
DIFFERENTIATION RULES

This document is a concise summary of all differentiation formulas and rules that
you are expected to know.

1. Derivatives of Common Functions

1.1. Constant Functions. Let c be a number.

(c)′ = 0

1.2. Powers of x.

(xn)
′

= nxn−1(√
x
)′

=
1

2
√
x(

1

xn

)′
= − n

xn+1

Remarks:

• The rule (xn)′ = nxn−1 works even when n is not an integer and also when
n is negative, e.g. (x−1.7)′ = −1.7x−2.7.

• In order to differentiate n
√
x, use n

√
x = x

1
n .

1.3. Exponentials.

(ex)
′

= ex

(ax)
′

= ax ln a

1.4. Logarithms.

(lnx)
′

=
1

x

(loga x)
′

=
1

x ln a

1.5. Trigonometric Functions.

(sinx)
′

= cosx

(cosx)
′

= − sinx

(tanx)
′

=
1

(cosx)2

Remark: These formulas assume that x is measured in radians (180 degrees equal
π radians).
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1.6. Inverse Trigonometric Functions. 1

(arcsinx)
′

=
1√

1− x2

(arccosx)
′

=
−1√

1− x2

(arctanx)
′

=
1

1 + x2

2. Differentiation Rules

Let f(x) and g(x) be differentiable functions and let c be a constant number.

• Scalar multiple rule:

(cf(x))
′

= cf ′(x)

• Addition/subtraction rule:

(f(x)± g(x))
′

= f ′(x)± g′(x)

• Product rule

(f(x)g(x))
′

= f ′(x)g(x) + f(x)g′(x)

• Quotient rule: (
f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

g(x)2

• Chain rule:

(g(f(x)))
′

= g′(f(x))f ′(x) .

3. How to Differentiate The Power of Two Functions

There are two ways to differentiate expressions of the form

f(x)g(x)

3.1. First way. Rewrite f(x)g(x) as follows:

f(x)g(x) =
(
eln f(x)

)g(x)

= eg(x) ln f(x)

Now use all previous rules to differentiate the right hand side. Namely,(
eg(x) ln f(x)

)′
= eg(x) ln f(x) (g(x) ln f(x))

′
= f(x)g(x) (g(x) ln f(x))

′
= . . .

1We will learn these later in the course.
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3.2. Second way. Use logarithmic differentiation: Write y = f(x)g(x) and apply
ln(. . . ) to both sides in order to get

ln y = g(x) ln f(x) .

Now use implicit differentiation. This will give

y′

y
= (g(x) ln f(x))′

y′ = y(g(x) ln f(x))′

Now substitute y = f(x)g(x) to get

y′ = f(x)g(x) (g(x) ln f(x))
′

= . . .

Remark: This also works well with functions of the form y = f(x)g(x)h(x)k(x).
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