5.9 of55.575

Briefly, quantum noise is calculated based on the assumption that approximately 2,000,000576

photons enter the head along each ray, detector width is simulated by using 11 sub-rays577

along each of which the attenuation is calculated independently and then combined at the578

detector, and 5% of the photons get counted not by the detector for the ray in question but579

detectors for the neighboring rays. For the experiments in this paper, we did not simulate580

the poly-energetic nature of the x-ray source. To indicate what can be achieved in clinical581

CT, we show in figure 1(b) a reconstruction that was made from data comprising of 360582

such views with the reconstruction algorithm known as ART with blob basis functions; see55583

(Chapter 11).584
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C. Superiorization reconstruction from a few views585

The main reason in the literature for advocating the use of TV as the optimization586

criterion is that by doing so one can achieve efficacious reconstructions even from sparsely587

sampled data. In our own work31 with realistically simulated CT data we found that this is588

not always the case and this will be demonstrated again by the experiments reported in the589

current paper.590

There have appeared in the literature some approaches to TV minimization that seem591

to indicate a more efficacious performance for CT than the one reported in31. One of these592

is the Adaptive Steepest Descent Projections Onto Convex Sets (ASD-POCS) algorithm,593

which is described in detail in the much-cited paper of Sidky and Pan42 and whose use has594

been since reported in a number of subsequent publications, for example, in23,43. We note595

that ASD-POCS was designed with the aim of producing an exact minimization algorithm,596

in contrast to our heuristic superiorization approach. Translating equations (6)-(8) of42597

into our terminology, the aim of ASD-POCS is the following: Given an ε ∈ R+, find an598

ε-compatible x ∈ Ω = RJ
+ for which TV (x) is minimal. (Note that this aim is a special599

case of the constrained optimization formulation presented in (10).) In order to test ASD-600

POCS, we generated realistic projection data as described in the previous subsection but601

for only 60 views at 3 degree increments with the spacing between the lines for which602

integrals are estimated set at 0.752 mm. Thus the number of rays (and hence the number603

photons put into the head) in this data set is a twelfth of what it is in the data set used to604

produce the reconstruction in figure 1(b). A reconstruction from these data was produced605

for us using ASD-POCS by the authors of42 (this ensured that it does not suffer due to our606

misinterpretation of the algorithm or from our inappropriate choices of the free parameters),607

it is shown in figure 2(a).608

Since the image quality of figure 2(a) is not anywhere near to that of figure 1(b), we present609

here a brief discussion as to why we are showing such images. Many publications in the recent610

medical imaging literature have claimed that medically-efficacious reconstructions can be611

obtained by the use of TV -minimization from data as sparse as what was used to produce612

figure 2(a). (In fact, ASD-POCS was motivated and used with such an aim in mind23,42,43.)613

Such publications usually show reconstructions from sparse data as evidence for the validity614

of their claims. They can do this because in their presented illustrations the features that615
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Figure 2: Reconstructions using TV as the optimization criterion from realistically

simulated projection data for 60 views using (a) ASD-POCS and (b) superiorization. As

compared to figure 1(b), these reconstructions fail in two ways: they do not show some of

the fine details in the phantom and they present some artifactual variations. The former of

these is a consequence of reconstructing from a much smaller data set than used for figure

1(b). The latter is due to using a very narrow window (13.5 HU) in these displays. Were

we to use a wider display window (e.g., from -429 HU to 429 HU) for the reconstructions

in this figure and in figure 1(b), the visual appearance of the resulting images would be

nearly indistinguishable.

are observable in the reconstructions are usually much larger and/or of much higher contrast616

against their backgrounds than the small “tumors” in figure 1(a), which are perfectly visible617

in the reconstruction in figure 1(b), but are not detectable in the reconstruction from sparse618

data in figure 2(a). The reason why that reconstruction appears to be unacceptably bad is619

that the display window (from 0.204 cm-1 linear attenuation coefficient to 0.21675 cm-1 linear620

attenuation coefficient) is very narrow; it was selected to enhance the visibility of the small621

low-contrast tumors. The width of this window corresponds to about 13.5 Hounsfield Units622

(HU). As compared to this, in their evaluation of sparse-view reconstruction from flat-panel-623

detector cone-beam CT, Bian et al.43 use what they call a “soft-tissue grayscale window”624
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(also a “narrow window”) from -429 HU to 429 HU to display head phantom reconstructions.625

Using such a window for our reconstructions shown figures 2(a) and 1(b) would result in626

images that are nearly indistinguishable from each other. Thus reporting the images using627

such a display window is consistent with the claim that a TV-minimizing reconstruction628

from a few views is similar in quality to a more traditional reconstruction from many views.629

However, our much narrower display window reveals that this is not really so. We therefore630

continue using our much narrower window in what follows, since it clearly reveals the nature631

of the reconstructions being compared, warts and all.632

While this ASD-POCS reconstruction is not as good as it should be for diagnostic CT of633

the brain (due to the sparsity of the data), it is visually better than the reconstruction using634

superiorization from similar data as reported in31. We discuss the reasons for this in the635

next subsection. Here we concentrate on examining whether one can achieve a reconstruction636

using superiorization that is as good as that produced by ASD-POCS from the same data.637

For this we first need to examine the numerical properties of the ASD-POCS reconstruc-638

tion. This reconstruction uses 485 × 485 pixels each of size 0.376 mm by 0.376 mm. This639

implies that J = 235, 225 and it also determines the components of the vectors ai ∈ RJ in640

the precise specification of the problem S. The ResS, as defined by (2), of the ASD-POCS641

reconstruction is 0.33 and the TV , as defined by (12), is 835.642

We applied to the same problem S a superiorized version of the algorithm R defined643

by (3). To complete the specification of R, we point out that for the ordering of views we644

chose the “efficient” one that was introduced in58 and is also discussed on page 209 of55.645

The choices we made for the superiorization are the following: γ` = 0.99995`, x̄ is the zero646

vector and N = 20. The nonascending vector was computed by the method described in the647

paragraph below (12). Denoting by RS the infinite sequence of points in Ω that is produced648

by the superiorized version of the algorithm R when applied to the problem S, we chose as649

our reconstruction x∗ = O (S, 0.33, RS). For such a reconstruction we have, by the definition650

of O, that ResS (x∗) ≤ 0.33; in other words, the output of the superiorization algorithm is651

at least as constraints-compatible with S as the output of ASD-POCS. From the point of652

view of TV -minimization, our x∗ is slightly better: TV (x∗) =826.653

The superiorization reconstruction is displayed in figure 2(b). Visually it is similar to the654

reconstruction produced by ASD-POCS. From the optimization point of view it achieves the655

desired aim better than ASD-POCS does, since it results in smaller values for both ResS656
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and for TV , even though only slightly.657

That the two reconstructions in figure 2 are very similar is not surprising because a658

comparison of the pseudo-codes reveals that the ASD-POCS algorithm in42 is essentially a659

special case of the Superiorized Version of Algorithm P, even though it has been derived660

from rather different principles. To obtain the ASD-POCS algorithm from our methodology661

described here, we would have to choose an Algebraic Reconstruction Technique (ART;662

see Chapter 11 of55) as the algorithm that we are superiorizing. Such a superiorization of663

ART was reported in the earliest paper on superiorization27. For the illustration in our664

current paper we decided to superiorize the block-iterative algorithm R defined by (3).665

This illustrates the generality of the superiorization approach: it is applicable not only to666

a large class of constrained optimization problems, but also enables the use of any of a667

large class of iterative algorithms designed to produce a constraints-compatible solutions.668

A recent publication aimed at producing an exact TV -minimizing algorithm based on the669

block-iterative approach is44.670

D. Effects of variations in the reconstruction approach671

The reconstruction in figure 2(a) produced by ASD-POCS definitely “looks better” than672

a reconstruction in31, which was obtained using superiorization from similar data. Since, as673

discussed in the last paragraph of the previous subsection, the ASD-POCS algorithm in42674

can be obtained as a special case of superiorization, it must be that some of the choices made675

in the details of the implementations are responsible for the visual differences. An analysis676

of the implementational details adopted by the two approaches revealed several differences.677

After removing these differences, the superiorization approach produced the image in figure678

2(b), which is very similar to the reconstruction produced by ASD-POCS. We now list the679

implementational choices that were made for superiorization to make its performance match680

that of the reported implementation of ASD-POCS.681

One implementational difference is in the stopping-rule of the iterative algorithm; that682

is, the choice of ε in determining the output O (S, ε, RS). Since the data are noisy, the683

phantom itself does not match the data exactly. In previously reported implementations of684

superiorization it was assumed that the iterative process should terminate when an image685

is obtained that is approximately as constraints-compatible as the phantom; in the case of686
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the phantom and the projections data on which we report here the value of ResS for the687

phantom is approximately 0.91, which is larger than its value (0.33) for the reconstruction688

produced by ASD-POCS. The output O (S, 0.91, RS) is shown in figure 3(a). This is a689

wonderfully smooth reconstruction, its TV value is only 771. However this smoothness690

comes at a price: we loose not only the ability to detect the large tumor, but we cannot691

even see anatomic features (such as the ventricular cavities) inside the brain. So it appears692

that, in order to see medically-relevant features in the brain, over-fitting (in the sense of693

producing a reconstruction from noisy data that is more constraints-compatible than the694

phantom) is desirable.695

In the implementations that produced previously reported reconstructions by superior-696

ization, the number N in the Superiorized Version of Algorithm P was always chosen to697

be 1. It is possible that this is the wrong choice, making only this change to what lead to698

the reconstruction in figure 2(b) results in the reconstruction shown in figure 3(b). That699

image appears similar to the image in figure 2(b), but it has a higher TV value, namely 832,700

which is still very slightly lower than that of the ASD-POCS reconstruction. The choice701

N = 20 was based on the desire to maintain consistency with what has been practiced using702

ASD-POCS, see page 4790 of42. It appears that in the context of our paper the additional703

computing cost due to choosing N to be 20 rather than 1 is not really justified. (We note704

that if d is selected using subgradients as discussed in the paragraph following (7) and thus705

d is not guaranteed to be a nonascending vector for the TV function, then the choice of706

20 rather than 1 for N results in a considerable improvement. However, an even greater707

improvement is achieved even with N = 1 by selecting d as recommended in this paper.)708

Another important difference between the ASD-POCS implementation and the previous709

implementations of the superiorization approach is the size of the pixels in the reconstruc-710

tions. For the ASD-POCS reconstruction this was selected to be 0.376 mm by 0.376 mm.711

In previously reported reconstructions by superiorization it was assumed that the edge of712

a pixel should be the same as the distance between the parallel lines along which the data713

are collected; that is, 0.752 mm for our problem S. This assumption proved to be false.714

TV -minimization takes care of undesirable artifacts that may otherwise arise due to the715

smaller pixels and this leads to a visual improvement. A superiorizing reconstruction with716

the larger pixels, using ε = 0.33 and N = 20, is shown in figure 3(c). (We note that the use717

of smaller pixels during iterative x-ray CT reconstructions was also suggested in59. How-718
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Figure 3: Reconstructions produced by varying some of the parameters in the algorithm

that produced figure 2(b). (a) Changing the termination criterion form ε = 0.33 to

ε = 0.91. (b) Changing the value of N from 20 to 1. (c) Reconstructing with pixel size

0.752 mm by 0.752 mm instead of 0.376 mm by 0.376 mm. (d) Reconstructing with all the

three changes of (a)-(c).
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ever, that approach is quite different from what is presented here: its final result uses larger719

pixels whose values are obtained by averaging assemblies of values provided by the iterative720

process to the smaller pixels. There is no such downsampling in our approach, our final721

result is presented using the smaller pixels. Its smoothness is due to reduction of TV by the722

superiorization approach rather than to averaging pixel values in a denser digitization.)723

Combining the use of the larger pixels with ε = 0.91 and N = 1 results in the reconstruc-724

tion shown in figure 3(d). This reconstruction, for which the superiorization options were725

selected according to what was done in31, is visually inferior to those shown in our figure726

2. The reconstructions displayed in figure 3 also illustrate another important point, namely727

that even though the mathematical results discussed in this paper are valid for a large range728

of choices of the parameters in the superiorization algorithms, for medical efficacy of the729

reconstructions attention has to be paid to these choices since they can have a drastic effect730

on the quality of the reconstruction.731

It has been mentioned in Subsection II B that except for the presence of Q in (3), which732

enforces nonnegativity of the components, R is identical to the algorithm used and illustrated733

in31. It is known that CT reconstruction of the brain from many views does not suffer734

from ignoring the fact that the components of the x, which represent linear attenuation735

coefficients, should be nonnegative; as is illustrated in figure 1(b). This remains so when736

reconstructing from a few views using the method and data that we have been discussing:737

if we do everything in exactly the same way as was done to obtain the reconstruction with738

TV value 826 that is shown in our figure 2(b) but remove Q from (3), then we obtain a739

reconstruction in figure 4(a) whose TV value is 829.740

Another variation that deserves discussion, because it has been suggested in the741

literature22, is one that does not come about by making choices for the general approach of742

the Superiorized Version of Algorithm P but rather by changing the nature of the approach.743

The variation in question is not applicable in general, but can be applied to the special744

case when the algorithm to be superiorized is the R defined by (3). It was suggested as745

an improvement to the approach presented above with the choice N = 1. The idea was746

based on recognizing the block-iterative nature of the algorithmic operator RS in (3) and747

intermingling the perturbation steps of lines (vii)-(xvii) of the Superiorized Version of Al-748

gorithm R with the projection steps BS1 , . . . ,BSW
of (3). It was reported in22 that doing749

this is advantageous to using the Superiorized Version of Algorithm R. However, when we750
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Figure 4: Reconstructions by variations that do not fit into the framework within which

the previously shown reconstructions were produced. (a) Not using nonnegativity in the

algorithm. (b) Interleaving perturbations with blocks.

applied the variation of the Superiorized Version of Algorithm R that is proposed in22 to751

the problem S that we have been using in this section, we ended up with the reconstruction752

in figure 4(b) whose TV value is 920. This is not as good as what was obtained using the753

version of the algorithm that produced the reconstruction in figure 2(b). We conclude that754

the variation suggested by22, which does not fit into the theory of our paper, does not have755

an advantage over what we are proposing here, at least for the problem S that we have756

been discussing in this section. We conjecture that the improvement reported in22 is due to757

selecting d using subgradients as discussed in the paragraph following (7) and, as discussed758

earlier, such an improvement is not obtained if d is selected by the more appropriate method759

recommended in this paper.760

IV. DISCUSSION AND CONCLUSIONS761

Constrained optimization is an often-used tool in medical physics. The methodology of762

superiorization is a heuristic (as opposed to exact) approach to constrained optimization.763
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Although the idea of superiorization was introduced in 2007 and its practical use has been764

demonstrated in several publications since, this paper is the first to provide a solid math-765

ematical foundation to superiorization as applied to the noisy problems of the real world.766

These foundations include a precise definition of constraints-compatibility, the concept of a767

strongly perturbation resilient algorithm, simple conditions that ensure that an algorithm768

is strongly perturbation resilient, the superiorized version of an algorithm and the showing769

that the superiorized version of a strongly perturbation resilient algorithm produces outputs770

that are essentially as constraints-compatible as those produced by the original version but771

are likely to have a smaller value of the chosen optimization criterion.772

The approach is very general. For any iterative algorithm P and for any optimization773

criterion φ for which we know how to produce nonascending vectors, the pseudocode given774

in Subsection II E automatically provides the version of P that is superiorized for φ.775

We demonstrated superiorization for tomography when total variation is used as the776

optimization criterion. In particular, we illustrated on a particular tomography problem777

that, in spite of its generality, superiorization produced a reconstruction that is as good778

as (from the points of view of constraints-compatibility and TV -minimization) what was779

obtained by the ASD-POCS algorithm that was specially designed for TV -minimization in780

tomography.781
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Appendix790

Conditions for strong perturbation resilience791

Theorem 1. Let P be an algorithm for a problem structure 〈T,Pr〉 such that, for all792

T ∈ T, P is boundedly convergent for T , PrT : Ω → R is uniformly continuous and793

PT : ∆→ Ω is nonexpansive. Then P is strongly perturbation resilient.794

Proof. We first show that there exists an ε ∈ R+ such that O
(
T, ε,

(
(PT )k x

)∞
k=0

)
795

is defined for every x ∈ Ω. Under the assumptions of the theorem, let γ ∈ R+ be such796

that PrT (y (x)) ≤ γ, for every x ∈ Ω. We prove that O
(
T, 2γ,

(
(PT )k x

)∞
k=0

)
is defined797

for every x ∈ Ω as follows. Select a particular x ∈ Ω. By uniform continuity of PrT ,798

there exists a δ > 0, such that |PrT (z)− PrT (y (x))| ≤ γ, for any z ∈ Ω for which799

‖z − y (x)‖ ≤ δ. Since P is convergent for T , there exists a nonnegative integer K, such800

that
∥∥∥(PT )K x− y (x)

∥∥∥ ≤ δ. It follows that801

∣∣∣PrT ((PT )K x
)∣∣∣ ≤ ∣∣∣PrT ((PT )K x

)
− PrT (y (x))

∣∣∣+ |PrT (y (x))|

≤ 2γ.
(13)

Now let T ∈ T and ε ∈ R+ be such that O
(
T, ε,

(
(PT )k x

)∞
k=0

)
is defined for every802

x ∈ Ω. To prove the theorem, we need to show that O (T, ε′, R) is defined for every ε′ > ε803

and for every sequence R =
(
xk
)∞
k=0

of points in Ω for which, for all k ≥ 0, (6) is satisfied for804

bounded perturbations βkvk . Let ε′ and R satisfy the conditions of the previous sentence.805

For k ≥ 0, we have, due to the nonexpansiveness of PT , that∥∥xk+1 −PTx
k
∥∥ =

∥∥PT

(
xk + βkv

k
)
−PTx

k
∥∥ ≤ ∥∥βkvk∥∥ . (14)

Denote
∥∥βkvk∥∥ by rk. Clearly, rk ∈ R+ and it follows from the definition of bounded806

perturbations that
∞∑
k=0

rk <∞.807

We next prove by induction that, for every pair of nonnegative integers k and i,808

∥∥∥xk+i − (PT )i xk
∥∥∥ ≤ k+i−1∑

j=k

rj. (15)

Let k be an arbitrary nonnegative integer. If i = 0, then the value is zero on both sides of809

the inequality and hence (15) holds. Now assume that (15) holds for an integer i ≥ 0. Then,810
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by (14) and the nonexpansiveness of PT ,811 ∥∥∥xk+i+1 − (PT )i+1 xk
∥∥∥ ≤ ∥∥xk+i+1 −PTx

k+i
∥∥

+
∥∥∥PTx

k+i − (PT )i+1 xk
∥∥∥

≤ rk+i +
∥∥∥xk+i − (PT )i xk

∥∥∥
≤ rk+i +

k+i−1∑
j=k

rj

=
k+i∑
j=k

rj,

(16)

which completes our inductive proof. A consequence of (15) is that, for every pair of non-812

negative integers k and i,813 ∥∥∥xk+i − (PT )i xk
∥∥∥ ≤ ∞∑

j=k

rj. (17)

Due to the summability of the nonnegative sequence (rk)
∞
k=0, the right-hand side (and hence814

the left-hand side) of this inequality gets arbitrarily close to zero as k increases.815

Since PrT is uniformly continuous, there exists a δ such that, for all x,y ∈ Ω,816

|PrT (x)− PrT (y)| ≤ ε′ − ε provided that ‖x− y‖ ≤ δ. Select a k so that
∑∞

j=k rj ≤ δ.817

By the assumption that O
(
T, ε,

(
(PT )k x

)∞
k=0

)
is defined for every x ∈ Ω, there exists a818

nonnegative integer i for which Pr
(

(PT )i xk
)
≤ ε. From (17) we have, for this k and i,819

that
∥∥∥xk+i − (PT )i xk

∥∥∥ ≤ δ and, hence,820

∣∣PrT (xk+i)
∣∣ ≤ ∣∣∣PrT (xk+i)− PrT

(
(PT )i xk

)∣∣∣
+
∣∣∣PrT ((PT )i xk

)∣∣∣
≤ (ε′ − ε) + ε = ε′,

(18)

proving that O (T, ε′, R) is defined. �821

Nonascending vectors for convex functions822

Theorem 2. Let φ : RJ → R be a convex function and let x ∈ RJ . Let g ∈ RJ satisfy the823

property: For 1≤ j ≤ J , if the jth component gj of g is not zero, then the partial derivative824
∂φ
∂xj

(x) of φ at x exists and its value is gj. Define d to be the zero vector if ‖g‖ = 0 and to825

be −g/ ‖g‖ otherwise. Then d is a nonascending vector for φ at x.826
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Proof. The theorem is trivially true if ‖g‖ = 0, so we assume that this is not the case.827

We denote by I the nonempty set of those indices j for which gj 6= 0.828

For 1 ≤ j ≤ J , let sj be gj/|gj | for j ∈ I and be 0 otherwise, and let ej ∈ RJ be the vector829

all of whose components are zero except for the jth, which is one. Then, for 1 ≤ j ≤ J ,830

there exists a δj > 0 such that, for 0 ≤ λj ≤ δj,831

φ
(
x− λjsjej

)
≤ φ (x) . (19)

This is obvious if sj = 0. Otherwise, ∂φ
∂xj

(x) exists and indicates φ increases at x if sj = 1832

or that φ decreases at x if sj = −1. The existence of the desired δj can be derived from the833

standard definition of the partial derivative as a limit.834

We define δ > 0 by835

δ =
‖g‖
J

min
j∈I

{
δj
|gj|

}
. (20)

Then we have that, for 0 ≤ λ ≤ δ,836

φ (x + λd) = φ

(
x− λ

J∑
j=1

|gj|
‖g‖

sje
j

)

= φ

(
J∑
j=1

1

J

(
x− λJ |gj|

‖g‖
sje

j

))

≤ 1

J

J∑
j=1

φ

(
x− λJ |gj|

‖g‖
sje

j

)
≤ 1

J

J∑
j=1

φ (x)

= φ (x) .

(21)

The first inequality above follows from the convexity of φ and the second one follows from837

(19), with λj defined to be λJ |gj |‖g‖ , combined with (20). Thus d is a nonascending vector for838

φ at x. �839
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