ASSIGNMENT 3

Due on: October 9 at 8:00 in the morning (submit before class begins).

Be sure to write your name and student ID on your assignment.

Questions:

- (1) Differentiate the following functions:
 - (a) $5x^5 7x^3 + 2x 9$ (b) $\frac{x^2}{x^3 + 1}$ (c) $x^2 \cdot \ln x \cdot \cos x$

 - (d) $\sqrt[3]{x} + \sqrt{e^x + 1}$
 - (e) $\sqrt{\ln(e^x + \sin x)}$.
- (2) Find the derivative of the the following functions according to the limit definition of the derivative (no credit will be given for other methods).

(a)
$$f(x) = \frac{1}{x^2 + 1}$$

(b) $f(x) = \sqrt[4]{x^2 + x}$. (3) Let

$$f(x) = \begin{cases} x^3 - x & x > -1 \\ 2x + 2 & x \le -1 \end{cases}$$

- (a) Prove that f is differentiable at x = -1 and find f'(-1). (Hint: Compute the left and right limits of $\frac{f(-1+h)-f(-1)}{h}$ as h approaches 0 separately.)
- (b) Find a formula for f'(x) when $x \neq -1$, and draw the graph of f'(x)on the interval $-3 \le x \le 1$.
- (4) Let f and g be differentiable functions.
 - (a) Express the derivatives of the following functions using f, g and their derivatives:

$$x^{2}f(x) - g(x), \qquad f(x^{2} - g(x)).$$

(b) It is given that

$$f(2) = 2$$

 $f'(2) = -2$
 $g(2) = 3$
 $g'(2) = 1$.

Find the equation of the tangent line to the graph of $y = \frac{f(x)+1}{g(x)+1}$ at x = 2. (Recall: The equation of a line with slope *m* passing through a point (a, b)is y - b = m(x - a).)

- (5) Peter Pan sells flying powder. Denote by q the amount of power produced (in grams) and p the price (in dollars) of one gram of power. It is given that:
 - (i) p and q are related via $p^2 + q^2 = 5000$.
 - (ii) The cost of producing q grams of powder is C(q) = 1000 + 10q.
 - Answer the following:
 - (a) Find the revenue (R) and profit (P). Express them as functions of q.
 - (b) Find the marginal cost and marginal revenue. Express them as functions of q.

ASSIGNMENT 3

(c) Suppose q = 50. What is the marginal revenue and marginal cost? Does increasing q increases the profit?