ASSIGNMENT 4

Due on: October 21 at 8:00 in the morning (submit before class begins).

Be sure to write your name and student ID on your assignment.

Questions:

- (1) The following question appeared in a calculus exam: Let $f(x) = \frac{1}{x} + x + x^3$. Does the equation f(x) = 0 has a solution in the interval [-2,2]? Why? One of the students wrote: Yes! We have $f(-2)=-\frac{1}{2}-2-2^3<0$ and $f(2)=\frac{1}{2}+2+2^3>0\,\text{,}$ so by the Intermediate Value Theorem, there exists

 - -2 < c < 2 such that f(c) = 0.

Answer the following:

- (a) Find the mistake in the student's answer.
- (b) Show that f(x) = 0 has no solutions at all.
- (2) Differentiate the following functions:
 - (a) $2^x + \log_3 x 2x^{\pi}$
 - (b) $(5^x x)^{1.4}$
 - (c) $x^{(e^x)}$
 - (d) $(\ln x)^{\ln x}$
- (3) Use implicit differentiation to express $\frac{dy}{dx}$ as a function of x and y in the following cases:
 - (a) $x^3 + xy + y^3 = 1$
 - (b) $e^x + e^y = xy + 1$
- (4) Find the tangent line to the curve $x + \cos x = y^5 + y^4 1$ at the point (0, 1).
- (5) Find all values of a for which the tangent line to the curve $x^2 axy + y^2 = 1$ at the point (1,0) passes through the point (2,5).
- (6) Suppose a function f has an inverse function f^{-1} . Show that $(f^{-1})'(x) =$ $\frac{1}{f'(f^{-1}(x))}$ by using implicit differentiation of x = f(y).
- (7) A rocket is launched into space. It is given that t seconds after the launching $(t \le 20)$, the rocket has traveled $f(t) = 0.1t^3 + 2t^2 + 20t$ meters.
 - (a) Find the velocity and <u>acceleration</u> of the rocket at time t. (The acceleration is the rate of change of the velocity as a function of the time.)
 - (b) Find the average acceleration from t = 2 to t = 4.
 - (c) Find all *t*-s for which the acceleration equals $13_{m/sec^2}$.