The University of British Columbia

## MATH 317

# Practice Midterm 1

21 July 2015

TIME: 75 MINUTES

| LAST NAME: _  | FIRST NAME: |
|---------------|-------------|
|               |             |
|               |             |
| STUDENT $#$ : | SIGNATURE:  |

This Examination paper consists of 8 pages (including this one). Make sure you have all 8.

INSTRUCTIONS:

No memory aids allowed. No calculators allowed. No communication devices allowed.

#### MARKING:

| Q1            | /14 |
|---------------|-----|
| $\mathbf{Q2}$ | /7  |
| $\mathbf{Q3}$ | /5  |
| Q4            | /12 |
| Q5            | /12 |
| TOTAL         | /50 |

#### MATH 317 Practice Midterm 1 - 21 July 2015 - p. 2 of 8

#### Q1 [14 marks = 2+3+3+3+3]

A particle is moving through space. Measurement equipment shows that at time  $t_0$ , the particle's acceleration is (2, 1, 1) and its velocity is (3, 4, 0). Find the following quantities associated with the particle's motion at time  $t_0$ :



(Hint: Express  $\vec{a}$  as a linear combination of  $\vec{T}$  and  $\vec{N}$ . What is  $\vec{a} \cdot \vec{T}$ ?)

Extra space for work.

# MATH 317 PRACTICE MIDTERM 1 — 21 July 2015 — p. 4 of 8

### $\mathbf{Q2}$ [7 marks]

Find the length of the segment of the curve  $\vec{\mathbf{r}}(t) = \left\langle 2\sqrt{t}, t, \frac{1}{2}\ln t \right\rangle$  starting at (2, 1, 0) and ending at  $(4, 4, \ln 2)$ .

# MATH 317 PRACTICE MIDTERM 1 — 21 July 2015 — p. 5 of 8

### Q3 [5 marks]

Let  $\vec{\mathbf{r}}(t)$  be a parameterized curve such that  $|\vec{\mathbf{r}}'(t)| = 2$  for all t. Simplify

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}(\vec{\mathbf{r}}(t)\cdot\vec{\mathbf{r}}'(t))$$

as much as possible. Your answer should not have any derivatives except  $\vec{r}', \vec{r}'', \vec{r}'''$ , etcetera.

## MATH 317 Practice Midterm 1 - 21 July 2015 - p. 6 of 8

#### $\mathbf{Q4} \quad [12 \text{ marks} = 6{+}6]$

Determine whether the following vector fields are conservative. If they are conservative, find a potential function. If not, explain why they are not conservative.

(a) 
$$\vec{F}(x,y) = (x^3 + 2xy^2 - y^3)\vec{i} + (2x^2y - 3xy^2 + 2y^3)\vec{j}$$

(b) 
$$\vec{F}(x,y) = (xy\cos y)\vec{i} + (-\frac{1}{2}x^2y\sin y - \frac{1}{2}x^2\cos y)\vec{j}$$

 $\mathbf{Q5} \quad [12 \text{ marks} = 4{+}8]$ 

Let C be the intersection of the surfaces  $x + y^2 + z^3 = 1$  and  $y + z^2 = 1$ .

(a) Find a parameterization of C.

(b) Let *D* be the segment of *C* starting at (0, 1, 0) and ending at (0, 0, 1) (oriented toward (0, 0, 1)). Compute  $\int_D (2z^2 - x) dz + e^z dy$ .

Extra space for work.