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1 Introduction

Proton therapy is an advantageous form of radiotherapy because it allows for the place-

ment of a high dose peak, the Bragg peak, at any desired depth by modulating proton

energy. Currently, proton therapy treatment plans are carried out using data from X-ray

CT scans, an imaging modality that generates tomographical maps of scaled photon linear

attenuation coefficients, commonly known as Hounsfield units. However, to perform the

treatment planning, one requires knowledge of the spatial distribution of electron density

within the patient. In clinical practice Hounsfield units are converted to electron densi-

ties through an empirically derived relationship generated from measurements with tissue

equivalent materials (Mustafa and Jackson 1983), (Schneider, Pedroni, and Lomax 1996).

The end result of this conversion is a difference, typically ranging from several millimeters

up to more than 1 cm, between the proton range calculated by the treatment planning

software and the true proton range within the patient, depending on the anatomical region

treated and the calibration method used (Schneider, Pedroni, and Lomax 1996). Thus,

because the Bragg peak depth cannot be accurately predicted, the inherent advantages

of proton therapy are partially negated in such an approach.

Proton computed tomography (pCT) is an imaging modality that has been suggested

as a means for reducing the uncertainty of Bragg peak location in proton radiation treat-

ments. In pCT, the spatial location of individual protons pre- and post-patient, as well

as the energy lost along the path is recorded (Schulte et al. 2004). The spatial mea-

surements are employed in a maximum likelihood proton path formalism that models

multiple Coulomb scattering, i.e., multiple small-angle deflections of the proton path due

to interaction with the Coulomb field of the nuclei of the medium within the patient

(Schulte et al. 2008), maximizing the spatial resolution. The corresponding energy loss
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measurements are converted to the integral relative electron density along this predicted

path with the Bethe-Bloch equation, which describes the mean energy loss of a proton per

unit track length as a function of density of the medium and the proton energy. By recon-

structing many such events with an algebraic reconstruction technique (ART) (Gordon,

Bender, and Herman 1970) capable of handling these nonlinear paths, three dimensional

electron density maps can be generated without the need for any empirical conversion.

These maps can then be used in the treatment planning system to accurately predict the

proton dose distribution within the patient at treatment time.

It has been demonstrated by previous pCT studies (Li et al. 2006) that superior

spatial resolution can be achieved by employing ART for reconstruction in comparison to

transform methods, such as filtered back-projection. This is primarily because transform

methods must assume the proton traveled along a straight path in the reconstruction

volume. Algebraic techniques, however, are much more flexible, not only allowing proton

paths to be nonlinear but also permitting the inclusion of a priori knowledge about the

object to be reconstructed. This flexibility may come at the expense of computation time,

however, which could be greater for some iterative techniques than that for transform

methods.

If pCT is to be implemented in a clinical environment, fast image reconstruction is

required. It has been suggested that the image reconstruction process should take less

than 15 minutes for treatment planning images and less than 5 minutes for pre-treatment

patient position verification images (Schulte et al. 2004). ART, recognized to be identical

with the iterative projection algorithm of Kaczmarz (Kaczmarz 1937), has been imple-

mented in previous pCT studies, displaying promising results (Li et al. 2006). However,

ART carries out image updates after each proton history and is therefore inherently se-
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quential, meaning that the speed of the reconstruction is dependent on the speed of the

computer processing unit. As an example of the infeasibility of using ART for pCT in

clinical practice we have recently observed that, using general purpose processing units,

three dimensional images made up of a 256×256×48 voxel reconstruction volume, recon-

structed with 10 million proton histories will take approximately 1.5 hours to complete a

single cycle, with the optimal image often being reached after 3-4 cycles.

With the development of parallel computing, work has been dedicated to developing

iterative projection algorithms that can be executed in parallel over multiple processors

to enable fast algebraic reconstructions. This paper compares the performance, in terms

of image quality, of a number of parallel compatible block-iterative and string-averaging

algebraic reconstruction algorithms with simulated pCT projection data. Quantitative

assessment of image quality is based on the normalized mean absolute distance measure

as described in (Herman 1980), and a qualitative note is made about image appearance.

From these results recommendations are made on which image reconstruction algorithms

should be used in future studies with pCT.

2 Methods and Materials

2.1 Reconstruction Algorithms

All of the algorithms discussed in this paper belong to the class of projection methods.

These are iterative algorithms that use projections onto sets while relying on the general

principle that when a family of (usually closed and convex) sets is present then projections

onto the given individual sets are easier to perform than projections onto other sets

(intersections, image sets under some transformation, etc.) that are derived from the given
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individual sets. This is the case in pCT reconstruction, where the sets to be projected on

in the iterative process are the hyperplanes Hi defined by the i-th row of the m×n linear

system Ax = b, namely,

Hi = {x ∈ <n |
〈
ai, x

〉
= bi}, for i = 1, 2, . . . ,m. (1)

Here <n is the Euclidean n-dimensional space and ai is the i-th column vector of AT

(the transpose of A), i.e., its components ai
j occupy the i-th row of A. The right-hand

side vector is b = (bi)
m
i=1. In pCT, the ai

j correspond to the length of intersection of the

i-th proton history with the j-th voxel, x is the unknown relative electron density image

vector and bi is the integral relative electron density corresponding to the energy lost by

the i-th proton along its path.

2.1.1 The Fully Sequential Algebraic Reconstruction Technique

ART is a sequential projections method for the solution of large and sparse linear systems

of equations of the form Ax = b. It is obtained also by applying to the hyperplanes,

described by each equation of the linear system, the method of successive projections

onto convex sets. In the literature, the latter is called POCS (for “projections onto con-

vex sets”) or SOP (for “successive orthogonal projections”) and was originally published

by Bregman (Bregman 1965) and further studied by Gubin, Polyak, and Raik (Gubin,

Polyak, and Raik 1967).

Given the control sequence {i (k)}∞k=0 where i (k) = k mod m + 1 and m is the total

number of proton histories used in the algorithm, the general scheme for the ART is as

follows.

Algorithm 1 Algebraic Reconstruction Technique (ART)
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Initialization: x0 ∈ <n is arbitrary.

Iterative Step: Given xk, compute the next iterate xk+1 by

xk+1 = xk + λk

bi(k) − 〈ai(k), xk〉
‖ ai(k) ‖2

ai(k), (2)

where {λk}∞k=0 is a sequence of user-determined relaxation parameters, which need not be

fixed in advance, but could change dynamically throughout the iteration cycles.

ART was used as a standard for comparison in this investigation.

2.1.2 Block-Iterative Algorithms

The block-iterative algebraic reconstruction technique was first published by Eggermont,

Herman, and Lent (Eggermont, Herman, and Lent 1981). It can be viewed also as a

special case of the block-iterative projections (BIP) method for the convex feasibility

problem of Aharoni and Censor (Aharoni and Censor 1989). The BIP method allows the

processing of blocks (i.e., groups of hyperplanes Hi) which need not be fixed in advance,

but could change dynamically throughout the cycles. The number of blocks, their sizes,

and the assignments of the hyperplanes Hi to the blocks may all vary, provided that the

weights attached to the hyperplanes form a fair sequence, which is defined as follows.

Let I = {1, 2, . . . ,m}, and let {Hi|i ∈ I} be a finite family of hyperplanes with

nonempty intersection H = ∩i∈IHi. Denoting the nonnegative ray of the real line by R+,

introduce a mapping w : I → R+, called a weight vector, with the property
∑

i∈I w (i) = 1.

A sequence
{
wk
}∞

k=0
of weight vectors is called fair if, for every i ∈ I, there exists in-

finitely many values of k for which wk (i) > 0. The weight vectors must also obey the

condition
∑∞

k=0 wk (i) = +∞ for every i ∈ I, see (Aharoni and Censor 1989).

Given a fair weight vector w, define the convex combination Pw(x) =
∑

i∈I w(i)Pi(x),
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where Pi(x) is the orthogonal projection of x onto the hyperplane Hi. The general scheme

for the BIP technique for linear equations is as follows.

Algorithm 2 Block-Iterative Projections (BIP)

Initialization: x0 ∈ <n is arbitrary.

Iterative Step: Given xk, compute the next iterate xk+1 by

xk+1 = xk + λk

(
Pwk(xk)− xk

)
, (3)

where {wk}∞k=0 is a fair sequence of weight vectors and {λk}∞k=0 is a sequence of user-

determined relaxation parameters.

The block-iterative algorithmic structure stems from the possibility to have at each

iteration k some (but, of course, not all) of the components wk(i), for some of the indices i,

of the weight vector wk equal to 0. A block-iterative version with fixed blocks is obtained

from Algorithm 2 by partitioning the indices of I as I = I1 ∪ I2 ∪ · · · ∪ IM into M blocks

and using weight vectors of the form

wk =
∑

i∈It(k)

wk(i)ei, (4)

where eq is the q-th standard basis vector (with 1 in its q-th coordinate and zeros else-

where) and {t(k)}∞k=0 is a control sequence over the set {1, 2, . . . ,M} of block indices. In

this case, and incorporating the expressions for the orthogonal projections Pi onto the

hyperplanes Hi into the formula, the iterative step (3) of Algorithm 2 takes the form

xk+1 = xk + λk

∑
i∈It(k)

wk(i)
bi − 〈ai, xk〉
‖ ai ‖2

ai

 , (5)
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where {t(k)}∞k=0 is a cyclic (or almost cyclic) control sequence on {1, 2, . . . ,M}. While

the generality of the definition of a fair sequence of weight vectors permits variable block

sizes and variable assignments of hyperplanes into the blocks that can be used, equal

hyperplane weighting and constant block sizes were used in the implementation of BIP in

the present investigation.

The block-iterative component averaging (BICAV) algorithm, introduced by Censor,

Gordon, and Gordon (Censor, Gordon, and Gordon 2001), is a variant of Algorithm 2

that incorporates component-related weighting in the vectors wk. BICAV also differs

in the method of projection onto the individual hyperplanes, making use of generalized

oblique projections, as opposed to orthogonal projections. For a detailed discussion of the

consequences of this on the projection algorithm see (Censor, Gordon, and Gordon 2001).

The iterative step in BICAV is defined in (6).

Algorithm 3 Block-Iterative Component Averaging (BICAV)

Initialization: x0 ∈ <n is arbitrary.

Iterative Step: Given xk, compute the next iterate xk+1 by using, for j = 1, 2, . . . , n,

xk+1
j = xk

j + λk

∑
i∈It(k)

bi −
〈
ai, xk

〉∑n
`=1 s

t(k)
` (ai

`)
2
ai

j, (6)

where {st
`}n

`=1 is the number of non-zero elements at
` 6= 0 in the `-th column of the t-th

block of the matrix A given by

At =



ait1

ait2

...

ait
m(t)


(7)

and {λk}∞k=0 is a sequence of user-determined relaxation parameters.
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Recently, Censor et al. (Censor et al. 2008) derived a component-dependent weighting

technique that makes use of orthogonal projections onto hyperplanes rather than the

generalized oblique projections employed in the BICAV algorithm. This method, called

diagonally relaxed orthogonal projections (DROP), is outlined in Algorithm 4.

Algorithm 4 Diagonally Relaxed Orthogonal Projections (DROP) (Censor et al. 2008,

Algorithm 3.4)

Initialization: x0 ∈ <n is arbitrary.

Iterative Step: Given xk, compute the next iterate xk+1

xk+1 = xk + λkUt(k)

∑
i∈It(k)

bi −
〈
ai, xk

〉
‖ai‖2 ai, (8)

where Ut(k) = diag(min(1, 1/st
`)) with st

` as defined in Algorithm 3, and {λk}∞k=0 is a

sequence of user-determined relaxation parameters.

Both the DROP and BICAV algorithms are computationally more expensive than

the BIP method because of the need to calculate the st
`’s prior to any image updates.

However, it is the goal of component-dependent weighting to markedly improve the initial

convergence pattern of the algorithm, which may compensate for time spent on extra

calculations.

Andersen and Kak (Andersen and Kak 1984) developed a block-iterative technique

called the simultaneous algebraic reconstruction technique (SART). They suggested the

use of SART with blocks, which the authors called “subsets”, made up of image projection

rays from a single projection angle and in doing so, found that SART was able to deal well

with noisy data. The algorithm was developed in such a way that it was equally applicable

to subsets, or blocks, of any composition as it was to subsets comprised of rays from a
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single projection angle. This block-iterative form, called ordered subsets simultaneous

algebraic reconstruction technique (OS-SART) by Jiang and Wang in (Jiang and Wang

2001), is as follows.

Algorithm 5 Ordered Subsets Simultaneous Algebraic Reconstruction Technique (OS-

SART)

Initialization: x0 ∈ <n is arbitrary.

Iterative Step: Given xk, compute the next iterate xk+1 by using, for j = 1, 2, . . . , n,

xk+1
j = xk

j + λk

(
1∑

i∈It(k)
ai

j

) ∑
i∈It(k)

bi −
〈
ai, xk

〉∑n
j=1 ai

j

ai
j, (9)

where {λk}∞k=0 is a sequence of user-determined relaxation parameters.

2.1.3 String-Averaging Algorithms

In contrast to the block-iterative algorithmic scheme, the string-averaging scheme, pro-

posed by Censor, Elfving, and Herman (Censor, Elfving, and Herman 2001), dictates

that, from the current iterate xk, sequential successive projections be performed along

the strings and then the end-points of all strings be combined by a weighted convex com-

bination. In other words, each operation within a string must be executed serially, but

all string end-points can be calculated in parallel.

Firstly, let us introduce the string notation. For t = 1, 2, . . . ,M , let the string It be

an ordered subset of {1, 2, . . . ,m(t)} of the form

It = (it1, i
t
2, . . . , i

t
m(t)), (10)

with m(t) the number of elements in It. Suppose that there is a set S ⊆ <n such that
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there are operators R1, R2, . . . , Rm mapping S into S and an operator R which maps Sm

into S.

Algorithm 6 String-Averaging Algorithmic Scheme

Initialization: x0 ∈ S is arbitrary.

Iterative Step: Given xk, calculate, for all t = 1, 2, . . . ,M ,

Tt

(
xk
)

= Rit
m(t)

. . . Rit2
Rit1

(
xk
)
, (11)

and then calculate

xk+1 = R(T1

(
xk
)
, T2

(
xk
)
, . . . , TM

(
xk
)
). (12)

For every t = 1, 2, . . . ,M , this algorithmic scheme applies to xk successively the opera-

tors whose indices belong to the t-th string. This can be done in parallel for all strings and

then the operator R maps all end-points onto the next iterate xk+1. For recent references

on the application of the string-averaging algorithmic scheme consult (Censor and Segal

2008).

In order to arrive at the iterative algorithmic structure for the string-averaging orthog-

onal projection algorithm, we must define the following. For i = 1, 2, . . . ,m, the operation

Ri(x) = x + λi(Pi(x)− x), where Pi is the orthogonal projection onto the hyperplane Hi

and λi is an associated (user-determined) relaxation parameter. Then, to combine the

strings we use R(x1, x2, . . . , xM) =
∑M

t=1 wtx
t, with wt > 0 for all t = 1, 2, . . . ,M , and∑M

t=1 wt = 1. This leads to the following algorithm.

Algorithm 7 String-Averaging Projections (SAP)

Initialization: x0 ∈ <n is arbitrary.

10



Iterative Step: Given xk, for each t = 1, 2, . . . ,M , set y0 = xk and calculate, for

i = 0, 1, . . . ,m(t)− 1,

yi+1 = yi + λi
bi − 〈ai, yi〉
‖ ai ‖2

ai, (13)

and let yt = ym(t) for each t = 1, 2, . . . ,M . Then, calculate the next iterate by

xk+1 =
M∑
t=1

wty
t. (14)

Similarly to the block-iterative algorithms, each string end-point was assigned equal

weighting in the present investigation.

In a similar vain to the introduction of component-dependent weighting into block-

iterative projection algorithms, Gordon and Gordon (Gordon and Gordon 2005) developed

the component-averaged row projections (CARP) method for string-averaging algorithms.

In the CARP algorithm, st
j is the number of strings which contain at least one equation

with a nonzero coefficient of xj. The algorithmic scheme for the CARP algorithm can be

given as follows.

Algorithm 8 Component-Averaged Row Projections (CARP)

Initialization: x0 ∈ <n is arbitrary.

Iterative Step: Given xk, for each t = 1, 2, . . . ,M , set y0 = xk and calculate, for

i = 0, 1, . . . ,m(t)− 1,

yi+1 = yi + λi
bi − 〈ai, yi〉
‖ ai ‖2

ai, (15)

and let yt = ym(t) for each t = 1, 2, . . . ,M . Then, calculate the next iterate by

xk+1
j =

1

st
j

M∑
t=1

yt
j. (16)
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2.2 Proton CT Simulations

200 MeV 2D parallel
proton beam

Proton tracking planes

Phantom

Proton energy detector
(crystal calorimeter)

Figure 1: Schematic of the proton CT system modeled by the GEANT4 simulation.

The conceptual pCT system considered in the current work produces maps of relative

electron density through individual proton spatial and energy loss measurements (Schulte

et al. 2004), (Schulte et al. 2005). Single protons are tracked pre- and post-patient with

2D sensitive silicon strip detectors (SSDs), providing information about proton position

and direction at the boundaries of the image space. This allows the effects of multiple

Coulomb scattering within the object to be accounted for in a most likely path (MLP)

estimation (Schulte et al. 2008). The advantage of this in terms of spatial resolution of

the reconstructed image has been shown in a previous study (Li et al. 2006).

As well as tracking the position of individual protons, the energy lost by each proton

after traversal of the image space is also recorded. Substituting these measurements

into (17), the integral relative electron density along the estimated proton path can be

calculated by ∫
L

ηedr =

∫ Ein

Eout

dE

S(I(r), E(r))
. (17)

In (17), Ein and Eout are the measured entry and exit proton energies at the image space
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boundaries respectively, ηe is the relative electron density at spatial location r, and L is

the estimated proton path through the image space. The stopping power S(I(r), E(r)) is

given by the following Bethe-Bloch equation

S(I(r), E(r)) = K
1

β2(E(r))

[
ln

(
2mec

2

I(r)

β2(E(r))

1− β2(E(r))

)
− β2(E(r))

]
. (18)

Here, K = 0.170 MeV/cm contains various physical constants, me is the mass of the

electron, β is the velocity of the proton relative to the speed of light c, E(r) is the

proton kinetic energy at r, and I(r) is the mean excitation energy of the material, which

can also vary with r. In pCT reconstructions, we use a constant mean excitation energy

(I(r) = Iwater) when converting energy loss to integral relative electron density. Therefore,

we are reconstructing an object consisting of water with varying density, that results in

the same energy loss as with the imaged object. This conforms to the current proton

treatment planning practice (see, for example, (Hong et al. 1996)).

Figure 1 illustrates the geometry of a GEANT4 (Agostinelli et al. 2003) application

created to model an ideal pCT system. The proton beam consisted of a 200 MeV monoen-

ergetic 2D parallel geometry. To record proton position and direction at the entry and

exit planes of the reconstruction volume, two upstream and two downstream 2D sensitive

silicon tracking planes 30cm × 30cm × 0.04 cm in size were located at -30 cm, -25 cm,

25 cm and 30 cm along the axis of the beam, relative to the center of the phantom. All

tracking sensitive volumes were allocated a pitch of 0.2 mm. To accurately record proton

exit energy a 32 cm × 32 cm × 12 cm cesium iodide (CsI) crystal calorimeter was placed

downstream of the tracking modules. The face of the crystal was positioned 5 cm behind

the second exiting tracking module.

A cylindrical phantom with an elliptical cross-section, based on the head phantom
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design of Herman (Herman 1980), was located at the center of the imaging system. The

major axis of the phantom cross-section was set to 17.25 cm and the minor axis to 13 cm.

A cross-section of the phantom can be seen in Figure 2(a). The different regions have

the same chemical composition (water) but varying physical density. Because of the use

of Iwater in (18), simulating with a water phantom means that the reconstructed values

can be directly compared to the true phantom values, simplifying the analysis of image

quality. Image quality would not be changed if a varying chemical composition was used,

however analysis of image reconstruction accuracy would not be as straightforward. In

this case, a conversion of phantom electron densities to water equivalent electron densities,

which are calculable from the known chemical composition and physical density, would

be required.

(a) (b)

Figure 2: (a) Cross-section of the phantom used in the GEANT4 simulation. (b) Object
boundary definition by the direct summation method.

A total of 180 proton beam projections were carried out at two degree intervals with

the first 20,000 protons that were found to traverse the geometry and deposit energy in

the CsI calorimeter being recorded in each projection angle. Protons with an exit angle

or exit energy falling more than three standard deviations from the respective means were

excluded from the simulation, the motivation for which is described elsewhere (Schulte

et al. 2008). The low energy electro-magnetic and low energy hadronic physics processes
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were used as the basis for the interactions to be considered in the simulation (Urban et

al. 2007).

2.3 Proton CT Reconstruction

The algorithmic structure of the iterative steps to be investigated in the various alge-

braic methods of reconstruction are but one ingredient of the overall pCT reconstruction

process. The overall procedure can be broken into the sub-routines listed below.

1. Load the measured proton data (energy loss, entry and exit coordinates and direc-

tions).

2. Bin the individual proton histories based on their exit location for each projection

angle.

3. Analyze exit angle and exit energy of protons within each bin and exclude protons

in which exit angle or energy is beyond three standard deviations from the mean

(Schulte et al. 2005), (Li et al. 2006), and (Schulte et al. 2008).

4. Determine the object boundary location. In this work, the object boundary location

was calculated by performing an initial run through of the data with the direct sum-

mation method described by Herman and Rowland (Herman and Rowland 1973),

and by simplifying the proton path to a straight line. This initial image is used for

the object boundary only, as the actual pixel values calculated with this method are

quite erroneous. See Figure 2(b) for an example of how well the object boundary is

defined with the direct summation method.

5. Calculate the path of the accepted proton histories. If a straight line between pro-

ton entry and exit location was found to intersect the object, the MLP formalism
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(Schulte et al. 2008) was employed, if not, a straight line was used. By model-

ing multiple Coulomb scattering within the object boundary, the MLP formalism

predicts the proton path of maximum likelihood given the entry and exit tracking

measurements.

6. Calculate integrated relative electron density along each proton path and apply the

iterative reconstruction algorithm.

Although the relaxation parameters λk in the iterative algorithms mentioned above

may vary dynamically with cycle number, in this study we considered only the case of

constant λ. The data was subdivided into 180, 60, and 12 subsets of equal sizes, arranged

such that each subset contained an equal number of proton histories from each projection

angle. Other block structures and assignments may be useful but this needs further study.

The optimal relaxation parameter, which was defined to be the value that returned the

best image quality within ten complete cycles, was found for each algorithm and subset

size. Note that an iteration refers to the update of the image while a cycle is a complete

run through m proton histories.

All our computations with the reconstruction algorithms were done on a single pro-

cessor. Further clock-time gains could thus be achieved for those algorithms that enjoy

a greater degree of parallelism in their structure. We analyzed images up until the com-

pletion of the tenth cycle, as any more iterations than this will likely result in an image

reconstruction time too large for clinical practicality.

2.4 Evaluation of Image Quality

Image quality is not a well-defined concept. It depends on the purpose for which the

image is generated. In the case of pCT images, visual appearance is important so that
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structures can easily be identified in the treatment planning process. Also, the actual

values of the digitized picture are of equal importance as these values are used to calculate

dose deposition by the treatment planning software. Since it is difficult to quantitatively

evaluate image appearance, we based our analysis of image quality on how close the

values of the reconstructed images are to the test phantom. For this purpose we have

employed the normalized mean absolute distance measure, which is defined (see, e.g.,

Herman (Herman 1980)) as

εk =
1∑

j∈S |x̃j|
∑
j∈S

∣∣xk
j − x̃j

∣∣, (19)

where x̃j is the relative electron density of the phantom in pixel j, xk
j is the j-th pixel

value of the reconstructed image after the k-th cycle, and S is the set of indexes j of

pixels which are in the region of interest. We selected the region of interest to be the

set of those pixels that were part of the phantom object (see Figure 2(a)). Therefore, εk,

hereby referred to as the relative error, is a measure of how close the relative electron

density values of the reconstructed images are to the true values of the test phantom.

3 Results

In figure 3 the relative error with optimal relaxation parameter is plotted as a function

of cycle number for each algorithm with the data partitioned into 180, 60, and 12 subsets

of equal sizes (with the exception of ART which is fully sequential). The left-hand col-

umn contains ART and the component-independent block-iterative and string-averaging

algorithms (Algorithms 1, 2, and 7), while the right-hand column contains the component-

dependent algorithms (Algorithms 3, 4, 5, and 8). These results are also summarized in
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(a)

(b)

(c)

Figure 3: Relative error as a function of cycle number for all tested algorithms. The
left-hand column contains ART and the component-independent algorithms BIP and
SAP, while the right-hand column contains the component-dependent algorithms BICAV,
DROP, OS-SART and CARP. The data was divided into (a) 180, (b) 60, and (c) 12 sub-
sets. In each case ART is plotted for comparative purposes and was not divided into the
aforementioned subsets. The number next to each algorithm in the legends corresponds
to the relaxation parameter that resulted in the smallest relative error within ten cycles.
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Table 1, which contains the minimum relative error and cycle number at which this was

reached with the various reconstruction algorithms using an optimal relaxation parameter.

It can be seen that, for all subset sizes, the component-independent methods (ART,

BIP, and SAP) are very similar in their convergence pattern with an asymptotic approach

to a minimum relative error between 7 and 10 cycles. Of these, SAP achieves the smallest

relative error in all subset sizes, however, the minimum relative error of all algorithms are

within ±2% of each other.

For the component-dependent algorithms, DROP and OS-SART have an advantage

in terms of initial speed of convergence, in particular for a large number of subsets (60

and 180), however, there is a rapid increase in error after achieving the minimum relative

error. Again, the minimum relative errors are relatively close to each other (within 2%),

and are also within 2% of the errors achieved with the component-independent weighted

techniques.

Figure 4: Reconstructed images with optimal relaxation parameter and 60 subsets (with
the exception of the fully sequential ART) corresponding to the cycle at which the min-
imum relative error was found. The cycle number for each algorithm is shown in paren-
theses.

19



It was also observed that extreme over-relaxation was required for the BIP algorithm

to achieve a competitive initial convergence rate. This is due to the weighting factor in

Algorithm 2 being far less than 1 when equal weighting is assigned to each proton history.

It is also apparent that with a smaller number of subsets (e.g., 12), the initial convergence

rate of all algorithms is reduced in comparison to that when a greater number of subsets

is used.

The images corresponding to the cycle at which the minimum relative error was pro-

duced by each reconstruction algorithm with 60 subsets and optimal relaxation parameter

are shown in Figure 4. It can be seen that, qualitatively, the images are similar in ap-

pearance, which is to be expected considering the relatively small difference in minimum

relative error achieved by the different algorithms.

The effect of iterating beyond the cycle at which the minimum relative error is achieved

can be seen in Figure 5. Here, the image corresponding to the cycle of the minimum

relative error is compared to that produced after 10 cycles for the DROP and OS-SART

algorithms. The increased relative error is reflected in the noise level of the image.

4 Discussion

The goal of pCT image reconstruction is to produce accurate electron density maps in

the shortest possible time. Parallel compatible projection algorithms that can be simul-

taneously executed over multiple processing units provide a means of computationally

accelerating the image reconstruction process. Acceleration of these algorithms can also

be achieved with the use of a component-dependent weighting scheme, several of which

were investigated in this work.

With the use of GEANT4 simulated pCT data, it was found that these block-iterative
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DROP (5) OS-SART (4)

DROP (10) OS-SART (10)

Figure 5: Reconstructed images with optimal relaxation parameter and 60 subsets for
DROP and OS-SART at the cycle at which the minimum relative error was found and
also after 10 cycles. Iterating beyond the optimal stopping point amplifies noise in the
pCT data.

and string-averaging algorithms perform as well as the currently used ART algorithm from

the point of view of image quality. This can be appreciated from the figures presented

above. The results in Table 1 also show that some methods arrived at the same minimal

relative error value in fewer computational cycles then ART (e.g., DROP and OS-SART).

Although our work is not yet presenting any statistical results of experiments with en-

sembles of test images (phantoms), we believe that when we come to parallel processing

and to exploiting hardware advantages, the inherent parallelism embodied already in the

mathematical formulation of the block-iterative and string-averaging algorithms might

become more useful than the (fully-sequential) ART algorithm.

It should be noted though that for sparse problems, the sequential row-action ART
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method can also be parallelized by simultaneously projecting the current iterate onto a

set of mutually orthogonal hyperplanes (obtained by considering equations whose sets of

nonzero components are pairwise disjoint). For the case of image reconstruction from

projections, such sets of equations can be obtained by grouping rays that are sufficiently

far apart so as to pass through disjoint sets of pixels. The relative efficacy of this as

compared to the parallelism possible for a block-iterative method depends on the number

of equations that can be grouped in the above-mentioned fashion and the number of

available processors.

The results suggest that the string-averaging algorithms are able to produce images

of smaller relative error than block-iterative methods for the reconstruction problem in

the current study. The results also show that the choice of subset size is important to

obtain better image quality in the smallest number of cycles. We have demonstrated that

when partitioning the data for the string-averaging algorithm, one should choose a string

size that is not so large that the number of sequential operations is so numerous that

noise becomes an issue, but not so small that the initial convergence suffers. This choice

of course depends on the number of histories that are to be used in the reconstruction

process.

It can also be seen from our results that component-dependent weighting has little

effect on the block-iterative BICAV and string-averaging CARP algorithms. Indeed, SAP

and CARP display identical results in terms of relative error. This is because the method

of weighting suggested in (Gordon and Gordon 2005) and implemented here is based on

the number of strings in which the particular pixel was intersected by a proton history.

Since there are a huge number of proton histories in each string, all corresponding to

an equation in the linear system Ax = b of the imaging problem (far more equations in
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pCT than in X-ray CT), nearly all pixels are intersected in each string. This reduces the

weighting systems of SAP and CARP to be approximately identical.

From the results, it appears that noise and error are not monotonically decreasing as

a function of cycle number. This is most noticeable in the DROP and OS-SART results,

but we believe similar observations would be made for the other algorithms if further

iterations were performed. A similar “semi-convergence” characteristic has been observed

in iterative X-ray CT reconstructions (see, for example, (Censor, Gordon, and Gordon

2001)). This effect is probably due to amplification of noise in the pCT projection data

with an increasing number of cycles. In iterative X-ray CT cases, it has been found that

regularization with priors and implementation of stopping rules can result in more stable

systems (Elfving and Nikazad 2007). Similar applications to iterative pCT reconstruction

may have similar effects, but was not investigated in the present work.

A draw-back of all the projection algorithms discussed in this study is the need to find

an optimal relaxation parameter, λ. In this study it was possible to determine the “best”

λ because the true density distribution of the phantom was known, but in a realistic

scenario, this will not be the case. We are currently investigating the implementation

of the Dos Santos scheme (Dos Santos 1987) into block-iterative and string-averaging

algorithms. Here, the optimal λ is calculated at each iterative step, and in doing so also

accelerates the initial convergence to minimum relative error.

Furthermore, we believe that some of the parallel compatible algorithms discussed

here can be modified to further improve the handling of noisy pCT data. The primary

factors that contribute to the noise in pCT data are:

1. The statistical nature of proton energy loss when traversing an object and noise as-

sociated with the detector system itself, leading to inaccurate values of the elements
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of the vector b.

2. The statistical variations of the paths of the protons, leading to inaccurate values

of the elements of the matrix A.

These factors contribute to spatial blurring and image noise in the reconstructed data

in a complex way and differently for the different algorithms as we have shown. We are

investigating incorporation of the method of projections onto hyperslabs (Herman 1975),

as opposed to hyperplanes, for string-averaging and block-iterative projection algorithms.

This method provides a means for modeling the uncertainties in the b vector but not with

those in the A matrix. The latter may be approached with more accurate proton path

estimation algorithms.

The potential of clock-time savings of the parallel compatible algorithms tested in

this study was not demonstrated here. However, execution of the algorithms, found to

provide the best image quality in this study, on general purpose graphical processing units

(GPGPU) is an active area of research that we currently work in.

5 Conclusion

Image reconstruction in proton CT aims at efficient computation and provision of accurate

electron density maps. The block-iterative and string-averaging projection algorithms in-

vestigated in this paper provide an algorithmic platform for achieving both goals. The

parallel compatible nature means that execution on a computer cluster or parallel GPG-

PUs would speed up the image reconstruction process considerably, producing images in

clinically practical amounts of time. Also, the combination of simultaneous and sequen-

tial operations should lead to initial convergence rates that are superior to those of fully
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simultaneous algorithms and to better handling of noisy data than that of fully sequen-

tial methods. The results of this paper suggest that the string-averaging methods can

achieve more accurate electron density maps in comparison to the block-iterative algo-

rithms. Further, component-dependent weighting was found to have minimal effect in the

string-averaging approach, meaning that, in our application, there is little advantage in

using the computationally more expensive CARP algorithm in comparison to SAP. The

block-iterative OS-SART and DROP algorithms displayed the most rapid initial conver-

gence.This was, however, at the expense of increased image noise with increasing number

of iterations.
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Table 1: Minimum Relative Error and Cycle Number
Algorithm Subsets Min. Rel. Error. Cycle

ART NA 0.1059 8
180 0.1058 10

BIP 60 0.1059 8
12 0.1064 10
180 0.1045 9

SAP 60 0.1043 7
12 0.1043 10
180 0.1060 7

BICAV 60 0.1058 10
12 0.1064 10
180 0.1058 4

DROP 60 0.1057 5
12 0.1056 8
180 0.1058 4

OS-SART 60 0.1057 4
12 0.1056 8
180 0.1045 9

CARP 60 0.1043 7
12 0.1043 10
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