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Introduction

From a chronological point of view, this work is written from its
end to its beginning. So let us start at the end, which is the
beginning.

Background and Motivation. Quadratic and hermitian forms have been
investigated since the nineteenth century and have found their way into many areas
of mathematics, in particular into algebra, algebraic and differential geometry and
algebraic topology. The diversity of their applications eventually made them into
an object of research in their own right, and many authors (e.g. Witt, Milnor,
Pfister, to name just a few) have published works dedicated solely to study them.
The basic problems in this area include the isometry problem (determining whether
two quadratic forms are isometric), the isotropy problem (determining whether a
quadratic form is isotropic) and the structure of the isometry group. All of these
problems are solved to some extent over special base fields (e.g. global, local, finite,
real-closed, algebraically closed, etc.; see [65], [86], [69] and related texts).

While classical scenarios required quadratic and hermitian forms over fields
and number rings, beginning from the sixties, quadratic forms over general rings
(non-commutative, with involution) were defined and investigated. This includes
the works of Bak ([6]), Knebusch ([55]), Bass ([10]), Quebbemann, Scharlau and
Schulte ([71]), Knus ([56]), Balmer ([7]) and others. Their combined work even-
tually led to the modern theory of hermitian categories, also called categories with
duality, which are a purely categorical framework to work with quadratic and bilin-
ear forms. One of the strongest results about hermitian categories roughly states
that, under mild assumptions, the theory of quadratic forms over a given hermit-
ian category can be reduced to the theory of quadratic forms over division rings
with involution (e.g. see [71] or [86, Chp. 7]). The applications are numerous and
include Witt’s Cancelation Theorem and various structural results.

Independently, beginning also from the sixties, various authors have considered
(non-symmetric) bilinear and sesquilinear forms over ﬁeldsH The isometry prob-
lem of such forms (which is equivalent to the congruence problem in GL,), was
studied by Wall (|]98]), and his work was later used by Riemh ([76]) to rigorously
solve the isometry problem of nondegenerate bilinear forms (over fields), where a
solution means reduction to isometry of hermitian forms. Riehm’s solution was
extended almost immediately by Gabriel to degenerate forms in [44], and further
generalizations to sesquilinear forms (e.g. [75], [84]) and to simultaneous isometry
of two or more bilinear forms (e.g. [88]) have followed later. These works have many
applications as well; most concern canonical representatives of isometry classes and
other results about matrix theory (e.g. see [46], [31], [101], [49], [51], [28], [93]).

In contrast to the theory of quadratic forms, very little seems to be known about
(non-symmetric) bilinear forms over rings (which are not fields). The purpose of
this work is to fill some of this void.

L1 do not assume bilinear forms to be symmetric unless this is explicitly stated.

i



ii INTRODUCTION

Bilinear Forms over Fields; A Guiding Example. My M.Sc. thesis was
concerned with bilinear spaces over fields. In the year after its submission, I noticed
that some of its results, which seemed to need extensive usage of linear algebra,
could actually be proved in a purely ring theoretic context. This observation sug-
gested that some of the theory of bilinear forms over fields could be generalized
to bilinear forms over rings, and thus my the research for my Ph.D. thesis has
initiated.

Let me first demonstrate how the theory of bilinear forms over fields (which
are the “easiest rings”) can be treated with ring theoretic tools. Let F' be a field
and let (V, b) be a regular bilinear Spaceﬂ Then b induces an anti-automorphism of
Endp (V) given by o — ¢*, where o* is the unique endomorphism of V satisfying

blox,y) = b(z,0"y) Ve,yeV .

(If b were symmetric or alternating, then * would have been an involution). Let W}
denote the ring {o € Endp (V) |0** = o}. Then (W, *|w, ) is a ring with involution
which turns out to hold a lot of information about b. For instance:

(1) There is one-to-one correspondence between representations b = b; L
-+« 1 b, and families of pairwise orthogonal idempotents ey, ...,e, such
that . e; =1 and ef = e;. In particular, b is indecomposable (i.e. not an
orthogonal sum of two non-zero bilinear forms) <= W, does not contain
non-trivial x-invariant idempotents.
(2) The form b is hyperbolic (i.e. there are totally isotropic subspaces Vi, Vs
with V =V, @ V) <= the involution x|y, is hyperbolic (i.e. there exists
an idempotent e € W, such that e + e* = 1).
(3) o is an isometry of b <= o € {T € W, |7*r = 1}.
In fact, one can construct a “dictionary” translating various properties of b to
properties of the ring with involution (Wy, *|w, ) (hence the title of this dissertation).
Let us now show how one can translate the isometry problem of bilinear forms
into a congruence problem in (Wy, *|w,): The asymmetry of b is defined to be the
unique endomorphism A of V satisfying

b(z,y) =bly,A\z)  Va,yeV.

The conjugacy classEI of A is invariant under isometry. Recall that two elements
a,b € W, are called (*|w,—)congruent, denoted a ~ b, if there exists s € W, such
that a = s*bs. It turns out that

(4) There is a one-to-one correspondence (depending on b) between isometry
classes of regular bilinear forms whose asymmetry is conjugate to A and the
set {o € W) |o* =0}/ ~ (i.e. conjugacy classes of x-invariant invertible
elements in W3).

This means that the isometry problem can be reduced to (1) deciding whether two
bilinear forms have conjugate asymmetries (easy) and (2) the conjugacy problem
in (W, *[w,)-

The structure of the ring W; is understood to some extent[] but not in a
manner that allows easy work with involutions. In contrast to that, the ring

2 The bilinear space (V,b) is called regular if the map z — b(x, _) from V to V* is bijective.

3 Two linear transformations, f € Endp (V) and g € Endp(U), are said to be conjugate if
there exists an isomorphism h : V — U such that ho f = g o h. This is an equivalence relation.
It is well known from linear algebra that f and g are conjugate if and only if they have the same
Jordan form (or, equivalently, canonical rational form).

4 Indeed, if X\ is the asymmetry of b, then W}, = EndF[z](V) where V' is considered as an
Flz]-module by letting = act as A\. As modules over F'[z] are well-behaved, we can determine W}
from the Jordan form of A\. However, dropping the assumption that F' is a field leads to some
unexpected behavior (e.g. W, might not be artinian when F is artinian).
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Wy, := W,/ Jac(W,) is guaranteed to be semisimple. Furthermore, it can be shown
that if char F' # 2, then all the properties/statements about (W5, *|w,) specified
above can be lifted from W, to W}, hence we can study b by studying semi-
semisimple F-algebras with involution.

Let us exploit this to reduce isometry of bilinear forms to isometry of her-
mitian forms: Let 3 denote the involution induced by * on W,. By (4) and the
previous paragraph, it is enough to solve the conjugacy problem in (Wy,3). The
ring with involution (W, 3) is easily seen to be a product of rings with involution
]_[le(Wi, ;) with each W; being either simple artinian or of the form W/ x W;°P
with W; simple artinian and f; exchanging W/ and W/. We may thus restrict our
attention to the components (W;, ;). We now split into two cases. If W is of the
form W/ x W{Op, then any two (;-invariant invertible elements are [;-congruent
(straightforward), so the congruence problem is trivial. However, if W; is simple
artinian, then by Wedderburn’s Theorem, we can write W; = M,,,(D;) for some
division ring D; (actually, D; is a field in our case). We now invoke the following
well-known theorem.

THEOREM 0.1. Let D be a f.d. division algebra over F. If M, (D) admits an
involution B, then D has an involution o and there exists a 1 or —1 hermitian form
h: D™ x D™ — D over (D, «) whose corresponding involution is 8. That is, for all
x,y € D™ and o € Endp(D™) =2 M, (D), we have:

h(ox,y) = b(z,oy) .

PROOF. For the existence of «, see [2, Chp. X]. For the existence of h see [57],
Th. 4.2]. If D is a field (as in our case), then « is just the restriction of 8 to
D = Cent(M,,(D)). O

Let «;,h; be the involution and hermitian form obtained from §; as in the
theorem and let S denote the set of i-s for which W; is simple. We now have a
one-to-one correspondence between the following sets:

(i) Isometry classes of bilinear form whose asymmetry is conjugate to A;
(i) {o€ Wy | o™ = 0}/ ~s
) {o e Wy |0f =0}/ ~;
V) Hies{o e W |oP = ot/ ~;
v) Families {b;};cs such that each b; is an n;-dimensional 1-hermitian or
—1-hermitian form over D;, considered up to isometry.

(ii

(i
(

Indeed, the correspondences (i)« (ii) and (iv)<«>(v) are just (4) above, (i)« (iii) and
(iii) 4+ (iv) were explained (but not proved) in the two paragraphs before Theorem
As a corollary of the correspondence we get:

COROLLARY 0.2. Isometry of regular bilinear forms over a field F of charac-
teristic not two can be reduced to isometry of hermitian forms over f.d. division
algebras over F (which are in fact fields).

This corollary is precisely Riehm’s solution ([76]), although he did not phrase
or prove it in this manner. The advantage of the approach taken here is that it
is purely ring theoretic and hence it might be effectively applied to bilinear forms
over rings. Moreover, it turns out that various works which solve similar isometry
problems of non-symmetric forms (e.g. [75], [84], [88] and also [44]) can be obtained
as special cases of this general strategy.

Main Results. In this work I have generalized the previous ideas to bilinear
form over rings. The effort was fruitful and the results obtained has exceeded my
expectations; by a slight alternation of the definition of W}, I was able to handle
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non-regular (e.g. degenerate) bilinear forms and, more importantly, arbitrarily
large systems of bilinear forms (which is new even in the symmetric case). Among
the results I have obtained for systems of bilinear forms over certain good rings (see
below) in which 2 is a unit are:

(a) Witt’s Cancelation Theorem (for non-symmetric non-regular systems of
bilinear forms).

(b) The isometry problem can be reduced to isometry of hermitian forms over
division rings (generalizing [76], [75], [84], [88] for regular non-symmetric
forms, [44] for non-regular non-symmetric forms and [6], [65], [71] and
related papers for regular symmetric forms).

(c) There exists a decomposition into isotypes (see [84] for definition in the
non-symmetric case; see [86] Th. 10.8] for the symmetric case; see section
for the general case; this generalizes the references mentioned in (b)).

(d) Characterization of the indecomposable (systems of) bilinear spaces (gen-
eralizing [93]).

(e) If the base ring is a f.d. algebra over an algebraically closed F field and O
is its isometry group, then there exists an exact sequence of F-algebraic
groups 1 - U — O — G — 1 such that U is the unipotent radical of
O and G is a product of copies of O, (F), GL,,(F) and Spy(F). (The
sequence 1 - U — O — G — 1 remains exact after taking rational points
over F; this result resembles [14].)

There are other applications, which could not be included in this thesis due to space
and time limitations, and will be given elsewhere.

Among the good rings are the semiprimary ring (e.g. right or left artinian
rings) and, more generally, the semiperfect rings which are pro-semiprimary, namely
isomorphic to an inverse limit of semiprimary rings. For example, any semilocal ring
R for which R = ].(ElR/ Jac(R)™ is semiperfect and pro-semiprimary (such rings
are called complete semilocal). In all of the results, the base module is assumed to
be finitely presented, and additional mild assumptions are needed if the base ring
is not semiprimary (these assumptions are satisfied by f.g. projective modules).

To put the previous results into their right context, observe that the idea of
studying bilinear forms by transferring to rings with involution also appears in the
literature about symmetric bilinear forms over rings (e.g. see [71], [86, Chp. 7],
[16l §5]). This approach has led to the proof of most of the previous results over
hermitian categories satisfying certain conditions. In particular, (a)—(d) are known
to hold for regular (single) bilinear forms over complete discrete valuation rings.
In addition, in [16], E. Bayer-Fluckiger and L. Fainsilber have presented a way to
derive statements about non-regular bilinear forms from the regular case and have
applied it to Witt’s Cancelation Theorem and other results. (We will discuss [16] in
more detail below.) Nevertheless, in contrast to the symmetric theory, the approach
just described does not seem to appear in the literature about non-symmetric forms,
perhaps because it is hard to say something about the structure of W, if the base
ring is not a field. (This is one of the main goals of Chapter ) Furthermore, all
the results just mentioned assume that the module over which the form is defined
is reflexive (see section , which is not needed in my results. To conclude, the
results (a)—(e) are new mainly for non-regular or non-symmetric forms, for forms
defined over non-reflexive modules and also for systems of bilinear forms.

Bilinear Forms over Rings. We have spoken about bilinear forms over rings
without properly defining them, so let us take care of this gap. Various definitions
can be found in the literature (e.g. the sesquilinear forms defined below; see the
references at the opening of the introduction for more definitions), but all of them
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require the base ring to have an involution. (This even applies to hermitian cate-
gories in a certain sense.) Among the innovations of this work is a new definition
of bilinear forms over arbitrary (non-commutative) rings (no involution is needed).

DEFINITION 0.3. Let R be a ring. A double R-module is an additive group K
endowed with two actions ©g,®1 : K x R — K such that K is a right R-module
w.r.t. each of ®g,®1 and (k ©pa) ©1b= (k®1b) ©oa for allk € K and a,b € R.
(Double R-modules are categorically equivalent to (R°P, R)-bimodules).

An anti-isomorphism of a double R-module K is a map « : K — K (written
exponentially) such that (k©;r)* =k ©1_;r for allk € K, r € K and i € {0,1}.
If in addition x? = idg, then s is called an involution.

A bilinear space over a ring R is a triplet (M,b, K) such that M is a right
R-module, K is a double R-module and b : M x M — K is a biadditive map
satisfying

b(()’]”l’, y) = b(l’,y) Gor and b(l’,y?‘) = b(l‘,y) O1r

forallx,y € M andr € R. If k is an involution of K, then b is called k-symmetric
if b(z,y) = b(y,x)" for all x,y € ME|

This definition, which serves as the basis of this dissertation, includes the def-
initions of the references mentioned earlier and the results (a)-(e) above applied
to bilinear forms in this new sense (the double R-module K can be chosen almost
arbitrarily). Furthermore, in the same manner that hermitian categories are cat-
egorical frameworks for quadratic forms, one can define categories with a double
duality which are categorical frameworks for our new bilinear forms. We also note
that, in some sense, the new definition cannot be trivially viewed as a special case
of a hermitian category (see the end of section for details).

ExaMPLE 0.4. Let (R, *) be a ring with involution and let A € Cent(R) such
that A*A = 1. Recall that a sesquilinear space over (R, x) is a pair (M,b) such
that M is a right R-module and b : M x M — R is a biadditive map such that
b(ar,y) = r*b(z,y) and b(z,yr) = b(z,y)r for all x,y € M and r € R. If moreover
b(y,z) = Ab(z,y)*, then b is A-hermitian.

Make R into a double R-module by defining r ®ga = a*r and r ®1 a = ra for all
a,r € R. In addition let ¥ : R — R be defined by 7 = Ar*. Then & is an involution
of R, once considered as a double R-module. In addition, (M,b) is a sesquilinear
space <= (M,b, R) is a bilinear form in our new sense and b is A-hermitian <=
b is k-symmetric.

Henceforth, in order to avoid ambiguity, we will refer to sesquilinear forms as
“classical bilinear forms”.

ExXAMPLE 0.5. The new definition allows us to work with single bilinear forms
and systems of bilinear forms using the same notation. Indeed, let R be a ring and
let {(M, b;, K;) }ic1 be a system of bilinear forms over the right R-module M. Define
K=, Kiand b: M x M — K by b(x,y) = (bi(2,y))ier. Then (M,b, K) is a
bilinear form and we can treat (M, b, K') rather than the system {(M,b;, K;)}ier.

5 This definition has evolved from the (somewhat known) more primitive version, which
is a combination of the definition of sesquilinear forms with some other definitions from the
literature: A bilinear form over a ring with involution (R, *) is a triplet (M, b, K') such that M is
a right R-module, K is an (R, R)-bimodule and b : M x M — K is a biadditive map satisfying
b(zr,y) = r*b(z,y) and b(xz,yr) = b(z,y)r. The bimodule K is also required to admit a map
k: K — K such that (a-k)*® = k*-a* and k2 = idx. It was not until proving Theorembelow
that I understood that K can be replaced with an (R°P, R)-bimodule and * and k can be dropped
from the notation. The reason I have moved to double R-modules is because many arguments
required the left R°P-module structure to be twisted to the right, causing ambiguity as to which
right R-module structure is used.
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To define regular bilinear forms we set the following notation: If K is a double
R-module and i € {0,1}, then K; denotes K, considered a right R-module via
©®;. Now, any bilinear space (M, b, K) over R gives rise to two maps called the left
adjoint and right adjoint of b. They are defined by

Adj : M — Homp(M, K1), (Adpz)(y) = b(z,y) ,

Ady : M — Hompg(M, Ky), (Adjz)(y) = by, z) .
The form b is called right regular (right injective) if Adj is bijective (injective). Left
regular and left injective forms are defined in the same manner. Right injective
forms are also called right nondegenerate. Regularity and injectivity are not left-
right symmetric properties, but if b is k-symmetric for some involution x of K, then
the right and left versions coincide.

Observe that if a (M, b, K) is right regular, then every o € Endg(M) admits a
unique ¢* € Endr(M) such that

blox,y) = b(x,c*y) Ve,y e M .

The map * is easily seen to be an anti- endomorphisnﬁ of Endg (M) which is called
the corresponding (right) anti-endomorphism of b.

Bilinear Forms and Anti-Endomorphisms. Let F be a field and let V be a
f.d. F-vector space. A well-known theorem asserts that the map sending a classical
regular bilinear form on V to its corresponding anti-endomorphism induces a one-
to-one correspondence between classical regular bilinear forms on V', considered up
to scalar multiplication, and anti-endomorphisms of Endz (V) fixing F'. Under this
correspondence, symmetric and alternating forms correspond to orthogonal and
symplectic involutions, respectively (see [67, Chp. 1] for proof). This result, which
is related to Theorem [0.1] admits various generalizations to classical bilinear forms
over simple F-algebras, which play an important role in the connection between
quadratic forms and involutions of central simple algebras.

The importance of this result and the necessity of a generalization of The-
orem to arbitrary division rings and involutions have raised the question of
whether this correspondence generalizes to our newly defined bilinear forms. In-
deed, as noted above, any right regular bilinear form admits a corresponding anti-
endomorphism, so one would expect to have a correspondence between right regular
bilinear forms defined on a right R-module M, considered up to a suitable equiva-
lence relation, and anti-endomorphisms of W := Endg(M). This problem is studied
extensively in Chapter [3]and has raised some unexpected results of a mixed nature.

Firstly, it turns out that there is a canonical way to assign to every anti-endo-
morphism « of W = Endg(M) a corresponding bilinear form b, : M x M — K,
satisfying

ba(ow,y) = ba(z,0%)  Vr,ye M,

and b, is kq-symmetric for some involution x, of K, if « is an involution. This
is remarkable since, to the best of my knowledge, there is no canonical way to
construct the inverse map of the correspondence for classical bilinear forms (and
moreover, the construction involves “heavy tools” as the Skolem-Noether Theo-
rem, which are not always available). What allows this unexpected shortcut is
the freedom in choosing the double R-module K,; we do not have to identify it
with a prescribed double R-module. There is also an obvious candidate for the
required equivalence relation on bilinear forms: Two bilinear forms (M,b, K) and
(M,b',K') are called similar (denoted b ~ b') if there exists an isomorphism of
double R-modules f : K — K’ such that &’ = f ob.

6 An anti-endomorphism is an additive map which preserves the unity and reverses the order
of multiplication. A bijective anti-endomorphism is call an anti-automorphism.
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EXAMPLE 0.6. Let F be a field. Then two classical bilinear forms defined over
an F-vector space V are similar <= they are the same up to scalar multiplication.

EXAMPLE 0.7. Let F be a field, let V' be a f.d. dimensional F-vector space
and let a be an anti-endomorphism of Endgr(V). Since F = Centp(V) as F-
algebras, o induces an (anti-)endomorphism on F', which we keep denoting by a.
It turns out that the double F-module K, is isomorphic to the double obtained
from F' by defining k ©®g a = a®k and k ®1 a = ka for all k,a € F. In particular,
if a|p = idp, then b, is just a classical bilinear form. Furthermore, if o is an
orthogonal involution, then k., = idp, i.e. b is symmetric, and if « is a symplectic
involution, then k, = —idp, i.e. b is anti-symmetric. Similarly, if « is an involution
of the second kind, then b, would turn out to be a A-hermitian form over (F, a|rp).

In general, there is a one-to-one correspondence between all anti-endomorphisms
of Endr (V) and the right regular bilinear forms on V', considered up to similarity.
However, not all anti-endomorphisms correspond to classical forms.

Unfortunately, the last example does not reflect the general case. First, in
general, the form b, need not be right regular (and might even be the zero form), so
the correspondence might fail! Furthermore, similarity is not a suitable equivalence
relation in general. Indeed, there exists an example of a regular bilinear form b
with corresponding anti-endomorphism « such that b, is not similar to . The
latter problem can be resolved by restricting our attention to bilinear forms that
are obtained from anti-endomorphisms (i.e. forms which are similar to b, for some
«). Such forms are called generic (and any right regular form can be swapped with
its generization). However, the first problem is inherent and can only be solved by
restricting to special cases. Among the positive results obtained are the following;:

THEOREM 0.8. Let M be a right R-module and let W = Endg(M). Then:

(i) When M is finite projective, there is a one-to-one correspondence between
anti-endomorphisms of W and generic right regular forms on M.

(ii) When M is a generator (of Mod-R), there is a one-to-one correspondence
between anti-automorphisms of W and generic (right and left) regular
forms on M.

While the previous theorem is very nice, it is quite rare that M is projective
or a generator. This has led me to wonder whether I have been too eager in the
sense that I have required too much of the form b,. Indeed, the right regularity
assumption is in fact superfluous. What is really needed from a bilinear form
b: M x M — K in order to have a corresponding anti-endomorphism is that for
all 0 € W := Endg(M), there would exist unique o* € W satisfying

bo(ox,y) = bo(z,0"Y) Ve,y € M .
Such forms are call right stable.

EXAMPLE 0.9. Let by,by : Z? x Z? — Z be the classical bilinear forms over
Z defined by by (z,y) = 27[29]y and be(z,y) = 2T[§3]y. Then by and by are
injective (i.e. nondegenerate), but not regular. The form b; is right (and left) stable

and its corresponding anti-endomorphism is the transpose involution on Mz (Z) =
Endz(Z?). However, by is not right stable since there is no o’ € Ma(Z) such that

b2([8 [1)} xay) = bQ(an—/y)'

My doubts were eventually justified when I found an example of a module M
over a ring R such that all anti-automorphisms of Endr(M) correspond to non-
regular, yet stable, bilinear forms. Moreover, there exists an example of R, M, «
such that b, is degenerate and stable. These discoveries were followed by a series
of positive results sharing a common flavor: If R and M can be localized such
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that after the localization M becomes projective or a generator, then under mild
assumptions, b, is guaranteed to be injective, provided « is an anti-automorphism.
The word “localization” can mean both commutative and non-commutative local-
ization. Some of these results are summarized in the following theorem, which is
derived from Theorem [B.7.19] below.

THEOREM 0.10. Let R be a ring and let M be a faithful right R-module which
is dense in a f.g. R-module (e.g. if M is f.g.). If at least one of the following holds,
then there is a one-to-one correspondence between anti-automorphisms of Endg (M)
and generic stable forms on M, considered up to similarity.

(1) M is torsion-free and R is a semiprime Goldie ring (e.g. a noetherian or
PI domain).

(2) Generalizing (1): There is a two-sided denominator set of reqular elements
S C R such that RS~ 4s right pseudo—Frobeniusﬂ and M is S-torsion-
free.

The proof involves finding sufficient conditions on a module M to ensure that
the endomorphism ring of E (M), the rational hull of M, is the mazimal symmetric
general ring of quotients of End(M). The byproducts include the following deep
result about rings of quotients.

THEOREM 0.11. Let R be a ring such that Q5,(R), the mazimal symmet-
ric general ring of quotients of R, coincides with R. Then for every torsionlessﬁ
generator M € Mod-R, there is a torsionless generator G € Mod-R such that
M C4 G, every endomorphism of M extends to G and End(G) = Q3 . (End(M)).
In particular, if R is a cogenerator, then any generator M € Mod-R satisfies
End(M) = Q% .(End(M)) and if R is right pseudo-Frobenius, then any faithful

module M € Mod-R satisfies End(M) = Q% (End(M)).

There are still many open questions regarding when b, is regular or stable. For
instance, I could not find an example of R being a noetherian domain, M being
f.g. and « being bijective, such that b, is not regular. In addition, the following
conjecture is open:

CONJECTURE 0.12. If M is nonsingular, then there is a one-to-one correspon-
dence between the generic stable bilinear forms on M, considered up to similarity,
and the anti-automorphisms of Endg(M).

Two Applications. Part (i) of Theorem has two nice applications. The
first is an easy proof of the following result of Osborn ([66]).

THEOREM 0.13. Let (W, «) be a semisimple ring with involution admitting no
non-trivial a-invariant idempotents. Then (exactly) one of the following holds:
(i) W is a division ring.
(ii) W =2 D x D°P for some division ring D and under that isomorphism «
exchanges D and D°P.
(iif) W = My(F) for some field F' and under that isomorphism « is a sym-
plectic involution.

Osborn’s original result assumed additional conditions on (W, «) (e.g. that 2 €
W*) and its proof consisted of studying the Jordan algebra induced by «. An

TA ring R is called right pseudo-Frobenius when all faithful right R-modules are generators.
This is equivalent to R being a right cogenerator right self-injective ring, e.g. a quasi-Frobenius
ring.

8 A right R-module M is torsionless if it embeds in a product Hie] Rp for some set I. The
module Rp is a cogenerator <=> all right R-modules are torsionless.
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alternative easier proof goes as follows: One can quickly reduce to the case where
W is simple artinian, hence there is a division ring D and a f.d. right D-vector
space V such that W = Endp (V). Thus, by Theorem by : VXV = K, is
a regular bilinear form over D. Furthermore, it is ko-symmetric. The assumption
that W does not have non-trivial a-invariant idempotents now is equivalent (by
the “dictionary” above) to b being indecomposable. This is easily seen to force
either dimp V' =1 or dimp V = 2, where in the latter case D is a field and b, is
alternating. But this implies the theoremﬂ

The second application is a partial answer to a problem suggested to me by
David Saltman: Under what assumptions all or some of the following conditions
are equivalent for a ring R.

(1) R is Morita equivalent to a ring with involution.
(2) R is Morita equivalent to a ring with an anti-endomorphism.
(3) R is Morita equivalent to R°P.

The implications (1)==-(2)==(3) are obvious. However, a well-known theorem
asserts that for central simple algebras we have (3)==-(1), and Saltman has gen-
eralized this result to Azumaya algebras in [82}@ Using Theorem (and the
new definition of bilinear forms in particular), I was able to show the following
proposition (compare with [82 Th. 4.2]). Before formulating it, observe that ev-
ery (R°P, R)-module, and in particular (R°P, R)-prgenerators, can be twisted into
a double R-modules by considering the left R°P-module structure as an additional
right R-module structure.

PrOPOSITION 0.14. Let R be a ring and let M be an R-progenerator. Then
Endg(M) admits an anti-automorphism (resp. involution) if and only if there exists
a regular (resp. regular and asymmetric) bilinear form (M,b, K) such that K is
obtained from an (R°P, R)-progenerator.

The proof consists of showing that if « is an anti-automorphism of End (M),
then K, once considered as an (R°P, R)-bimodule, is a progenerator.

Proposition means that in order to prove (3)=-(2), it is enough to show
that for every (R°P, R)-progenerator, K, there is a regular bilinear space (M, b, K)
for some R-progenerator M. This latter statement is false in general, but it is true
under some finiteness assumptions on the category of f.g. projective R-modules.
Such finiteness assumptions are satisfied when R is semiperfect, hence we get:

THEOREM 0.15. If R is semiperfect, then (3)—>(2).

I conjecture that (3)=%-(2) in general, but I could not find any counterexample.
Nevertheless, (2)=4-(1) can be demonstrated (Example below).

Basic Properties of Bilinear Forms. Another interesting consequence of
the research about the connection between bilinear forms an anti-endomorphism
was the realization that, over rings, being stable does not imply being injective (i.e.
nondegenerate) and vice versa. This phenomenon does not happen for classical
bilinear forms division rings, and that led me to reconsider the basics of the theory
of bilinear forms over rings. This is the topic of Chapter 2] To formulate this

9 The form by is in fact classical, i.e. it is a *=1-hermitian form over D w.r.t. some involution.
This follows from Theorem if D is f.d. over its center. I could not find the general case in the
literature, but it follows as a consequence of my work.

10 Some mild assumption is needed for this to be true: The (R°P, R)-progenerator P in-
ducing the equivalence also induces an isomorphism Cent(R) — Cent(R°P) = Cent(R). That
isomorphism must be the identity. Equivalently, R and R°P need to be Morita equivalent as
Cent(R)-algebras.
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more formally, let (M, b, K) be a bilinear space over R. Then one can consider the
following properties:

(R1) b is right injective (i.e. Adj is injective).

(R2) b is right surjective (i.e. Ady is surjective).

(R3) b is right stable.

The left analogues of these properties are denoted by (L1)-(L3). It turns out that
none of (R1)—(R3),(L1)-(L3) implies any of the others. Moreover, the logical impli-
cations between subsets of these properties can be explained by (R1)A(R2)=(R3)
and its left analogue. (Here A denotes logical “and”; the previous logical statement
means that right regular implies right stable, a fact we have noted above.)

Things become more complicated when K is assumed to have an anti-isomor-
phism or an involution k. For instance, we suddenly get extra relations between
(R1)-(R3) and (L1)—(L3) such as (R1)A(R2)==-(L1). In addition, in this case we
can add another member to our list of properties:

(R4) b has a unique right k-asymmetry.

As might be expected, a right x-asymmetry of b is a map A € Endg(M) such that
b(x,y)" = b(y, Ax). The left analogue of (R4) is denoted by (L4).

Again, while (R1)-(R4),(L1)—(L4) are equivalent for classical bilinear forms
over division rings, none of these conditions implies any of others in general. As
done above, I have tried to determine the logical implications between subsets of
(R1)-(R4) and (L1)—(L4), but this time I did not manage to finish the project; I
have proved a list of implications, which I conjecture to explain all other implica-
tions. What stops me from declaring the list as complete is the absence of several
counterexamples (e.g. showing that (R4)A(R2)=A(R3)). Among the remarkable
(and very hard) counterexamples that were found is an example of a right regular
bilinear form b admitting a unique right k-asymmetry but not a left xk-asymmetry.
(In this case b cannot be left regular and the asymmetry is not bijective).

One also notes that by forcing various assumptions on the ring R and the
bimodule K, more logical implications can be obtained. For example, if b is a clas-
sical bilinear form over a quasi-Frobem’usiEI ring with involution, then the conditions
(R1)-(R4),(L1)—(L4) are equivalent, provided M is faithful.

Semi-Invariant Subrings. Recall the ring W, defined above. For a right
stable bilinear space (M,b, K), it was defined to be {c € Endgr(M)|oc** = o},
where * is the corresponding anti-endomorphism of b. Studying the structure of
Wy, was essential to get effective results about b and has thus occupied almost half
of the last year of my research. This work eventually led to the development of a
new concept called semi-invariant subrings, which is the topic of Chapter

A subring Ry of a ring R is semi-invariant if there exists a ring S O R and a set
of ring endomorphisms ¥ C End(S) such that Ry = R¥ :={r € R : o(r) =1, Vo €
¥}. A T-semi-invariant subring is defined in the same way, but when R and S are
Hausdorft linearly topologized rings. If we can choose S to be R, then we get the
usual notion of an invariant subring. (For example, W}, above is an invariant subring
w.r.t. X = {*x}.) While it is not obvious from the definition, semi-invariant subrings
are quite common. For instance, the centralizer of any subset of R is a (T-)semi-
invariant subring of R and if M is a finitely presented (abbrev.: f.p.) R-module,

A ring is quasi-Frobenius (abbrev.: QF) if it is noetherian and self-injective. For example,
if F'is a field and G is a finite group, then FG is QF. In addition, any local artinian ring with
simple socle is QF; see [58].

121t had recently came to my attention that there is already a notion of semi-invariance in the
theory of invariants. The semi-invariant subrings of this dissertation, while being generalizations
of rings of invariants, has nothing to do with semi-invariance in invariant theory.
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then End(M) is a quotient of a (T-)semi-invariant subring of M,,(R) x M,,(R) for
some m, M.

It turns out that various properties pass from a ring to its (T-)semi-invariant
subrings. Some of these properties are summarized in the following theorems.

THEOREM 0.16. Let R be a ring. If R is semiprimary (resp. right perfecﬂ/,
then so is any semi-invariant subring of R.

THEOREM 0.17. Let R be a Hausdorff linearly topologized ring. If R is semiper-
fect and pro-semiprimary (resp. semiperfect and pro-right-perfect), then so is any
T-semi-invariant subring of R.

Regarding the notions pro-semiprimary and pro-right-prefect, a linearly topol-
ogized ring is called pro-P if it is isomorphic as a topological ring to the inverse
limit of discrete topological rings satisfying P.

Beside the above application to bilinear forms, Theorems [0.16] and [0.17] also
have numerous applications to semiperfect rings and Krull-Shmidt decompositions
(see section , such as:

(1) Let R be a semiperfect pro-semiprimary ringE then all f.p. R-modules
admit a Krull-Schmidt decomposition (this generalizes [92] §6], [19], [78],
[79]). If moreover R is right noetherian, then the endomorphism ring of
any f.p. R-module is semiperfect and pro-semiprimary.

(2) Let S be a commutative semiperfect pro-semiprimary ring. Then any S-
algebra R that is f.p. as an S-module is semiperfect. If moreover S is
noetherian, then R is pro-semiprimary.

(3) Any representation of a monoid over a module with a semiperfect pro-
semiprimary endomorphism ring has a Krull-Schmidt decomposition.

This work is described in detail in the accepted paper [41].

Categories With A Double Duality. Before concluding the introduction,
let us return to hermitian categories, also called categories with duality. A hermitian
category is a triplet (4, x, w) such that ¢ is a (usually additive) category, * : " —
¢ is a contravariant functor and w : id s — *x* is a natural isomorphism satisfying
a certain equation (see [T1], [86] Chp. 7] or section[4.2]below). A bilinear form over
A would counsist of a pair (M,b) with M € 5 and b € Hom s (M, M*). Classical
bilinear forms over rings with involution can be considered as bilinear forms over
an appropriate hermitian category, but the same construction cannot be adapted
for our new notion of bilinear forms (see the end of section 2.7)). Instead, the new
bilinear forms can be understood as a bilinear forms over some category with a
double duality. The latter is defined to be quintet (<, [0],[1], ®, ¥) such that < is
a category, [0],[1] : & — & are contravariant functors (written exponentially) and
® :idgy — [1][0], ¥ : idy — [0][1] are natural transformations satisfying certain
relationsm Bilinear forms over &/ would consist of pairs (M, b) such that M € o
and b € Hom, (M, M1). The asymmetry in the definition is ostensible as the
relations between ® and ¥ induce a natural isomorphism between Hom ., (M, M)
and Hom,, (M, M),

ExAMPLE 0.18. (i) Let R be a ring and let K be a double R-module. For
every M € Mod-R and i € {0, 1}, define M := Homp (M, K, _;) (recall that K;_;
stands for K considered as right R-module w.r.t. ®;_;). We make M into a right

13 A ring R is right perfect if it is semilocal and Jac(R) is right T-nilpotent. See [9] or section
for more equivalent definitions.

14 4nd even more generally, a quasi-To -regular ring, e.g. an inverse limit of moo-regular rings.

15 Caution: since [0] and [1] are written exponentially, [1][0] actually means [0] o [1] (since
MOl = (MEHO] for M € o).
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R-module by letting (f - 7)m = (fm) ®; r for all f € MU, m € M and r € R.
Now define ®,; : M — MWUO and Wy, : M — MO by (®p2)f = f(x) and
(Upz)g = g(z) for all z € M, f € MM and g € M. Then (Mod-R, [0], [1], ®, ¥)
is a category with a double duality. A bilinear form (M, b, K) over R corresponds
to the bilinear form (M, Ad;) over Mod-R.

(ii) (7, *,w) is a hermitian category <= (4, *,*,w,w) is a category with a
double duality and w is a natural isomorphism.

One of the deepest (and most difficult) results of this work is the following.

THEOREM 0.19. Let (<7, [0], [1], @, ) be a category with a double duality. Then
there exists a hermitian category (J€,,w) such that the category of arbitrary bilin-
ear forms over < is equivalent to the category of regular symmetric bilinear forms
over J€. The category F is the category of Kronecker modules over &7 .

Roughly speaking, Theorem [0.19]asserts that the theory of bilinear forms over a
given category with duality is equivalent to the theory of reqular symmetric bilinear
forms over another category with duality (see sections for an extensive
discussion). Moreover, it explains why it is even possible at all to reduce the theory
of non-symmetric forms to the theory of regular symmetric forms. In fact, the
results (a)—(e) stated above, and also work of Riehm and his predecessors, can be
shown to “factor” via the equivalence of Theorem [0.19}

I should note that a result having a similar flavor was obtained by E. Bayer-
Fluckiger and L. Fainsilber in [16]. They have used a different construction to show
that the category of arbitrary symmetric bilinear forms over a given hermitian
category is equivalent to the category of regular symmetric bilinear forms over
another hermitian category. In addition, very recently, I was introduced with the
current (and still unpublished) work of D. Moldovan. In his Ph.D. dissertation ([64];
submitted in 2012; done under the supervision of E. Bayer-Fluckiger), Moldovan
proved a version of Theorem [0.19] for hermitian categories and has used it to deduce
various results, including special cases of (a), (b) and (c) above. (For example, he
obtained Witt’s Cancelation Theorem for classical bilinear forms over algebras of
finite type over discrete valuation rings.) Both [16] and [64] require that all objects
in the given hermitian category are reflexive (i.e. that w : ids — #+* is a natural
isomorphism, rather than just a natural transformation). This is not needed in
Theorem though. (Note: E. Bayer-Fluckiger, D. Moldovan and I eventually
combined our results and submitted them as a joint work; see [11].)

One should also point out that Theorem [0.19] can be effectively applied to
systems of bilinear forms; see section [£.5]



Notes to the Reader

The Chapters

This work consists of five chapters. Chapter [0} entitled “Preliminaries”, surveys
some known results and definitions from ring theory and category theory that are
used throughout this work. It is meant to make this text more negotiable to non-
experts. (Nevertheless, some familiarity with elementary non-commutative ring
theory, category theory and topology are still assumed.) Experts (and also non-
experts) may skip this chapter and consult it upon need. The basic knowledge
needed to read Chapter [0f can be mostly found in the first chapters of Ring Theory
by L. Rowen ([80]).

Chapter (1} entitled “Semi-Invariant Subrings”, discusses the (new) theory of
semi-invariant subrings and its various applications (except its applications to bi-
linear forms). It serves as the ring theoretic infrastructure of the work. Chapter
entitled “Bilinear Forms Over Rings”, defines and studies the basic properties of
bilinear forms over rings. Categories with a double duality, which are a categorical
framework for bilinear forms, are also defined and discussed. Chapter [3] entitled
“Bilinear Forms and Anti-Endomorphisms”, studies the connection between bilinear
forms and anti-endomorphisms. Finally, Chapter [4] entitled “Isometry and Decom-
position”, is devoted to proving strong results about isometry of bilinear forms and
the structure of their isometry group (e.g. results (a)—(e) of the Introduction).

The dependency between Chapters [[H4] is illustrated in the following diagram:

1 2
l / Y
4 < 3

An arrow means strong dependency (i.e. do not attempt to read the destination
of the arrow before reading most of its source) and a dotted arrow means weak

dependency (it is enough to read a small part of the source before reading the
destination).

Notation and Conventions

Rings: Unless specified otherwise, all rings are assumed to have a unity and ring
homomorphisms are required to preserve it. Subrings are assumed to have the
same unity as the ring containing them. Given a ring R, denote its set of invertible
elements by R*, its Jacobson radical by Jac(R), its set of idempotents by E(R) and
its center by Cent(R). The n x n matrices over R are denoted by M,,(R). We let
End(R) (resp. Aut(R)) denote the set of ring homomorphisms (resp. isomorphisms)
from R to itself. If X C R is any set, then its right (left) annihilator in R is denoted
by ann’y X (ann%, X). The subscript R will be dropped when understood from the
context. Throughout, a semisimple ring means a semisimple artinian ring.
Whenever referring to a ring property admitting right and left versions (e.g.
being noetherian) without specifying whether it is left or right, we mean both
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versions. (For example, a “noetherian ring” means “right and left noetherian ring”).
This rule applies to non-ring-theoretic properties as well.

Modules: The category of right (left) R-modules is denoted by Mod-R (R-Mod).
For M € Mod-R, we let E(M) (E(M)) denote the injective envelope (rational hull)
of M. We write N < M to denote that IV is a submodule of M. We also write
N C. M if N is essential in M and N C4 M if N is dense in M.

In case M can be considered as a module over more than one ring, we use
Mp (resp. RM) to denote “M, considered as a right (resp. left) R-module”. In
particular, Rg (resp. gR) means “R, considered as a right (resp. left) R-module”.

Inverse Limits of Rings: By saying that {R;, f;;} is an inverse system of rings
indexed by I, we mean that: (1) I is a directed set (i.e. a partially ordered set
such that for all ¢,5 € I there is k € I with i,j < k), (2) R; (i € I) are rings and
fij : Rj =& R; (i < j) are ring homomorphisms and (3) f;; = idg, and fi; fjx = fir
for all ¢ < j < k in I. When the maps {f;;} are obvious or of little interest, we
will drop them from the notation, writing {R;};c; instead. The inverse limit of
{R;, fij} will be denoted by @ {R;}icr- It can be understood as the set of I-tuples
(as)ier € [];c; Ri such that f;;(a;) = a; for all 4 < j in I.

Miscellaneous: The natural numbers N are not assumed to include 0. For a
prime number p, Z, (resp. Q,) denotes the p-adic integers (resp. numbers) and
Zpy denotes S™'Z with S = Z \ pZ.
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CHAPTER 0

Preliminaries

This chapter presents some definitions and well-known facts from ring theory,
category theory and the theory of topological rings that are used throughout the
text. Its purpose is to make this dissertation more negotiable to non-expects and
hence it is not mandatory. In fact, the reader can skip this chapter entirely and
return to it upon need. Note that sections [0.7H0.10] are needed only for section [3.7]
so the reader can postpone reading them.

For the benefit of the reader, below is a list of the definitions and topics dis-
cussed in this chapter.

Section [0.1} Topological Groups and Rings. Topological Groups, Topo-
logical Rings, Local Bases.

Section Natural Transformations. Natural Transformations, Natural
Isomorphisms.

Section Additive Categories. Preadditive Categories, Additive Cate-
gories, Additive Functors.

Section More Category Theory. Faithful and Full Functors, Subcat-
egories, Full Subcategories, Generators, Cogenerators, Equivalence of Categories.

Section Morita Equivalence. Morita Equivalence, Progenerators, Full
Idempotents, Morita Context, Morita’s Theorems.

Section[0.6} Quasi-Frobenius Rings and Related Notions. Self-Injective
Rings, Quasi-Frobenius Rings, Frobenius Algebras, Kasch Rings, Cogenerator Rings,
Pseudo-Frobenius Rings.

Section [0.7t Uniform Dimension. Essential Submodules and Essential
Extensions, Injective Hulls, Uniform Dimension.

Section Classical Rings of Fractions. Non-Commutative Localiza-
tion, Right Denominator Sets, Ore Rings and Ore Domains, Classical Rings of
Fractions, Goldie Rings, Goldie’s Theorem.

Section [0.9t Rational Extensions. Dense Submodules and Rational Ex-
tensions, Rational Hulls, Singular Radical, Nonsingular Submodules, Nonsingular
Rings.

Section [0.10; General Rings of Quotients. General Rings of Quotients,
Maximal Rings of Quotients, Theorems of Johnson and Gabriel.

0.1. Topological Groups and Rings

In this subsection we give the basics of topological groups, rings and modules.
For a detailed discussion and proofs see [99].

A topological group consists of a group G endowed with a topology such that

the maps
m: GxG — G i: G — G
z = x!

(v,y) = xy
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are continuous. We also say that the topology on G, denoted 7¢, is a group topology.
If we let N, stand for the set of neighborhood&ﬂ of x, then these conditions are
equivalent to

(1) For all U € Ny, there exists V € N, W € N, such that VW C U;
(2) for all U € N, there exists V € N,-1 such that V=1 C U

where z,y € G. The sets N, and NN, can be replaced with bases of neighbor-
hoodsEI at x and y, respectively. Morphisms of topological groups are defined to be
continuous group homomorphisms.

ExaMPLE 0.1.1. (i) Any group can be made into a topological group by en-
dowing it with the discrete topology.

(ii) (R, +), (R*, ), (Qp,+), (Zy,+) are topological groups.

(iif) GL,(R) is a topological group w.r.t. the topology induced from M,,(R) (an
n?-dimensional Euclidean space).

(iv) If G is a topological group and H is a normal subgroup, then G/H is a
topological group w.r.t. the quotient topology. The latter is defined as follows: a
subset U C GG/ H is open if and only if its preimage in G is is open. This makes the
standard epimorphism G — G/H in a continuous group homomorphism.

(v) Let G be an infinite group. Then G is not a topological group w.r.t. the
cofinite topology (despite the fact that z + z~! is a homeomorphism).

PROPOSITION 0.1.2. Let G be a topological group with unity e. Then:
(i) For allz € G, N, = xN. Here, xN, stands for {zU|U € N,}.
(ii) For any subsect X C G, the closure of X, X, is given by (e, XU.

In (ii), N, can be replaced with any basis of neighborhoods of e.

The previous proposition implies that the topology on G can be recovered from
N., or any basis of neighborhoods of e. Such a basis is called a local basis of G. (In
general, a local basis basis at x means a basis of neighborhoods of z.) The following
theorem provides necessary and sufficient conditions on a set B C P(G) to be a
local basis of G w.r.t. some (uniquely determined) group topology. This theorem
is extremely useful in constructing examples, since one can specify the local basis
rather then describing 7¢.

THEOREM 0.1.3. Let G be a group with unity e and let B be a nonempty col-
lection of subsets of G containing e. Then B is a local basis of some group topology
(which is then uniquely determined) if and only if the following conditions are sat-
isfied:

(0) For allU,V € B, there exists W € B with W C U N VE|

(1) For all U € B, there exists V € B such that V2 C U.

(2) For allU € B, there exists V € B such that V=1 C U.

(3) For allU € B and x € G, there exists V € B such that zVaz~! CU.

PRrOOF (SKETCH). Take 7¢ to be the collection of sets X C G such that for
all z € X, there exists U € B with xU C X. The rest is routine. O

EXAMPLE 0.1.4. (i) The set B = {Z,, pZy,, p*Z,, . . . } is a local basis for (Q,, +).
(ii) G is a discrete topological group if and only if {{e}} is a local basis.

LA neighborhood of z is defined to be a set U containing an open set Uy such that z € Up.
Neighborhoods are not assumed to be open unless this is stated explicitly.

2 A basis of neighborhoods of = is a set B consisting of neighborhoods of x such that every
neighborhood of x contains an element of B. Equivalently, this means B is a basis for the filter of
neighborhoods of .

3 This is equivalent to saying that B is a filter base, as it must be.
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(iii) Let G be a group and let K be a family of normal subgroups of G which
is closed to finite intersection (e.g. the set B of (i)). Then K is a local basis for a
group topology on G. Indeed, conditions (0)—(3) of the previous theorem are easily
seen to hold (take V = U in (1)—(3)). In this case K also turns out to consist of
open sets and the cosets of elements of I form a basis for the topology on G.

Continuity of group homomorphism can also be characterized using local bases.

PROPOSITION 0.1.5. Let G, G’ be topological groups with local bases B, B' and
let f: G — G be a group homomorphism. Then f is continuous <= for all
U' € B, there exists U € B with f(U) CU' <= forallU € B, f~Y(U’) € N..

Before we move to topological rings, we note the following remarkable result,
due to Pontryagin, which asserts that the separation axioms Ty and T3% coincide
for topological groupsﬂ Observe that by Proposition a topological group G
satisfies Ty if and only if (.3 U = {e} for some (and hence any) local basis B. In
particular, such groups are Hausdorff.

THEOREM 0.1.6 (Pontryagin). For topological groups, Ty = T3%.

A topological ring consists of a ring R endowed with a topology such that the
maps
a: RxR — R m: RxXR — R
(z,y) — x4y (z,y) — xy

are continuous. We also say that the topology on R, denoted 7g, is a ring topology.
These assumptions imply that the map x — (—z) : R — R is continuous since
—z = (—1) - 2 (but this requirement should be added if R is not assumed to have
a unity). Therefore, (R, +) is a topological group, hence all the terminology and
most of the previous results apply to R. In particular, the topology on R can be
determined by specifying a local basis B and the closure of any subset X C R is
given by
X=[x+0U).
veB

EXAMPLE 0.1.7. (i) Any ring can be made into a topological ring by endowing
it with the discrete topology.

(ii) R, Q, and Z,, are topological rings w.r.t. their standard topologies.

(iii) If R is a ring and I is an ideal of R, then R/I is a topological ring once
endowed with the quotient topology. The standard map R — R/I is then a homo-
morphism of topological rings.

The following theorem is an analogue of Theorem for rings.

THEOREM 0.1.8. Let R be a ring and let B be a nonempty collection of subsets
of R containing 0. Then B is a local basis of some ring topology (which is then
uniquely determined) if and only if the following conditions are satisfied:

(0) For allU,V € B, there exists W € B with W CUNV.

(1) For allU € B, there exists V € B such that V +V CU.

(2) For allU € B, there exists V € B such that V-V CU.

(3) For allU € B and x € R, there exists V € B such that Vz,zV C U.

1A topological space (X, 7) satisfies Ty if for all distinct z,y € X there is U € 7 such that
[{z,y} NU| = 1. The space (X, 7) satisfies T51 if it is Hausdorff (i.e., T2) and for any closed set
2
A C X and a € X with a ¢ A, there exists a continuous function f : X — [0,1] with f(A) =0
and f(a) = 1.
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ExXAMPLE 0.1.9. Let R be a ring and let B be a nonempty set of ideals that
is closed under intersection. Then conditions (0)—(3) of the previous theorem are
satisfied (take V' = U in (1)—(3)), hence R admits a unique ring topology with local
basis B. This topology turns out to be spanned by the cosets of the ideals in B.

Given a topological ring R, a topological right R-module is a right R-module
M endowed with a topology, Tps, such that (M, +) is a topological group and the
map
MxR — M
(m,r) +— mr

is continuous. In this case we say that the topology on M is an R-module topology.

PRroOPOSITION 0.1.10. Let R be a topological ring and let M be a right R-module
endowed with some group topology. Let Br be a local basis for R and let Bys be a
local basis for M. Then M is a topological R-module if and only if

(1) For allU € By, there are J € Br and V € By such that VJ C U.
(2) For allU € By and r € R, there is V € By such that Vr CU.
(3) For allU € By and m € M, there is J € Br such that mJ C U.

THEOREM 0.1.11. Let R be a topological ring with local basis Br and let M
be a right R-module. Let B be a nonempty collection of subsets of M containing
Oprr- Then B is a local basis of some R-module topology (which is then uniquely
determined) if and only if the following conditions are satisfied:

(0) For all U,V € B, there exists W € B with W CUNV.

1) For allU € B, there exists V € B such that V +V CU.

3) For allU € B, there exists V € B and J € Br such that VJ CU.
3) For allU € B and r € R, there exists V € B such that vV C U.
4)

(
(
(
(4) For allU € B and m € M, there exists J € Br such that mJ C U.

0.2. Natural Transformations

In the following three sections we present some definitions from category the-
ory. For an extensive discussion, see [42]. The reader should be familiar with the
definition of a category and a functor before proceeding.

Let &7, % be categories and let F,G : &/ — % be two (covariant) functors.
A natural transformation from F to G is a collection of maps {t4}ac such that
ta € Homg(FA,GA) and for every A, B € & and f € Homy (A, B) we have

tpoFf=Gfoty .

That is, the following diagram commutes:

rA . R

tA\L itB
Gf

GA——GB

We then write
t:F—G.
In case F,G are contravariant functors, a natural transformation is a collection

of maps {ta}acoy with t4 € Homg(FA,GA) such that for every A, B € & and
f € Hom (A, B) we have

taoFf=Gfotp.
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That is, the following diagram commutes:

rA< rp

tA\L ltB
Gf

GA<——GB

Natural transformations ¢ for which ¢4 is an isomorphism for all A € .o/ are called
natural isomorphisms. In this case, t=1 (i.e. {t;l}A@y) is a natural isomorphism
from G to F (check!).

Note: Natural transformations (isomorphisms) are also called morphisms (iso-
morphisms) of functors.

ExamMPLE 0.2.1. Let &, % be categories and let F : o/ — % be any functor.
For every A € o, define t4 € Homg(F A, FA) to be idpa. Then ¢ is a natural
isomorphism from F to itself. Indeed, for all A, B € & and f € Hom (A, B), we
have tppo Ff = Ffotpa and tps = idp4 is an isomorphism.

EXAMPLE 0.2.2. Let F be a field and let Mod-F' be the category of F-vector
spaces. Then the map V +— V* := Homp(V, F) induces a contravariant functor
from Mod-F' to itself. Thus, **x : Mod-F — Mod-F' is a covariant functor. For
every V € Mod-F, let wy : V. — V** be the standard embedding of V' in V** given
by (wyz)f = f(x) (where z € V and f € V*). Then

w : idpod.Fp —> **

i.e., w is a natural transformation from the identity functor idyoq.r on Mod-F' to
xx. Indeed, for all U,V € Mod-F and f € Homg (U, V), we have

wyof=fTouwy.
However, w is not a natural isomorphism since wy is not bijective for inifinite

dimensional V. Nevertheless, if we replace Mod-F with the category of f.d. F-
vector spaces, then w becomes a natural isomorphism.

ExaMPLE 0.2.3. Let F be a field admitting an automorphism o # idg. For
every V € Mod-F, let V¢ denote the F-vector space obtained from V' by replacing
the operation of F on V by ¢, : V x F — V, defined by v, a = v - o(a). Define a
functor G : Mod-F — Mod-F by GV =V? and Gf = f for all V € Mod-F and any
morphism f in Mod-F. Then G is a covariant functor and GV = idyeaq.rV =V
for every V' € Mod-F. Nevertheless, there is no natural isomorphism from G to
idMod—F-

Indeed, assume by contradiction that ¢t : G — idpoq-F is @ natural isomorphism.
Let V be a 1-dimensional vector space and let 0 # v € V. Then ty : V7 — V is an
isomorphism, hence ty (v) = v - a for some a € F*. Now, let b € F' be such that
o(b) #band let f:V — V be defined by f(x) = 2 -b. By the naturalness of ¢, we
must have

tyof=tyoGf =idyed-rfoty = foty .
But this means that
v - (aoc" (D)) ty(v) - o 1 (b) = ty (v o, a1 (D)) =ty (vb)
= tv(fv) = f(tvv) = f(v-a) =v- (ab)

which in turn implies aoc~!(b) = ab, hence o(b) = b, a contradiction.

Natural transformations can also be defined for bifunctors, and more generally,
multi-functors. The latter are, roughly, functors taking several variables (such as
Hom(_, _)). Rather than spelling out all the definitions, let us exhibit an explicit
example.
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ExAMPLE 0.2.4. Let K be a field. Consider the bifunctors F and G from
Mod-K x Mod-K — Mod-K defined by

F(U,V) =Homp (U, V")
G(V,U) = Homp(V,U") .
If U,U',V,V' € Mod-K and f € Homg (U',U), g € Homg (V',V), then F(f,g)
and G(f,g) are defined by
F(f,g9) =g" o _ o f € Homg(Homg (U,V*),Homg (U', V"))
G(f,g9) =f*o _ og € Homg (Homg (V,U*),Homg (V' ,U"™)) .

In particular, F' and G are contravariant in both variables. For every U,V €
Mod-K, define Iy : F(U,V) — G(U,V) by

Iyv(h) = h* owy € Hom(V,U*) = G(U,V) ¥ he F(U,V) = Homg (U, V*)
where wy is as in Example Then
I1:F—=G.
This holds since for all f, g, U,U’,V, V' as above, we have

IU’,V/ OF(fag) = G(fvg) OIU,V .

Moreover, I is actually a natural isomorphism. The details are left as an exercise
to the reader.

At certain times, we will say that a given homomorphism between two objects
is natural. This is merely an abbreviation for the following two claims:

(1) The way to obtain the objects in question is functorial (i.e. it also sends
morphisms to morphisms in a way that respects composition).
(2) The map defined is a natural transformation between the two functors of
(1).
For example, let R be a ring. By saying that a right R-module M is naturally iso-
morphic to Hompg(Rg, M) as abelian groups we mean that (1) both maps M +— M
and M +— Hompg(Rg, M) give rise to (covariant) functors from Mod-R to the
category of abelian groups and (2) there is a natural isomorphism between these
functors. In contrast to that, using the notation of Example there is no nat-
ural isomorphism between V and V7, despite the fact that V is always isomorphic
to V7.

0.3. Additive Categories

A category & is called preadditive if for all A, A" € o, the set Hom (A, A")
is endowed with an (additive) abelian group structure such that the composition
action is biadditive. That is, for all A, A, A" € &/, f,g € Homy (A, A") and
f',g € Homg (A’, A”) we have

(f'+g)of=fof+gof
fro(f+g)=Ffof+fog.
In this case, for all A € o/, End(A) is a ring. In addition, we can speak about

the zero morphism between two objects.
A category «f is additive if it satisfies the following conditions:

(1) < has a zero object.
(2) & is preadditive.
(3) Finite biproducts exist in .
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The definition of a zero object appears below, but I prefer not to give here the def-
inition of a biproduct and rather refer the reader to any good book about category
theory (e.g. [42]). The flavor of what a zero object and a biproduct are can be seen
by looking at the category of right R-modules. In this category, the zero module 0
is the zero object and the biproduct of modules Ay, ..., A; is just the direct sum
A1 @ ---® A;. The symbols 0 and A & - & A; will be used to denote the zero
object and the biproduct in any additive category.

DEFINITION 0.3.1. Let &€ be a category. A zero object in € is an object 0 € €
such that for all C € €

| Home (C,0)| = |Hom¢(0,C)| =1 .

In this case, 0 is uniquely determined up to isomorphism, so up to that rank freedom,
we can speak about the zero object of €.

EXAMPLE 0.3.2. (i) The categories of R-modules and f.g. R-modules are addi-
tive categories.

(ii) Let n € N. The category % of vector spaces over a field F' of dimension n
or less is preadditive (since Homp (U, V) is an abelian group for all U,V € € and
the composition is biadditive), but it is not additive. Indeed, € has a zero object,
but not all finite biproducts exist (since the biproduct of two n-dimensional vector
spaces would be a 2n-dimensional vector space).

(iii) The category of (non-abelian) groups ¢ is not preadditive.

If o7 is an additive category, then the abelian group structure on Hom,, (A, A")
can be recovered from &/ by purely categorical means. In particular, the Hom-sets
in o7 admit only one abelian group structure making <7 into an additive category.
(This is false for preadditive categories, though). In addition, the object 0 and the
operation @ satisfy many expected properties such as

(i) A® 0 is naturally isomorphic to A.
(ii) Homy (A, B® B’) is naturally isomorphic to Hom (A, B) @Hom (A, B')
as abelian groups.
(iii) Homg (A® A’ B) is naturally isomorphic to Hom g (A4, B) @Hom (A, B)
as abelian groups.

In particular, the latter two statements imply

t s

Hom,g{(@,E:lAi, @ilej) = H H HOIIl,;zy(AAi7 Bj) .

i=1j=1
It is customary to write the r.h.s. of this isomorphism in matrix form, namely

Homg (A1, By) ... Homg(A:, By)
Hom ./ (®j_, Ai, ®5_, B;) = : . :

Homg (A1,Bs) ... Homg (A, By)

In particular, any morphism f € Hom (®!_; A;, ?:1Bj) can be represented by an
s x t matrix (f;;) with f;; € Hom (A;, B;). In this representation, composition of
morphisms becomes matrix multiplication. Formally speaking, f;; can be extracted
from f by the formula fj; = p;jo foe; where p; is the projection ®j_, By — B; and
e; is the embedding A; — @} _, Ay. The matrix representation is commonly used to
describe morphisms between biproducts and it will be used repeatedly in this text.
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ExaMPLE 0.3.3. Keeping the above notation, the matrix representation of the
zero morphism from &!_; A to ®i 1B is

0 ... 0

0 ... 0
where the 0 in the (j,4) place is the zero morphisms from A; to B;. In case

t = s and A; = B; for all 7, the matrix representation of the identity morphism
id : @5:1141‘ — EB;:lBJ = @1;:1142‘ is

i,

ida,
(there are zero morphisms outside the diagonal).

A functor F' (covariant or contravariant) between preadditive categories o/ and
A is called additive if it respects the additive group structure on the Hom-sets.
That is, for all A, A’ € &, the map

F :Hom (A, A") — Homg(F A, FA")

is an abelian group homomorphism.

An additive (covariant or contravariant) functor F' between additive categories
& and £ is a functor sending biproducts to biproducts. That is, for all A, A’ € &,
F(A® A’) is the biproduct of FA and FA’ or, equivalently, F/(A@® A’) is naturally
isomorphic to FA @ FA’. In this case, it is customary to identify F/(A @ A’) with
FA@® FA'. Additive functors between additive categories are also additive when
considered as functors between preadditive categories.

ExXAMPLE 0.3.4. Let R be a ring and let M be any R-module. Let F' be the
functor from Mod-R to itself sending every object to M and any morphism to idp,.
Then F is not additive if M # 0 (since, roughly, F(A @ B) = M is not naturally
isomorphic to FA® FB = M @ M). However, if M = 0, then F is additive.

EXAMPLE 0.3.5. Let F be a field and let * : Mod-F — Mod-F be the con-
travariant functor defined by V* = Homp(V,F). Then * is an additive (con-
travariant) functor. The identification between (U @ V)* and U* @ V* is given by
f = (flu, flv). The reader should try to verify that this isomorphism is natural.

0.4. More Category Theory

0.4.1. Faithful and Full Functors. Throughout, &/ and &% are categories.
A functor F : o — A is called faithful (resp. full) if for all A, A’ € &/, the map:

F :Hom (A, A") — Homg(F A, FA")

is injective (resp. surjective). Contravariant faithful and full functors are defined in
the same manner with Homg(F A, FA’) replaced by Homg(FA’, FA).

ExXAMPLE 0.4.1. Assume Z consists of a single object and a single morphism.
Then there is precisely one functor from &7 to % and it is full. It is faithful if and
only if Homg (A, A’) contains exactly one element for all A, A" € 7.

EXAMPLE 0.4.2. Let F be a field and let * : Mod-F — Mod-F be the con-
travariant functor defined by V* = Hompg(V, F). Then * is faithful since the map
* : Homp (U, V) — Homp(V*,U*) is injective for all U,V € Mod-F. However, x* is
not full since the previous map is not bijective for U = F and V = ®ao F.
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ExAMPLE 0.4.3. If F : &/ — 9 is an additive functor between preadditive
categories, then F' is faithful if and only if for any morphism f in o/, Ff = 0
implies f = 0.

A subcategory of of is a category % such that:

(1) A € o implies A € &.

(2) A, A" € o and f € Homgy, (A, A’) implies f € Hom (A, A').

(3) If A € o7, then the identity morphism of A in . is the identity morphism
of Ain &[]

In this case, the functor id., can be considered as a functor from % to /. The
subcategory . is called full if the functor id, : 2% — <7 is full. This is equivalent
to

Hom,y, (A, A") = Hom, (A, A")
for all A, A’ € @.

ExaMPLE 0.4.4. (i) Let R be a ring. The category of f.g. right R-modules is a
full subcategory of Mod-R, the category of all right R-modules.

(ii) Let € be the category whose objects are the objects of Mod-R and whose
morphisms are the isomorphisms of Mod-R, i.e. Home (M, N) is the set of R-module
isomorphisms from M to N. Then ¥ is a subcategory of Mod-R and it is not full
despite the fact that its objects are the objects of Mod-R.

0.4.2. Generators and Cogenerators. Let &/ be category. An object G is
called a generator (of o) if for all A, A" € o/ and distinct f,g € Homg (A, A'),
there exists h € Hom(G, A) such that

foh#goh.

This is equivalent to saying that the functor Hom g (G, _) (from & to the category
of sets) is faithful (check!). A cogenerator (of «7) is the dual notion of a generator
(i.e. a generator in the opposite category). Explicitly, U € & is a cogenerator if for
all A, A" € o7 and distinct f,g € Homy (A, A”), there exists h € Hom(A’,U) such
that
hof#hog.

Alternatively, U is a cogenerator if the (contravariant) functor Homg (_,U) is
faithful.

ExAMPLE 0.4.5. Let &7 be the category of abelian groups (or Z-modules).

(i) Z is a generator of &. Indeed, let A, A’, f, g be as above. Then there exists
x € A such that f(x) # g(x). Define h : Z — A by h(n) = x - n and observe that
foh#gohsince (foh)(1) £ (goh)(1).

(ii) For all A € &/, Z ® A is a generator of /. This is shown by a slight
adjustment of the argument of (i).

(iii) Q is not a generator of .&7. Indeed, consider idz/, 07/ € Homy (Z/2,7/2).
Then there is no s : Q — Z/2 such that idz/; oh # 0z, o h.

(iv) Q/Z is a cogenerator of «7; see [58, Ex. 19.11].

(v) Z is not a generator of o7. For instance, consider idg,0gp € Hom(Q, Q).
Then there is no h : Q — Z such that h oidg # h o Og.

The following proposition generalizes part (ii) of the previous example.

PROPOSITION 0.4.6. Let G € <7 be a generator. Then any object G’ admitting
an epic morphism G' — G is also a generator. Dually, let U € &/ be a cogenerator.
Then any object U' admitting a monic morphism U — U’ is also a cogenemtorﬂ

5 This condition is sometimes dropped from the definition.
6 Recall that a morphism f : A — A’ is monic if for all g1,g2: B — A, fogs = fogs =
g1 = g2 and epic if for all hy,ha: A’ — B, hyo f = hgao f => h1 = ha.
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Generators and cogenerators of Mod-R (also called R-generators and R-cogene-
rators) admit several equivalent definitions which are summarized in the following
propositions. Some of the equivalent conditions apply to any Grothenieck category
(e.g. Mod-R). We also note that condition (b) in both propositions characterizes
generators and cogenerators in all preadditive categories.

PrOPOSITION 0.4.7. Let R be a ring and G € Mod-R. The following are
equivalent:

(a) G is a generator.

(b) For all A,B € Mod-R and 0 # f € Hompg(A, B), there exists g €
Hompg (G, A) such that fog #0.

(c) Any right R-module is an epimorphic image of @,.; G for some set I.

(d) Rr is an epimorphic image of @,;.; G for some set I.

(e) Rpr is a summand of G™ for some n € N.

PrOPOSITION 0.4.8. Let R be a ring and U € Mod-R. The following are
equivalent:

(a) U is a cogenerator.

(b) For all A,B € Mod-R and 0 # f € Hompg(A,B), there exists g €
Homp(B,U) such that go f # 0.

(¢) For any A € Mod-R and 0 # x € A, there exists f € Hompg(A,U) with
f(@) # 0,

(d) Any right R-module embeds in [[;c; U for some set I.

(e) U contains a copy of the injective hull of any simple right R-module.

0.4.3. Equivalence of Categories. Two categories &/ and £ are called
equivalent if there exist two functors F' : &/ — %, G : 8 — &/ and two natu-
ral isomorphisms § : GF — idy and € : FG — idg. In this case, (F,G,J,¢) is
called an equivalence from &7 to . We also say that F' induces an equivalence of
categories from & to A (however, F' does not determine G, ¢,4).

An equivalence between &7 and % roughly means that, modulo isomorphism of
objects, the two categories are the same. In particular, categorical statements about
objects can be transferred from o/ to & and back. More explicitly, if F': &/ — £
induces an equivalence and P is a property of objects that is phrased in a purely
categorical manner, then an object A € & has P if and only if FA has P. For
example, A is projective (resp.: injective, a generator, a cogenerator, a zero object,
etc.) if and only if FA is. Furthermore, categorical properties of categories hold
for o if and only if they hold for . For instance, 7 is additive (resp. abelian) if
and only if 4 is and in this case the the functors that induce the equivalence are
additive (resp. exact)ﬂ

We should also note that if F' induces a duality from &/ to £, then so is
any functor F’ that is isomorphic to F' (i.e. a functor for which there is a natural
isomorphism ¢ : F' — F’).

ExAMPLE 0.4.9. Let </ be a category with one object and one morphism and
let & be a nonempty category such that there is precisely one morphism between
any two objects in . Then & is equivalent to A. Indeed, let A € o/ be the only
object of A and let B € A. Define F : o — B by FA = B and Fidy = idp
and let G be the only functor from £ to /. Then GF = idy and in particular,
id : GF — idy is a natural isomorphism. Now define € : F'G — idg by letting
ep’ to be the unique element in Homg(FGB’,idg B') = Homg(B, B’). Then ¢ is
a natural isomorphism (check!), hence &7 is equivalent to #. However, &/ is not
isomorphic to # unless % also contains one object.

7 Caution: Being preadditive is not a categorical property.
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EXAMPLE 0.4.10. Morita equivalence, described below, is an example of an
equivalence between categories.

If F induces an equivalence from .27 to Z then F is faithful, full and for any
B € A, there exists A € o with FA = B (take A = GB). The converse is also
true, provided one accepts a strong enough version of the axiom of choice (which
applies to classes rather than sets). The conditions just specified make it easy to
check whether a functor induces an equivalence. However, for most applications,
the full description of the equivalence is required.

0.5. Morita Equivalence

This section briefly presents the basis of Morita theory, which classifies equiva-
lences between module categories. Throughout, Mod-(R, S) denotes the category of
(R, S)-bimodules. For a detailed discussion and proofs, see [68| §18] or [80] §4.1].

DEFINITION 0.5.1. Two rings R and S are said to be Morita equivalent if the
categories Mod-R and Mod-S are equivalent.

Many ring theoretic properties of the ring R can be phrased as categorical
statements on Mod-R and are thus guaranteed to pass to any ring which is Morita
equivalent to R. For example, the properties right noetherian, right artinian,
semisimple, right (semi)hereditary (and also: right nonsingular, u.dim R < oo,
right self-injective, quasi-Frobenius, which are defined in the following sections) are
categorical properties and are thus preserved under Morita equivalence. In general,
ring theoretic properties that are preserved under Morita equivalence (even if not
categorical) are called Morita invariant. By the end of this section we shall have
exhibited several more Morita invariant properties.

It turns out that there is a very explicit way to decide whether two rings R
and S are Morita equivalent and, moreover, one can characterize (up to functor
isomorphism) all the equivalences between Mod-R and Mod-S. We shall now give
the details.

DEFINITION 0.5.2. Let R be a ring. A right R-module P is called a progenerator
(or R-progenerator) if P is f.g., projective and a generator (of Mod-R).

Note that by Proposition a right R-module P is a progenerator if and
only if there is n € N such that P is a summand of R"® and Rp is a summand of
p.

ExaMPLE 0.5.3. (i) A f.g. projective module over a commutative ring R is a
progenerator if and only if it is faithful. This is due to Azumaya.

(ii) If P is a finite projective right R-module, then R @ P is a progenerator.

(iii) For any P € Mod-R and n € N, P" is a progenerator if and only if P is a
progenerator.

(iv) Let R be a semisimple ring. Then an R-module is a progenerator if and
only if it is faithful.

(v) Let F be a field and let T,, be the ring of n x n upper-triangular matrices
over I'. Let P be the right ideal of T}, consisting of matrices with all rows being
zero except possibly the top one. Then P is projective and faithful, but it is not a
generator.

The following proposition characterizes the summands of R which are R-
progenerators.

ProroSITION 0.5.4. Call an idempotent e of a ring R full if ReR = R. Then
an idempotent e € E(R) is full <= eRpg is an R-progenerator <= gRe is an
R-progenerator.
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DEFINITION 0.5.5. A Morita context consists of a sextet (R, P, S, Q;«, ) such

that R and S are rings,
P € Mod-(S, R),
Q € Mod-(R, S),
o € Homypod-(r,r)(Q ®s P, R),
B € Homypod-(s,s)(P ®r @, 5),

and

algep)-d =q-Bp@d), Blp®q P =p2algap)
for allp,p’ € P and q,¢' € Q.

EXAMPLE 0.5.6. Let P be any right R-module and let S = End(Pg). Then P
be be considered as an (S, R)-bimodule. Furthermore, @) := P* = Hompg(P, RR)
can be considered as an (R, S)-bimodule by letting

(r-q-s)(p)=r-q(s(p)) VreR,qeQ,s€S,peP.
Now define a: Q ®s P — Rand f: P®RrQ — S by

algop)=q(p) and B = —p-q@).

Then (R, P, S, Q; a, §) is a Morita context (check!) called the Morita context asso-
ciated with P.

PrOPOSITION 0.5.7. Let (R, P, S,Q;«,8) be a Morita context. The following
are equivalent:

(a) « and B are onto.

(b) « and B are bijective.

(¢) Pgr is a progenerator.
In this case, Q@ = Hompg(Pgr,Rr) = Homg(sP,sS) as (R,S)-bimodules, P =
Homp(rQ, rR) = Homgs(Qgs, Ss) as (S, R)-bimodules, R = Endg(sP) = Ends(Qs)
as rings and S = Endg(rQ) = Endr(Pgr) as rings. In particular, under suitable
identifications, (R, P, S,Q;a, B) is the Morita context associated with P.

We can now formulate Morita’s three theorems about equivalence of module
categories.

THEOREM 0.5.8 (Morita I). Let R be a ring, let P be an R-progenerator and
let (R, P,Q,S;«, ) be the Morita context associated with P. Then:
(i) The functors _ ®r Q : Mod-R — Mod-S and _ ®g P : Mod-S — Mod-R
induce an equivalence of categories.
(ii) The functors P®p __ : R-Mod — S-Mod and Q®g _P : S-Mod — @-Mod
induce an equivalence of categories.

PROOF (SKETCH). Let M € Mod-R and N € Mod-S. We only define the

natural isomorphisms § : M @ Q®s P — M and e : N®g P®rQ — N which are

needed to show (i). They are given by M ®g (Q ®g P) SN ®r rRRR = M

and N ®g (P ®gr Q) vldN—>®ﬁ N ®g gSs = N. O
THEOREM 0.5.9 (Morita II). Let R and S be rings and let (F,G,d,¢) be an
equivalence of categories from Mod-R to Mod-S. Let Q = F(Rg) and P = G(Sg).
Then:
(i) There is an (S, R)-bimodule structure on P and an (R, S)-bimodule struc-
ture on Q.
(ii) Pgr, rQ, Qs, sP are progenerators.
(iii) There are isomorphism of functors F = _Q®pr Q and G = _ ®g P.
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(iv) Using the previous isomorphisms, consider g : GF(Rr) — Rg and
€s: FG(Ss) — Ss as maps Q @gr P(®rR) — R and P ®5 Q(®sS) — S.
Then (R, P, S,Q;0Rr,es) is the Morita context associated with Pg.

In particular, up to suitable natural identifications, the equivalence (F,G,¢e,0) is
the equivalence obtained from P as in Theorem[0.5.8.

To state Morita’s Third Theorem, we define an (S, R)-progenerator to be an
(S, R)-bimodule P such that Pg is a progenerator and S = Endgr(P). (This is
equivalent to g P being a progenerator and R = Endg(P).)

THEOREM 0.5.10 (Morita IIT). Let R and S be rings. There is a one-to-one
correspondence between isomorphism classes of equivalences Mod-R — Mod-S and
isomorphism classes of (S, R)-progenerators. Furthermore, composition of such
equivalences corresponds to the tensor product of the corresponding progenerators.

When phrased explicitly, the last part of the previous theorem means that if
Ry, Ro, R3 are rings and there are equivalences of categories Mod-R; — Mod-Rs
and Mod-Ry — Mod-R3 corresponding to an (R;, Rg)-progenerator P; and an
(R2, R3)-progenerator P, respectively, then the composition of the equivalences
corresponds to the (Rp, Rs)-progenerator P; ®pg, P». In particular, the bimodule
P, ®g, P> is an (Ry, R3)-progenerator.

As an immediate consequence of Morita’s theorems, we get:

COROLLARY 0.5.11. Let R and S be a rings. Then Mod-R is equivalent to
Mod-S <= there exists a right R-progenerator P such that S = Endgr(P) <
there exists a left R-progenerator Q such that S = Endgr(Q) <= R-Mod is
equivalent to S-Mod.

In particular, we see that Morita equivalence is a left-right symmetric property.
Combining this with Proposition [0.5.4] yields:

COROLLARY 0.5.12. Let R and S be rings. Then R is Morita equivalent to S if
and only if there ism € N and a full idempotent e € M,,(R) such that S = eM,,(R)e.

PROOF (SKETCH). If S = eM,,(R)e, then S is Morita equivalent to M,,(R) (by
Proposition[0.5.4/and Morita’s First Theorem). As M, (R) is clearly equivalent to R
(since M,,(R) = Endgr(R")), R is Morita equivalent to S. Conversely, if R is Morita
equivalent to .S, then there is a right R-progenerator P such that S = Endg(P).
Let P’ be an R-module such that P @& P’ = R™ and let e denote the projection
from R"™ to P with kernel P’. Then Endg(P) = eEndr(R™)e = eM,(R)e. One
can show that e is full and this finishes the proof. O

The last corollary means that if we want to check that a ring theoretic property
‘P is Morita invariant it is enough to verify that:

(1) R has P = M, (R) has P for all n € N.
(2) R has P = eRe has P for any full idempotent e € E(R).

(We should note that many ring theoretic properties pass to eRe even without as-
suming e is full.) In particular, the properties prime, semiprime, simple, seimlocal,
semiperfect and semiprimary can be shown to be Morita invariant in this way.

0.6. Quasi-Frobenius Rings and Related Notions

This section presents a short survey about quasi-Frobenius and pseudo-Frobenius
rings. Its purpose is mainly to present the various equivalent definitions and some
examples. For more details and proofs see [58, Chs. 6-7] and also [54].
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Recall that a ring R is called right self-injective if the right R-module Rp is
injective. Combining this assumption with the ascending chain condition (ACC)
yields the definition of a quasi-Frobenius ring.

DEFINITION 0.6.1. A ring R is called quasi-Frobenius (abbrev.: QF) if R is
right self-injective and right noetherian.

The following (very hard) theorem, which is the combined work of several au-
thors, presents some alternative definitions of QF rings. In particular, it shows that
QF is a left-right symmetric property which is preserved under Morita equivalence
(by conditions (e) and (f) below).

THEOREM 0.6.2. Let R be a ring. The following conditions are equivalent:

(a) R is QF (i.e. right noetherian and right self-injective).

(b) R is left noetherian and right self-injective.

(¢) R is artinian and self-injective.

(d) R is right noetherian and satisfies ann” ann® A = A for any right ideal
A < Rp and ann‘ann” B = B for any left ideal B < Rp. In particular,
the maps ann” and ann® define an anti-isomorphism of lattices between
the right ideals and the left ideals of R.

(e) FEwery injective right R-module is projective.

(f) Every projective right R-module is injective.

EXAMPLE 0.6.3. (i) Every artinian ring with a simple socle is QF (this follows
from Theorem below). For example, if F' is a field, then Fx]/ (z™) is QF.

(ii) Any semisimple ring is QF.

(iii) Ry x --- x Ry is QF <= each R; is QF.

(iv) If R is a Dedekind domain, then R/I is QF for all 0 # I < R.

(v) If G is a finite group and R is QF, then the group ring RG is QF as well.

Among the important examples of QF rings are Frobenius algebras, which are
defined as follows.

DEFINITION 0.6.4. Let F be a field. A Frobenius algebra over F is a f.d. algebra
A admitting an F-linear map t : A — F such that the bilinear formb: Ax A — F
defined by b(x,y) = t(xy) is nondegenerate.

PrOPOSITION 0.6.5. Any Frobenius algebra over a field F' is QF.

PROOF (SKETCH). The set Homp (A, F') has an (A, A)-bimodule structure (see
part (ii) of the next example) and the map x + ¢(z - _ ) induces an isomorphism of
right A-modules A — Homp(A, F'). Since the r.h.s. is well-known to be an injective
A-module, A4 is injective. O

EXAMPLE 0.6.6. Let K be a field.

(i) Let G be a finite group. Then K G is a Frobenius algebra; define t : KG — K
by t(Zg ag9) = a1g-

(ii) Let A be a f.d. K-algebra and let A’ = Homg (A, K). Then A’ can be made
into an (4, A)-bimodule by letting (a - f)(b) = f(ba) and (f - a)(b) = f(ab) for all
feA andabe A Let B={[i/]|a€ A f e A'}. Then B is a Frobenius
algebra. Indeed, let ¢ : B — K be defined by t([g 5]) = f(a). This example
demonstrates that any f.d. algebra is an epimorphic image of a Frobenius algebra.

In order to proceed, recall that a ring R is called right Kasch if Rp contains a
copy of every simple right R-module. In addition, for all M € Mod-R, let M* :=
Homp(M, R) and observe that M* can be considered as a left R-module by setting

(r-f)tm)=r-f(m) VfeM* meM, reR
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The map * : Mod-R — R-Mod is a contravariant functor and similarly, abusing
the notation, we get a contravariant functor % : R-Mod — Mod-R which is given
by M* := Hompg(M, R) but with M being a left R-module. For every left or
right module M, there is a natural homomorphism wy; : M — M™** given by
(wyz)f = f(x). The module M is called reflezive if wyy is a bijection.

PROPOSITION 0.6.7. Assume R is QF. Then:
(i) Any right R-module embeds in a free module.
(ii) Any f.g. R-module is reflexive (i.e. the map wyy : M — M** is an iso-
morphism).
(iii) An R-module M is f.g. if and only if M* is f.g.

COROLLARY 0.6.8. If R is QF, then Rg is a cogenerator and R is right (and
also left) Kasch.

Proor. That Rp is a cogenerator follows from Proposition d) and part
(i) of the previous proposition. In addition, Proposition e) implies that any

cogenerator contains a copy of any simple right R-module, hence Rp is right Kasch.
d

The following theorems provide additional characterizations of QF rings.

THEOREM 0.6.9 (Dieudonne). An artinian ring R is QF if and only if for any
(left or right) simple R-module M, M* is simple or the zero module. In this case
M* is actually a simple R-module.

THEOREM 0.6.10. An artinian ring R is QF if and only if it is Kasch and for
every primitive idempotent e € E(R), the socle of eR and Re is simple.

REMARK 0.6.11. Some of the results just stated follow from the fact that if R
is QF, then x induces a duality between the categories of f.g. right R-modules and
f.g. left R-modules. See [58] for more details.

The previous results imply that a QF ring R is a right cogenerator ring, i.e. Rg
is a right cogenerator of Mod-R. This leads to the following definition.

DEFINITION 0.6.12. A right pseudo-Frobenius (abbrev.: PF) ring is a right
self-injective right cogenerator ring.

The following theorem, again due to several authors, provides equivalent defi-
nitions. In contrast to being QF, being PF is not a right-left symmetric property
(this was open for some while, though). We also note that it is also common to
define right PF using condition (e) below.

THEOREM 0.6.13. Let R be a ring. Then the following are equivalent:

a) R is right PF (i.e. R is right self-injective and right cogenerator).

) R is right self-injective and right Kasch.

) R is right self-injective and ann” ann® A = A for any right ideal A < Rp.
) R is right self-injective, semiperfect (or semilocal) and soc(Rg) C. Rg.

) Any faithful right R-module is a generator.

) Rg is a cogenerator and R is left Kasch.

0.7. Uniform Dimension

In this section, we recall the definition and basic properties of uniform dimen-
sion. This theory, due to A. Goldie, is discussed in detail in [58] §6].

We begin by recalling the basics of essential extensions and injective hulls.
Throughout, R is a ring.
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Let M be a right R-module. A submodule N < M is said to be essential in
M if NN N’'#0 for any 0 ## N’ < M. This is equivalent to saying that for any
0 # m € M, there is r € R such that 0 # mr € N. In this case, we also say that
M is an essential extension of N.

The following facts are easy to prove. They will be used freely henceforth.

PropPOSITION 0.7.1. Let M, N, K be right R-module.

Q) IM<N<K, thn MC, K < MC.N and N C, K.
(i) If M,N C, K, then MAN C, K.
(iii) Let f € Homp(M,N) and assume K C, N. Then f~1(K) C. M.

Every right module M admits a maximal essential extension, denoted E(M);
the maximality means that F(M) does not have non-trivial essential extensions.
The extension M < E(M) is unique up to isomorphism in the sense that if
M — M’ is another maximal essential extension, then there is a module isomor-
phism f : M’ — E(M) such that f|y = idy (i.e. E(M) = M’ as extensions of
M). Tt turns out that E(M) is injective and can also be characterized as

e the smallest injective module containing M, or
e the only injective essential extension of M.

Thus, E(M) is usually called the injective hull or injective envelope of M. Note
that while E(M) is uniquely determined to isomorphism, the map sending M to
E(M) is not functorial. This is despite the fact that any homomorphism between
two right R-modules M — M’ extends to a (not necessarily unique) homomorphism
E(M) — E(M’) (this follows from the injectivity of E(M")).

The fact that homomorphisms between modules extend to their injective hulls
has the following useful consequence.

PROPOSITION 0.7.2. If M and M’ are two R-modules and f : M — M’ is a
monomorphism, then any homomorphism [ : E(M) — E(M’) extending f is also

a monomorphism. Furthermore, if f(M) C. M', then f is an isomorphism. In
particular, if M C M’, then E(M) can be understood as a submodule of E(M") and
if M Ce M, then E(M) = E(M').

PROOF. The assumptions imply ker f N M = 0. Since M C, E(M), this means
ker f = 0, hence f is a monomorphism. If f(M) C. M’, then f(M) C, E(M')
(because M’ C, E(M')). Thus, f(E(M)) C. E(M’) (since the Lh.s. contains
f(M)). As E(M) is injective, the embedding f must split, so there is N < E(M’)
with E(M') = N & f(E(M)). But then NN f(E(M)) = 0, so we must have N = 0
(since f(E(M)) C. E(M')) and this means f is surjective. O

DEFINITION 0.7.3. Let M be a right R-module. The uniform dimension of M,
denoted u.dim M, is defined to be the mazimal n € NU {0} (or oo) such that M
contains a direct sum of n nonzero right R-modules.

EXAMPLE 0.7.4. (i) u.dim M = 0 if and only if M = 0.

(ii) Assume M # 0. Then u.dim M =1 if and only if for any two submodules
0# N,N' < M, we have NNN’ # 0 (otherwise, N& N’ < M, implying u. dim M >
2). Such modules are called uniform. Uniform modules have the property that any
nonzero submodule is essential. For example, Z, Q and Z[%] /Z are uniform Z-
modules.

(iii) The uniform dimension of the Z-module Z/6 is 2. This holds since Z/6 =
Z/]287Z/3.

(iv) If R is a field, then the unform dimension of a f.g. R-module is its dimension
(so uniform dimension can be considered as a generalization of the dimension).
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(v) Generalizing (iv): If M is a f.g. semisimple module, then u.dim M =
length(M). (However, this fails for non-semisimple modules).

(vi) Also generalizing (iv): Assume R is an integral domain and let F' be
its fraction field. The uniform dimension of a torsion-free R-module M is just

(vii) Let F be a field and let R = F (x,y) (R is the free F-algebra generated
by two non-commuting indeterminates {z,y}). Then u.dim Rp = oo. Indeed,
Rgr 2 @ZO:() z"yR.

REMARK 0.7.5. Caution: u.dim Rg might be different from u.dim g R

The following proposition is very useful for determining what is the uniform
dimension.

PROPOSITION 0.7.6. Let M be a right R-module and let n € N. Then:

(i) w.dimM =n <= there are uniform submodules A1,..., A, < M such
that Ay @ --- ® A, C. M.

(ii) u.dim M = oo <= there are nonzero submodules Ay, Aa,... < M such
thatA1€9A2@... QM

We finish this section by stating several more facts.

ProrosITION 0.7.7. Let M, N be R-modules and let M’ < M. Then:

(i) w.dim M’' < u.dim M. FEquality holds when M' C, M. In particular,
dim M = u.dim E(M).
(ii) Ifu.dim M’ =u.dim M < oo, then M’ C. M.
(iii) w.dim M < u.dim M’ + u.dim(M/M’) (with the standard conventions
about adding o).
(iv) u.dim(M @ N) = uw.dim M + u.dim N (with the standard conventions
about adding o).

0.8. Classical Rings of Fractions

This section briefly surveys the theory of classical non-commutative localiza-
tion, which is due to O. Ore, A. Goldie and others. For an extensive discussion and
proofs see [58], §10-11] or [80] §3.1].

Let R be a ring and let S be a submonoid of (R, -). A classical right ring of
fractions of R w.r.t. S is a ring R’ together with a ring homomorphism ¢ : R — R’
such that the following properties are satisfied:

(1) ¢(s) is invertible in R’ for all s € S.
(2) Every element of R’ can be written as p(r)p(s)~! for some r € R and
ses.

(3) kerp={re R|Is€ S:rs=0}
In this case, the ring extension ¢ : R — R’ is uniquely determined to isomorphism
(of extension of R) and we write R’ = RS~!. (For classical left rings of fractions,
the notation is ST'R). The map ¢ is often omitted from the notation and rs—*
is used to denote o(r)p(s)~!. Observe that if R is commutative, then RS~ is
precisely the usual localization of R at S. However, in contrary to the commutative
case, the ring RS~! need not exist. Sufficient and necessary conditions for its
existence are provided in the following theorem.

THEOREM 0.8.1. Let R be a ring and let S be a multiplicative submonoid of R.
The ring RS™! exists if and only if the following conditions are satisfied:

(1) Forallse S andr € R, sSRNrS # ¢.
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(2) For all s € S and r € R such that sr = 0, there exists s’ € S such that
rs' = 0.

PROOF (SKETCH). We will briefly describe an explicit construction of RS™!.
The elements of RS~! will be the set of pairs (r,s) € R x S considered modulo the
following equivalence relation: (r,s) ~ (', s’) if there exists u,u’ € R such that

su=su €8 and ru=1r"u .

The equivalence class of (r,s) will be denoted by rs~!. (Using this notation, the
equivalence relation just means rs=! = (ru)(su)~! = (r'u’)(s'u/) " = r's'71).

To define addition, note that every two fractions r1s7 ", 7955+ € RS™! can be
changed to have the same denominator. Indeed, by condition (1), $1.5 N ssR # ¢,
so there are s € S and r € R such that s;s = sor (this implies that sor € ). We

now have
7’151_1 = (r18)(s18) 7"
T282_1 = (ror)(sor) ™t = (ror)(s18) 7' .

The sum of 7“151_1 and r252_1 is thus defined to be (rys + ror)(s18) L.
The definition of product of 7157, 7955 uses a similar idea. By (1), there are
r € R and s € S such that s;r = rys (this implies s;7 € S). We now define

(risy ) (rasy ') = (r1r)(s28)
The reason for this is that s;r = ros means that rs~! = s7'ry (if the r.h.s.
was defined) and then (rys7')(rosy ') should be 7 (sy re)syt = rirs~'syt =
(r17)(s28) 7L

We leave it to the reader to check that the addition and multiplication are
well-defined and make RS™! into a ring whose unity and zero elemnts are 1 ngl
and 0 ngl, respectively.

We now define ¢ : R — RS~ by ¢(r) = r1z'. Then r € kery if and only
if rlgl = ORll_%l. That is, there are u,u’ € R such that 1gu = 1gu’ € S and
ru = Ou’. These conditions are equivalent to u = v/ € S and ru = 0, hence
kero={re R|3se€ S:rs=0}. O

DEFINITION 0.8.2. A multiplicative submonoid of a ring R which satisfies con-
ditions (1) and (2) of Theorem is called a right denominator set. (Left de-

nominator sets are defined in a similar manner.)

PRrOPOSITION 0.8.3. If S is a right and left denominator set in R, then the
rings RS™! and S™'R are isomorphic as extension of R.

EXAMPLE 0.8.4. Any multiplicative submonoid of R which is contained in
Cent(R) is a right and left denominator set (check!).

Recall that an element r € R is called regular if ann” 7 = 0 and ann’r = 0. It
is easy to check that if S is a right denominator set in R, then the map R — RS™!
is injective if and only if S consists of regular elements. If the set of all regular
elements is a right denominator set, then R is called right Ore. In this case, we let

71(R) denote the ring obtained by localizing at this set. The ring Q7;(R), when it
exists, is called the classical right ring of fractions of R. Its left analogue is denoted
by Q% (R). When both Q7;(R) and Q% (R) exist, they coincide.

ExAMPLE 0.8.5. (i) If all regular elements in R are invertible, then Q7,(R) and
le(R) exist and coincide with R. Such rings are called classical. For example, any
right or left artinian ring R is classical. It also turns out that the rings Q7,(R) and
Q' (R) are classical (when they exist), so Q7 (Q7(R)) = Q%5 (Q"(R)) = Q5 (R) and

cl\*¥cl
a similar statement holds for QY (R).
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(ii) Any commutative ring R is right and left Ore. In this case, the ring
Q1 (R) = Q4(R) is sometimes called the total ring of fractions of R. In partic-
ular, if R an integral domain, then Q7;(R) is the faction field of R.

(iii) By definition, a domain R is right Ore when R\ {0} is a right denominator
set. A straightforward argument shows that this is equivalent to aRNbR # {0} for
all 0 # a,b € R.

(iv) Let F be a field. The ring R = F (z,y) is a domain, but it is not right nor
left Ore since zZRNyR = 0 and Rz N Ry = 0. In particular, Q" (R) and Q% (R) do

not exist.

The following two theorems, which are due to Goldie, ensure that certain rings
are right Ore and have fairly nice classical ring of fractions.

THEOREM 0.8.6 (Goldie). Let R be a domain. Then R is right Ore <=
u.dim Rg < 00 <= uw.dimRr =1 < aRNbR #0 for any 0 # a,b € R <—
QL (R) exists and it is a division ring.

EXAMPLE 0.8.7. (i) It turns out that any right noetherian domain and any PI
domairﬁ is right Ore. (Indeed, a right noetherian ring R must have u.dim Rg < oo.
The PI case follows from a result of Jategaonkar asserting that if R is a domain
and 0 # a,b € R satisfy aRNbR = 0, then the ring spanned by a, b and Cent(R) is
a free Cent(R)-algebra with two (non-commuting) generators and hence R cannot
be PL.)

(ii) Let R be a right Ore domain, let 0 : R — R be an injective ring automor-
phism an let 6 : R — R be a derivation. Then the twisted polynomial ring R[z; o]
and the differential polynomial ring R[z; d] are also right Ore domains

DEFINITION 0.8.8. A 7ing R is called right Goldie if R has ACC on right

annihilators and u.dim R < co.
EXAMPLE 0.8.9. Any right noetherian ring is right Goldie.

THEOREM 0.8.10 (Goldie). Let R be a ring. Then the following conditions are
equivalent.
(a) R is a semiprime right Goldie ring.
(b) QL(R) exists and it is a semisimple ring.

REMARK 0.8.11. Although right noetherian rings are right Goldie, there are
right noetherian rings which are not right Ore.

Let us go back to the general case of a ring R and right denominator set S.
We finish this section by noting that right R-modules can also be localized at S.
Indeed, for any right R-module M, one can construct an RS~ !-module MS~! by
mimicking the construction in the proof of Theorem [0.8.1] That is, the elements of
M S~ are pairs (m, s) € M xS, considered up to the following equivalence relation:
(m,s) ~ (m/,s") if there are u,u’ € R such that su = su’ € S and mu = mu’. We
let ms~! stand for the equivalence class of (m,s). The rest of the details are left
to the reader. The following theorem summarizes some of the properties of MS™!.

THEOREM 0.8.12. Let R be a ring, let S be a right denominator set and let M
be a right R-module. Then:

8 A ring R is called a PI ring (which stands for polynomial identity ring) if there exists a
nonzero polynomial f(z1,...,z,) € Z{x1,x2,...) whose (nonzero) coefficients are either 1 or —1
such that f(r1,...,7¢) =0 forall ri,...,7: € R.

9 The ring R[z; o] is defined to be the ring of formal finite sums ZZ r;z® with r; € R subject
to the relation ar = o(r)x for all r € R. The ring R[z;d] is defined in the same manner except
the relation which is zr = rx 4 6(r).



20 0. PRELIMINARIES

(i) MS~! is a right RS~-module.
(ii) The map M — MS~" defined by m — mly"' is an R-module homomor-
phism with kernel {m € M |3s € S : ms = 0}.
(iii) The map M — MS~! from Mod-R to Mod-RS~! is functorial; for f €
Homp (M, N), define fS=' € Hompg—1(MS~1 NS—1) by

(fS™H(ms™1) = (fm)s* VmsteMSt.

(iv) The functor M — MS~! is ezact.
(v) There is a natural isomorphism between M ®p RS~ and MS™'. It is
given by m @g (rs~1) — (mr)s—L.
(vi) The ring RS~ is flat as a right R-module.
(vii) If the map M — MS™1 of (ii) is injective, then

u.dim Mg = u.dimMS];1 = u.dimMSl,:zé,1 .

0.9. Rational Extensions

This section is devoted to rational extensions and merely serves as preparation
for the next section about general rings of quotients. As this is somewhat related,
we also consider nonsingular modules at the end of the section. For more details
and proofs, see [58] §7-8].

Throughout, R is a ring. Let M be a right R-module. A submodule N < M is
dense in M, denoted N Cy M, if for all x,y € M with x # 0, there is » € R such
that zr # 0 and yr € N. In this case, we also say that M is a rational extension
of N. Observe that if we take x = y in the definition, we get the definition of an
essential submodule. Thus

NCyM = NC.M.

The converse is not true, though.
The definition of density can be also be phrased using the following notation:
For all y € M, let
y 'N={reR:yreN}.
Then y~ !N is a right ideal and N C4 M if and only if z-y~ 1N # 0 for all z,y € M
with x # 0.

EXAMPLE 0.9.1. (i) When considered as Z-modules, Z C4 Q (straightforward).

(ii) More generally, if R is a domain and M is a torsion-free right R-module,
then N C; M if and only if N C. M. Indeed, assume that N C, M and z,y € M
with z £ 0. If y = 0, then zlg # 0 and ylg € N. Otherwise, there is r € R such
that 0 # yr € N. This implies 7 # 0, so xr # 0 since M is torsion-free.

(iii) Let p be a prime number and consider the Z-modules M = Z/p*Z and
N = pZ/p*Z. Then N C. M, but N Za M. To see the latter, take x = p + p*Z
and y = 1 + p?Z. It is easy to see that if yn € N for some n € Z, then zn = 0,
hence N ¢4 M.

(iv) Let J be a two-sided ideal of R. Consider J as a submodule of Rp and
observe that for all y € R, y='J D J. Thus, z -y~ 'J = 0 implies z.J = 0, i.e.
x € ann’J. Thus, if ann’J = 0, then Jz C4 Rp. The converse is also true, for
if zJ = 0, then x - 1§1J = 2J = 0. We thus conclude that ann’J = 0 =
Jr C4 Rr.

(v) As a consequence of (iv) we get: If a € Cent(R) and anna = 0, then
aRp Cyq RR.

(vi) Let 0 # 2 € R. Thenann” z ¢4 Rg. Indeed, 2-15' (ann” 2) = z-ann” 2 = 0.

The following proposition presents equivalent definitions for density.



0.9. RATIONAL EXTENSIONS 21

PROPOSITION 0.9.2. Let M be a right R-module admitting a submodule N < M.
The following are equivalent:
(a) N Qd M.
(b) Hom(M/N,E(M)) =0.
(¢c) For any submodule N < N’ < M, Hom(N'/N, M) = 0.

ProproOSITION 0.9.3. Let M, N, K be right R-modules.
() FM<N<K, then MCy K < M CyqN and N C4 K.
(i) I[f M,N Cq K, then MNN Cy K.
(iii) Let f € Hompg(M,N) and assume K Cq M, then f~1(K) Cq M.
(iv) If N Cqy M andy € M, then y~'N C4 Rg (this is a special case of (iii)).

PRrROOF. Parts (i)—(iii) are routine. To see (iv), define f € Homgr(Rg, M) by
f(r) =yr. Then y=!N = f~1(N), hence y~' N C4 Rg by (iii). d

Let M be a right R-module. The module M is called rationally closed if it
has no proper rational extension. It turns out that every module M is dense in
some rationally closed module, denoted E(M). The module E(M) is called the
rational hull of M and it is unique in sense that if M’ is another rationally closed
rational extension of M, then there is an isomorphism f : E(M ) = M’ such
that f|y = idp;. Moreover, in contrast to to injective hulls, the isomorphism f
is uniquely determined. The module E(M ) can be identified with the following
submodule of E(M):

(1)  E(M)={xe E(M)|VhecEndg(E(M)): h(M)=0= h(z) =0} .

In fact, this is the only way to embed E(M) in E(M) such that M is fixed.
We should point out that homomorphisms between modules need not extend
to their rational hulls.

EXAMPLE 0.9.4. (i) If M is injective or rationally closed, then E(M) = M.

(ii) E(Zz) = Qg. This can be checked by showing that E(Zz) = Qg and then
using the fact that Z C; Q.

(iii) Consider the Z-module Z/p (p is a prime number). Then E(Z/p) = Z/p,
but E(Z/p) = Z[%]/Z. In particular, E(Z/p) 2 E(Z/p). This can be shown using
. Also note that the homomorphism Z — Z/p give by n — n + pZ cannot be
extended to a homomorphism from E(Z) = Q to E(Z/p) = Z/p.

(iv) Let M be a f.g. right R-module that contains a copy of any simple right
R-module. Then E(M) = M. Indeed, assume by contradiction that M C4 M’ with
M’ strictly bigger than M. Without loss of generality, M’ is also finitely generated.
Thus, M is contained in a maximal submodule M" of M’. Since M'/M" is simple,
it embeds in M. Thus, Homgr(M'/M, M) # 0, implying Hom(M'/M,M') # 0,
which contradicts Proposition b).

(v) As a special case of (iv), we get: If R is right Kasch (see section [0.6]), then

E(RR) = Rg.

There is an important family of modules for which essential and rational ex-
tensions are the same thing. These are the nonsingular modules, which are defined
as follows.

DEFINITION 0.9.5. For any right R-module M, define the singular radical of
M by
ZM)={meM : anngm C. Rp} .
Then Z(M) is a submodule of M and M is called nonsingular if Z(M) = 0. The
ring R is called right nonsingular if the module Ry is nonsingular.
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EXAMPLE 0.9.6. (i) A right Z-module is nonsingular if and only if it is torsion-
free. (More generally, this holds for any right Ore domain.)

(ii) Any simple ring is right and left nonsingular. This follows from the fact
that Z(Rg) is always a proper ideal of R.

ProproOSITION 0.9.7. Let N < M be right R-modules. Then:

(i) M is nonsingular => N is nonsingular. The converse holds when N C.
M.
(ii) If M is nonsingular, then E(M) = E(M).
(iii) If at least one of M, N is nonsingular, then N Cq M <= N C. M.

0.10. General Rings of Quotients

In this last section we recall the basics of general rings of quotients. The results
stated in this section are the combined work of several authors, including Utumi,
Osofsky, Johnson, Gabriel and others. For an extensive discussion see [58] §13] and
also [80], §3.4].

Let R be aring. A general right ring of quotients (or just a right quotient ring)
of R is a ring () containing R such that Rgp C4q Q. As with rational extensions,
it turns out that any ring R admits a unique mazimal right quotient ring, denoted

Tax(R). This is stated in the following (highly non-trivial) theorem.

max

THEOREM 0.10.1. Let R be a ring. Then there exists a right quotient ring of
R, denoted Q.. (R), such that:

max
(i) For any right quotient ring of R, Q, there exists a unique ring homomor-
phism Q — Q" .. (R) that fizes R.

max
(ii) Any proper ring extension of Q...
(iii) Qhax(R)r = E(RR).
PROOF (SKETCH). There are two common ways to construct Q. (R). We

max

will briefly present both of them, but not prove that they satisfy (i)—(iii).
The first way is very short but less explicit. Let I := E(Rp) and H = End(IR).
Then I is a left H-module. Define Q7 .. (R) = End(zI) and observe that R embeds

max

in Qn.(R) by r = [i — ir] € End(gI) (here i is an element of I). It can be shown

that Q7 .. (R) satisfies the conditions (i)—(iii).

The second way is more explicit, but more tedious. Consider pairs (A, f) such
that A is a dense right ideal of R and f € Hompg(A, Rr). We define an equivalence
relation on the set of such pairs by (4, f) ~ (B,9) < flans = g9lans. Let

[A, f] stand for the equivalence class of (A, f). We define Q.. .(R) to be the

max

set of equivalence classes [A, f] and embed R in Q7 (R) by sending r € R to

max

[R,x — rz] € Q,(R). Addition and multiplication in QY .. (R) are defined as

max max

follows: Let [A, f],[B, g] € Qnax(R). Then by Proposition ii)—(iii), AN B and

max

g~ 1(A) N B are dense in Rp. Using this, we define
[A, 1+ [B,g] = [ANB, flans + glans] .
[A, f]-[B.gl =g~ (A)NB.fog].

We can now explain why (iii) holds. Let m € E(M ) and consider the map

fm : Rr — E(M) given by f,,,(r) = mr. Then by Proposition 0.9.3iii), f,*(M) Cq
Rp. Thus, [f;ll(M),f‘f;I(M)] € Qnax(R). It is not hard to see that the map

sending m € E(M) to [f;1(M), f

m

(R) is not a right quotient ring of R.

ffl(M)] is an injective homomorphism of right
R-modules, which also turns out to be surjective, thus implying (iii). [l

The ring Q7. (R) can also be characterized (up to isomorphism of extensions
of R) as:
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(1) the only ring Q 2 R such that Qr = E(R);
(2) the only right quotient ring of R, Q, satlbfylng Qr . (@) =Q.

If @ satisfies any of these conditions then there exists a unique isomorphism
Q — Q! ..(R) fixing R pointwise. Note that both conditions allow an “easy”
verification that a given ring extension of R is Q7. (R). Condition (2) also implies
the following nice corollary.

COROLLARY 0.10.2. Any ring automorphism of R admits a unique extension
into an automorphism of Q7. (R).

PROOF (SKETCH). Let o be an automorphism of R. Then Q.. (R) can be con-
sidered a ring extension of R via ¢ : R — QL .(R) (rather than via
idg : R — Qpax(R)). To avoid ambiguity, let us denote the extension of R obtained
in this manner by Q7 (R)” (so Q" ..(R)” = Q..(R) as rings, but R embeds in

I ax(R)” via o). It is routine to verify that Rr Cq Qb . (R)%, hence Q% . (R)7
is a right quotient ring of R. In addition, since Q7 .. (R)” = Q.. (R) as rings,

max
(@l (R)) = Q. (R)’. Thus, by ( ) above, Q7. (R)? is also a maximal
right quotient ring of R, so there is a unique isomorphism of extensions of R, from
" ax(R) to Q. (R)’. When understood as a map from Q" .. (R) to itself, this

isomorphism is an automorphism of Q... (R) extending o. O

One can also define left quotient rings and discuss the maximal left quotient
ring of R, denoted Q.. (R). Note that in contrast to classical rings of factions, the

left and right maximal rings of quotients might be non-isomorphic as extensions of
R.

ExAMPLE 0.10.3. Let F' be a field and let T;, be the ring of n x n upper-
triangular matrices. Then QY. (Tn) = Q" (Tn) = M, (F) (with T, identified as
a subring of M,,(F') in the standard way). To see this, it is enough to check that
M, (F) is a right and left quotient ring of 7T,, (which we leave to the reader) and
that Q7. (M, (F)) = Q% ..(M,(F)) = M, (F), which follows from the fact that
M, (F) is left and right self injective and thus cannot have essential (not to say

rational) extensions.
See [58], §13] for more explicit computations of maximal rings of quotients.

REMARK 0.10.4. If Q7 (R) exists, then it is a right quotient ring of R and hence
admits a unique embedding into Q.. (R). However, the latter can be strictly larger;
for instance, in the previous example we have Q7 (T,,) = T, (since T;, is artinian),
but QL .<(Tn) = M, (F). Nevertheless, if Q7,.(Q5(R)) = Q5 (R), then by (2)
above Q1 (R) = Qh.(R). In particular, if R is a semlprime right Goldie ring, then

(R) = Qrax(R) (by Theorem [0.8.10)).

We finish with two strong structural results about Q7 ... (R), which are due to
Johnson and Gabriel.

THEOREM 0.10.5 (Johnson). Q7. (R) is von-Neumann regulaﬂ < R is

max
right nonsingular. In this case Q7. (R) is right self-injective.

THEOREM 0.10.6 (Gabriel). Q7
gular and u.dim R < oo.

(R) is semisimple <= R is right nonsin-

max

REMARK 0.10.7. The assumption that R is nonsingular and u.dim R < oo
implies that R is right Goldie. The converse holds when R is semiprime.

10 A ring R is von-Neumann regular if for all z € R there is y € R such that zyxz = . For
example, the endomorphism ring of an arbitrary vector space is von-Neumann regular.






CHAPTER 1

Semi-Invariant Subrings

Call a subring Ry of a ring R semi-invariant if Ry is the ring of invariants in R
under some set of ring endomorphisms of some ring containing R. In this chapter,
we study semi-invariant subrings of semiperfect rings and present applications to
various areas such as Krull-Schmidt decompositions and representations of rings and
monoids. The results of this chapter will form the the ring-theoretic infrastructure
to Chapter

Parts of this chapter can also be found in [41].

1.1. Preface

Let R be a ring and let J = Jac(R). The ring R is semilocal if R/J is semisim-
ple. If in addition J is idempotent lifting, then R is called semiperfect. For a
detailed discussion on semiperfect rings, see [80, §2.7] and [9]. Semiperfect rings
play an important role in representation theory and module theory because of the
Krull-Schmidt Theorem. Recall that an object A in an additive category <7 is said
to have a Krull-Schmidt decomposition if it is a sum of (non-zero) indecomposable
objects and any two such decompositions are the same up to isomorphism and
reordering.

THEOREM 1.1.1 (Krull-Schmidt, for Categories). Let o/ be an additive category
in which all idempotents split (e.g. an abelian category) and let A € o7. If End o (A)
is semiperfect, then A has a Krull-Schmidt decomposition and the endomorphism
ring of any indecomposable summand of A is local.

Generalizations of this theorem and counterexamples of some natural variations
have been widely studied (e.g. [35],[8],[3],[33] and also [32]) and there has been
considerable interest in finding rings over which all finitely presented modules have
a Krull-Schmidt decomposition (e.g. [92} §6],[19],[78],[79],[96]; Theorem [I.8.3{iii)
below generalizes all these references except the last).

EXAMPLE 1.1.2. Semiperfect rings naturally occur upon taking completions:
(1) Let R be a semilocal ring and let J = Jac(R). Then the J-adic completion
of R, @{R/J"}neN, is well known to be semiperfect. If the natural
map R — lim{R/J"}nen is an isomorphism, then R is called complete
semilocal. Such rings (especially noetherian or with Jacobson radical f.g.
as a right ideal) appear in various areas (e.g. [63], [48], [92] §6], [T9]).
(2) Let R be a noetherian integral domain, let A be an R-algebra that is
finitely generated as an R-module and let P € Spec(R). Then the com-
pletion of A at P is semiperfect (and noetherian). (See [72], §6]; This
assertion can also be shown using the results of this chapter).

Let R be any ring and let Ry C R be a subring.

(a) Call Ry a semi-invariant subring if there is a ring S O R and a set ¥ C
End(S) such that Ry = R¥ := {r € R : o(r) =r Yo € &} (elements of &
are not required to be injective nor surjective). The invariant subrings of
R are the subrings for which we can choose S = R.

25
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(b) Call Ry a semi-centralizer subring if there is a ring S 2O R and a set
X C S such that Ry = Centg(X) :={r € R : ra = xr Vo € X}. If we
can choose S = R, then Ry is a centralizer subring.

(c) Recall that Ry is rationally closed in R if R*NRy = R . That is, elements
of Ry that are invertible in R are also invertible in Ry.

Semi-centralizer and semi-invariant subrings are clearly rationally closed. The latter
were studied (for semilocal R) in [23] and invariant subrings (w.r.t. an arbitrary
set) were considered in [19]. However, the notion of semi-invariant subrings appears
to be new.

The purpose of this chapter is to study semi-invariant subrings of semiperfect
rings where our motivation comes from the Krull-Schmidt theorem and the following
observations, verified in sections

(1) For any ring R, a subring of R is semi-invariant if and only if it is semi-
centralizer. In particular, all centralizers of subsets of R are semi-invariant
subrings.

(2) If R C S are rings and M is a right S-module, then End(Mg) is a semi-
invariant subring of End(Mg).

(3) If M is a finitely presented right R-module, then End(Mg) is a quotient
of a semi-invariant subring of M,,(R) for some n.

While in general semi-invariant subrings of semiperfect rings need not be semiper-
fect (see Examples[1.6.1}[1.6.3| below), we show that this is true for special families of
semiperfect rings, e.g. for semiprimary and right perfect rings (Theorem see
section for definitions). In addition, if the ring in question is pro-semiprimary,
i.e. an inverse limit of semiprimary rings (e.g. the rings of Example ED, then its
T-semi-invariant subrings (e.g. centralizer subrings; see section E for definition)
are semiperfect. This actually holds under milder assumptions regarding whether
the ring can be endowed with a “good” topology; see Theorems [1.5.10] and [T.5.15]

Our results together with the previous observations and the Krull-Schmidt
Theorem lead to numerous applications including;:

(1) The center and any maximal commutative subring of a semiprimary (resp.
right perfect, semiperfect and pro-semiprimary) ring is semiprimary (resp.
right perfect, etc.).

(2) If R is a semiperfect pro-semiprimary ring, then all f.p. modules over R
have a semiperfect endomorphism ring and hence admit a Krull-Schmidt
decomposition. If moreover R is right noetherian, then the endomorphism
ring of a f.g. right R-modules is pro-semiprimary. (This generalizes Swan
([92], §6]), Bjork (J19]) and Rowen ([78], [79]) and also relates to works
of Vamos ([96]), Facchini and Herbera ([34]); see Remark for more
details.)

(3) If S is a commutative semiperfect pro-semiprimary ring and R is an S-
algebra that is Hausdorff (see Section and f.p. as an S-module, then
R is semiperfect. If moreover S is noetherian, then the Hausdorff assump-
tion is superfluous and R is pro-semiprimary, hence the assertions of (2)
apply. (The first statement is known to hold under mild assumptions for
Henselian rings; see [96] Lm. 12].)

(4) If p is a representation of a ring or a monoid over a module with a semiper-
fect pro-semiprimary endomorphism ring, then p has a Krull-Schmidt de-
composition.

(5) Let R C S be rings and let M be a right S-module. If End(Mg) is
semiprimary (resp. right perfect), then so is End(Mg). In particular, M
has a Krull-Schmidt decomposition over S. (Compare with [34] Pr. 2.7].)
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Additional applications concern bilinear forms (Chapter [4] below) and getting a
“Jordan Decomposition” for endomorphisms of modules with semiperfect pro-semi-
primary endomorphism ring. We also conjecture that (3) holds for non-commutative
S under mild assumptions (see section .

Other interesting byproducts of our work are the fact that a pro-semiprimary
ring is an inverse limit of some of its semiprimary quotients and Theorem [1.9.6
below. (The former assertion fails when replacing semiprimary with right artinian;
see Example and the comment before it).

REMARK 1.1.3. It is still open whether all semiperfect pro-semiprimary rings
are complete semilocal. However, this is true for noetherian rings; see section [I.9]

Section [I.2] contains definitions and well-known facts required for the expo-
sition. Section [1.3]| presents the basics of semi-invariant subrings; we present five
equivalent characterizations of them and show that they naturally appear in various
situations. As all our characterizations use the existence of some ambient ring, we
ask whether there is a definition avoiding this. In section[I.4] we prove that various
ring properties pass to semi-invariant subrings, e.g. being semiprimary and being
right perfect. Section develops the theory of T-semi-invariant subrings. The
discussion leads to a proof that several properties, such as being pro-semiprimary
and semiperfect, are inherited by T-semi-invariant subrings. Section [I.0] presents
counterexamples; we show that semi-invariant subrings of semiperefect rings need
not be semiperfect, even when the ambient ring is pro-semiprimary. In addition, we
show that in general none of the properties discussed in sections and pass
to rationally closed subrings. The latter implies that there are non-semi-invariant
rationally closed subrings. In sections [I.7] and [I.8] we present applications of our
results (most applications were briefly described above) and in section we spe-
cialize them to strictly pro-right-artinian rings (e.g. noetherian pro-semiprimary
rings), which are better behaved. Section describes some issues that are still
open. The addendum is concerned with providing conditions implying that the
topologies {7}, defined in section coincide.

1.2. Preliminaries

This section recalls some definitions and known facts that will be used through-
out this chapter. Some of the less known facts include proofs for the sake of com-
pletion. If no reference is specified, proofs can be found in [80], [9] or [58].

Let R be a semilocal ring. The ring R is called semiprimary (right perfect) if
Jac(R) is nilpotent (right T—nilpotentﬂ). Since any nil ideal is idempotent lifting,
right perfect rings are clearly semiperfect.

PROPOSITION 1.2.1 (Bass’ Theorem P, partial). Let R be a ring. Then R is
left (right) perfect <= every left (right) R-module has a projective cover <= R
has DCC on principal right (left) ideals.

PROPOSITION 1.2.2. Let R be a ring. Then R is semiperfect <= every right
(left) f.g. R-module has a projective cover <= there are orthogonal idempotents
€1,...,6e- € R such that 22:1 e; = 1 and e; Re; is local for all i.

PROPOSITION 1.2.3. (i) Being semiprimary (resp.: right perfect, semiperfect,
semilocal, pro-semiprimary) is preserved under Morita equivalence.

(ii) Let R be a ring and e € End(R). Then R is semiprimary (resp.: right
perfect, semiperfect, semilocal) if and only if eRe and (1 — e)R(1 — e) are.

L An ideal I < R is left T-nilpotent if for any sequence z1,x2,z3,--- € I, the sequence
T1,T2x1,T3T2X1,... eventually vanishes.
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PRrROOF. All statements regarding semiprimary, right perfect, semiperfect and

semilocal rings are well known. The other statements follow from the next lemma.
O

LEMMA 1.2.4. Let {R;, fi;} be an inverse system of rings and let R = Jim {R;}.
Denote by f; the natural map from R to R;. Then:
(i) For alln € N, Im {M;(R;)}ier = My (Im {R;}) = My (R).
(ii) For all e € E(R), @{eiRiei}iej = eRe where e; = f;(e).

ProOF. This is straightforward. O

Part (ii) of Proposition does not hold for pro-semiprimary rings. For in-
stance, take R = {[§ }] |a,b € Z, v € @;2, Zp} (where Z,, are the p-adic integers)
and let e be the matrix unit eq;.

THEOREM 1.2.5 (Levitski). Let R be a right noethrian ring. Then any nil
subring of R is nilpotent.

Let R be a ring. An element a € R is called right m-regular (in R) if the right
ideal chain aR D a?R 2 a®*R D ... stabilizesEI If a is both left and right w-regular
we will say it is m-regular. A ring all of whose elements are right 7w-regular is called
m-regular. It was shown by Dischinger in [27] that the latter property is actually
left-right symmetric.

Since m-regularity is not preserved under Morita equivalence (see [81]), it is
convenient to introduce the following notion: A ring R is called Woo—regularEI if
M, (R) is m-regular for all n.

PROPOSITION 1.2.6. (i) Let R be a w-reqular (moo-regular) ring and e € E(R).
Then eRe is w-regqular (moo-regular).
(#i) Too-regularity is preserved under Morita equivalence.

PROOF. (i) Assume R is m-regular, let e € R and let a = eae € eRe. By
definition, there is b € R and n € N such that a™ = a""b. Multiplying by e on the
right, we get a™ = a™"tebe, hence a™(eRe) = a1 (eRe).

Assume R is moo-regular and let e € R. Let I denote identity matrix in M, (R).
Then (eI)M,(R)(el) = M,,(eRe). By the previous argument, the left hand side is
m-regular; hence we are through.

(ii) We only need to check that M, (R) is m-regular for all n € N, which is
obvious from the definition, and that eRe is moo-regular, which follows from (i). O

PROPOSITION 1.2.7. Let R be a ring and let N denote its prime radical (i.e.

the intersection of all prime ideals). Then R is m-regular (moo-regular) if and only
if R/N is.

PRrROOF. See [80, §2.7]. (The argument is easily generalized to mo.-regular
rings.) d

REMARK 1.2.8. Any PI semilocal ring with nil Jacobson radical is 7.-regular
(see [78], Apx.]). However, there are semilocal rings with nil Jacobson radical that
are not m-regular, see [81].

REMARK 1.2.9. We have the following implications:

. .. - . 2]
right artinian = semiprimary = left /right perfect Teo-Tegular = m-regular
However, all these notions coincide for right noetherian rings. Indeed, assume

R is w-regular and right noetherian and let J = Jac(R). Then J is nil (see

2 This notion of m-regularity is sometimes called strong m-regularity.
3 This property is sometimes called completely m-regular.
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Lemma [1.4.4{i)), hence Theorem implies J™ = 0 for some n € N. By Lemma
ii) below, R is semiperfect and in particular R/J is semisimple. As R is right
noetherian, the right R/.J-modules {J*=1/J*}" | are f.g., hence their length as right
R-modules is finite. It follows that Rg has a finite length, so R is right artinian.

Throughout, we will implicitly use the next lemma. Notice that it implies that
being semiprimary (resp.: right perfect, semiperfect, semilocal) passes to quotients.

LEMMA 1.2.10. Let R be a semilocal ring. Then any epimorphism of rings
p: R — S satisfies p(Jac(R)) = Jac(S).

PROOF. p(Jac(R))is an ideal of p(R) = S and 1+¢(Jac(R)) = p(1+Jac(R)) C
©(R*) C 8%, hence ¢(Jac(R)) C Jac(S). On the other hand, S/p(Jac(R)) is a
quotient of R/ Jac(R) which is semisimple. Therefore, S/p(Jac(R)) is semisimple,
implying ¢(Jac(R)) 2 Jac(S). O

1.3. Semi-Invariant Subrings

This section presents the basic properties of semi-invariant subrings. We begin
by showing that for any ring, the semi-invariant subrings are precisely the semi-
centralizer subrings.

ProOPOSITION 1.3.1. Let Ry C R be rings. The following are equivalent:

(a) There is a ring S O R and a set ¥ C End(S) such that Ry = R*.

b) There is a ring S O R and a subset X C S such that Ry = Centg(X).
(c) There is a ring S O R and o € Aut(S) such that 0> = id and Ry = R},
d) There is a ring S 2 R and an inner automorphism o € Aut(S) such that
02 =id and Ry = R1"}.
(e) There are rings {S; }ier and ring homomorphisms wl(l), 1/11(2) : R — S; such

that Ry = {r € R : vV (r) =P (r), Vi e I}.

Note that condition (e) implies that the family of semi-invariant subrings is
closed under intersection.

PROOF. We prove (a)=>(¢)=>(c)=(d)=(b)=(a).

a)=>(e): Take I = ¥ and define S, = S, ¥ = o and ¥§? = idp.

(a)=(e)

(e)=(c): Let {Si,'ll)i(l),'l/}l(Q)}ieI be given. Without loss of generality, we may
assume there is 79 € I such that S;, = R and 7/%(;) = 1/)(2) = idg. Define S =

0

H(i,j)elx{l,Q} Si; where S;; = 5; and let ¥ : R — S be given by

_ ()
¥(r) = (%J (r)>(i,j)el><{l,2}

The existence of ig above implies ¥ is injective. Let o € Aut(S) be the automor-
phism exchanging the (¢, 1) and (7, 2) components of S for all ¢ € I. Then one easily
checks that 02 = id and ¥(R){?} = U(R;). We finish by identifying R with ¥(R).

(¢)=(d): Let S,o be given and let S’ = S[z;0] denote the ring of o-twisted
polynomials with (left) coefficients in S. Observe that (22 — 1) € Cent(S’) (since
02 =1id), hence S” := 5"/ (2% — 1) is a free left S-module with basis {I,Z} (where
@ is the image of @ € S” in S”). Let 7 € Aut(S”) be conjugation by Z. Then 72 = id
and RV ={reR:7r=1r7}={reR: o(r)=r} =R} =R,.

(d)==(b): This is a clear.

(b)=>(a): Let S, X be given. Let S’ = S((¢)) be the ring of formal Laurent
series Y -, ant" (k € Z) with coefficients in S. The elements of S” commuting with
X are precisely the elements that commute with ¢t=! + X (as t~! is central in S’).
However, it is easily seen that all elements in ¢t~! 4+ X are invertible. For all z € X,
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let o, € End(S’) be the inner automorphism of S’ given by conjugation with t=1 +x
and let ¥ = {0, | € X}. Then R* = Centg(t~! + X) = Centp(X) = Ry. O

COROLLARY 1.3.2. Let R,W be rings and let ¢ : R — W be a ring homomor-
phism. Assume Wo C W is a semi-invariant subring of W. Then =1 (Wy) is a
semi-invariant subring of R.

PRrROOF. By Proposition e), there are rings {S;};c; and ring homomor-
phisms wl(l),wgz) : W — S; such that Wy = {r € R : wgl)(r) = wgz) (r) Vi e I}.
Define ™ =15\ 0 © and note that ~'(Wo) ={r € R : p(r) e Wo} ={r e R :

vp(r) =P e(r) Vie I} = {re R : o{V(r) = o (r) Vi€ I}. O

[ 7

The equivalent conditions of Proposition require the existence of some
ambient ring. This leads to the following question:

QUESTION 1. Is there an intrinsic definition of semi-invariant subrings?

Informally, we ask for a definition that would make it easy to show that a given
(rationally closed) subring is not semi-invariant.

The next proposition is useful for producing examples of semi-invariant sub-
rings.

ProroOSITION 1.3.3. Let R C S be rings and let K be a central subfield of S.
Then RN K is a semi-invariant subring of R.

PROOF. Let 8" = S ®k S and define 1,02 : S = S by v1(s) = s® 1 and
v2(s) = 1 ®s. As K is a central subfield, it is easy to check that {s € S :
v1(s) = pa2(s)} = K, hence {s € R : p1(s) = pa(s)} = RN K. We are done by
Proposition [1.3.1]e). O

COROLLARY 1.3.4. Let K be a field. Then the semi-invariant subrings of K
are precisely its subfields.

PROOF. Any semi-invariant subring R C K satisfies R* = RN K* = R\ {0},
hence it is a field. The converse follows from Proposition [I.3.3] O

REMARK 1.3.5. If K/L is an algebraic field extension, then L is an invariant
subring of K if and only if K/L is Galois.

We finish this section by introducing two cases where semi-invariant subrings
naturally appear.

PROPOSITION 1.3.6. Let R C S be rings and let M be a right S-module. Then
End(Mg) is a semi-invariant subring of End(Mg).

PRrROOF. There is a homomorphism ¢ : S°° — End(Mz) given by ¢(s°P)(m) =
ms forallm € M. It is straightforward to check that End(Ms) = Centgnq(as,)(im ¢).
As End(Mg) € End(MRg), it follows that End(Mg) = Centgnq(ar,)(im @), hence
End(Mg) is a semi-centralizer subring of End(Mg). O

ProPOSITION 1.3.7. Let & be an abelian category and let A Lo
be an exact sequence in </ such that for any ¢ € End(C) there are b € End(B) and
a € End(A) with cg = gb and bf = fa (e.g.: if both A and B are projective, or if
B is projective and f is injective). Then End(C) is isomorphic to a quotient of:

(i) a semi-invariant subring of End(A) x End(B);
(ii) an invariant and a centralizer subring of End(A @ B), provided f is in-
jective.
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PROOF. Let By = im f = kerg. Define R to be the subring of End(B) con-
sisting of maps b € End(B) for which there is ¢ € End(A) with bf = fa. Then
for all b € R, b(By) = b(im f) = im(fa) C im f = By. Therefore, there is unique
¢ € End(C) such that cg = gb. The map sending b to ¢ is easily seen to be a ring
homomorphism from R to End(C) and the assumptions imply it is onto. Therefore,
End(C) is a quotient of R.

Let S = End(A @ B). We represent elements of S as matrices [ J] with
z € End(A),y € Hom(B,A),z € Hom(A, B),w € End(B). Let D denote the
diagonal matrices in S (i.e. End(A) x End(B)) and let W = Centg(][J m) Then
for a € End(A) and b € End(B), fa = bf if and only if [29] € W. Define a
ring homomorphism ¢ : D — End(B) by ¢([§5]) = y. Then ¢(Centp ([ 5])) =
o(DNW) = R. It follows that End(C) is a quotient of R, which is a quotient of
D N'W, which is a semi-centralizer subring of D = End(A) x End(B). This settles
(i). To see (ii), notice that if f is injective, then W consists of upper-triangular
matrices, hence ¢ can be extended to W, which is a centralizer and an invariant
subring of S since W = Centg ([} 1]) and [} 1] € 5*. O

1.4. Properties Inherited by Semi-Invariant Subrings

In this section, we prove that being semiprimary (right perfect, semiperfect-
and-7o-regular, semiperfect-and-m-regular) passes to semi-invariant subrings. We
also present a supplementary result for algebras over fields.

Our first step is introducing an equivalent condition for m-regularity of elements
of a ring.

LEMMA 1.4.1. Let R be a ring and let a € R be a w-regular element. Define:

e k | [ r .k
A—ﬂkogla R, B—Ukoglanna,
A" =Ny, Ra*, B’ =J;—, ann a”.

Then there is e € E(R) such that A=¢eR, B= fR, A’ = Re and B' = Rf where
f:=1—e. In particular, Rp = A® B and RR=A"® B'.

PROOF. Let n € N be such that a"R = a*R and Ra™ = Ra* for all k > n.
Notice that this implies ann” ¢ = ann” a® and ann? ¢ = ann” a* for all k > n.

We begin by showing Rgr = A® B. That R R = A’ ® B’ follows by symmetry.
The argument is similar to the proof of Fitting’s Lemma (see [80} §2.9]): Let r € R.
Then a™r € a™R = a®"R, hence there is s € R with a™r = a?"s. Observe that
a"(r —a"s) =0 and a"s € a"R, sor = a"s+ (r —a"s) € A+ B. Now suppose
r € AN B. Then r = a"s for some s € R. However, r € B = ann” " implies
s € ann” a®” = ann” a”, so r = a"s = 0.

Since Rp = A @ B, there is e € R such that e € A and f := 1 —¢e € B.
It is well known that in this case e? = e, A = eR and B = fR. This implies

B’ = ann’a” = ann‘a”R = ann’eR = Rf and A’ = Ra™ C ann‘ann” Ra" =
ann‘ann” a” = ann’ fR = Re. As W = A’ ® B’ = Re ® Rf we must have
A’ = Re. O

PRrOPOSITION 1.4.2. Let R be ring and a € R. Then a is m-regular <= there
is e € E(R) such that

(A) a =-eae+ faf where f:=1—e.
(B) eae is invertible in eRe.
(C) faf is nilpotent.
In this case, the idempotent e is uniquely determined by a.

PROOF. Assume a is w-regular and let e, f, A, B, A’, B, n be as in Lemma|l.4.1
Then ae € aeR = aA = a(a"R) = a""'R = A = eR and af € aB = aann” a" C
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ann” a” = B = fR. Therefore, ae = eae and af = faf, hence a = ae + af =
eae + faf. This implies a* = (eae)* 4 (faf)* for all k € N. As a™ € eR, we have
a™ = ea™, hence (eae)”+ (faf)™ = a™ = e(eae)™ +e(faf)™ = (eae)™ which implies
(faf)™ = 0. In particular, for all k > n, a® = (eae)* + (faf)* = (eae)®. Since
e € a" R there is ¢ € R such that e = a™z = (eae)™z. Multiplying by e on the right
yields e = (eae)((eae)" txe), hence eae is right invertible in eRe. By symmetry,
eae is left also left invertible in eRe, hence we conclude that e satisfies (A)—(C).

Now assume there is e € E(R) satisfying (A)—(C) and let b be the inverse of
a in eRe. Then a* = (eae)* + (faf)* for all k € N. Condition (C) now implies
there is n € N such that o = (eae)k for all £ > n. Therefore, for all & > n,
a” = (eae)” = (eae)*bF~" = a*b*~" € "R impying a"R = a*R. By symmetry,
Ra™ = Ra* for all k > n, so a is m-regular.

Finally, assume both e, ¢’ € E(R) satisfy conditions (A)—(C) and let f =1 —e,
/' =1 —¢€'. By the previous paragraph a is m-regular, hence Lemma implies
R=A® B where A=(\;—,a*R and B = |J,—, ann" a”R. Let b be the inverse of
eae in eRe and let n € N be such that (faf)” = 0. Then e = (eae)*t* = a*b* € a*R
for all kK > n, hence e € A, and a" f = (eae)™f =0, hence f € B. Similarly, ¢’ € A
and [/ € B. It follows that e,e’ € A and f, f' € B. Since l = e+ f =¢' + f' and
R = A® B, we must have e = ¢’. O

Let R, a be as in Proposition Henceforth, we call the unique idempotent
e satisfying conditions (A)—(C) the associated idempotent of a (in R).

COROLLARY 1.4.3. (i) Let R be a ring, Ry C R a semi-invariant subring and
let a € Ry be m-regular in R. Then a is w-reuglar in Ry.

(ii) A semi-invariant subring of a w-regular (7o -reqular) ring is w-regular (Tso-
regular).

PrOOF. (i) Let S O R and ¥ C End(S) be such that Ry = R*, and let a € Ry
be m-regular in R. Let e be the associated idempotent of a in R. Then e is clearly
the associated idempotent of a in S (hence a is w-regular in S). However, it is
straightforward to check that o(e) satisfies conditions (A)—(C) (in S) for all 0 € &
(since o(a) = a), so the uniqueness of e forces e € S* N R = R* = Ry. Therefore,
a is w-regular in Ry.

(ii) The m-regular case is clear from (i). The my-regular case follows when one
notes that if Ry is a semi-invariant subring of R, then M, (Rp) is a semi-invariant
subring of M,,(R) for all n € N. O

LEMMA 1.4.4. Let R be a w-regular ring. Then:
(i) Jac(R) is nil.
(ii) R is semiperfect <= R does not contain an infinite set of orthogonal
idempotents.

PROOF. For a € R, let e, denote the associated idempotent of ¢ and let f, =
1—eq4.

(i) Let a € Jac(R) and let b be the inverse of ejae, in e,Re,. Then e, =
b(eqae,) € Jac(R), hence e, = 0, implying a = f,af, is nilpotent.

(ii) That R is semiperfect clearly implies R does not contain an infinite set of
orthogonal idempotents, so assume the converse. Let a € R. Observe that if e, =0
then a is nilpotent and if e, = 1 then a is invertible. Therefore, if e, € {0,1} for
all a € R, then R is local and in particular, semiperfect.

Assume there is a € R with e := ¢, ¢ {0,1}. We now apply an inductive
argument to deduce that eRe and (1 — e)R(1 — e) are semiperfect, thus proving
R is semiperfect (by Proposition . The induction process must stop because
otherwise there is a sequence of idempotents {e; }32, € R such that ej, € e Rep_1
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and ex ¢ {0,ex,_1}. This implies {ex—1 — ex}72; is an infinite set of non-zero
orthogonal idempotents, which cannot exist by our assumptions. O

LEMMA 1.4.5. Let Ry C R be rings. If R is semiperfect and both Ry and R are
mw-regular, then Ry is semiperfect and Jac(Rp)™ C Jac(R) for some n € N. If in
addition R is semiprimary (right perfect), then so is Ry.

PrOOF. By Lemma M(ii), R does not contain an infinite set of orthogonal
idempotents. Therefore, this also applies to Ry, so the same lemma implies Ry
is semiperfect. Let ¢ denote the natural projection from R to R/Jac(R). By
Lemma [[.4.41), ¢(Jac(Rp)) is nil. Therefore, by Theorem [1.2.5] (applied to ¢(R),
which is semisimple), ¢(Jac(Rp)) is nilpotent, hence there is n € N such that
Jac(Ro)™ C Jac(R). If moreover R is semiprimary (right perfect), then Jac(R)
is nilpotent (right T-nilpotent). The inclusion Jac(Rp)™ C Jac(R) then implies
Jac(Ry) is nilpotent (right T-nilpotent), so Rq is semiprimary (right perfect). O

THEOREM 1.4.6. Let R be a ring and let Ry be a semi-invariant subring of R. If
R is semiprimary (resp.: right perfect, semiperfect and oo -regular, semiperfect and
m-regular), then so is Ry. In addition, there is n € N such that Jac(Ro)™ C Jac(R).

PROOF. Recall that being right perfect implies being m-regular by Proposition
Given that, the theorem follows from Corollary and Lemma [T.4.5] O

COROLLARY 1.4.7. Let R C S be rings and let M be a right S-module. If
End(Mg) is semiprimary (resp.: right perfect, semiperfect and moo-regular, semiper-
fect and w-regular), then so is End(Mg) and there existsn € N s.t. Jac(End(Mg))™ C
Jac(End(Mpg)).

PRrROOF. This follows from Theorem [1.4.6] and Proposition [1.3.6] O

REMARK 1.4.8. Camps and Dicks proved in [23] that a rationally closed sub-
ring of a semilocal ring is semilocal, thus implying the semilocal analogues of The-
orem and Corollary excluding the part regarding the Jacobson radical
(which indeed fails in this case; see Example [1.6.7). In fact, the semilocal analogue
of Corollary was noticed in [34] Pr. 2.7]. However, we cannot use this ana-
logue with the Krull-Schmidt Theorem (as we do in section with our results)
because modules with semilocal endomorphism ring need not have a Krull-Schmidt
decomposition, as shown in [35] and [§].

Nevertheless, as there are plenty of weaker Krull-Schmidt theorems for modules
that do not require End(Mpg) to be semiperfect (mainly due to Facchini et al.; e.g.
18], [33]), it might be that if M, R,S are as in Corollary and End(Mpg) is
merely semiperfect, then M has a Krull-Schmidt decomposition over S (despite the
fact End(Mg) need not be semiperfect). To the best knowledge of our knowledge,
this topic is still open.

We finish this section with a supplementary result for algebras.

PROPOSITION 1.4.9. Let R C S be rings and ¥ C End(S). Assume there is a
division ring D C R such that o(D) C D for allo € ¥. Then dim ps R* < dim pR.

PRrOOF. Consider the left D-vector space V = DR*. Let {v;}icr C R* be a
left D-basis for V. We claim {v; };cs is a left D*-basis for R*. Indeed, let v € R*.
Then there are unique {d;};e; C D (where almost all are 0) such that v =", d;v;.
However, for all 0 € X, v =o(v) = >_. 0(d;)v; so o(d;) = d; for all i € I. Tt follows

K2

that v € Ziel D*v;. Therefore, dim p=R* = dim pV < dim pR. O
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REMARK 1.4.10. An invariant subring of a f.d. algebra need not be left nor
right artinian, even when invariants are taken w.r.t. to the action of a finite cyclic
group. This was demonstrated by Bjork in [19] §2]. In particular, the assumption
o(D) C D for all o € ¥ in Proposition is essential. However, Bjork also
proved that if X is a finite group acting on a f.d. algebra over a perfect field, then
the invariant subring (w.r.t. X) is artinian; See [I9, Th. 2.4]. For a detailed
discussion on when a subring of an artinian ring is artinian, see [19] and [20].

1.5. T-Semi-Invariant Subrings

In this section, we specialize the notions of semi-invariance and and w-regularity
to certain topological rings. As a result we obtain a topological analogue of Theo-
rem m (Theorem , which is used to prove that T-semi-invariant subrings
of semiperfect pro-semiprimary rings are semiperfect and pro-semiprimary (Theo-
rem . Note that once restricted to discrete topological rings, some of the
results of this section reduce to results from the previous sections. However, the
latter are not superfluous since we will rely on them. For a general reference about
topological rings, see [99].

DEFINITION 1.5.1. A topological ring R is called linearly topologized (abbrevi-
ated: LT) if it admits a local basis (i.e. a basis of neighborhoods of 0) consisting of
two-sided ideals. In this case the topology on R is called linear.

Let us set some general notation: For a topological ring R, we let Zr denote
its set of open ideals. Then R is LT if and only if Zg is a local basis. We use
Hom. (End.) to denote continuous homomorphisms (endomorphisms). The cat-
egory of Hausdorff linearly topologized rings will be denoted by Z9%-, where
Hom g9, (A, B) = Hom(A, B) for all A,B € Z%gﬂ A subring of a topological
ring is assumed to have the induced topology. In particular, if R € £7%5 then so
is any subring of R. The following facts will be used freely throughout the paper.
For proofs, see [99, §3].

(1) Let (G,+) be an abelian topological group and let B be a local basis of
G. Then for any subset X C G, X = \,c5(X +U).

(2) Under the previous assumptions, G is Hausdorff <= {0} = gl =
{0}.

(3) Given a ring R and a filter base of ideals B, there exists a unique ring
topology on R with local basis B. This topology makes R into an LT ring.

EXAMPLE 1.5.2. (i) Any ring assigned with the discrete topology is LT.

(ii) Z, (with the p-adic topology) is LT but Q,, is not.

(iii) Let R be an LT ring and let n € N. We make M,,(R) into an LT ring by
assigning it the unique ring topology with local basis {M,,(I)|I € Zr}.

(iv) If R is LT and e € E(R), then eRe is LT w.r.t. the induced topology.

(v) Let {R;}icr be LT rings. Then [];.; R; is LT w.r.t. the product topology.

(vi) Let R be an inverse limit of LT rings {R;}ic;. Embed R in [],.; R; and
give it the topology induced from the product topology on [];.; R;. Then by (v)
Ris LTH

(vii) If R is LT and J < R, then R/J with the quotient topology is LT. Indeed,
{I/J|J CIe€Ir}isalocal basis for that topology. The ring R/J is Hausdorff if
and only if J is closed, and discrete if and only if J is open.

4 The subscript “2” in £9%> stands for the second separation axiom T2 (i.e. being HausdorfT).
5 With this topology R is the inverse limit of {R;};c in category of topological rings, i.e. it
admits the required universal property.
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The last example implies that Z7%> is closed to products, inverse limits and
forming matrix rings (with the appropriate topologies). We will say that a property
Q of LT rings is preserved under Morita equivalence if whenever R € Z7%5 has Q,
then so does M,,(R) and eRe for e € E(R) s.t. eR is a progeneratorﬁ

DEFINITION 1.5.3. Let R € L9%>. A subring Ry C R is called a T-semi-
invariant subring if there is R C S € £9% and a set ¥ C End.(S) such that
Ry = R®. The subring Ry is called a T-semi-centralizer subring if there is R C
S € LT%> and a set X C S such that Ry = Centr(X).

A T-semi-invariant subring is always closed. In addition, there is an analogue
of Proposition for T-semi-invariant rings.

ProPOSITION 1.5.4. Let Ry be a subring of R € £9%5. The following are
equivalent:

(a) Thereis R C S € LT%> and a set ¥ C End.(S) such that Ry = R>.

b) There is R C S € £T%> and a subset X C S such that Ry = Centp(X).

c) There is R C S € LTy and o € Aut.(S) with 0? =id and Ry = R},

d) There is R C S € £9%> and an inner automorphism o € Aut.(S) such
that 0> = id and Ry = R}

(e) There are LT Hausdorff rings {S;}icr and continuous homomorphisms
%@)%@) :R— S; such that Ry ={r € R : wgl)(r) = wZ@)(T) Vi e I}.

PROOF. This is essentially the proof of Proposition[I.3.1] but we need to endow
the rings constructed throughout the proof with topologies making them into LT
Hasudorff rings that contain R as a topological ring. This is briefly done below;
the details are left for the reader.

(b)=(a): Give S((t)) the unique ring topology with local basis {I((t)) | I € Zs},
where I((t)) denotes the set of polynomials with coefficients in I.

(e)==(c): Assign to S =][(; jerx 1,2y Sij the product topology.

(¢)=(d): Observe that B = {INo(l)|I € Zsg} is a local basis of S and
o(J) = J for all J € B. Assign S’ = S[x; 0] the unique ring topology with local
basis {J[z;0]|J € B}, where J[z;0] denotes the set of polynomials with (left)
coefficients in J, and give S” = S’/ (2® — 1) the quotient topology. O

T~ —~

We now generalize the notion of m-regularity for topological rings. Our defini-
tion is inspired by Proposition [[.4.2]

DEFINITION 1.5.5. Let R € 9% and a € R. The element a is called quasi-
m-regular in R if there is an idempotent e € E(R) such that:

(A) a =-eae+ faf where f:=1—e.

(B) eae is invertible in eRe.

n—oo

(C (faf)® —= 0 (w.r.t. the topology on R).
Call R quasi-m-regular if all its elements are quasi-m-regular.

Since we only consider LT rings, condition (C’) means that for any I € Zg
there is n € N such that (faf)™ € I. This implies that quasi-w-regularity coincide
with 7-regularity for discrete topological rings (take I = {0}) and that if a is quasi-
m-regular in R then a + I is w-regular in R/I for all I € Zp. In particular, if R
is quasi-w-regular then R/I is w-regular. We will call the idempotent e satisfying
conditions (A),(B) and (C’) the associated idempotent of a. The following lemma
shows that it is unique.

6 Caution: There is a notion of Morita equivalence for (right) LT rings, but we will not use
it in this dissertation; see [47] and related articles. (The ring-theoretic Morita equivalence implies
the topological Morita equivalence, but not vice versa).
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LEMMA 1.5.6. Let R € 9% and a € R a quasi-tw-regular element. Then the
idempotent e satisfying conditions (A),(B) and (C’) is uniquely determined by a.

PROOF. Assume both e and €’ satisfy conditions (A), (B), (C’) and let I € Zx.
Then e+ 1 and e’ +1 are associated idempotents of a+ I in R/I, hence e+ = e'+1,
or equivalently e — ¢’ € I. It follows that e — ¢’ € (\;c7,, [ = {0} (since R is
Hausdorff), so e = ¢’. O

REMARK 1.5.7. (i) In the assumptions of the previous lemma, it is also possible
to show that eR = (0>, a"R and (1 —e)R = {r € R : a"r “=>% 0}.

(ii) If we do not restrict to LT Hausdorff rings, the associated idempotent need
not be unique. For example, in @, both 0 and 1 are associated idempotents of p.
(It is not known if Lemma holds under the assumption that R is right LT, i.e.
has a local basis of right ideals.)

(iii) If one assigns a semiperfect ring R with (), Jac(R)" = {0} the Jac(R)-
adic topology, then R becomes a Hausdorff LT ring, and for any a € R, there is an
idempotent e satisfying conditions (B) and (C’) (but such e need not be unique even
when R is simple). However, condition (A) might be impossible to satisfy for some
a-s. Indeed, the ring R constructed in Example below, which is isomorphic
to My(Zs)), is a semiperfect ring having no ring topology making it into a quasi-
m-regular Hausdorft LT ring. As Z3) is quasi-m-regular w.r.t. the 3-adic topology
(since it is local), it follows that quasi-m-regularity is not preserved under Morita
equivalence. (This also follows from the comment before Proposition M)

It light of the last remark, it is convenient to call an LT Hausdorff ring R quasi-
Too-regular if M,,(R) is quasi-w-regular for all n. This property is preserved under
Morita equivalence and turns out to be related with Henselianity (see Section .
However, to avoid cumbersome notation, we will not mention it in this section. All
statements henceforth can be easily seen to hold when replacing (quasi-)r-regular
with (quasi-)m-regular.

COROLLARY 1.5.8. (i) Let R € 299>, let Ry be a T-semi-invariant subring of
R and let a € Ry be quasi-m-regular in R. Then a is quasi-m-reuglar in Ry.
(ii) A T-semi-invariant subring of a quasi-w-reqular ring is quasi-m-regular.

PROOF. This is similar to the proof of Corollary [1.4.3] O
LEMMA 1.5.9. Let R € £9%> be quasi-t-regular. Then:

n—oo

(i) For all a € Jac(R), a™ —— 0. (That is, Jac(R) is “topologically nil”).
(ii) R is semiperfect <= R does not contain an infinite set of orthogonal
idempotents.

PRrROOF. (i) Let I € Zr. Then a+ I € (Jac(R) + I)/I C Jac(R/I), so by
Lemma [1.4.4]i) applied to R/I (which is m-regular), there is n € N such that
a” € 1.

(ii) We only show the non-trivial implication. For a € R, let e, denote as-
sociated idempotent of a. Note that e, = 1 implies a € R* and e, = 0 implies
a™ 222 0.

Assume e, € {0,1} for all a € R. We claim R is local. This is clear if R = {0}.
Otherwise, let ¢ € R and assume by contradiction that e, =e;_, =0. Let R# I €
Tr (here we need R # {0}). Then there is n € N such that o™, (1—a)™ € I, implying
(1-a")"=(1-a)"(1+a+---+a*1)" € I. We can write 1 = (1—a")" +a"h(a)
for some h(x) € Z[z], thus getting 1 € I, in contradiction to the assumption I # R.
Therefore, one of e,, e1_, is 1, hence one of a, 1 — a is invertible.

Now assume there is a € R with e := ¢, ¢ {0,1}. Then we can induct on
eRe and (1 — e)R(1 — e) as in the proof of Lemma ii). However, we need
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to verify that eRe is quasi-m-regular (w.r.t. the induced topology). Let b € eRe.
It enough to show e, € eRe, i.e. e, = eepe. As R € LITH, this is equivalent to
ep + 1 = eepe + I for all I € Tr. Indeed, since R/I is m-regular, so is e(R/I)e
(by Proposition [[.2.6{1)), hence b + I has an associated idempotent & € e(R/I)e.
However, it easy to see that ¢ is also the associated idempotent of b+ I in R/I, so
necessarily e = e, +I. Ase = (e+ I)e(e+ 1), it follows that e, + I = eepe+1. O

We can now state and prove a T-semi-invariant analogue of Theorem [1.4.6)

THEOREM 1.5.10. Let Ry be a T-semi-invariant subring of a semiperfect and
quasi-m-reqular ring R € L9%>. Then Ry is semiperfect and quasi-m-regular and
there is n € N such that Jac(Rg)™ C Jac(R).

PROOF. That Ry is quasi-r-regular and semiperfect follows form Corollary[I.5.8]
and Lemma[L.5.9(ii). Now let I € Zg. Then both R/I and (Ro+ I)/I are semiper-
fect and w-regular (since (Ro+1)/1 = Ry/(RoNI) and RyNI is open in Ry). There-
fore, by Lemma there is ny € N such that Jac((Ro + I)/I)"" C Jac(R/I)™.
As Jac(R/I) = (Jac(R) + I)/1, this implies Jac(Ry)™ C Jac(R) + I. However,
(R/I)/(Jac(R/I)) = R/(Jac(R) + I) is a quotient of R/ Jac(R) which is semisim-
ple, hence the index of nilpotence of any of is subsets is bounded (when finite)
by length(R/ Jac(R))ﬂ Therefore, there is n € N such that for all I € Zp,
Jac(Ro)" C Jac(R) + I or equivalently, Jac(Ro)" C (o7, (Jac(R) + I) = Jac(R).
Thus, we are done by the following lemma. O

LEMMA 1.5.11. Let R € £T%> be quasi-m-reqular. Then R* and Jac(R) are
closed.

PROOF. Let a € R* and let e be its associated idempotent. Then for any
I € Ig there is af € R* such that a — a; € I. Clearly e + I is the associated
idempotent of a + I = ay + I in R/I. However, a; + I € (R/I)* and thus 1+ I is
its associated idempotent. It follows that e + 1 =141 for all I € Zg, hence e = 1
and a € R*.

Now assume a € Jac(R). It is enough to show that for all b € R, 1 + ab € R*.
Let I € I and let a; € Jac(R) be such that a —ay € I. Then 1+ ayb € R* and
(1+ab) — (1 +azb) € I. Therefore, 1 +ab € (7, (R* + 1) = RX = R*. O

REMARK 1.5.12. (i) The assumption that R is quasi-m-regular in the last lemma
is essential; see Examplem (take n = 0). In addition, Jac(R)? need not be closed
even when R is quasi-m-regular; see Example [[.9.11]

(ii) If R is quasi-m-regular and semiperfect, then R* and Jac(R) are also open.
Indeed, by the last lemma Jac(R) = Jac(R) = [z, (Jac(R) + I), hence Jac(R) is
an intersection of open ideals. Since R/ Jac(R) is artinian, Jac(R) is the intersection
of finitely many such ideals, thus open. The set R* is open since it is a union of
cosets of Jac(R).

In order to apply Theorem [1.5.10| to pro-semiprimary rings, we need to recall
some facts about complete topological rings. While the exact definition (see [99]
§7-8]) is of little use to us, we will need the following results. Let R € £9%5, then:

(1) R is complete if and only if R is isomorphic to an inverse limit of an
inverse system of discrete topological rings {R;}icr. In this case, if ¢; is
the natural map from R to R;, then {ker ;|7 € I} is a local basis of R.

7 Actually, the index of nilpotence is bounded in any right noetherian ring R. Indeed, the
prime radical of R, denoted N, is nilpotent and R/N is a semiprime Goldie ring. Therefore,
by Goldie’s Theorem, R/N embeds in a in a semisimple ring and thus has a bounded index of
nilpotence.
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(2) If R is complete and B is a local basis consisting of ideals, then R =
@{R/I}Ielg. (Note that R/I is discrete for all I € B.)

We will also use the fact that a closed subring of a complete ring is complete. (This
can be verified directly for rings in -Z%%> using the previous facts.)

We now specialize the definition of pro-semiprimary rings given in section [1.1
to topological rings. For a ring property P, a topological ring R will be called
pro-P if R is isomorphic as a topological ring to the inverse limit of an inverse
system of discrete rings satisfying P. If in addition the natural map from R to
each of these rings is ont(ﬂ then R will be called strictly pro-P. Clearly any pro-P
ring is complete and lies in Z9%5. An LT ring R is strictly pro-P if and only
if it is complete and admits a local basis of ideals B such that R/I has P for all
I € B. Notice that if P is preserved under Morita equivalence, then so does being
pro-P and being strictly pro-P (because the isomorphisms in Lemma are also
topological isomorphisms).

REMARK 1.5.13. Any inverse limit of (non-topological) rings satisfying P can
be endowed with a linear ring topology making it into a pro-P ring, but this topol-
ogy usually depends on the inverse system used to construct the ring. However,
when P = semiprimary and the ring is right noetherian, the topology is uniquely
determined and always coincide with the Jacobson topology! See section [1.9

Recalling Remark the following lemma implies that pro-semiprimary rings
are quasi-m-regular.

LEMMA 1.5.14. Let {R;, fi;} be an I-indezed inverse system of w-regular rings
and let R = lim {R;}icr- Then R is quasi-m-regular.

Proor. We identify R with the set of compatible I-tuples in [[,.; R; (i.e.
tuples (z;);cr satisfying f;;(z;) = ; foralli < jin I). Let a = (a;)icr € R and let
e; € E(R;) be the associated idempotent of a; in R;. The uniqueness of e; implies
that e = (e;);er is compatible and hence lie in R. We claim that e is the associated
idempotent of ¢ in R. Conditions (A) and (C’) are straightforward, so we only
check (B): Let b; be the inverse of e;a;e; in e;Re;. Then for all ¢ < j in I, f;;(bj)
is also an inverse of e;a;e; in e;Re;, hence f;;(bj) = b;. Therefore, b := (b;)ier
is compatible and lies in R. Clearly b = ebe and b(eae) = (eae)b = e (since this
holds in each coordinate), so condition (B) is satisfied. We thus conclude that R is
quasi-m-regular. O

The converse of Lemma is almost true; if R € £9%5 is quasi-m-regular,
then R is dense in a pro-w-regular ring, namely @1 {R/I}1ez,,- The following the-
orem implies that T-semi-invariant subrings of semiperfect pro-semiprimary rings
are semiperfect and pro-semiprimary (w.r.t. the induced topology).

THEOREM 1.5.15. Assume R = L&l {R;}ic1 where each R; is w-reqular. Denote
by J; the kernel of the natural map R — R; and let Ry be a T-semi-invariant subring
of R. Then:

(i) Ry is quasi-m-regular and Ry = Jim {Ro/(J; N Ro) }ier-

(ii) If R does not contain an infinite set of orthogonal idempotents, then Ry
is semiperfect and there is n € N such that Jac(Rg)™ C Jac(R).

(iif) For all i € I, Ry/(J; N Ry) is m-regular. If moreover R; is semiprimary
(right perfect, semiperfect), then so is Ro/(J; N Ro). In particular, if R is
pro-semiprimary (pro-right-perfect, pro-mw-regular-and-semiperfect), then
so is Ry.

8 This is not trivial since the maps in the inverse system are not assumed to be onto.
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Proor. By Lemma R is quasi-w-regular, so the first assertion of (i) is
Corollary ii). As for the second assertion, R is complete and Ry is closed
in R, hence Ry is complete. Since {Ro N J;|i € I} is a local basis of Ry, Ry =
I'&H{RO/(Ji N Ro)}ier. (ii) follows from Lemma ii) and Theorem As
for (iii), Ro/(J; N Ry) is m-regular as a quotient of a quasi-w-regular ring with an
open ideal. The rest follows from Lemma (applied to Ro/(J; N Ry) identified
as a subring of R;). O

Let P € {semiprimary, right-perfect, w-regular-and-semiperfect, w-regular}.
Then Theorem |1.5.15|implies that pro-P rings are strictly pro-P (take Ry = R). In
fact, we can prove an even stronger result:

COROLLARY 1.5.16. In the previous notation, the inverse limit of a small cat-
egory of pro-P rings is strictly pro-P.

PROOF. Let € be a small category of pro-P rings and let { R; };c; be the objects
of €. Then R = 1&11‘5 can be identified with the set of I-tuples (z;)icr € [[;c; Ri
such that f(z;) = z; forall¢,j € I and f € Homg (Rj, R;). Clearly S :=[],c; R is
pro-P. If we can prove that R is a T-semivariant subring of S, then we are through
by Theorem[I.5.15] Indeed, let 7; denote the projection from S to R;. Foralli,j € I
and f € Homg (R, R;) define ga;l),gogg) : S — R; by gagpl) =, 30;2) = fom;. Then
R={z€S: go(l)(x) = ap;z)(x) Vf}, hence R is a T-semi-invariant subring of S by
Proposition e). O

In some sense, Corollary includes Theorem [[.4.6] and part of Theo-
rem[I.5.15] because a T-semi-invariant subring can be understood as the inverse limit
of a category with two objects. (Indeed, if R C S € £9%5 and ¥ is a submonoid
of End.(S), then take Ob(¥¢) = {R, S} with End%(S) = £, End¢(R) = {idgr},
Home (S, R) = ¢ and Homg (R, S) = {i} where i : R — S is the inclusion map.)

COROLLARY 1.5.17. If R is pro-semiprimary, then for any J € Ig there is
n € N such that Jac(R)™ C J. In particular, (.-, Jac(R)" = {0}.

PROOF. Assume R = @{Ri}ie[ with each R; semiprimary and let J; be
as in Theorem [1.5.15] Since {J;|i € I} is a local basis, there is ¢ € I such that
Ji C J. By Theorem [1.5.15(iii), R/J; is semiprimary, hence there is n € N such that
Jac(R/J;)" = 0. As Jac(R/J;) D (Jac(R) + J;)/Ji, we get Jac(R)* C J; CJ. O

REMARK 1.5.18. We will show in Proposition that Henselian rank-1 val-
uation rings are quasi-m.o-regular. In particular, non-complete such rings (e.g. the
Q-algebraic elements in Z,) are examples of non-complete quasi-m-regular rings.

In addition, we suspect that the following are also explicit examples of non-
complete quasi-mo-regular rings: (1) the ring of power series Y .- a;t" € Zp|[[t]]
with a; — 0 endowed with the ¢-adic topology (such rings are common in rigid
geometry); (2) the ring in the comment after Lemma w.r.t. its Jacobson
topology.

1.6. Counterexamples

This section consists of counterexamples. In particular, we show that:

(1) If R is a semiperfect ring and ¥ C End(R), then R* need not be semiper-
fect even when ¥ is a finite group and even when ¥ consists of a single
automorphism. Similarly, if X C R is a set, then Centg(X) need not be
semiperfect even when X consists of a single element.

(2) The semiperfect analogue of Corollary is not true in general.
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(3) A semi-invariant subring of a semiperfect pro-semiprimary ring need not
be semiperfect even when closed (in contrast to T-semi-invariant sub-
rings).

(4) Rationally closed subrings of a f.d. algebra need not be semiperfect. In
particular, Theorem [I.4.6]does not generalize to rationally closed subrings.

(5) No two of the families of semi-invariant, invariant, centralizer and ratio-
nally closed subrings coincide in general.

We note that (1) is also true if we replace semiperfect with artinian. This was
treated at the end of section [[L.4

We begin with demonstrating (1). Our examples use Azumaya algebras and
we refer the reader to [83] for definition and details.

ExXAMPLE 1.6.1. Let S be a discrete valuation ring with maximal ideal 7S,
residue field k = S/7S and fraction field F, and let A be an Azumaya algebra over
S. Recall that this implies A/mA is a central simple k-algebra and Jac(A) = wA.
Assume the following holds:

(a) D=F ®g A is a division ring.

(b) A/mA has zero divisors.
In addition, assume there is a set X C A* generating A as an S-algebra (such X
always exists). Note that conditions (a) and (b) imply that A is not semiperfect be-
cause A contains no non-trivial idempotents while A/7A = A/ Jac(A) does contain
such idempotents, hence Jac(A) is not idempotent lifting.

Define R = A®g A°P and let ¥ = {0, },ex where o, is conjugation by 1® z°P.
Then R is an S-Azumaya algebra which is an S-order inside D ® p D°P = M,.(F).
It is well-known that this implies R = End(Pgs) for some faithful finite projective
S-module P (in fact, P is free since S is local). Therefore, R is Morita equivalent
to S, hence semiperfect. On the other hand, R*® = Centp({l ® z°P |z € X}) =
Centr(S® A°P) = A® S = A, so R” is not semiperfect.

An explicit choice for S, A, F, D is S =Zy (1 =3), F=Q, D= (-1,-1)g =
Qli,j|ij = —ji,i® = j> = —1] and A = S[i,j]. If we take X = {i,j}, then
Y will consist of two inner automorphisms which are easily seen to generate an
automorphism group isomorphic to (Z/2) x (Z/2).

EXAMPLE 1.6.2. Let S,m, A, F, D satisfy conditions (a),(b) of Example

In addition, assume there is a cyclic Galois extension K/F' such that:
(¢c) K/F is totally ramified at 7.
(d) K ®p D splits (i.e. K @ D = My(K)).

Write Gal(K/F) = (o).

Let T denote the integral closure of S in K. Then ¢(T) = T. We claim that
T ®5 A is semiperfect, but (T ®g A){17®} is not. Indeed, T{°} = TNF = S, so
(T® A){"‘g’l} = S ® A = A which is not semiperfect as explained in the previous
example. On the other hand, T'® A is a T-Azumaya algebra and a T-order in
K ® D = My(K). Again, this implies T'® A is Morita equivalent to T. But T is
local because K/F is totally ramified at 7, therefore T'® A is semiperfect.

If we take S, A, F,D as in the previous example, then T = S[y/-3], K =
Q[v/—3] will satisfy (c) and (d). Indeed, dimension constraints imply K ® D is
either a division ring or My (K), but /=3 +i+j +ij € K ® D has reduced norm
zero so the latter option must hold.

EXAMPLE 1.6.3. Start with a semiperfect ring R and o € End(R) such that
R{?} is not semiperfect (e.g. those of Example. Let R’ = R|[t; o]] be the ring
of o-twisted formal power series with left coefficients in R (i.e. o(r)t = tr for all
r€ R)andlet x =1+t € (R)*. We claim R’ is semiperfect, but Centg (z) is
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not. Indeed, Centp () = Centp (t) = RI7}H[[t]]. We are finished by applying the
following proposition for R[[t;o]] and RI7}H[[t]].

PROPOSITION 1.6.4. For any ring W and 7 € End(W), W is semiperfect if
and only if W{[t; 7]] is.

PROOF. Let V. = W{[t;7]] and let J = Jac(W) + Vt < V. Then V/J =
W/ Jac(W). Since the latter ring has zero Jacobson radical, J O Jac(V'). However,
1+ J C V* implies J C Jac(V), thus we get Jac(V) = J. The isomorphism
V/J = W/ Jac(W) now implies that V' is semilocal <= W is semilocal. We finish
by observing that V't is idempotent lifting (this immediate as V' = W @& Vt), hence
J is idempotent lifting in V' <= J/Vt is idempotent lifting in V/Vt <= Jac(W)
is idempotent lifting in W. O

We now show (2), relying on the previous examples.

ExXaMPLE 1.6.5. Let R be a semiperfect ring and let X C R be such that
Centr(X) is not semiperfect (the existence of such R and X was shown in previous
examples). Let Y = {y, | a € X} be a set of formal variables and let S = R (Y)
be the ring of non-commutative polynomials in Y over R (Y commutes with R).
We can make R into a right S-module by considering the standard right action of
R onto itself and extending it to S by defining 7 -y, = ar for all a € X. Let M
denote the right S-module obtained thusly. Identify R with End(Mpg) = End(Rpg)
via 7+ (m — rm) € End(Rg). It is straightforward to check that End(Mg) now
corresponds to Centp(X). Therefore, End(Mpr) = R is semiperfect but End(Mg) =
Centg(X) is not semiperfect.

The next example demonstrates (3).

EXAMPLE 1.6.6. Let p,q be distinct primes. Endow R = Z, x Z,; x Q with
the product topology (the topology on Q is the discrete topology). Then R is
clearly semiperfect and pro-semiprimary. Define K = {(a,a,a)|a € Q} and let
Ry = RNK. Then Ry is a semi-invariant subring of R by Proposition (take S =
Q, x Qg x Q) and it is routine to check Ry is closed. However, Ry is not semiperfect.
Indeed, it is isomorphic to T = M ~'Z where M = Z \ (pZ U gZ). The ring T is not
semiperfect because it has no non-trivial idempotents while T'/ Jac(T) = T'/pqT =
T/pT x T/qT has such. As a result, Jac(T) cannot be idempotent lifting.

The following example shows that rationally closed subrings of a f.d. algebra
need not be semiperfect. As f.d. algebras are semiprimary, this shows that Theo-
rem fails for rationally closed subrings.

EXAMPLE 1.6.7. Let K = Q(z) and let R = K x K x K. Define
S"={f/g1 /.9 €Qlz],g(0) #0,9(1) # 0}

and observe that S’ is not semiperfect since it is a domain but S’/ Jac(S”) has non-
trivial idempotents. (Indeed, S’/ Jac(S") = 8"/ (x(x — 1)) = 5"/ (x)xS"/ (v — 1) =
QxQ.) Define ¢ : S — R to be the Q-algebra homomorphism obtained by sending
ztoa:=(0,1,z) € R and let S = im. It is easy to verify that ¢ is well-defined
and injective, hence S is not semiperfect. However, S is rationally closed in R. To
see this, let ¢(x) € S’ and assume ¢(a) € R*. Then ¢(0),¢(1) # 0. This implies
q(z) € (8')*, hence q(a) = ¢(q(z)) € S*.

We finish by demonstrating (5). The subring S of the last example cannot
be semi-invariant, for otherwise we would get a contradiction to Theorem [T.4.6]
In particular, S is not an invariant subring nor a centralizer subring. Next, let
R = Q[{“"/ﬁ, \/§] Then the only centralizer subring of R is R itself, the invariant
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subrings of R are R and Q[¥/2] (Remark [1.3.5) and the semi-invariant subrings of
R are the four subfields of R (Corollary [1.3.4). In particular, R admits a semi-
invariant non-invariant subring and an invariant non-centralizer subring.

1.7. Applications

This section presents applications of the previous results. In order to avoid
cumbersome phrasing, we introduce the following families of ring-theoretic proper-
ties:

Do { semiprimary, right perfect, left perfect, m.-regular and semiperfect, }
dise = Teo-Tegular, m-regular and semiperfect, w-regular

P = pro-P, pro-P and semiperfect, P € Pyisc
P ) quasi-Q, quasi-Q and semiperfect | Q € {m,-regular, T-regular}

(For example, “quasi-moo-regular and semiperfect” lies in F,p.) Note that the
properties in Pqisc apply to rings while the properties in P, apply to LT rings.
Nevertheless, we will sometimes address non-topological rings as satisfying one of
the properties of Zy,p,, meaning that they satisfy it w.r.t. some linear ring topology.
We also define P o (resp. Pp) to be the set of properties in Pgisc U Pyop which
are preserved under Morita equivalence (resp. imply that the ring is semiperfect).
Recall that a property in %, is preserved under Morita equivalence if this holds in
the sense of Section[L.] (and not in the sense of [47]). For example, “7-regular” and
“quasi-m-regular” do not lie in Pp,or nor in F,, “pro-semiprimary and semiperfect”
lies in both Zy, and Per, and “pro-semiprimary” lies in Pror, but not in F,.

THEOREM 1.7.1. Let R be a ring and Ry a subring.
(i) If R has P € Paisc and Ry is semi-invariant, then Ry has P.
(ii) If R € LT%Ho has P € Piop and Ry is T-semi-invariant, then Ry has P
(w.r.t. the induced topology).
(iii) In both (i) and (ii), if P € Pyp, then Jac(Ry)™ C Jac(R) for somen € N.

Our first application follows from the fact that a centralizer subring is always
(T-)semi-invariant:

COROLLARY 1.7.2. Let P € Pgisc U Piop and let R be a ring satisfying P.
Then Cent(R) and any maximal commutative subring of R satisfy P.

PROOF. Cent(R) is the centralizer of R and a maximal commutative subring
of R is itself’s centralizer. Now apply Theorem [I.7.1} O

Surprisingly, the author could not find in the literature results that are similar
to the previous corollary, except the fact that the center of a right artinian ring
is semiprimary. (This follows from a classical result of Jacobson, stating that the
endomorphism ring of any module of finite length is semiprimary, together with the
fact that the center of a ring R is isomorphic to End(gRg).)

The next applications concern endomorphism rings of finitely presented mod-
ules. We will only treat here the non-topological properties (i.e. Pgisc). The
topological analogues of the results to follow require additional notation and are
thus postponed to the next section.

THEOREM 1.7.3. Let R be a ring satisfying P € Paisc N Pmor and let M be a
finitely presented right R-module. Then End(MRg) satisfies P.

PrOOF. There is an exact sequence R™ — R™ — M — 0 with n,m € N. Since
R™, R™ are projective, we may apply Proposition to deduce that End(M) is a
quotient of a semi-invariant subring of End(R") xEnd(R™) = M,,(R) xM,,(R). The
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latter has P because any P € Pgisc N Pmor is preserved under Morita equivalence
and under taking finite products. Since all ring properties in g5 pass to quotients,
we are done by Theorem [I.7.1] O

COROLLARY 1.74. Let ¢ : S — R be a ring homomorphism. Consider R
as a right S-module via ¢ and assume it is finitely presented. Then if S satisfies
P € Paisc N Pror, S0 does R.

PrROOF. By Theorem End(Rg) has P. Therefore, by Corollary
R = End(Rg) has P. O

REMARK 1.7.5. Theorem [I.7.3] actually follows from results of Bjork, who
proved the semiprimary case and part of the left/right perfect cases ([19, Thms.
4.1-4.2]), and Rowen, who proved the left/right perfect and the semiperfect-and-
Too-Tegular cases ([78, Cr. 11 and Th. 8(iii)]). Our approach suggests a single
simplified proof to all the cases. Note that we cannot replace “finitely presented”
with “finitely generated” in Theorem in [20, Ex. 2.1], Bjork presents a right
artinian ring with a cyclic left module having a non-semilocal endomorphism ring.

By arguing as in the proof of Theorem [I.7.3] one can also obtain:

THEOREM 1.7.6. Let0 - A — B — C — 0 be an ezact sequence in an abelian
category &/ and assume B is projective.
(i) If End(A) and End(B) has P € Paisc, then End(C) has P.
(ii) If End(A @ B) has P € Psp, then End(C) is semiperfect.

Next, we turn to representations over modules with “good” endomorphism
rings. By a representation of a monoid (ring) G over a right R-module M, we mean
a mononid (ring) homomorphism p : G — End(M) (so G acts on M via p).

COROLLARY 1.7.7. Let R be a ring and let p be a representation of a monoid
(or a ring) G over a right R-module M. Assume that one of the following holds:
(i) End(M) has P € Pisc U Piop.
(ii) There is a sub-monoid (subring) H C G such that End(p|g) has P €
'@disc-
(iii) End(M) is LT and Hausdorff and there is a sub-monoid (or a subring)
H C G such that End(p|g) has P € Piop w.r.t. the induced topology.

Then End(p) has P. Moreover, if P € Py, then p has a Krull-Schmidt decompo-
sition p = p1 @ -+ & py and End(p;) is local and has P for all 1 < i < t.

ProoF. (i) follows from (ii) and (iii) if we take H to be the trivial monoid
(or the prime subring of G, if G is a ring). To see (ii) (resp. (iii)), notice that
End(p) = Centgpnd(p|,)(p(G)). Therefore, End(p) is a semi-invariant (resp. T-semi-
invariant) subring of End(p|x), hence by Theorem End(p) has P.

Now, if P € P, then End(p) is semiperfect. The Krull-Schmidt Theorem
then implies p has a Krull-Schmidt decomposition p = p; @ --- ® p; and End(p;) is
local for all i. We finish by noting that End(p;) = e End(p)e for some e € E(End(p))
and hence End(p;) has P (since for any ring R and e € E(R), R has P implies eRe
has P). O

Assume R is a ring and M is a right R-module such that End(Mg) is semiper-
fect and quasi-m-regular (see Theorem below for cases when this happens).
Then the endomorphisms of M have a “Jordan decomposition” in the following
sense: If f € End(Mg), then we can consider M as a right R[z]-module by let-
ting = act as f. Clearly End(Mpgp,)) = Centgna(arg)(f), so by Theorem
End(Mg()) is semiperfect. Therefore, Mg, has a Krull-Schmidt decomposition
M =M, ®--- & M,;. (Notice that each M; is an f-invariant submodule of M). This
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decomposition plays the role of a Jordan decomposition for f, since the isomorphism
classes of My, ..., M; (as R[z]-modules) determine the conjugation class of f. In
particular, studying endomorphisms of M can be done by classifying LE-modules
over R[x].

Finally, the results of this chapter can be applied in a rather different manner
to bilinear forms. This will be done in detail in Chapter [4 but we are in a good
position to describe the general idea: Let % be an anti-endomorphism of a ring R
(i.e. an additive, unity-preserving map that reverses order of multiplication). Then
o = %2 is an endomorphism of R and % becomes an involution on the invariant
subring R}, As some claims on (R, ¥) can be reduced to claims on (R}, %] p(0)),
our results become a useful tool for studying the former. Recalling that bilinear
(resp. sesquilinear) forms correspond to certain anti-endomorphisms and quadratic
(resp. hermitian) forms correspond to involutions (see [57), Ch. I]), these ideas, taken
much further, can be used to reduce the isomorphism problem of bilinear forms to
the isomorphism problem of hermitian forms. This was actually done (using other
methods) for bilinear forms over fields by Riehm ([76]), who later generalized this
with Shrader-Frechette to sesquilinear forms over semisimple algebras ([75]). We
can improve these results for bilinear (sesquilinear) forms over various semiperfect
pro-semiprimary rings (e.g. f.g. algebras over Z,). This approach is described in
Chapter

1.8. Modules over Linearly Topologized Rings

In this section we extend Theorem [I.7.3] and other applications to LT rings.
This is done by properly topologizing modules and endomorphisms rings of modules
over LT rings.

Let R be an LT ring and let M be a right R-module. Then M can be made into
a topological R-module by taking {x+ MJ|J € Zr} as a basis of neighborhoods of
x € M. (That M is indeed a topological module follows from [99] Th. 3.6].) Notice
that any homomorphism of modules is continuous w.r.t. this topology. Furthermore,
End(M) can be linearly topologized by taking {Homp(M,MJ)|J € g} as a
local basisﬂ We will refer to the topologies just defined on M and End(M) as
their natural topologies. In general, that R is Hausdorff does not imply M or
End(M) are Hausdorff. (E.g., for any distinct primes p,q € Z, the Z-module
Z/q is not Hausdorff w.r.t. the p-adic topology on Z.) Observe that {Ognq(ar)} =
ez, Hom(M, M.J) = Hom(M,(;c7, MJ) = Hom(M,{0x}), so M is Hausdorff
implies End(M) is Hausdorff.

Now let E, be a finite resolution of M, i.e. E, consists of an exact sequence
E, 11— —FE—FEF 1=M-— OH The maps E; — E;_; will be denoted by d;.
We say that F, has the lifting property if any f_; € End(M) can be extended to a
chain complex homomorphism f, : Ee — F,. (Recall that f, consists of a sequence
{fi ?:_11 such that f; € End(FE;) and d;f; = fi—1d; for all i.) In other words, E,
has the lifting property if and only if the following commutative diagram can be
completed for every f_1 € End(M).

FE,_1 FEy Ey M
frn—1 f1 fo lfl
\ \ Y
En—l E1 EO M

9 This topology is the uniform convergence topology (w.r.t. the natural uniform structure of
M). If M is f.g. then this topology coincides with the pointwise convergence topology (i.e. the
topology induced from the the product topology on M).

10 We do not require the map E,_1 — E,_2 to be injective.
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For example, any projective resolution has the lifting property. We define a linear
ring topology 7 on End(M) as follows: For all J € Zg, define B(J, E) to be the
set of maps f_; € End(M, MJ) that extend to a chain complex homomorphism
fo : Eq — E4 such that im f; C E;J for all —1 < ¢ < n. The lifting property
implies B(J, E) <End(M) and it is clear that Bg := {B(J,E)|J € I} is a filter
base. Therefore, there is a unique ring topology on End(M), denoted 7, having
BEg as a local basis.

It turns out that if F, is a projective resolution, then 75 only depends on the
length of E, i.e. the number n. Indeed, if P,, P, are two projective resolutions of
length n of M, then the map idy; : M — M gives rise to chain complex homomor-
phisms e : Py — P, and B, : P, — P, with a1 = _1 = idps. Now, if J € Zg and
f-1 € B(J, P), then there is fo : Po — P, such that im f; C P, J for all i. Define
fi = aefefe. Then im f! C a;(P;J) C P/J for all ¢ and f/; =idp fo1idp = fo1,
so f_1 € B(J, P'). By symmetry, we get B(J, P) = B(J, P’) for all J € I, hence
TP = Tp/.

The topology of End(M) obtained from a projective resolution of length n
will be denoted by 7M and the closure of the zero ideal in that topology will be
denoted by IM. Note that 7 C 7 C ... and that 7 is the natural topology on
End(M) (i.e. the topology induced from the local basis {Hom(M,MJ)|J € Zg}).
(Indeed, if P, : Py — M — 0 is a projective resolution of length 1, then any
f € Hom(M, M J) can be lifted to fo : Py — PoJ because the map PyJ — MJ is
onto, hence B(P, J) = Hom(M, M J).) More generally, for any resolution E, of M,
TE contains the natural topology on End(M). Therefore, if M is Hausdorff, then
7p is Hausdorff. In the addendum, we provide sufficient conditions for 7, 7/, . ..
to coincide.

With this terminology, we can generalize Proposition [[.3.7}

ProroSITION 1.8.1. Let R be an LT ring and let E: A — B — C — 0 be
an ezxact sequence of right R-modules satisfying the lifting property (w.r.t. C) and
such that A and B are Hausdorff. Assign End(A) and End(B) the natural topology
and endow End(C) with 7. Then End(C) is isomorphic as a topological ring to a
quotient of a T-semi-invariant subring of End(A) x End(B).

PROOF. We use the notation of the proof of Proposition [I.3.7] By that proof,
End(C) is isomorphic to a quotient of Centp([§4]). It is easy to check that the
embedding D < S is a topological embedding, hence End(C) is isomorphic to a
quotient of a T-semi-invariant subring of D. That the quotient topology on End(C)

is indeed 7 is routine. O

We are now in position to generalize previous results.

LEMMA 1.8.2. Let R € L9%> and P € Paisc. Then R is pro-P if any only if
R is complete and R/I has P for all I € Tg.

PrOOF. If Ris complete and R/I has P forall I € Zp, then R = Jim {R/I}1ezyss
so R is pro-P. On the other hand, if R is pro-P, then it is complete. In addition,
it is strictly pro-P (Corollary , hence there is a local basis of ideals B such
that R/I has P for all I € B. Now, let I € Zr. Then there is Iy € B contained in
I. Therefore, R/I is a quotient of R/Iy. As the latter has P, so does R/I. O

Recall that a topological ring is first countable if it admits a countable local
basis. If R is pro-P, then this is equivalent to saying that R is the inverse limit of
countably many discrete rings satisfying P.

THEOREM 1.8.3. Let R € £9%5 be a ring and let M be a f.p. right R-module.
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(i) If R is first countable and satisfies P € Piop N Prmor, then End(M)/IM
satisfies P when End(M) is endowed with 72%. In particular, if M is
Hausdorff, then End(M) has P.

(ii) Assume R is quasi-moo-regular and let i € {1,2}. Then End(M)/IM is
quasi-T o -reqular when End(M) is endowed with . In particular, if M
is Hausdorff, then End(M) is quasi-to-regular w.r.t. 7.

(iii) If R is semiperfect and quasi-mo-regular, then End(M) is semiperfect.

PROOF. (i) The argument in the proof of Theorem [L.7.3| shows that End(M)
is a quotient of an LT Hausdorff ring satisfying P, which we denote by W (use
Proposition instead of Proposition . I} is a closed ideal of End(M) and
therefore End(M)/I3! is a quotient of W by a closed ideal. We finish by claiming
that for any closed ideal I < W, W/I satisfies P. We will only check the case
P = pro-Q for Q € Pgjsc. The other cases are straightforward or follow from the
pro-Q case. Indeed, any open ideal of W/I is of the form J/I for some J € Ty,
hence by Lemmall.8.2) (W/I)/(J/I) = W/J satisfies Q. In addition, that R is first
countable implies W is first countable, hence by the Birkhoff-Kakutani Theorem,
W is metrizable. By [22] p. 163], a Hausdorff quotient of a complete metric ring
is complete, hence W/I is complete. Therefore, by Lemma [1.8.2] (applied to W/I),
W/I is pro-Q.

(ii) The case i = 2 follows from the argument of (i) since being m-regular passes
to quotients by closed ideals (the first countable assumption is not needed). As for
i =1, since I is closed in 7, it is also closed in 7!. Therefore, End(M)/I}¥ is
quasi-mso-regular when M is equipped with 7'2M . We are done by observing that if
a ring is quasi-me-regular w.r.t. a given topology, then it is quasi-m.-regular w.r.t.
any linear Hausdorff sub-topology.

(iii) By (i) End(M) is a quotient of a semiperfect ring, namely W. O

REMARK 1.8.4. Part (iii) of Theorem was proved in [79] for complete
semilocal rings with Jacobson radical f.g. as a right ideal and in [78] for semiperfect
Teo-regular rings. Both conditions are included in being semiperfect and quasi-myo-
regular. In addition, Vamos proved in [96, Lms. 13-14] that all finitely generated
or torsion-free of finite rank modules rank over a Henselian integral domainEI have
semiperfect endomorphism ring. Results of similar flavor were also obtained in [34],
where it is shown that the endomorphism ring of a f.p. (resp. f.g.) module over a
semilocal (resp. commutative semilocal) ring is semilocal.

Rowen proved in [79] that the endomorphism ring of every f.p. right module
M over a complete semilocal ring R with a Jacobson radical f.g. as a right ideal is
complete w.r.t. its Jacobson topology (|79, Prp. A]), but he proves that End(M)
is complete semilocal only when R is right noetherian ([79, Th. B]). Using the
previous theorem, we can weaken the right noetherian assumption, thus obtaining
the following corollary.

COROLLARY 1.8.5. Let R be a complete semilocal ring with Jacobson radical
f-g. as a right ideal. Then the endomorphism ring of every f.p. right R-module is
complete semilocal.

Proor. By [79, Prp. A], the endomorphism ring is complete w.r.t. to its
Jacobson topology and by Theorem iii) it is semiperfect. O

COROLLARY 1.8.6. Let S be a commutative LT ring and let R be an S-algebra
s.t. R is f.p. and Hausdorff as an S-module. Then:

1A commutative ring R is called Henselian if R is local and Hensel’s Lemma applies to R.
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(i) If S is quasi-T -regular, then R is quasi-Too-regular (w.r.t. to some linear
ring topology). If moreover S is semiperfect, then so is R.

(ii) If S satisfies P € Piop N Pmor W.T.t. 4 given topology which is also first
countable, then R satisfies P.

ProOF. We only prove (ii); (i) is similar. By Theorem [1.7.3] End(Rg) sat-
isfles P. For all r € R, define ¥ € End(Rg) by 7(z) = ar and observe that
Centgna(rg)({7'|7 € R}) = End(Rg) = R, hence R has P by Theorem O

Let C be a commutative local ring. Azumaya proved in [5] Th. 22] that C is
Henselian if and only if every commutative C-algebra R with R¢ f.g. is semiperfect.
This was improved by Vamos to non-commutative C-algebras in which all non-units
are integral over C; see [96], Lm. 12]. Given the previous corollary, Azumaya and
Véamos’ results suggest that the notions of Henselian and quasi-m..-regular might
sometimes coincide. This is verified in the following proposition.

ProprosIiTION 1.8.7. Let R be a rank-1 valuation ring. Then R is Henselian if
and only if R is quasi-mo-reqular w.r.t. the topology induced by the valuation.

PROOF. Assume R is quasi-mso-regular. Observe that any free R-module is
Hausdorff w.r.t. the standard topology, hence Corollary (1) implies that any
R-algebra A such that Ag is free of finite rank is semiperfect. Thus, by [5, Th. 19],
R is Henselian.

Conversely, assume R is Henselian. Denote by v the (additive) valuation of R.
Since v is of rank 1, we may assume v take values in (R,+). For every 6 € R, let
Is = {z € R|v(x) > ¢}. Then {M,(Is)|d € [0,00)} is a local basis for M,,(R).
Let a € M,,(R). By the Cayley-Hamilton theorem, a is integral over R, hence R[a]
is a f.g. R-module. Let J = Jac(R) - R[a]. Then J < R[a] and it is well known
that J C Jac(R[a]). The ring R[a]/J is artinian, hence a + J has an associated
idemptent ¢ € E(R[a]/J) (i.e. € satisfies conditions (A)—~(C) of Lemma [[.4.2). By
[l Th. 22], J is idempotent lifting, hence there is e € E(R[a]) such that e + J = e.
Let f = 1—e. Then a = eae + faf (since Rla] is commutative). Furthermore,
eae+J is invertible in e(R[a]/J)e, hence eae is invertible in e R[a]e and in particular
in eM,,(R)e. Next, (faf)® € J C M,(Jac(R)) = M,,(Io) for some k € N. This

means (faf)* € M, (I;) for some 0 < § € R, which implies (faf)™ =—>% 0. Thus,
e satisfies conditions (A),(B) and (C’) w.r.t. a and we may conclude that M,,(R) is

quasi-m-regular for all n € N. O

Using the ideas in the proof of Theorem [I.8.3] we can also obtain:

THEOREM 1.8.8. Let R be an LT ring and let E: 0 = A — B — C — 0 be
an exact sequence of right R-modules such that B is projective and A and B are
Hasudorff. Endow End(A) and End(B) with the natural topology and End(C) with
TE and let Ig denote the closure of the zero ideal in End(C). Then:

(i) If End(A) and End(B) are first countable and satisfy P € Piop, then so
is End(C)/Ig.
(ii) If End(A) and End(B) are quasi-m-regular, then so is End(C)/Ig.
(iii) If End(A) and End(B) are quasi-m-regular and semiperfect, then End(C')
is semiperfect.

In light of the previous results, one might wonder under what conditions all
right f.p. modules over an LT ring are Hausdorff. This is treated in the next section
and holds, in particular, for right noetherian pro-semiprimary rings.
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We finish this section by noting that we can take a different approach for
complete Hausdorff modules. For the following discussion, a right R-module M will
be called complete if the natural map M — @ {M/MJ}jez,, is an isomorphismﬁ

PROPOSITION 1.8.9. (i) Let R be a complete first countable Hausdorff LT ring.
Then any Hausdorff f.g. right R-module is complete.

(ii) Let P € Paisc and let R be an LT ring such that R/I has P for oll I € Ig.
Let M be a complete right R-module such that M /JM is f.p. as a right R/J-module
forall J € Ig (e.g. if M is f.p., or if M is f.g. and R is strictly pro-right-artinian).
Then End(M) is pro-P w.r.t. 7. If moreover R is semiperfect and M is f.g., then
End(M) is semiperfect.

PRrROOF. (i) This is a well-known argument: Let B be a countable local basis
of R consisting of ideals. Without loss of generality, we may assume B = {J,}22
with J; 2 Jo 2 .... Let M be a f.g. Hausdorff R module and let {z1,...,z,} be
a set of generators of M. Since M is Hausdorf, it is enough to show that any sum
Yoo, m; with m; € MJ; converges in M. Indeed, write m; = Z?Zl xjri; with
Tits. .. Tin € Ji. Then Y o2, r;; converges in R for all j, hence > :°, m; converges
to Y27, xjr; where rj = Y770 7ij.

(ii) Throughout, J denotes an open ideal of R. We first note that if M is f.p.,
then there is an exact sequence R* — R™ — M — 0 for some n,m € N. Tensoring
it with R/J, we get (R/J)" — (R/J)™ — M/MJ — 0, implying M/J is a f.p.
R/J-module. Next, if M is f.g. and R is strictly pro-right-artinian, then M/MJ is
a f.g. module over R/J which is right artinian, hence M/J is f.p. over R//J.

Now, since M /M J is f.p. over R/.J, End(M /M J) satisfies P by Theorem [1.7.3]
There is a natural map End(M) — End(M/MJ) whose kernel is Hom(M, M J).
Assign End(M) the natural topology. Then since M is complete, Hom(M, M) =
Jim {End(M/MJ)} jez as topological rings and therefore, End(M) is pro-P.

Finally, assume M is f.g. and R is semiperfect. Then by Proposition M
admits a projective cover P which is easily seen to be finitely generated. Assume
M = M; & ---® M;. Then each M; is f.g. and thus has a projective cover P;.
Necessarily P = P, @ ---® P;. By Proposition m End(Pg) is semiperfect, hence
there is a finite upper bound on the cardinality of sets of orthogonal idempotents.
This means ¢ is bounded and hence, End(M) cannot contain an infinite set of
orthogonal idempotents. By Lemma i), this implies End(M) is semiperfect.

O

1.9. LT Rings with Hausdorff Finitely Presented Modules

In this section, we present sufficient conditions on an LT ring guaranteeing all
right f.p. modules are Hausdorff (w.r.t. the natural topology). The discussion leads
to an interesting consequence about noetherian pro-semiprimary rings.

We begin by noting a famous result that solves the problem for many noetherian
rings with the Jacobson topology. For proof and details, see [80, Th. 3.5.28].

THEOREM 1.9.1 (Jategaonkar-Schelter-Cauchon). Let R be an almost fully
bounded noetherian rinﬁ whose primitive images are artinian (e.g. a noetheorian
PI ring). Assign R the Jac(R)-topology or any stronger linear ring topology. Then
any f.g. right R-module is Hausdorff.

12 Completeness can also be defined for non-Hausdorff topological abelian groups; see [99].

13 A ring R is almost bounded if essential submodules of faithful f.g. right R-modules are
also faithful. A ring R is almost fully bounded if any prime homeomorphic image of R is fully
bounded. See [80] §3.5] for details.
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EXAMPLE 1.9.2. The assumption that all powers of Jac(R) are open in Theo-
rem cannot be dropped: Let R be a Dedekind domain with exactly two prime
ideals P and @. Then R is noetherian, almost fully bounded, and any primite
image of R is artinian. Let n € NU {0} and let B = {P™Q"|m € N}. Assign R
the unique topology with local basis B. Clearly Jac(R)* = P*Q" is open for all
1 < k < n. However, Jac(R)"t1 = prtiQntl = >~ (PrHiQrtl 4 pmQn) =
Noo_, (prin{nttmigny = prtiQr, so Jac(R)™! is not closed. In particular, by
(%) below, R/ Jac(R)"*! is a f.g. non-Hausdorff R-module.

When considering quasi-m-regular rings, there is actually no point in taking a
topology stronger than the Jacobson topology in Theorem because for right
noetherian rings the latter is the largest topology making the ring quasi-m-regular.

PropPOSITION 1.9.3. Let R be an LT semilocal ring and let T be the topology on
R. Assume R is quasi-t-reqular w.r.t. T and R/I is semiprimary for allI € ITg (e.g.
if R is right noetherian or pro-semiprimary w.r.t. 7). Then R is quasi-m-reqular
w.r.t. the Jacobson topology and the latter contains 7.

PROOF. We first note that if R is right noetherian, then for all I € ZTg, R/I is
right noetherian and m-regular, hence by Remark R/I is semiprimary. If R
is pro-semiprimary, then R/I is semiprimary for all I € Zg by Lemma m

Let 7jac denote the Jacobson topology and let @ € R. Then a has an associated
idempotent e w.r.t. 7. Let f = 1 — e and observe that Jac(R) is open by Remark
[1.5.12(ii). Then there is n € N such that (faf)" € Jac(R) and it follows that
(faf)" 27%% 0 wor.t. Tyac. Therefore, e is the associated idempotent of a w.r.t.
TJac, hence R is quasi-m-regular provided we can verify 75, is Hausdorff. This holds
since Tyac 2 T, by the proof of Corollary (which still works under our weaker

assumptions). O

Stronger linear topologies are “better” since they have more Hausdorff modules.
Note that the topology of an arbitrary qausi-ms.-regular ring can be stronger than
the Jacobson topology. For example, take any non-semiprimary perfect ring R with
Nyen Jac(R) = {0} (e.g. R = Q[z1, x2, 23, ... |22, = Tp2m = 0Vn > 2m]) and give
it the discrete topology.

The next result will rely on the following observation:

(*) Let R be an LT ring. If M is a right R-module and N is a submodule,
then N/N = N/N. In particular, M/N is Hausdorff if and only if N is
closed.

Indeed, N/N =Njer,(M/N)J = Njer,(MI+M)/N = (e, (MJI+M))/N =
N/N. We will also need the following theorem. For proof, see [21], §7.4].

THEOREM 1.9.4. Let {X;, fi;} be an I-indexed inverse system of non-empty
sets. Assume that for each i € I we are given a family of subsets T; C P(X;) such
that for all i < j in I we have:

(a) X; €T; and T; is closed under (arbitrary large) intersection.

(b) Finite Intersection Property: If L C T; is such that the intersection of
finitely many of the elements of L is non-empty, then ()., A # ¢.

(C) For all A € Tj, f”(A) eT;.

(d) Forallz e X, f;l(m) e T1j.

Then @1 {Xi}ier is non—emptym

14 This can be compared to the following topological fact: An inverse limit of an inverse
system of non-empty Hausdorff compact topological spaces is non-empty and compact.
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LEMMA 1.9.5. Let R be a ring and let M be a right R-module. Let {M;}icr be
a family of submodules of M and let {x;}icr be elements of M. Then ;¢ (x;+ M;)

is either empty or a coset of [\;c; M;.

PRrROOF. This is straightforward. O

THEOREM 1.9.6. Let R be strictly pro-right-artinian. Then any f.g. submodule
of a Hausdorff right R-module is closed.

PROOF. Let B be a local basis of ideals such that R/J is right artinian for
all J € B. Assume M is a Hausdorff right R-module, let my,...,m; € M and
N =¥ m;R. We will show that m € N implies m € N.

Let m € N. For every J € B define

2

X, = {(al,...,ak) e R/ - Z(mi—FMJ)ai:m—i—MJ} .

Observe that m € N = () ;c5(N+M.J), hence for all J € B there are by,...,by € R
and z € MJ such that Y m;b; = m + z, implying X; # ¢. For all J C I in B, let
f17 denote the map from (R/J)* to (R/I)* given by sending (by +J, ..., b, +J) to
(b1 +1,...,bp +I). Then f1;(X;) C X;. It easy to check that {X7, frs|x,} is an
inverse system of sets.

For all J € B, define T; to be the set consisting of the empty set together
with all cosets of (right) R-submodules of (R/J)* contained in X ;. We claim that
conditions (a)-(d) of Theorem hold. Indeed, X is easily seen to be a coset of
a submodule of (R/J)*, thus X; € T;. In addition, by Lemma [1.9.5, T'; is closed
under intersection, so (a) holds. Since R/.J is right artinian, so is the (R/.J)*
(as a right R-module). Lemma then implies that cosets of submodules of
(R/J)* satisfy DCC, hence (b) holds. Conditions (c) and (d) are straightforward.
Therefore, we may apply Theorem to deduce that @1 X7 is non-empty.

Let 2 € Jim {Xs}seB. Then x consists of tuples {(ag‘]), cee a}j)) € R/} jen
that are compatible with the maps {f77}. As R is complete, there are by,...,b; € R

such that al(-']) =b;+ J forall 1 <i<kandJ e B. It follows that m — ), m;b; €
Nyeg MJ. As M is Hausdorff, the right hand side is {0}, som =, m;b; € N. O

REMARK 1.9.7. Theorem[I.9.6]and its consequences actually hold for the larger
class of strictly pro-right-finitely-cogenerated rings. A module M over a ring R is
called finitely cogenemteﬂ (abbrev.: f.cog.) if its submodules satisfy the Finite In-
tersection Property (condition (b) in Theorem [1.9.4]). This is equivalent to soc(M)
being f.g. and essential in M (see [58] Pr. 19.1]). A ring R called right f.cog. if
Rp, is finitely cogenerated. (For example, any right pseudo-Frobeniuos ring is right
f.cog.) Among the examples of strictly pro-right-finitely-cogenerated rings are com-
plete rank-1 valuation rings. Indeed, if v : R — R is an (additive) valuation, and
R is complete w.r.t. v, then R = lim{R/{x € R|v(z) > n}}nen. For a detailed
discussion about f.cog. modules and rings, see [95] and [58, §19].

Notice that a complete semilocal ring is strictly pro-right-artinian if and only
if its Jacobson radical is f.g. as a right module. The latter condition is commonly
used when studying complete semilocal rings (e.g. [79]). In particular, Hinohara
proved Theorem|[1.9.6]for complete semilocal rings satisfying it ([48) Lm. 3]). (Other
authors usually assume the ring is right noetherian.) By (*) we now get:

15 Other names used in the literature are “co-finitely generated”, “finitely embedded” or
“essentially artinian”.
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COROLLARY 1.9.8. Let R be a strictly pro-right-artinian ring. Then any f.p.
right R-module is Hausdorff.

We can now prove that under mild assumptions, strictly pro-right-artinian rings
are complete semilocal.

COROLLARY 1.9.9. Let R be a strictly pro-right-artinian ring. If J C Jac(R)
is an ideal that is f.g. as a right ideal, then R is complete in the J-adic topology
(i.e. R= @{R/J"}neN). If moreover R/J is right artinian, then the topology on
R is the Jacobson topology! In particular, if Jac(R) is f.g. as a right ideal, then the
topology on R is the Jacobson topology and R is complete semilocal.

PROOF. Let B be a local basis of ideals of R such that R/I is right artinian
for all I € B. We identify R with its natural copy in [[;.z R/I. Since J is f.g. as
a right ideal, then so are its powers. Therefore, by Theorem J"™ is closed for
allm € N.

Let ¢ denote the standard map from R to @{R/J”}HGN. Define a map
¢ Im{R/J"}nen — R as follows: Let r € im{R/J"}nen and let 7y, denote the
image of r in R/J"™. By Corollary for all I € B, there is n € N (depending
on I) such that J™ C I. Let r; denote the image of r,, in R/I. It is easy to check
that 7y is independent of n and that 7 := (r7);eg € R. Define ¢(r) = 7.

It is straightforward to check that ¥ o ¢ = id. Therefore, we are done if we
show that 4 is injective. Let y € ker ¢ and let y,, + J™ be the image of y in R/J".
Then for all I € B, J™ C I implies y,, € I. This means y, € (\jnc el = J" = J",
SO0 yp +J" =0+ J" for all n € N, hence y = 0.

Now assume R/J is right artinian. Then Jac(R)* C J C Jac(R) for some
k € N, hence the Jacobson topology and the J-adic topology coincide. By Propo-
sition the topology on R is contained in the Jacobson topology, so we only
need to show the converse. Let n € N. It is enough to show that J" is open.
Indeed, since Jg is f.g., then so is (J*/Ji ™)z (i > 0). As (R/J)g has finite length,
(J¢/J™* 1) g has finite length. Thus, (R/J")g have finite length as well. Since J"
is closed, J™ is an intersection of open ideals. As (R/J™)g is of finite length, J" is
the intersection of finitely many of those ideals, hence open. O

COROLLARY 1.9.10. Let R be a right noetherian pro-mw-reqular ring. Then the
topology on R is the Jacobson topology, R is strictly pro-right-artinian w.r.t. it and
any right ideal of R is closed. In particular, R is semilocal complete.

Proor. By Lemma R/I is m-regular for all I € Zg, hence Remark
implies R/I is right artinian for all I € Zp (since R/I is right noetherian). There-
fore, R is pro-right-artinian, with Jac(R)g finitely generated. Now apply the pre-
vious corollary. O

The next example demonstrates that Theorem [I.9.6] fails for pro-artinian rings
(and in particular for pro-semiprimary rings). It also implies that there are pro-
artinian rings that are not strictly pro-right-artinian.

EXAMPLE 1.9.11. Let S = Q(z)[t |t* = 0]. For all n € N define R,, = Q(z2") +
Q(z)t + Q(x)t* € S and I, = Q(2*")t> C S. Then R, is an artinian ring and
I, < R,. For n < m define a map fnm : Rn/Im — Rn/L, by folx+ 1) =x+ I,.
Then {R,,/ I, fum} is an inverse system of artinian rings. Let R = I&H {R./I,}nen.
Then R can be identified with Q + Q(z)t + Vt? where V is the Q-vector space
@{Q(m)/@(xﬂ)}n@\; (R does not embed in S). Observe that Q(x) is dense in
V, but Q(x) # V since V is not countable (it contains a copy of all power series
S an2?” € Q[[z]]). Therefore, the ideal tR = Qt + Q(z)t? is not closed in R and
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by (¥), R/tR is a non-Hausdorff f.p. module. We also note that Jac(R)? = Q(z)t?
is not closed (but Jac(R) must be closed by Proposition [1.5.11)).

We conclude by specializing the results of the previous section to first count-
able strictly pro-right artinian rings. (We are guaranteed that all f.p. modules
are Hausdorff in this case). By Corollary this family include all noether-
ian pro-semiprimary rings. More general statements can be obtained by applying
Remark

COROLLARY 1.9.12. (i) Let R be a first countable pro-right-artinian ring and let
M be a f.p. right R-module. Then End(MRg) is pro-semiprimary and first countable
(w.r.t. TM). If R is semiperfect (e.g. if R is right noetherian), then End(MEg) is
semiperfect.

(ii) Let S be commutative first countable pro-right-artinian ring and let R be
an S-algebra s.t. R is f.p. as an S-module. Then R is pro-semiprimary (w.r.t. some
topology). If S is semiperfect (e.g. if S is right noetherian), then R is semiperfect.

1.10. Further Remarks

It is likely that the theory of semi-invariant subrings developed in section [L.5
can be extended to right linearly topologized rings, i.e. topological rings having a
local basis consisting of right ideals. This actually has the following remarkable

implication (compare with Corollary and Corollary [1.8.6):

CONJECTURE 1.10.1. Let S € LT%5 be a semiperfect quasi-mso-reqular ring
and let ¢ : S — R be a ring homomorphism. Assume that:

(a) When considered as a right S-module via ¢, R is f.p. and Hausdorff.
(b) For allr € R and I € Ig, there is J € Zg such that Ro(J)r C R@(I)E

Then R is semiperfect and quasi-mo-regular (w.r.t. some topology).

The proof should be along the following lines: For any right S-module M, let
W denote the ring of continuous Z-homomorphisms from M to itself. Then W
can be made into a right LT ring by taking {B(J)|J € Zs} as a local basis where
B(J)={feW :imf C MJ} (this is the topology of uniform convergence)m
Clearly W contains End(Mg) as a topological ring (endow End(Mgs) with 7).
Now take M = R (where R is viewed as a right S-module via ¢). Then condition
(a) implies End(Rg) is semiperfect and quasi-m..-regular w.r.t. 7/ (Theorem.
Condition (b) implies that for all » € R, the map 7 : z — zr from R to itself is
continuous and hence lie in W. Since we assume the results of section extend
to right LT rings, R = End(Rg) = Centgna(ry)({7|r € R}) is a T-semi-invariant
subring of End(Rg), so R is semiperfect and quasi-mo-regular.

Examples of rings satisfying conditions (a) and (b) can be produced by tak-
ing R to be: (1) a twisted group algebra S®G where G is a finite group and
a : G — Aut. G is a group homomorphism or (2) a “crossed product”, i.e. R =
CrossProd(S, ¢, G) where S is commutative, G is finite and acts on S via contin-
uous automorphisms and ¢ € H?(G,S*). (Further examples can be produced by
taking quotients.) However, we can show directly that the conjecture holds in these
special cases. Indeed, that G is finite implies B = {(,cc 9(I) | € Zr} is a local
basis of S and we have RJ C JR for all J € B. For any right R-module M, let
W' ={feW: f(MJ) C MJVJ € B} (with W as in the previous paragraph).

16 This is equivalent to saying that the topology on R spanned by cosets of the left ideals
{Re(I)|I € Ig} is a ring topology; see [99] §3].
Caution: Not every filter base of right ideals gives rise to a ring topology. By [99] §3], we
need to check that for all f € W and I € Zg there is J € Zg such that f B(J) C B(I). Indeed, we
can take any J with f(MJ) C MI and such J exists since f is continuous.
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Then W' is a linearly topologized ring w.r.t. the topology induced from W (as seen
by taking the local basis {W’' N B(J)|J € B}). In addition, when M = Rg, 7
of the previous paragraph lies in W' (since RJ C JR for all J € B). Therefore,
repeating the argument of the last paragraph with W’ instead of W, we get that
R is semiperfect and quasi-myo-regular.

We could neither find examples nor contradict the existence of the following:

(1) a pro-semiprimary ring that is not complete semilocal (i.e. complete w.r.t.
its Jacobson topology);

(2) a complete semilocal ring, endowed with the Jacobson topology, with a
non-Hausdorff f.p. module.

1.11. Addendum: When Do 7 7 ... Coincide?

This addendum is dedicated to the question of when the topology obtained
from a resolution is the natural topology. For that purpose, we briefly recall the
Artin-Rees property for ideals. For details and proofs of the statements to follow,
see [80], §3.5D].

Let R be a right noetherian ring. An ideal I <R is said to satisfy the Artin-Rees
property (abbreviated: AR-property) if for any right ideal A < R there is n € N
such that "N A C AI. This is well known to imply that for any f.g. right R-module
M and a submodule N, there is n € N such that MI" "N C NI. For example,
by [80, p. 462, Ex. 19|, every polycentral ideal (e.g. an ideal generated by central
elements) satisfies the AR-property. In addition, if R is almost bounded (e.g. a PI
ring), then all ideals of R are satisfy the AR-property.

Now let R be any LT ring. A right R-module M is said to satisfy the topological
Artin-Rees property (abbreviated: TAR-property) if for any submodule N C M and
any I € Zp there is J € Zg such that MJ NN C NI. (Equivalently, the induced
topology and the natural topology coincide for any submodule of M). For example,
if R is right noetherian, J <R and R is given the J-adic topology, then all f.g. right
R-modules satisfy the TAR-property if and only if J satisfies the AR-property.

ProrosiTioN 1.11.1. Let R be an LT ring, let M be a right R-module and
let P: P,y - -+ = Pp— P.1 =M — 0 be a projective resolution of M.

Assume that Py, ..., P,_1 have the TAR-property. Then Tp is the natural topology
on End(M).

PROOF. Denote by d; the map P; — P;_; and let B; = kerd;. We will prove
that for all I € Zp there is J € Zgr such that Hom(M,MJ) C B(I,P). Given
I € Tg, we define a sequence of open ideals I,,_1,I,_o,...,1_1 as follows: Let
I, 1 = 1. Given I;, take I;_1 to be an open ideal such that P;_1I; 1 N B;_1 C
B;_1I; and I;_; C I; (the existence of I;_; follows from the TAR-property). We
claim that Hom(M, M1I_;) C B(I, P). To see this, let f_1 € Hom(M, MI_;) and
assume we have constructed maps f; € Hom(P;, B;I;) for all —1 < i < k such that
d;f; = fi—1d;. Then it is enough to show there is f; € Hom(Py, PyIy) such that
difr = fr—_1d. The argument to follow is illustrated in the following diagram:

d di_
P, k Bi_C Piq —— s .
ifk—l \L‘fk—l
di_
fr Poily i N By =Py 1Ly —> ...
v

Pk-[k H‘dk Bk—l-[k
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That dy—1fr—1 = fr—2dx—1 implies fr_1(Bx—1) € Br—1. Asim fr_1 C Pp_11p1,
we get that fr_1(Br—1) € Pr—1lx—1 N Bx—1 C Bix_1Ix (by the definition of I_1).
Since the map Pyl — Bg_1lx is onto (because im(dy) = Bg_1), we can lift
fr_1dy : Py — Bg_1I; to a homomorphism fx : P — PjIy, as required. O

REMARK 1.11.2. The proof still works if we replace the assumption that P, _1
is projective with d,_1 is injective.

COROLLARY 1.11.3. Let R be an LT right noetherian ring admitting local basis
of ideals B such that: (1) All ideals in B have the AR-property (e.g. if all ideals in
B are generated by central elements or if R is PI) and (2) all powers of ideals in B
are open. Then M =M = ... for any f.g. right R-module M.

PROOF. Let n € N. Since R is right noetherian, any f.g. R-module admits a
resolution of length n consisting of f.g. projective modules. The assumptions (1)
and (2) are easily seen to imply that any f.g. R-module satisfies the TAR-property.
Therefore, by Proposition M is the natural topology on End(M). O

ExaMPLE 1.11.4. Condition (2) in Corollary is essential even when all
ideals of R have the AR-property: Assign Z the unique topology with local basis
B={2-3"Z|n >0} and let M = Z/4 x Z/2. Since MI = 2M for all I € B, the
natural topology on End(M) is obtained from the local basis {Hom(M,2M)}. (M
is not Hausdorff). Let I = 2Z € B and consider the projective resolution

P: A7 x22 —7Z xX7Z — M — 0.

Define f 1 : M — MI =2M by f(x+47Z,y +27) = (2y +47Z,0). Then any lifting
fo € End(Z x Z) of f_1 must satisty fo(0,1) = (4o + 2,2y) for some z,y € Z.
This means that any lifting f; € End(4Z x 2Z) of fy (there is only one such
lifting) satisfies f1(0,2) = (8x 4+ 4,4y) ¢ 8Z x 4Z = (4Z x 2Z)I. Therefore, f; ¢
Hom(4Z x 27, (47 x 27Z)I), implying f_, ¢ B(P,I). But this means that B(P,I) C
Hom(M,2M), hence 731 # 7M.



CHAPTER 2

Bilinear Forms over Rings

Bilinear forms over (non-commutative) rings were considered by various au-
thors (e.g. [6], [55], [10], [56]), but the base ring was always assumed to have an
involution. In this chapter, we present a new notion of bilinear forms over arbi-
trary rings (no involution is needed) and show that it generalizes all the definition
mentioned. (In particular, our definition includes sesquilinear forms over rings with
involution.)

We then consider four basic properties of bilinear forms: the adjoint map is
injective (i.e.: being nondegenerate), the adjoint map is surjective, having a cor-
responding anti-endomorphism and having a unique asymmetry map. All these
properties have left and right versions. While all eight properties are equivalent for
sesquilinear forms over division rings, this is not the case for our general setting.
We therefore set to determine the logical implications between (subsets of) these
conditions and demonstrate the non-implications. (Some parts of this project are
still open.) In addition, we examine whether these properties are preserved under
orthogonal sums.

Next, we present categories with a double duality which generalize hermitian
categories (or categories with duality). The latter are the categorical analogues of
bilinear or quadratic forms (see [71], [7] or [86] Ch. 7]) and likewise, categories
with a double duality are a categorical analogue of our notion. We explain how
our definition is connected to the classical one and show that our notion of bilinear
forms cannot be naturally understood as a special case of a hermitian category.

We finish the chapter with applying our new definition to solve a problem
suggested to the author by D. Saltman: For a ring R, what are the implications
between the following three properties: (1) there is .S, Morita equivalent to R, with
an involution, (2) there is S, Morita equivalent to R, with an anti-automorphism
and (3) R is Morita equivalent to R°P. Clearly (1) = (2) = (3) and in [82], Salt-
man proved (2)==-(1) for Azumaya algebras. We show that (2)=%4(1) in general,
and for a large class of rings (e.g. semiperfect rings), (3)==(2).

The results of this chapter will also be used in Chapters[3|and[d] Some of these
results are described in [39] and [40].

Section[2.I] presents our new notion of bilinear forms, and in section[2:2] we study
their basic properties. Sections [2.3] 2.4 and 2.5 are concerned with determining the
implications and non-implications between the left and right versions of the four
properties mentioned above; section determines the implications, section
presents counterexamples, and section demonstrates that in special cases one
can strengthen the results of section[2:3] Section [2.6] defines and studies orthogonal
sums. At the end of this section several constructions of Witt and Witt-Grothendick
groups are considered. In section 2.7 we introduce categories with a double duality
and relate them to hermitian categories. Section [2.9|presents the application briefly
described before.

We note that sections and section [2.7)are not mandatory and the reader
can skip either of them without loss of continuity.

55
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2.1. Definitions

In this section we present our new definition of bilinear forms over rings and all
notions derived from it. However, before doing so, let us briefly recall the definition
that is common in the literature nowadays. Throughout, bilinear forms are not
assumed to be symmetric.

Let R be a ring with involution *. Recall that a sesquilinear space over R is a
pair (M,b) such that M is a right R-module and b: M x M — R is a biadditive
map satisfying

b(zr,y) = r*b(z,y), b(z,yr) = b(z,y)r, Ve,ye M, r€ R .

In this case, b is called a sesquilinear form. If there is A € Cent(R) such that
AX* = 1 and b satisfies the additional condition b(x,y) = Ab(y,x)*, then b is
called a A-hermitian form. The ring R is usually taken to be a division ring or
a commutative ring. If R is a field and * is the identity, then sesquilinear (1-
hermitian, (—1)-hermitian) forms become classical bilinear (symmetric bilinear,
anti-symmetric bilinear) forms.

Hermitian categories or categories with duality generalize sesquilinear forms
and they will be briefly described in section

To present our new notion of bilinear forms, we will need the following defini-
tion:

DEFINITION 2.1.1. Let R be a ring. A (right) double R-module is an additive
group M together with two operations ©g,®1 : M X R — M such that M is a right
R-module with respect to each of ®g, ®1 and

(m®pa) ©1b=(m®1b) g a VmeM, a,be R .

We let M; denote the R-module obtained by letting R act on M via ®;.

The category of (right) double R-modules will be denoted by DMod-R. For
M, N € DMod-R, we define Hom(M, N) = Hompg(My, No) NHomp (M1, N1). This
makes DMod-R into an abelian category. (The category DMod-R is isomorphic to
Mod-(R ®z R) and also to the category of (R°P, R)—bimodules.ﬂ

Let R be any ring (R need not be commutative; no involution on R is required).
A bilinear space over R is a triplet (M, b, K) such that M € Mod-R, K € DMod-R
and b: M x M — K is a biadditive map satisfying:

b(l‘?",y) :b(l‘,y) Go T, b(x,yr) :b(.’lf,y) ©1r V$7yEM7 reR.

In this case, b is called a bilinear form.
An anti-isomorphism of K is a bijective map « : K — K satisfying:

(k®ia)"=k"®1_5a YVa€eR, ke K, ie€{0,1} .

If additionally kok = idg, then & is called an involution. Given such an involution,
b is called k-symmetric if

b(z,y) = by, )"  Vr,ye M.

ExAMPLE 2.1.2. Let (R,*) be a ring with involution. We can make any
sesquilinear form b : M x M — R fit into our definition; simply turn R into a
double R-module by defining r ®9 a = a*r and r ®1 a = ra for all a,r € R. More-
over, if b is A-hermitian, then b is k)-symmetric where k) : R — R is defined by
Ry = Ar*.

L The reader might think that it would be simpler if we were to use (R°P, R)-bimodules
instead of double R-modules. However, the latter saves notation, prevents ambiguity and makes
the proofs in the following sections more comprehensible.
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After presenting our definitions, it remains to generalize common properties of
bilinear forms to our general setting. Henceforth, R is a ring and K is some fixed
double R-module.

We begin by introducing the adjoint maps. Given M € Mod-R and ¢ € {0, 1},
the i-K -dual (or just i-dual) of M is defined to be M := Hompg(M, Kl—i) Note
MU is naturally a right R-module w.r.t. the operation (fr)(m) = (fm) ®; r (for
all f € MU, r € Rand m € M). Moreover, M +— MU is a left-exact contravariant
functor from Mod-R to itself, which we denote by [i]. In section we will show
that if [0] is considered as a (covariant) functor from (Mod-R)°P to Mod-R and [1]
is considered as a functor form Mod-R to (Mod-R)°P, then [0] is left adjoint to [1].

Let b: M x M — K be a bilinear form. The left adjoint and right adjoint of b
are defined as following:

Adf : M — MO (Adim)(n) = b(m,n) ,

Ady - M — MY (Adym)(n) = b(n,m) ,
for all m,n € M. Tt can be easily checked that Adf and Ad} are right R-linear. We
say that:

(RO) b is right regular if Adj is bijective;

(R1) b is right injective if Ad; is injective;

(R2) b is right surjective if Ad; is surjective.

Denote the left analogues of (R0),(R1),(R2) by (L0),(L1),(L2). Note that being
right injective means that b(M, m) = 0 implies m = 0, namely b is right nondegen-
erate. Therefore, forms not satisfying (R1) will be called right degenerate. Being
right surjective implies that any f € M is of the form x ~— b(x,m) for some
m e M.

By addressing a bilinear form as satisfying a property without indicating whether
it is the left or right version of that property, we mean that the form satisfies both
versions. For example, “b is regular” means “b is left and right regular” and likewise
for all properties defined in this section.

We now turn to define the corresponding anti-endomorphism of a bilinear form
(see [67), Ch. 1] to compare with the classical definition). With notation as above:

(R3) b is called right stable if for every o € End(Mpg) there exists a unique
o’ € End(Mg) satisfying b(ox,y) = b(x,0'y) for all z,y € M.

Denote the left analogue of (R3) by (L3). If b is right stable, then the map * sending
o to ¢’ is an anti-endomorphism of End(Mpg), called the (right) corresponding anti-
endomorphism of b. Example below shows that even when b is right regular, *
need not be injective nor surjective, hence we use anti-endomorphisms rather than
anti-automorphism. (Moreover, this example shows that any anti-endomorphism
can be understood as a corresponding anti-endomorphism of some right regular
bilinear form.) It is easy to verify that if b is k-symmetric, where « is an involution
of K, then its corresponding anti-endomorphism is in an involution. The connection
between bilinear forms and anti-endomorphisms will be discussed extensively in the
next chapter.

Next, we define asymmetry maps, which are important tools in studying non-
symmetric forms (see [76] and [75] for classical applications). Let x be an anti-
isomorphism of K. A right k-asymmetry (resp. left k-asymmetry) of b is a map A €
End(Mpg) such that b(x,y)" = b(y, Az) (resp. b(x,y)" = b(A\y,x)) for all x,y € M.
It is natural to consider the following property:

(R4) b has a unique right k-asymmetry.

2 The reason that we do not define M[¥ to be Homp (M, K;) is because we want Rl to
isomorphic to K; via f < f(1).
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Again, denote the left analogue by (L4). We will sometimes need to distinguish be-
tween two anti-isomorphisms and then we will write (R4)-x, (L4)-« instead of (R4),
(L4). The inverse of an invertible x-asymmetry is always a left x~!-asymmetry.
(However, the asymmetry need not be invertible even when it is unique! See Ex-

ample 2.4.12])

REMARK 2.1.3. It might seem odd to consider k-asymmetries for x that is not
an involution. However, we will see below that this is natural in some situations.
Moreover, some double R-modules admit an anti-isomorphism but no involution

(see Example [2.4.14)).
Finally, the following property will also be useful:
(R5) b is called right semi-stable if for all o € End(MEg), b(x,ocy) = 0 for all
z,y € M implies 0 = 0.
Being semi-stable can be considered as a weaker version of nondegeneracy. It implies
the uniqueness of ¢’ and A from (R3) and (R4), provided they exist.

EXAMPLE 2.1.4. Let R be a ring and let % be an anti-endomorphism of R. Let
K be the double R-module obtained from R by defining

r@®ps=s"r, r®18=rs Vr,seR.
Define b: R x R — K by b(z,y) = z*y. Then b is a bilinear form. As b(R,z) =0
implies = 0 (since z = b(1,z) = 0), b is right injective. In addition, it is

straightforward to check for all f € R = Homp(Rg, Ko), Adj(f(1)) = £, hence
b is also surjective. Therefore, b is right regular and we will later show that this
implies b is right stable.

Now observe that for all r,z,y € R, b(rz,y) = (ra)*y = z*r*y = b(x,r*y).
Thus, identifying End(Rg) with R via f + f(1), the corresponding anti-endomor-
phism of b is *. It is also straightforward to check that ker(Adj) = ker(x) and
im(Adﬁ) = im(x) (once identifying R” = Hom(Rg, K1) = End(Rg) with R as
before). Hence, b is left injective (surjective) if and only if * is. In particular, if * is
not injective nor surjective, then b is not left injective nor left surjective (and also
not left semi-stable by Proposition below), despite the fact b is right regular.

The following proposition is easy to prove:

PROPOSITION 2.1.5. Let (D, *) be a division ring with involution and let (M, b)
be a sesquilinear space over (D, *) with dim Mp < co. Then all ten conditions (R1)-
(R5),(L1)-(L5) are equivalent (where (R4), (L4) are considered w.r.t. the involution
k=%:D— D).

PRrROOF (SKETCH). We will see below that (R0) implies (R1)-(R4) and any of
(R1)-(R4) imply (R5), so it is enough to verify (R5) = (R0) and (L0). Indeed,
identify M with D™, where n = dim Mp. Then b is necessarily given by b(z,y) =
(2*)TAy for some A € M,,(D) (the elements of D™ are considered as column vectors
and x acts on D™ component-wise). It is now easy to see that (R5) is equivalent
to ann” A = 0 and (RO) (resp. (LO)) is equivalent to A being invertible. The
proposition follows immediately since A is invertible <= ann” A = 0. (]

Moreover, we shall prove in section that Proposition [2.1.5] remains true
upon replacing D with a quasi-Frobenius ring, provided M is faithful. Despite this,
without special assumptions on the base ring, no analogue of the last proposition
holds. For example, it turns out that none of the conditions (R1)-(R4),(L1)-(L4)
implies any of the others. (Part of this already follows from Example )

In section [2.3] we prove a list of logical implications between subsets of the con-
ditions (R1)-(R4),(L1)-(L4), and we conjecture the this list explains all implications
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between subsets of these conditions. What prevents us from declaring all implica-
tions as determined from our list is the absence of several counterexamples. The
counterexamples that we do have and (hopefully all) the missing ones are described
in section [Z4]

We note that when determining the implications, it is important to distinguish
between three cases: (I) K is a not assumed to have an anti-isomorphism (so (R4)
and (L4) are irrelevant); (II) K is assumed to have an anti-isomorphism; and (IIT)
K is assumed to have an augmentable anti-isomorphism (e.g. an involution; see
section for the definition). Case I is completely solved in the sense that we
are able to show that all implications are derived from (R0)==(R3) and its left
analogue. The other cases are more complicated and they admit different lists of
implications. (For example, (R0)==-(L1) in cases II and III but not in Case I, and
(L3) A (R4)-k = (L4)-x~! in Case III, but not in Case II.)

2.2. Basic Properties

Let R be a ring and let K be a fixed double R-module. In this section, we
prove some categorical results regarding bilinear forms and the functors [0] and [1].
These will serve as an infrastructure for the rest of the chapter and will also provide
the intuition and justification for the categorical definition of bilinear forms given
in section 27

To avoid extra parentheses in the proofs, we adopt the following notation until
the end of the section. The value of a function f at z will be denoted by fz,
rather than f(x). To distinguish application of a function from multiplication by
a scalar, the latter will be written explicitly, i.e. we will write m - r rather than
mr whenever m € M € Mod-R and r € R. Composition of functions will also be
written explicitly.

PROPOSITION 2.2.1. Let M € Mod-R. There are natural R-module homomor-
phisms W =Wy . M — MO gnd & = &y : M — M O] given by:

(Vz)(f) = f(z) VzeM, fe MO,
(®x)(f) = f(z) VoeM, feMl
In addition, the maps ®, ¥ satisfy:
idM[o] = \115\04] [©] ‘I)M[U]v

idym = ‘1)[1[] oW,rni,

i.e. the following diagrams commute

a100 T 5 ool a1 Tl g o)
Mol M

ProoOF. That ® and ¥ are R-module homomorphisms is straightforward. We

will only check that ¥ is natural (in the categorical sense) and that id w0 = ‘Ilgel] o
® /0. The rest follows by symmetry. Let A, B € Mod-R, ¢ € Homg(A, B), z € B
and f € Bl Then:

(M o wa)a) f = (PO (Wa2)) f = (Paz) 0 @) f = (Waz)(p!f) =

= (Vaz)(fop) = flpr) = (Yp(px)f = (Ypop)r)f,
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hence @l o W4 = Wy 0 ¢, implying ¥ is natural. Next, for all f € M and
m € M:
0
(W (@rro))m = (g ) (Tarm) = (Tarm)(f) = f(m) ,
hence \11581] o @00 = id 01, as desired. O

REMARK 2.2.2. At this point, the reader is advised to keep in mind that [0]
corresponds to left and [1] corresponds to right, in the sense that the left (resp.
right) adjoint always take values in the 0-dual (resp. 1-dual). The reader is also
advised to remember that ¥ is a morphism of functors from idyoa-g to [0][1] and
® is a morphism of functors from idyoqa-z to [1][0].

COROLLARY 2.2.3. Let A, B € Mod-R, then there is an additive natural iso-

morphism
I =145 :Hom(B, Ay — Hom(4, B[

given by In g(f) = fl% 0 ® 4. The inverse of I is given by IZ}B(g) =gl oWp.

ProoOF. We leave it to the reader to check I4 g is indeed a natural additive
map from Hom(B, A1) to Hom(A, BI%)), and only check that g — gl o Uy is the
inverse of I4 p. Indeed, for f € Hom(B, Alll)

(IAny)[l] e} \I/B = (f[o] ] @A)[l] o \I/B = @L}] (] f[o][l] o) \I/B = @E] ] \IJA[I] o f = f .

(In the third equality we used the naturality of ®.) That 14 (gl oWpg) = g follows
by symmetry. O

REMARK 2.2.4. Corollary implies that if one considers [0] as a covariant
functor from Mod-R to (Mod-R)°P and [1] as a covariant functor from (Mod-R)°P
to Mod-R, then [0] is left adjoint to [1]. (See [42] for definition and details.)

Let A, B € Mod-R. Call a biadditive map b: A x B — K a bilinear pairing if
b(xr,y) =blx,y) ©r and b(z,yr) =b(z,y)O1r Vee Aiye Bre R.

As with bilinear forms, we can define left and right adjoint maps Adﬁ : A — Bl
and Ad; : B — Al Since clearly any of Adf;, Ady determine b, it is expected
that each of Adj, Ad} would determine the other. This is verified in the following
corollary:

COROLLARY 2.2.5. Letb: A x B — K be a bilinear pairing. Then
A} = I 5(Ad]) = (Adf) W 0 0
Adf = T4 p(Ad)) = (Ad)) 0 d 4 |
i.e. the following diagrams commute:

A %A An0 _ YA Al

B
Adﬁi / Ad;i /
(Adp)!! (Adp)M

Blol Al

PRrROOF. We only check the first equality. The second follows by symmetry. Let
x € Aand y € B. Then for all z € A and y € B:

(Adg)M 0 Wp)y)z = ((Ady) (U py))z = (Vpy)(Adyz) =
= (Adyz)y = b(z,y) = (Adjy)x
hence Adj = (Ady) M o Wp = I} (Adp). 0
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PROPOSITION 2.2.6. Letb : AxB — K be a bilinear pairing and let o € End(A)
and 7 € End(B). Then b(oz,y) = b(x,7y) for allx € A andy € B <= the left
diagram commutes <= the right diagram commutes

A d A B———=1B
Adf J/ iAd‘é Ady J/ J{Ad;
Blo] — Blo] All — Al
T ot

PRrROOF. That each of the diagrams is equivalent to b(cx,y) = b(x, T7y) for all
x € A and y € B is straightforward. However, the diagrams’ equivalence can also
be shown directly (this is important for section [2.7). Indeed, if Adj oo = 7% o Ad},
(i.e. the left diagram commutes), then o o (Ad{)M = (Ad§)M o 7191 and this
implies

olload; BZD ;1o AdH o, = (Ad)Mor®low ; — (AdH) VoW yor EZP Adror,
so the second diagram commutes. O

We now turn to explain what is the categorical meaning of an anti-isomorphism
(or an involution) k : K — K. Recall that we let K; denote the R module obtained
by letting R act on K via ;.

PropPOSITION 2.2.7. There is a one-to-one correspondence between isomor-
phisms of functors u : [0] = [1] and anti-isomorphisms of K.

PROOF. Throughout, , m, f stand for elements of R, M, MY, respectively.

Let x be an anti-isomorphism of K. For all M € Mod-R, define wu, s : MO
MU by

us,m(f) =rof.
Note that ko f € MM since (ko f)(m-r) = (f(m-1))* = ((fm)oO1r)* = (fm) GOer =
((ko f)m) ®¢ r. In addition, u = u,, is an R-module homomorphism because
(u(f-r))m = ((f-r)m)" = ((fm)©or)" = (fm)"O1r = ((wf)m)©1r = ((uf)-r)m.
We leave it to the reader to check that u, »s is a natural isomorphism and, therefore,
u, : [0] = [1] is a functor isomorphism.

Now assume we are given a functor isomorphism u : [0] — [1]. Observe that
R = K via f — f(1g) where i € {0,1}. For all k € K, denote by fx the unique
element of Rl satisfying fi(1g) = k. Define r : K — K by k* = (ufi)1 R Let
r € R. Since the map k — f; is an R-module homomorphism (from K, to R 0]),
(k©or)" = (ufkoor)lr = (u(fe - 7))1r = ((wfk) - 7)1r = (fi)lr) ©1 7 = k" O1 7
for all k € K. Now consider the homomorphism v : Rg — Rpg given by ¢ (z) = r-z.
Since u is natural, ug o 9% = ¢ o up. In addition, for all k € K, (¢ fi)1g =
fe(W1gr) = fu(lg - r) = k ®1 r, hence PO f = freyr- Therefore:

(ko) = (ufeo,)lr = (W@ fi)lr = @ (ufi)lr
= (ufi)W1r) = (ufi)(Ar - 7) = (ufe)lr) Qor =k"Oor .
It follows that (k ®; r)® = k" ©1_; r for all r € R, k € K and i € {0,1}, hence
k = k(u) is an anti-isomorphism of K.

Clearly x(ux) = k. To see that u,(,) = u, first observe that for all k € K,
(ko fi)lr = (fxlr)® = k* = (ufx)1g, hence uf = x(u) o f for all f € R, Now,
let M € Mod-R, f € M and m € M. Define ¢ : Rp — M by ¢(r) = m-r.

31t is easy to check that under the identification Rl!l & K;, & is in fact up.
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Then ¢ gives rise to maps % : MO — ROl and ¢! . M — R satisfying
ug o ol = oM oy, Since fop € RO up(f o) =r(u)o (f op). Therefore:

(fm)" = (f(p1r))"™ = (k(u) o f 0o p)1r = (ur(f o ¢))1r =

= ((uro @) )1g = (PN our) f)1r = (urr f) 0 ©)1r = (urr f)(1r) = (uar f)m
and it follows that ups f = k(u) o f, as required. O

The map u,, ar defined in the last proof will be used throughout the chapter.
Involutions of K correspond to natural isomorphisms w : [0] — [1] satisfying an
additional condition that will be explained in Section 2.7}

PROPOSITION 2.2.8. Let b: M x M — K be a bilinear form, let k be an anti-
isomorphism of K and let A\ € End(M). Then X is a right k-asymmetry of b if and
only if we p © Adﬁ = Adj o ), i.e. the following diagram commute:

M—2 M

Adj i \LAdg

Al = a0

Uk, M
In particular, b is k-symmetric if and only if u. pr © Adﬁ = Ad;.
ProOF. This is straightforward. (]

PROPOSITION 2.2.9. Letb: M x M — K be a bilinear form. The following are
equivalent:

(a) b is right semi-stable.
(b) For all o,7 € End(Mg), b(z,0y) = b(x,1y) for all x,y € M implies
o=T.
(c) Hom(Mpg, ker Ad;) = 0.
(d) For all o,7 € End(Mpg), Ady o0 = Adj o 7 implies 0 = 7.
If b is right injective, right stable or has a unique right k-asymmetry (for some
anti-isomorphism k of K ), then b is right semi-stable.

PROOF. The equivalence of (a), (b) and (d) is straightforward. As for (c), o €
Homp (M, ker Ady) <= o € End(Mg) and 0(M) C ker Ad; <= o € End(Mg)
and b(z,oM) =0 for all z € M <= o € End(Mg) and b(z,oy) = 0 for all
x,y € M. Therefore (b) < (c).

If b is right injective, then b is right semi-stable by (c). If b is right stable and
o € End(Mg) is such that b(z, oy) = 0 for all z,y € M, then b(0z,y) = 0 = b(z, oy)
for all z,y € M. The stableness implies o is the only endomorphism of M satisfying
this, hence ¢ = 0, implying b is right semi-stable. If b has a wunique right x-
asymmetry A and o is as before, then \ + ¢ is also a right xk-asymmetry, so the
uniqueness implies o = 0. (]

Let M be a right R-module such that Hom(M, N) # 0 for any nonzero sub-
module N < M. Then condition (c¢) of the previous proposition implies that a
bilinear form defined on M is right (resp. left) semi-reflexive if and only if it is
right (resp. left) injective. An important family of modules satisfying the previous
condition is the generators of Mod-R; a module M € Mod-R is called a generator
(of Mod-R) if any right R-module is an epimorphic image of ,.; M for some set
I. This turns out to be equivalent to Rg being a summand of M™ for some n € N.
(See [58, Th. 18.8] for additional equivalent conditions). We now get the following
corollary.
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COROLLARY 2.2.10. Letb: M x M — K be a bilinear form such that M is a
generator. Then b is right semi-stable <= b is right injective.

2.3. Implications

In this section, we will determine what we conjecture to be all implications
between subsets of the conditions (R1)-(R4),(L1)-(L4) as well as other useful re-
sults. The conditions (R5) and (L5) will also be treated but they are of less interest
since they are implied by (R1),(R3),(R4) and (L1),(L3),(L4) respectively (Proposi-
tion [2.2.9).

Since the existence of an anti-isomorphism or an involution on K effects some
of the implications, we will distinguish between the following three cases:

(I) K is not assumed to have an anti-isomorphism.

(ITI) K has an anti-isomorphism .

(IIT) K has an augmentable anti-isomorphism « (e.g. if K has an involution).
In Case I, the conditions (R4) and (L4) are irrelevant where in the other cases
we also have to treat (R4)-x and (L4)-x~!. We will define augmentable anti-
endomorphisms when we discuss Case III.

REMARK 2.3.1. It is also reasonable to add (R4)-x~! and (L4)-x to our list of
properties, and these conditions are actually mentioned when discussing Case II.
However, we suspect this will open a pandora box, as one could also add (R4)-x"
and (L4)-s™ for any odd integer n. When  is augmentable, this issue is irrelevant
since in this case having a (unique) right (left) xk-asymmetry is equivalent to having
a (unique) right (left) k™-asymmetry, where n is any odd integer.

REMARK 2.3.2. For any double R-module K, define K°P to be the set of formal
symbols {k°P | k € K} endowed with the double R-module structure given by

;O @0a=(k®1 a)op7 |oP ®1a:(k:®0 a)op,

and k°P + kP = (k + E')°P (k,k’ € K, a € R). Then any anti-isomorphism of K
can be understood as a double R-module isomorphism from K to K°°. We can
now describe Case I as K % K°P and Case Il as K = K°P. Case III assumes a
stronger kind of isomorphism from K to K°P.

Throughout, R is a ring, K is a fixed double R-module and (M,b,K) is a
bilinear space. Unless specified explicitly, we do not assume K 2 K° or K = K°P.

2.3.1. Case L.
PRrOPOSITION 2.3.3. If b is right regular, then b is right stable.

PROOF. Since b is injective, it is semi-stable. Therefore, it is enough to show
that for all o € End(MEg) there is ¢/ € End(Mpg) such that b(ox,y) = b(z,0'y)
(the uniqueness of o’ is guaranteed). By Proposition this is equivalent to
ol o Adj = Adj o 0/, so take o’ = (Adj) "' oot o Ad]. O

PROPOSITION 2.3.4. Assume b is right stable and let x be its corresponding anti-
endomorphism. Then b is left stable if and only if * is invertible and left semi-stable
if and only if * is injective.

PROOF. The form b is left semi-stable <= for all 7 € End(Mg), b(rz,y) =0
implies 7 =0 <= b(z,7*y) = 0 implies 7 =0 <= 7* = 0 implies 7 = 0 (since b
is right semi-stable). Therefore, b is left semi-stable if and only if * is injective.

If * is bijective, then for all ¢ € End(Mpg) and x,y € M, b(x,0y) = b(a*flx7 Y).
By the previous argument, b is left semi-stable, hence o s uniquely determined
by o, thus b is left stable. On the other hand, if b is left stable, then there is an
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anti-homomorphism £ : End(Mg) — End(Mg) satisfying b(z,oy) = b(c?x,y) for
all z,y € M. This implies b(z,0y) = b(ofz,y) = b(x, o' y) and since b is right
semi-stable, 0 = o for all 0 € End(M). Therefore, x o § = idgnacary and by
symmetry, § o * = idgaa(ar), hence * is bijective. (]

Surprisingly, all implications between subsets of (R1)-(R3),(L1)-(L3) in Case I
can be explained by (R1) A (R2) = (R3) and its left analogue (the A sign denotes
logical “and”). This will be verified (with counterexamples) in the next section.

2.3.2. Case II.

LEMMA 2.3.5. Assume K has an anti-isomorphism k. Then:

(i) If b has a unique right k-asymmetry, then it is (left and right) semi-stable.
(ii) If b is right semi-stable and has a right k-asymmetry, then it is unique.

Proor. (i) By Proposition b is right semi-stable. Now assume b(ox,y) =
0 for all z,y € M. Then b(z,0y)" = b(oy, Ax) = 0. Since b is right semi-stable,
this means ¢ = 0, implying b is left semi-stable.

(ii) This is clear from Proposition 2.2.9(b). O

PROPOSITION 2.3.6. Assume K has an anti-isomorphism k. Then:

(i) If b is right regular, then it has a unique right k-asymmetry.

(ii) If b has a right k-asymmetry and b is right injective, then b is injective.
(iii) If b has a right k-asymmetry and b is left surjective, then b is surjective.

PROOF. (i) Take A = (Ad})~! o u, ar o Adj. This is a right s-asymmetry by
Proposition The uniqueness follows from Lemma ii), since b is right
semi-stable.

(ii) Let A be a right k-asymmetry and assume b(x, M) = 0. Then b(M,x) =
b(x, )\M)”_1 = 0 and since b is right injective x = 0.

(iii) By Proposition Adg = U,y o Ady o A. Since w,; ps is an isomorphism,

that Adi is surjective implies Ad; is surjective. O

COROLLARY 2.3.7. Assume K has an anti-isomorphism and b is right regular.
Then b is left injective.

In contrast to the last corollary, in Case I, (R0) does not imply (L1) and not

even (L5); see Example

PRrROPOSITION 2.3.8. Let k be an anti-isomorphism of K and assume b has a

unique right k-asymmetry A. Then the following are equivalent:

(a) b has a left k~L-asymmetry.

(b) b has a unique left k™ t-asymmetry.

(¢) A is right invertible.

(d) X is invertible.
When these conditions hold, b is right reqular (injective, surjective) if and only if b
is left reqular (injective, surjective).

PROOF. (a) <= (b): By Lemma [2.3.5(i), b is right an left semi-stable, so by
the left analogue of Lemma [2.3.5((ii), (a)==(b). The opposite direction is obvious.
(b)=>(d): Let X be the left k~!-asymmetry of b. Then b(x,y)* = b(y, \z) =
b(A' Az, y)". Since b is left semi-stable (Lemma i)), MA =idps and by symme-
try AN = idyy.
(d)=>(c): This is clear.
(c)=>(a): If N is a right inverse of A, then b(Nz,y) = b(y, \z)* =
b(Jc,y)”(1 for all ,y € M, hence X is a left x~'-asymmetry.
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To finish, if conditions (a)-(d) hold, then X is invertible. By Proposition [2.2.8
Adi = u;lM o Ady o A. Since uy ar and A are invertible, Adf; is bijective (injective,
surjective) if and only if Ady is. O

PROPOSITION 2.3.9. Assume b is right stable with corresponding anti-endomor-
phism * and let k be an anti-isomorphism of K. Then:
(i) If X is a right k-asymmetry of b, then x is injective and o** X = Ao for all
o € End(Mg).
(ii) If X is a left k-asymmetry of b, then (N)* is a right k-asymmetry of b.
In this case b has unique right and left k-asymmetries

PROOF. (i) b is right semi-stable, hence A is the unique k-asymmetry of b
(Lemma [2.3.5[ii)). By Lemma [2.3.5(i), b is left semi-stable, so * is injective by
Proposition In addition, for all z,y € M and o € End(Mg), b(z, Aoy) =
b(oy,z)" = bly,0*x)" = b(c*x, \y) = b(x,c**\y), implying Ao = o**\ (since b is
right semi-stable).

(ii) For all z,y € M, b(xz,(N)*y) = b(Az,y) = b(y, )" implying (\)* is a
right k-asymmetry. The uniqueness follows from Lemma [2.3.5] since b is right
semi-stable. ]

COROLLARY 2.3.10. Let k be an anti-isomorphism of K and assume b has an
invertible right k-asymmetry A. Then b is right stable if and only if b is left stable.
In this case, if * is the corresponding anti-isomorphism of b, then o** = A\oA™1.

PROOF. Assume b is right stable and let * be its corresponding anti-isomor-
phism. Then by Proposition i), o** = XoA7! for all o € Endg(M), hence
is *2 := % o * bijective. Therefore, * is bijective and by Proposition b is left
stable. The opposite direction follows by symmetry. O

DEFINITION 2.3.11. Let (M,b,K) be a bilinear space and let k be an anti-
isomorphism of K. An augmentation map for b (w.r.t. k) is a map v € Endr(M)
such that b(z,~vy) = b(x,y)™ for all z,y € M.

LEMMA 2.3.12. Assume K has an anti-isomorphism . Then:

(i) If b is right semi-stable, then it has at most one augmentation map.

(ii) If b has a left or right k-asymmetry X and b is right stable with corre-
sponding anti-endomorphism *, then v = A*\ is an augmentation map
for b.

(iil) Assume b is right semi-stable. If v is an augmentation map and b is left
surjective or left stable, then v € Cent(Endg(M)).

(iv) Ifb has a left k-asymmetry X and 7 is an augmentation map, then b(yz,y) =
b(x,y)"™* for all z,y € M. If moreover b is right stable with corresponding
anti-endomorphism *, then v* =~ (so by (i), \*A = X*\**).

(v) If b is right regular, then b has an augmentation map, and it is invertible.

(vi) If b is right injective and b has an augmentation map, then it is injective.

PROOF. (i) This easily follows from Proposition [2.2.9(b).

(ii) Assume A is a right k-asymmetry. Then for all z,y € M, b(z,y)""
b(y, \x)® = b(Az, \y) = bz, \*Ay). If X is a left k-asymmetry, then b(x,y)"™* =
b(Ay, x)" = b(Az, \y) = b(x, \*Ay). In both cases A*\ is an augmentation map.

(iii) Let 0 € Endg(M) and assume b is left surjective. Fix some x € M. Then
y = b(z, oy) lies in M) hence there is some 2/ € M such that b(x, oy) = b(z', )
for all y € M. Therefore

b(x,yoy) = b(z,oy)™ = b(a',y)"" = b(a’, vy) = b(z,ovy) .

4 But %~ l-asymmetries do not exist in general; see Example [2.4.13
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Since this holds for all z,y € M and since b is right semi-stable, vo = 0. Now
assume b is left stable. Then there exists ¢/ € Endg(M) such that b(o'z,y) =
b(xz,oy) for all z,y € M. Thus

b(z,yoy) = b(z,oy)"™" = b(o'z,y)"™" = b(o'z,vy) = b(z,07y)
and as before we get vo = o7y.

(iv) For all z,y € M, b(yz,y) = b()\y,'y;zc)’(1 = b(A\y,z)" = b(z,y)". The
second assertion follows since b(z,vy) = b(z,y)™ = b(yz,y) = b(x,v*y) for all
T,y € M.

(v) By Proposition[2.3.6(i), b has a right asymmetry A and by Proposition
b is right stable. Let % be the corresponding anti-isomorphism of 5. Then by
(ii), v = A*A is an augmentation map for b w.r.t. k. We can now apply the
same argument to £~ and get an augmentation map w.r.t. s, /. Then for all
x,y € M, b(x,y) = blx,y'y)™ = b(x,vy'y) and it follows that vo' = idpy;. By
symmetry, 7'y = ids, hence v is invertible.

(vi) Let v be an augmentation map of b and assume vy = 0 for some y € M.
Then b(x,y) = b(z, 'yy)"”"_2 = 0 and since b is right injective, y = 0. O

ProrosiTiON 2.3.13. Assume K has an anti-isomorphism k, and b is right
regular with corresponding anti-isomorphism x. If x is surjective, then b is left
reqular.

Proor. By Proposition i), b has a right k-asymmetry A and by
Lemma A*\ is an augmentation map for x and it is invertible, hence A
is left invertible. Assume # is surjective. Then there exists u € Endg(M) such that
w* = \. Taking 0 = p in Proposition i), we get A"\ = p** A = A\pu, so A is also
right invertible (and necessarily p = A*, implying \** = X). We are now through
by Proposition [2.3.8 0

Before proceeding to Case 111, let us summarize the implications proved so far.
We conjecture that in Case II, all implications between subsets of (R1)-(R3),(R4)-x
and their left analogues can be explained by the following list and its left analogue:

(1) (RO) = (R3) A (R4) (Prp. [2.3.3] Prp.[2.3.6(i));
(2) (R1) A (R) = (L1) (Prp. B2 1));

(3) (L2) A (R4) (R2) (Prp. [2.3.6((iii));

(4) (R4)-x A (L4)-x~1 A (R1) = (L1) (Prp. [2.3.8);
(5) (R4)-x A (L4)-x=1 A (R2) = (L2) (Prp. [2.3.8);
(6) (R4)-x A (L4)-x= A (R3) = (L3) (Prp. [2.3.8);
(7) (RO) A (L3) = (LO) (Prp. [2.3.13).

Note that (RO) is equivalent to (R1) A (R2) and the same holds for (L0). We also
have shown that:

(8) (L4)-x A (R3) = (R4)-x (Prp. ii));
(9) (R4) = (R5) A (L5) (Lm. E35().
2.3.3. Case III. The definition of augmentable anti-endomorphisms of K is

inspired by the map v of Lemma [2.3.12

DEFINITION 2.3.14. Call an anti-endomorphism k of K weakly augmentable
if there exist a natural transformation v : idymod-r — idmod-r Such that for all
A, B € Mod-R and any bilinear pairingb: A x B — K

(2) b(z,vBy) = b(x,y)"™ Vrxc A yebB.

If~ can be chosen to be a natural isomorphism (i.e. yg € End(B) is an isomorphism
for all B € Mod-R), call k an augmentable anti-isomorphism. The transformation
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v is called an augmentation transformation of k (or just an augmentation, for
brevity).

Observe that since «y is natural, 74 is central in Endg(A) for all A € Mod-R.
The augmentation 7 is not uniquely determined by k, as demonstrated in Exam-
ple ii) below, but if K is faithful (which is equivalent to Ky being faithful,
since K has an anti-isomorphism), then ~ is uniquely determined. This will be veri-
fied later in Propositionbelow (take X = Rp). Moreover, we shall prove below
that for any anti-isomorphism s there is a unique “augmentation transformation” ~y
which is defined on the subcategory of right reflerive R-modules (Proposition.

The reason that in the definition « depends only on B and not on A and b is
that if « is an augmentation of b: A x B — K, then it is also an augmentation of
(z,y) — bloz,y) : A’ x B — K for any o € Hompg(A’, A). A deeper justification
for this will appear later in section [2.7.3] where we shall see that there is a unique
natural transformation 7 : [0] — [0] such that 5 o Adj, = Ad’.,, for any bilinear
pairing b: A x B — K.

EXAMPLE 2.3.15. (i) Any involution of K is augmentable (take v = idyod-r)-

(ii) Consider Q as a double Z-module by letting ©¢ and ®; be the standard
action on Q. Then the map x — 2x is an anti-isomorphism of Q (as a double Z-
module) and it is weakly augmentable but not augmentable. Indeed, v = 4idpod-z
in this case, and 4idyoq.z is not invertible for all Z-modules. (The augmentation
«y is uniquely determined since Q is faithful.)

(iii) Let K be a 2-torsion Z-module. Then K can be considered as a double
Z-module by letting ©®g and ®; be the standard action of Z on K. Then k := id is
an involution of K. However, nidyoq-g is an augmentation of s for any odd n € Z.
In particular, idpod-r and (—1)idmod-r are two different invertible augmentations
of k.

(iv) Let R be a ring and let * be an anti-endomorphism of R. Assume that
there is A € R such that A*A € Cent(R) N R* and ™A = Az for all x € R. Let K
be the double R-module obtained from R and * in Example 2.1.4] Then the map
Kk : K — K defined by k" = k*\ satisfies

(ko1r) =(kr) A=r"E"A=k"Opr,
(k©or)* ="k AN=kE"r" A=Kk Xr=k"O1 1,
for all k € K and r € R. In addition, for all £k € K, we have
EM = (E*A)" A= NE™ A= X" Mk,
hence x? is invertible (since \*A € R*) and it follows that & is an anti-isomorphism
of K. Since A\*\ is also central, k is augmentable because we can take v =

A*Xidmod-r. In Proposition [2.4.1) we show that all augmentable anti-isomorphisms
of K are obtained in this manner.

Part (i) of the following proposition shows that there is no need for a “left
analogue” for the augmentation transformation.

PROPOSITION 2.3.16. Let k be a weakly augmentable anti-isomorphism of K
with augmentation ~v. Then:

(i) For any bilinear pairing b: A x B — K we have
b(vaz,y) =b(z,y)*™* Vexe€A yeB.

(ii) Assume k is augmentable. If (M,b,K) is a bilinear space and n € Z is
odd, then b has a (unique) right (left) k-asymmetry if and only if b has a
(unique) right (left) K™-asymmetry.
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(ii) If (M,b,K) is a bilinear space and b is right stable with corresponding
anti-endomorphism *, then vy, = vm-

PRrROOF. (i) Let b: A x B — K be a bilinear pairing. Then b’ : Bx A —» K
defined by V' (y,x) = b(x,y)”" is also a bilinear pairing. Therefore, V'(y,yaz) =
b (y, ). But this implies

b(razy) = (V' (g 7a2)) " = (O (5, 2)™)" = b(ar,y)"™
for all x € A and y € B, as required.

(if) It is straightforward to check that A € Endg(M) is a right (left) x-
asymmetry of b if and only if ¥7: ) is a right (left) x*™T!l-asymmetry of b, where
m can be any integer. (The left version follows from (i).) The claim then follows
immediately.

(iii) For all z,y € M we have b(x,vapry) = b(z,y)"™ = b(ymz,y) = bz, viy)
(the second equality follows from (i)), hence vi; = var- O

We now have the following improvement of Proposition [2.3.9)

PROPOSITION 2.3.17. Let (M,b, K) be a bilinear space where k is augmentable
with augmentation y. Assume b is right stable with corresponding anti-isomorphism
%, and b has a left k= '-asymmetry X'. Then b has a (unique) right k-asymmetry
given by X = (N)*yar and o** = AoA~! for all o € End(M). In particular,  is
bijective, *2 is an inner automorphism of Endg(M) and b is left stable.

PRrROOF. By Proposition ii), (\)* is a right kK~ 1-asymmetry and by Propo-
sition [2.3.16](ii), A := var(\')* a right r-asymmetry. Let 1 = v\’ and observe that
w* = A. Then by arguing as in the proof of Proposition we get that A is
invertible and o** = AoA~! for all ¢ € Endg(M). All other assertions follow
immediately (b is left stable by Proposition . O

COROLLARY 2.3.18. Let (M,b, K) be a right stable bilinear space with k aug-
mentable. Then the following are equivalent:

(a) b is left stable and has unique left and right k- and k~'-asymmetries.

(b) b has a left k= t-asymmetry.

(c) b has a right k-asymmetry which is right invertible.

(d) b has a right k-asymmetry X satisfying \** = \.
If moreover M does not contain an infinite direct sum of its non-zero summands
(e.g. if M is noetherian or has finite uniform dimension), then these conditions are
also equivalent to:

(e) b has a right k-asymmetry.

PROOF. (b)==-(a) and (a)==-(d) easily follow from Propositions (note
A** = A(A)A™! = X in this case) and ii).

(d)==>(c): By taking o = A* in Proposition 2.3.9(i) we get A*A = (A*)**\ =
AN*. By Lemma (ii), A*A = v, which is invertible. Thus, A is invertible.

(¢)=>(b): Let A be a right asymmetry of b which is right-invertible. By
Lemma (ii), A*\ = 7, so A is also left-invertible, hence invertible. Therefore,
A~ lis a left k™ '-asymmetry.

We now assume M does not contain an infinite sum of its non-zero summands
and prove (c¢) <= (e). Indeed, (c)==(e) is a tautology. To see the converse, note
that A is left invertible by the argument in (c)==-(b). The assumption on M implies
that End g (M) does not contain an infinite set of non-zero orthogonal idempotents.
By [58, p. 231], this means M is Dedekind ﬁniteEl, thus A is right invertible. O

5A ring R is called Dedekind finite if zy = 1 implies yx = 1.
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The last corollary shows that (R3) and (L4)-x~! imply (R4)-x, which is false
in Case II. We believe that in Case III, all implications between subsets of (R1)-
(R3),(R4)-x and their left analogues can be obtained from the following list and its

left analogue:

(1) (R ) (Prp. [2.3.6(i));

(2) (R A (R ) (L1) (Prp. [2.3.6(ii));
(3) (L2) A (R4) = (R2) (Prp. [2.3.6((iii));
()(R4)n/\( 4)-k~1 A (R1) = (L1) (Prp. [2.3.8);
(5) (R4)-k A (L4)-x—1 A (R2) = (L2) (Prp. 2.3.8);

(6) (L4)-x=1 A (R3) = (R4)-r A (L3) (Prp.[2.3. 17[).
In addition, if we assume that the base module M does not contain an infinite
direct sum of its non-zero summands, then:

(7) (R4)-x A (R3) = (L4)-x! (Cr.[2.3.18).

2.4. Counterexamples

0) =
1)
1.2)

3
4
5

In this section, we demonstrate the non-implications between the properties
(R1)-(R5) and (L1)-(L5). The examples will be divided according to their relevance
to Cases I, IT and III of the previous section. Since examples for Case III are also
relevant to Case II, but not necessarily vice versa, the examples of Case II appear
after the examples of Case III.

We begin with a propositions that will help us to generate examples.

PRrROPOSITION 2.4.1. Let R be a ring and let x be an anti-endomorphism of R.
Make R into a double R-module by defining:

r®ps=s"r, rO1s=rs Vr,seR,

and let K denote the R-module thus obtained. Define b: R x R — K by b(z,y) =
x*y. Then:

(i) b is a right regular bilinear form and under the natural identification
End(Rgr) = R (via f < f(1)), the corresponding anti-endomorphism of
b is x. In addition, ker(Ad}) = ker(x) and im(Ad}) = im(x) under the
identification RI°) = Hom(Rg, K1) = End(RR) = R.

(ii) Assume there is A € R such that A*A € R* and z**X = Az for all x € R.
Define k : K — K by r® = r*A. Then k is an anti-isomorphism and
under the identification End(Rg) = R, X is a right k-asymmetry of b.

(iii) In the assumptions of (i), if AX*A € Cent(R), then k is augmentable and
its augmentation transformation is v = A*Nidmod-r-

(iv) In the assumptions of (ii), if XA =1, then k is an involution of K.

(v) Any anti-isomorphism (resp.: augmentable anti-isomorphism, involution)
k of K is obtained from some X € R as in (i) (resp.: (i), (iv)).

PROOF. Recall that under the natural identification End(Rr) = R, an element
r € R corresponds to the homomorphism z + rz.

(i) This was verified in Example

(ii) That & is an anti-isomorphism follows from Example [2.3.15((iv). (The as-
sumption A\*\ € Cent(R) was not used to show this.) Next, b(z,y)" = (z*y)*A =
y*r** A = y*Ax = b(y, Az), hence A is the right k-asymmetry of b.

(iii) This was shown in Example [2.3.15{iv).

(iv) For all k € K, k" = (K*A)*A = ME™X = M)Ak = k, hence k is an
involution.

(v) Let * : R — R denote the corresponding anti-endomorphism of b and
assume k£ is an anti-isomorphism of K. Then by Proposition i), b has a
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right k-asymmetry A € R. Then for all k € K, k* = b(1,k)" = b(k,\) = k*\
In addition, by Proposition i), x**X = Az for all x € R. Therefore, for
all k € K, k" = A\*\k (see the computation in (iv)) and since x? is invertible,
A*A € R*. Thus, & is obtained from A as in (ii). Now assume & is augmentable
with augmentation transformation «. Then by Lemma Yr = A*X and the
naturalness of v implies A*A = v € Cent(R), as required. If moreover k is an
involution, then v = id, hence \*A =1, as in (iv). O

REMARK 2.4.2. Assume the notation of part (ii) of the last proposition. That
A*A € R* does not imply A is invertible, even when A*A = 1; see Example [2.4.12
In addition, A*\ commutes with im(x). Indeed, for all z € R:

XA =N A= (2"« N)" A= (Ax)" A =2" A"\ .
Therefore, if * is surjective, then x is augmentable, and further arguing would show
b is regular. This agrees with Proposition [2.3.1

2.4.1. Case I.

EXAMPLE 2.4.3. Let R be a ring, let x be an anti-endomorphism of R and
define b as in Proposition Then b is right regular (and hence right injective,
surjective and stable). It is left injective (resp. surjective) if and only if * is, and by
Proposition 2.3.4] it is left stable (semi-stable) if and only = is bijective (injective).
Therefore, we see that:

(1) (RO) =& (L5) v (L2)ff by taking R = Flz|2? = 0] with F a field and
defining * : R — R by f(z)* = f(0).

(2) (RO) A (L2) =& (L5) (and in particular (R0) A (L2) =& (R1) V (R3))
by taking R = FN = F x F x --- with F a field and defining * : R — R
by (z1,22,...)" = (x2,23,...).

(3) (RO) A (L1) =~ (1L2) V (L3) by taking R = Q(z) and defining * : R — R
by f(2)* = f(a?).

We set some general notation for the next examples: Let F' be a field and let
T denote the ring of 2 x 2 upper triangular matrices over F. Define M and J to

be the ideals of T' consisting of matrices of the forms [§ §] and [ §], respectively.
Then it is easy to verify that:

Endr(M) 2 Endp(J) 2 Endr(M/J) 2 F,

Homy (M, J) 2 Hom(M/J, M) =2 Homy(M/J,J) = Hom(J, M/J) = 0,
Homyp (M, M/J) = Homyp(J, M) = F,
where all isomorphisms are F-vector spaces isomorphisms or F-algebras isomor-
phisms (whichever appropriate). In particular, M, J, M/J are LE-modules (i.e.
modules with local endomorphism ring), hence M* @ J™ & (M/J)" 2p M* & J™ @
(M/.J)"™ implies k = k', m = m/ and n = n/. (This follows from the Krull-Schmidt
Theorem; see [80], §2.9]. Moreover, any f.g. right T-module is a sum of copies of
M, Jand M/J.)

EXAMPLE 2.4.4. (R2)A(R3)A(R4)AL2)A(L3)A(LL) =& (R1)V(L1): Make K =
M/J into a double R-module by taking both ®¢ and ®; to be the standard right
action of T on K (this works since 7'/ ann” K is commutative). Note that k := idx
is an involution of K. Define b : M x M — M/J by b(mi,ma) = mymg + J.
Then b is a k-symmetric bilinear form and it is easy to check that b is degen-
erate (i.e. neither right nor left injective) with ker Adj = kerAdf = J. Since
Homy (M, J) = 0, b is semi-stable. It is now routine to verify that idas is a left

6 The sign “V” denotes logical “or”.
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and right k-asymmetry and that b is stable (use the fact End(M7) = F; the corre-
sponding anti-endomorphism is idg). The form b is surjective since for all ¢ € {0,1},
dimp M = dimp Homy(M,M/J) =1 and Ad,l;, Ady are non-zero F-linear maps.

ExampLE 2.4.5. (RO) A (L2) A (L3) =& (L1): Make K := M into a double
T-module by defining

m@®pt=tm and m®yt=mt Vme M,xeT,

(this works since T/ ann® M = F), and let b : M x M — K be given by b(z,y) = zy.
It is easy to check that b is right but not left injective. In addition, Kq = M/J ®
M /.J and therefore, dimp M = dimp Hom(Myr, Ky) = 2 dimp Homg (M, M/J) =
2. Dimension considerations now imply Ady is bijective, hence b is right reg-
ular. Therefore, b is right stable and since Endp(M) & F as F-algebras and
the corresponding anti-isomorphism * is F-linear, * must be idp. Thus, * is bi-
jective, implying b is left stable (by Proposition . To finish, dimp M0 =
dimp Homy (M, M) = dim Fr = 1, so since Adj # 0, b is left surjective. (Note that
K cannot have an anti-isomorphism for otherwise we would get a contradiction to

Corollary [2.3.7)

ExaMPLE 2.4.6. (R0) A (L1) A (L3) =~ (L2): Make K = My(F) x F into a
double T-module by defining:

(U, z) &g A = (ATU, cx) and (U,z) ©1 A= (UA, ax)

for all U € My(F), v € F and A = [gb] € T. Define b : M x M — K by
b(z,y) = (27y,0). It is straightforward to check that b is injective. Note that
Ko =2 M®M®.J, hence dimp M = dimp Homg (M, MM @®.J) = 2, so dimension
constraints imply Adj is bijective. The argument of the last example shows that
in this case b is also left stable. On the other hand, K7 = M & M @® M/J, hence
dimp M%) = dimy Homgp (M, M & M & M/.J) = 3, so Adj cannot be surjective,
implying b is not left surjective. (In this case K does not have an anti-isomorphism
r since M0 22 MU: see Proposition Alternatively, K cannot have an anti-
isomorphism since this would contradict Proposition )

ExaMPLE 2.4.7. (RI)A(R3)A(L2)A(L3) =& (R2)V(L1): Make K = M x F
into a double T-module by defining:

(m,z) @t = (tm,ax) and (m,x)©®1t= (mt,cx)

forallm e M, z € Fandt = [4%] € T. Define b: M x M — K by b(z,y) =
(2y,0). By restricting the range of b to be M x {0} C K, we get the bilinear
form of Example Therefore, b is right injective, stable and left degenerate.
However, Ko 22 M/J®M/JSM/J, hence dimpg M = dim Homy (M, (M/J)3) =
3, implying b is not right surjective. On the other hand, K1y = M & J, hence
dimp MY = dimp Homp (M, M @& J) = 1, so b is left surjective (since Ad} # 0).

It is possible (but tedious) to check that the previous examples, together
with Example below, imply that in case K is not assumed to have an anti-
isomorphism (i.e. Case I), all the implications between subsets of the properties
(R1)-(R3) and (L1)-(L3) are explained by “(R1) and (R2) = (R3)” and its left
analogue.

2.4.2. Case III. (We preceded Case III to Case II since examples relevant to
the former are relevant to the latter but not vice versa.)

EXAMPLE 2.4.8. (R1) A (R3) A (R4)-x A (L1) A (L3) A (L4)-x~1 =& (R2) V
(L2): Make Z into a double Z-module by letting both ®g and ®; be the standard

action of Z on itself. Define b : Z X Z — Z by b(x,y) = 2zy and let x = idz. Then b
is a k-symmetric bilinear form over Z. The rest of the details are left to the reader.
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EXAMPLE 2.4.9. (R1) A (R4)-x A (L1) A (L4)-x~! =& (R2) V (R3) V (L2)
V (L3): Consider Z as a double Z-module like in the previous example and define
b:Z2x7Z? — Z by b(z,y) = 2T [} 9]y (the elements of Z? are considered as column
vectors). Then b is injective and it has a unique right and left idz-asymmetries
(given by idzz2). It is also easy to see b is not right nor left surjective.

We claim b is not right stable. To see this, identify Endz(Z?) with My(Z)
and let 0,0’ € My(Z). Then b(oz,y) = b(x,0'y) for all z,y € Z* if and only
if [§9]0" = oT[{9]. By letting 0 = [¢4] and working in M3(Q), we sece that

necessarily
, [1 07 ' Ta v]"[1 0] [ a 2
710 2 c d 02| b2 4]

Therefore, for o = [J}] there is no o/ € My(Z) as above and thus b is not right
stable. The form b is also not left stable by Corollary

ExaMmPLE 2.4.10. (R1) A (R3) A (L1) A (L3) =& (R2) vV (R4) V (L2) v (L4):
Let F be a field and let +1 # o € F*. Make F? into a double F-module by letting
both ®¢ and ®; be the standard action of F on F2. Then b: F x F' — F? defined
by b(z,y) = (zy, azy) is a bilinear form. It is easy to check that b is injective and
stable (the corresponding anti-isomorphism is idEnd(FF)). Dimension constraints
also imply b neither left nor right surjective. Define x : F2 — F?2 by (a,b)" = (b, a).
Then & is an involution of F'? and we claim b has neither left nor right k-involution.
Indeed, assume A is a right x-asymmetry and identify End(Fr) with F. Then
(o, 1) = b(1,1)" = b(1,A) = (A, Aa) which is impossible if o # +1. Similarly, b
has no left xk-asymmetry. Despite the former, b has right and left id pz-asymmetries
(given by idp).

EXAMPLE 2.4.11. (R3) A (R4)-x A (L3) A (L4)-x~! =& (R1) vV (R2) V (L1)
Vv (L2): With the notation of Example K x K is a double T-module and
k = idgxk is an an involution of K. Define o/ : M x M — K x K by b (x,y) =
(b(x,y),0). Then V' satisfies (R3), (R4)-x, (L3) and (L4) but not (R1), (R2), (L1)
or (L2). The details are left to the reader.

ExampLE 2.4.12. (RO) =& (L2) v (L3) V (L4): Let M be the free monoid
over {zg,x1,Ta,...} subject to the relations:

Tok4+1%2k = 1 = Top41Tok+2,

Tn4-242L2k = T2kTn+2k, L2k 4+1Tn42k+3 = Tn42k+1T2k+1,

for all n,k > 0. The map * : M — M defined by sending the word x;,z;, ... z;, to
i 41---Ti+12i;,+1 is a well defined anti-endomorphism of M satisfying:

(3) w**.%'o = Tow

for all w € M. In addition, xzizo = 120 = 1. Let F be a field and let R = FM
be the monoid algebra of M over F. Then * extends to an anti-endomorphism of
M, satisfying for all w € R. Define b and K as in Proposition m Then
b is right regular. By taking A = z in part (iv) of that proposition, we see that
K admits an involution k, and z¢ is a right k-asymmetry of b. We claim b does
not have a left k-asymmetry. Indeed, by Proposition it is enough to verify
x9 = x§* # wo. Since showing this involves a long and technical argument, we
leave it for the addendum. b cannot be left stable since this would contradict
Proposition and b cannot be left surjective since this would imply b is left
regular (because b is already injective by Proposition ii)), and hence has a left
K-asymimetry.
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In order to show that the list of implications for Case III given in subsec-
tion [2:3.3]is complete, one also has to demonstrate the following non-implications,
and possibly more:

o (R2) A (R3) A (L2) A (L3) =& (R4)- (even when K has an involution),

o (R2) A (R4)-r A (L2) A (L4)-x~1 =5 (R3),

e (R3) A (R4)-x A (L2) =% (L4)-x1.
The problem with all these non-implications is that b has to be right or left sur-
jective. In addition, we could not produce an example of a bilinear form having a
unique right asymmetry with non-trivial kernel.

2.4.3. Case I1.

EXAMPLE 2.4.13. (R1), (R3), (R4)-x, (L1), (L3) =& (R2), (L2) or (L4)-x~1:
Make Q into a double Z-module by letting ®¢ and ®; be the standard action of Z
on Q. Define k: Q = Q by k(q) =2¢ and b : Z x Z — Q by b(z,y) = xy. The
details are left to the reader. (Note that x is not augmentable, for otherwise this
would contradict Corollary [2.3.18} see Example [2.3.15(ii) for a direct verification of
this fact.)

Provided that all the missing non-implications for Case III are shown, the
following non-implications (and possibly more) are needed in order to show that
the list of implications for Case II given in subsection is complete.

e (R1), (R3), (L2) and (L4)-x~ =& (R2), (R4)-x, (L1) or (L3),
e (R1), (R4)-s, (L1), (L3) =~ (R3),
e (R2), (R3), (R4)-k, (L2) and (L3) =& (R1), (L1) and (L4)-x~1.

Note that « cannot be augmentable in such examples.

2.4.4. Further Examples. The following examples demonstrate that there
exist:

(1) regular bilinear spaces (M, b, K) s.t. K has no anti-isomorphism,
(2) regular bilinear spaces (M,b, K) s.t. K has an augmentable anti-isomor-
phism, but no involution.

We also construct an example of a right regular bilinear form taking values in a
double R-module with an an anti-isomorphism which we believe (but still cannot
prove) to have no augmentable anti-isomorphisms.

EXAMPLE 2.4.14. Let R be a ring and let * be an anti-automorphism such that
*“ is not an inner automorphism (e.g. take R to be commutative and let * be an
automorphism of R such that #? # id). Define b and K as in Proposition m
Then b is regular, but K does not have an anti-isomorphism. Indeed, if K had an
anti-isomorphism k, then the proof of Proposition would imply *2? is inner,
which contradicts our assumptions. (This implies that having an anti-isomorphism
is quite rare in general.)

2

ExampPLE 2.4.15. Keeping the notation of the previous example, if we choose *
such that r**\ = Ar for some A € R with A*\ € R* but A cannot be taken to satisfy
A*A =1, then K admits an anti-isomorphism but no involution (Proposition.
If we take A to be invertible, then x is bijective, hence by Remark (ii), A\ €
Cent(R) and it follows that « is augmentable (Proposition [2.4.1](iii)).

Such an example can be constructed as follows: Let M denote the free monoid
over {,}nez. The group F' = FreeAb (y,z) acts on M by y(x,) = zp42 and
2(xp) = xp—o for all n € Z. We can thus form the semi-direct product S = M x F'.
Namely, S counsists of pairs (m, f) € M x F and (m, f) - (m/, f') = (mf(m'), ff).
Identify z, with (x,,1r) € S and y,z € F with (157,y),(1p,2) € S. Then
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YTy = Tpioy and zx, = x,_oz for all n € N. Define an anti-isomorphism * : § — S
by z} = xpt+1, y* = z and z* = y. Then * is easily seen to satisfy

Sy =y,  yTy=yy, My =yz,

hence *? is an inner isomorphism of S. Let F be a field and let R = FS be the
monoid algebra of S over F'. Then * extends to R and z**y = yx for all z € R.

We claim there is no y’ € R* with (y')*y’ = 1 such that **y’ = ¢’z for all
z € R. Assume by contradiction such g’ exists. Then leading-term considerations
easily imply 3’ = ay’z® for some t,5 € Z and « € F. Since 29y’ = y'xg, t — s must
be 1. But then (y')*y’ = a?y'*2!T% #£ 1, since t + s is odd. Therefore, *? is inner,
but there is no A € R with A*A =1 such that 2**\ = Az for all z € R.

REMARK 2.4.16. The reader might wonder why we had to construct such a
complicated ring in the last example. The reason lies in the fact that although
*2 must be inner, * cannot be a composition of an inner automorphism with an
involution. (Indeed, a direct computation would show that if r* = zriz=! for some
involution #, then *2 is inner, but we can take A\ = z(x~!)* which clearly satisfies
A*A=1.)

ExAMPLE 2.4.17. Keeping the notation of the previous examples, if we can we
choose * such that r**\ = Ar for some A € R with A*A € R*\ Cent(R) and A cannot
be chosen to satisfy A*A € R* N Cent(R), then K has an anti-isomorphism, but no
augmentable anti-isomorphism (Proposition. Note that * cannot be surjective
(since A*A commutes with im(x)), hence A cannot be invertible. We believe the
following construction satisfies the previous requirements, we were unable to prove
that A cannot be chosen to satisfy A*A € R* N Cent(R).

The construction is similar to Example [2.4.12] with a major difference — the
relation x1xg = 1 and all relations following from it by applying * are dropped and
replaced with relations making x;z¢ into an invertible element. Define M to be the
free monoid on {xg, 1,2, ...} U{yo,y1,¥2,... } subject to the relations:

T2n11T2nY2n = Y20T2n+1T2n = T2nt1T2n42Y2n+1 = Y2n 120122042 = 1,
Tpt242kL2k = L2k Tn+2k, L2k4+1Tn+2k+3 = Tn+2k+1L2k+1,
Yn+2+42kT2k = L2kYn+2k L2k+1Yn+2k+3 = Yn+2k+1L2k+1,

for all n,k > 0. Let * be the unique anti-endomorphism sending x,, to x,+1 and
Yn t0 yYn+1. Then * extends to the monoid algebra R = FM (F is a field) and
r**zo = xor for all » € R. In addition, z{xo = z129 € R* (its inverse is yp). (Note
that R maps onto the ring constructed in Example [2.4.12| by sending all the y-s
to 1.) Tt is left to check that xfzo ¢ Cent(R) (which should be technical by not

impossible) and that there is no A € R such that 7**A = Ar for all r € R and
A*A € R* N Cent(R). (We have no clue how to show the latter.)

2.5. Special Cases

In this section, we demonstrate how the results of section [2.3] can be improved
by adding extra assumptions on [0], [1],¥ and @, e.g.:
(1) One or both of [0],[1] is exact. (The functors [0], [1] are only left-exact.)
(2) One or both of ¥, ® is injective.
(3) One or both of ¥, ® is bijective.

We will also explain what K and M should satisfy for these assumptions to hold.
Explicit examples are also presented. (Recall that ¥ (resp. ®) was defined to be a
the natural transformation from idned-g to [0][1] (resp. [1][0]) given by (Vs f)z =
fx for all M € Mod-R, z € M, f € MY (vesp. (®p;f)z = fa for all M € Mod-R,
re M, feMM))
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For the discussion to follow, K is a fixed double R-module. Recall that K;
denotes K considered as an R-module via ®;. We will make repeated use of Corol-
lary [2.2.5] which states that for any bilinear space (M, b, K), the following diagrams
commute:

(4) M 2 o] M i)
Adﬁi / Ad;l /
(Adp)[! (Adp)M

Mol M
In addition, we will freely use the fact that if A,B € Mod-R, f : A — B and
i € {0,1}, then f is surjective (bijective) implies fl} : B — All is injective
(bijective). (This holds since by definition [é] is the functor Hom(__, K;_;), which
is well-known to be left-exact.)

We begin with the following definition regarding the natural transformations
U and .

DEFINITION 2.5.1. A module M € Mod-R is called right (left) semi-reflexive if
W (Par) is injective and right (left) reflexive if Uy (®pr) is bijectz'vem We will say
M is semi-reflexive (reflexive) if it is both left and right semi-reflexive (reflexive).

Reflexive and semi-reflexive modules appear when considering injective and
regular bilinear forms.

PROPOSITION 2.5.2. Let (M,b, K) be a bilinear space. Then:
(i) Ifb is right injective, then M is right semi-reflexive (i.e. Wy is injective).
(ii) In b is right regular and left surjective, then M is right reflexive. (In
particular, if b is reqular, then M is reflexive.)

PROOF. This follows from (). (In (i), (Ad§)!M is injective since Ady is surjec-
tive.) O

In light of this proposition, if one is interested only in regular bilinear forms,
then it makes sense to assume ® and ¥ are isomorphisms. However, if one is inter-
ested in right (but not necessarily left) regular forms, then one can only assume ¥
is injective; requiring ¥ to be bijective will result in the exclusion of some examples,
as demonstrated in the following example.

ExaMPLE 2.5.3. Let R be a ring and let * be an anti-endomorphism. Define
K and b : R x R — K as in Proposition Then b is right regular. Let us
compute Uy and ®p explicitly.

First, Rl = K; and the isomorphism is given by [r — k ®1_; 7] — k. In
particular, RI! = K| = Ry and hence RMO = RO =~ K where the isomorphism
is given by [[r — 7*k] — sk] — s € Ky (r,s,k € R = K). Since ®g(z) = [[r —
r*k] — x*k], ®g is just * once identifying RMO with Ky. On the other hand,
RO = Homp (Ko, Ko) = Endg(Kp) and, identifying both modules, ¥r, is easily
seen to be the map sending = to [k — kx] € Endg(Kj).

It is now easy to see that ¥p is always injective (as it must be, since b is right
regular), but ®p is injective (surjective) if and only if * is. If we take (R,*) to
be as in Example i), then Uy is not surjective and @ is not injective nor
surjective. In particular, R is right semi-reflexive and not left semi-reflexive.

PROPOSITION 2.5.4. Let (M,b, K) be a bilinear space. Then:

7 Compare this with torsionless and reflezive modules in [58]: Let M € Mod-R and consider
M* := Hom(MEg, RR) as a left R-module by (r - f)m :=r - (fm). Then there is a standard map
t: M — M** := Hom(rM™*, rR) given by (iz)f = fx (note M** is a right R-module). The
module M is called reflexive (resp. torsionless) if i is a bijection (resp. injection).
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(i) If M is right semi-reflexive and b is left surjective then b is right injective.
(ii) If M is right reflexive and b is left regular, then b is right reqular.
(i) If [1] is exact, M is right reflexive and b is left injective, then b is right
surjective.
(iv) If K has an anti-isomorphism, then M is right semi-reflexive (reflexive)
< M is left semi-reflexive (reflexive), and [1] is exact < [0] is exact.
PROOF. (i), (ii) and (iii) easily follow where in (iii), the fact [1] is exact
implies that if Ad} is injective, then (Ad§)!! is surjective.
(iv) If & is an involution, then by Proposition[2.2.7 [0] 2 [1], hence [0] is exact
if and only if [1] is exact. The first equivalence follows from Proposition [2.7.5(iii)
O]t

below, which says that there is a natural isomorphism 67 : MO — A guch
that 5MO(I)M:\I/M O

COROLLARY 2.5.5. Let (M,b, K) be a bilinear space. If [0] and [1] are exact,
M is reflexive and b is injective, then b is reqular.

Reflexive and semi-reflexive modules also have the following nice properties:

PROPOSITION 2.5.6. Let A, B € Mod-R.
(i) The map f — fI% from Hom(AM, B) to Hom (BN, AN 45 injective.
(ii) Assume B is left semi-reflexive, then the map f — f from Hom(A, B)
to Hom(BM, A is injective.
(iii) Assume A and B are left reflexive, then the map f — f11 from Hom(A, B)
to Hom(BM, A is bijective.

Proor. (i) Let f € Hom(AM, BlU) and assume £ = 0. Then fl =0 —
0= CI)? o f[O][l] oW n = q)[é] oWgnof=idgpof = f.

(ii) Let f € Hom(A, B) be such that fl!/ = 0. Then fI0 = 0 = 0 =
fOl o d 4 = d o f. Since ®p is injective, it follows that f = 0.

(iii) In view of (ii), we only need to prove that for any g € Hom(BM, Alll)
there is f € Hom(A, B) such that fl!l = g. Indeed, let f = ®5' 0 gl 0 ® 4. Then
(f— )l ody = fHOlo®,y — gl 0Py =Tpof—Tpof=0. Since A is left
reflexive, this implies (f[1 — ¢)l% =0, so by (i), f = g. O

Note that [i] = Hom(_,K;_;) is exact if and only if K;_; is injective. A
sufficient and necessary condition for ¥ (resp. ®) to be injective (for all modules)
is that K; (resp. Ky) would be is a cogenerator. Recall that module U € Mod-R
is called a cogenerator if it satisfies any of the following equivalent conditions (see
[58] Prp. 19.6]):

(a) Forall A, B € Mod-Rand 0 # f € Hom(A, B), there exists g € Hom(B,U)
such that go f # 0.
(b) Any right R-module embeds in U* for some cardinal «.
(c) For every M € Mod-R and = € M, there exists f € Hom(M, U) such that
f(x) # 0.
Indeed, Wy; (resp. ®ps) is injective if and only if for all x € M, there is f €
Hom(M, K;) (resp. f € Hom(M, Ky)) s.t. f(x) # 0 and by condition (c), this holds
for all M € Mod-R if and only if Ky (resp. Kj) is a cogenerator. It is unreasonable
to ask for ¥y, or @, to be bijective for all M € Mod-R since Hom( _, K;) takes
direct sums to products. However, this might hold for all modules satisfying some
finiteness condition, as will be demonstrated below.

We shall now apply our previous observations to quasi-Frobenius and pseudo-
Frobenius rings (abbrev. QF and PF respectively); such rings admit a very rich
supply of cogenerators and generators. A ring R is called right PF if it satisfies one
of the following equivalent conditions (see [58, Th. 19.25] or [54], Ch. 12]):
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(a) All faithful right R-modules are generators.

(b) Rpg is an injective cogenerator.

(¢) R is semilocal (or semiperfect), right self injective and soc(Rg) C. Rp.
A QF ring is an artinian right PF ring. This turns out to be equivalent to being
one-sided noetherian and one-sided self-injective (see [68] §15]). Examples of QF
rings include local artinian rings with simple socle and finite group rings over other
QF rings.

EXAMPLE 2.5.7. Assume R is right PF and K; is faithful. Then K is a
generator and hence a cogenerator (since Rp, which is a summand of K7, is a
cogenerator). Thus, all right R-modules are right semi-reflexive and in particular,

(L2)==(R1) (Proposition i)).
Specializing the previous example further yields even sharper results.

PROPOSITION 2.5.8. Let R be a PF ring with an anti-automorphism x and let
K be the double R-module defined in Proposition [2.4.1 Assume M is a f.g. right
R-module. Then:

(i) M is reflexive.

(ii) The conditions (R1) and (L2) (resp. (L1) and (R2)) are equivalent for
any bilinear form b : M x M — K. If M is faithful, then they are also
equivalent to (R5) (resp. (L5)).

If moreover R is QF, then:

(iif) The conditions (R0)-(R2),(L0)-(L2) are equivalent for any bilinear form
b: MxM — K. If M is faithful, then they are also equivalent to
(R3)-(R5),(R3)-(L5) (where (R4) and (L4) can be taken w.r.t. any anti-
isomorphism of K ). (Compare with Proposition[2.1.5)

PRrROOF. (i) Note that K7 = Ky = Rpg, hence K; and K are injective, and thus
[0] and [1] are exact. Moreover, the previous example implies all right R-modules
are semi-reflexive, so we only have to show ¥,; and ®,; are onto.

It easy to see from Example[2.5.3|that Ry is reflexive. Since M is f.g. there is a
surjection R™ — M for some n, and since [0] and [1] are exact, we get the following
exact commutative diagram:

R M 0

l‘I/Rn l‘l’}vj

(RM0I L ploll

Now, Wgn is bijective (since R™ is right reflexive), hence f o Ugn is onto which
implies ¥y, is onto. By symmetry, ®,, is also onto, so we are through.

(ii) (L2)==-(R1) was shown in the previous example. The converse follows from
(i) and Proposition [2.5.4(iii). If M is also faithful, then M is a generator, hence
Corollary [2.2.10] implies (R1) <= (R5).

(iii) The first assertion follows from (ii) if we show that (L1) <= (L2). As M
is artinian (since R is), it enough to prove length(M) = length(M®)) (since then
Adf : M — M is injective if and only if it is surjective). Indeed, by [58, Cr. 15.13],
X € Mod-R is simple if and only if X* := Hom(Xg, rRg) € R-Mod is simple. Since
Rp is injective, this is easily seen to imply that length(X) = length(X*) for any
X € Mod-R of finite length (i.e. a f.g. X). Using Ky =& K; = Rpg, it is easy
to see that length(rX™) = length(Xl[g]) for all X € Mod-R, so our claim follows
immediately.

If M is also faithful, then by (ii), (R5)=-(R1). As (R0) = (R3)A(R4) =
(R3)V(R4) = (R5) (see section [2.3)), we are through. O
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2.6. Orthogonal Sums

In this section we define orthogonal sums of bilinear spaces and explore their
relationship with the properties (R0)-(R5) and (L0)-(L5). At the end of the section,
we discuss several possible constructions of Witt and Witt-Grothendick Groups.
Throughout, K is a fixed double R-module.

Let (Mj,b1, K) and (Ms, by, K) be two bilinear spaces. The orthogonal sum
(M1,b1,K) L (M, by, K) is defined to be (M; @& Ma, by L be, K) where:

(b1 L b2)((w1,72), (y1,92)) = b1(w1,91) L ba(22,92) -
It is straightforward to check that Ady, by = Adg1 ©Ad;, and Adi1 by = Adg1 GBAdf;2
(once identifying (M @ Ms)[! with Mlm @® MQM).

PROPOSITION 2.6.1. Let My, My be right R-modules and let (b, My @ My, K)
be a bilinear space. Let b; = blas, xn, (2 =1,2). Then (b;, M;, K) is a bilinear space
and b="b; L by <— b(Ml,MQ) = b(M27M1) =0.

PRrROOF. This is easy and left to the reader. O

PROPOSITION 2.6.2. Let (My,bo, K) and (Ma,be, K) be two bilinear spaces.
Then:
(i) b1 L bo is right reqular (injective, surjective) <= by and by are right
reqular (injective, surjective).

(if) by L by is right stable (semi-stable) = by and by is right stable (semi-

stable).
If in addition K has an anti-isomorphism Kk, then:

(iii) If by L be has a unique right k-asymmetry A, then by and by has unique
right k-asymmetries, namely A, Man and X = M, @ A, Con-
versely, if by, ba has Tight k-asymmetries A1, A2, then A\ @ A2 is a Tight
k-asymmetry of by L by (but it need not be unique).

(iv) by L by is k-symmetric <= by and by are k-symmetric.

Proor. Throughout, let b = by L bs.

(i) This is follows from Ady ,,, = Ady, © Ady,.

(ii) Assume b is right semi-stable and let o € End(M;) be such that by (z,0y) =
0. Define 7 = 0 ® 0 € End(M; & Ms3). Then b((x1,x2),7(y1,y2)) = b1(z1,0y1) +
ba(z2,0) = 0, hence 7 = 0 (because b is right semi-stable). Thus, o = 0 and b; is
right semi-stable.

Now assume b is right stable with corresponding anti-endomorphism * and let
e =idy, ®0 € End(M; & Ms). Then b(e(z1,x2), (Y1,y2)) = bi(x1,y1) +b2(0,y2) =
bi(z1,y1) + b2(z2,0) = b((x1,22),e(y1,y2)), hence e* = e. Let o € End(M;) and
define 7 as before. Observe that 7* = (ere)* = e*r*e* = er*e, thus there is ¢’ €
End(M;) such that 7* = ¢’ & 0. We now get by (cz1,y1) = b(m(21, 22), (y1,92)) =
b((z1,22), 7*(y1,92)) = b1(x1,0'y1), so by is right stable.

(iii) The second assertion is straightforward. To see the first assertion, note
that by and by are semi-stable by (ii) and Lemma Write A(x1,x2) = (A1121 +
A2Z2, A21Z1 + Agaxe) with A;; € Hom(M;, M;). Then it is straightforward to see

(5)  bi(z1,y1)" + ba(za, y2)® = b1(y1, A1x1 + Aiaxa) + ba(y2, o121 + Aoaza) .

By taking 21 and y2 to be zero, one gets 0 = by (y1, Aaz2) = b((y1,y2), (A1222,0)),
hence A15 = 0 (because b is right semi-stable). Similarly, Ao; = 0, 80 A = A\11 D Aga.
Taking Ty = Y2 = 0 in , we get bl(fﬂl,yl)n = bl(yla Alll’l), hence )\11 is a I‘ight
k-asymmetry of by and it unique since b, is right semi-stable. As the same argument
applies to Ags and bs, we are through.

(iv) This is straightforward. O
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In general, the orthogonal sum of two stable forms need neither be right nor
left semi-stable, even when one form is regular and even when both forms have
right and left k-asymmetries. (However, the orthogonal sum of two injective forms
is always semi-stable because it is injective.) This is demonstrated in the following
examples.

EXAMPLE 2.6.3. Consider Z as a double Z-module by letting ®¢ and ®; be
the standard right action of Z on itself. Define by,bs : Z X Z — Z by by (x,y) = zy
and bo(x,y) = 2xy. Then by is regular, by is injective and stable, and both forms
have right and left idz-asymmetries. However, b; L by is the bilinear form b of
Example which is not stable (but it is semi-stable because it is injective).

EXAMPLE 2.6.4. We use the general notation presented before Example
Make K = T/J into a double T-module by letting ®g and ®; be the standard
right action of T on K (this works because T'/.J is a commutative ring) and define
b:TxT — K by b(x,y) = zy + J. Observe that idg is an involution and b
is idg-symmetric. Now, T' = M @& N where N is the right T-ideal consisting of
matrices of the form [ {]. It is easy to check that b(M,N) = b(N, M) = 0, hence
b= by L by where by = b|prxar and by = b|yxn (by Proposition . We claim
b is not right nor-left semi-stable but b; is stable and bs is regular. Since b; and
by have (necessarily unique) left and right id x-asymmetries, namely idy; and idy,
this implies b has left and right id x-asymmetries, but they are not unique.

That b not left nor right semi-stable follows from b([§ {]z,y) = b(z, [ §]y) =
0 (for all z,y € T). That by is right stable is shown in the same manner as
in Example 2.4.4] (Observe that K1 = Ko = M/J & J and Hom(M,J) = 0,
hence Hom(M, K;) = Hom(M, M/.J).) To see by is regular, note that dimp N =
dimp Homp (N, K;) = dimp(J,M/J © J) = 1 = dimp N, hence Ady, and Adf;2
must be bijective (for they are non-zero).

A sequence of bilinear spaces {(b;, M;, K)}!_; will be called right joinable (semi-
joinable) if by L --- L b is right stable (semi-stable). (Note that this implies
bi,..., b are right stable (semi-stable) by Proposition [2.6.2}) For example, the
forms by, by of Example [2.6.3] are semi-joinable, but neither left nor right joinable.
The following proposition presents necessary and sufficient conditions for a set of
forms to be joinable or semi-joinable.

PROPOSITION 2.6.5. Let {(b;, M;, K)}._, be bilinear spaces. Then
(i) b1 L --- L b is right semi-stable <= Hom(M; kerAd; ) = 0 for
alll <i,j <t <= for all 0 € Hom(M;, M;), there is at most one
o’ € Hom(M;, M;) such that ol o Ady, = Ady, o0’
(i) by L --- L by is right stable <= for all o € Hom(M;, M;), there exists
unique o' € Hom(M;, M;) such that o'l o Ady, = Ady, o0’

PRrOOF. For brevity, let M = @,_, M;, b =b; L -~ L b, and h; = Adj,.
We will write elements of End(M) as ¢ x t matrices where the (7, j) coordinate lies
in Hom(M;, M;). Similar notation will be used for Hom(M, M) and End(M!M).
Note that the equation ol o Adj = Ad} oo’ (where 0,0’ € End(M)) now becomes:

0511] og] hq hy ol ... O
(6) ST =

oA el hy hy Oip - Oty
where 0 = (0;) and o’ = (07;).

(i) The equivalence of the last two conditions is straightforward (compare with
the proof of Proposition [2.2.9). The equivalence of the first two conditions follows
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from the fact that Hom(M, ker Ad;) can be understood as:
. . Hom(My,kerhy) ... Hom(My,kerhq)
Hom <@Ml, @kerm) = :
=1 =1 Hom(Mj,ker hy) ... Hom(M;, ker hy)
(ii) Assume b is right stable and let 7 € Hom(M;,, ker M, ). Define o = (0;;) by
045 = 0 for all (i,7) # (jo,%0) and 0y;, = 7. Then there exists o’ = (07;) € End(M)
satisfying (6). This implies 71 o hj, = (ol1);, 0 hjy = hy, © 0l jos S0 for all
7 € Hom(M;, M;) there exists 7/ € Hom(M;, M;) such that 70 o h; = h; o 7/ and
7’ is unique by (i).
To see the converse, let 0 = (0;) € End(M). Then for all 7, j there is o7, €
Hom(Mj, M;) such that 0'-5»11»] ohj = h;ooj;. Let o' = (0};) € End(M). Then ()

implies o'l 0 Adj = Adj o ¢’. Since b is right semi-stable (by (i)), o’ is the only
element of End(M) satisfying o!!l o Ad] = Adj o ¢’. Hence b is right stable. O

COROLLARY 2.6.6. Let {(b;, M;, K)}._, be a sequence of bilinear spaces. Write
bi|ll <@ <ty = {V),...,b.} (so {V;}5_, does not have multiplicities). Then
1 s jJi=1
b;}t_, are right joinable (semi-joinable) <= {V:}_, are right joinable (semi-
i=1 jJi=1
joinable). In particular, a bilinear form b is right stable (semi-stable) <= the
form b L --- L b is right stable (semi-stable).

COROLLARY 2.6.7. Let {(b;, M;, K)}._, be right stable (semi-table) bilinear
spaces. Then {b;}._, are right joinable (semi-joinable) <= {b1,...,bs} are pair-
wise right joinable (semi-joinable).

Let (Mj,b1,K) and (Ma,bse, K) be two bilinear spaces. An isometry from by
to by is an R-module isomorphism o : My — Mj such that be(ox,0y) = bi(z,y).
If there exists such an isometry, then b; and by are called isometric and we write
b1 = by. This an equivalence relation and its equivalence classes are called isometry
classes. It is easy to see that each of the properties (R0)-(R5) and (L0)-(L5) is
preserved under isometry of forms.

We finish this section with a short discussion about possible constructions of
Witt and Witt-Grothendick groups using our notion of bilinear forms. As Witt and
Witt-Grothendick groups are out of the scope of this paper, we are satisfied with
presenting them over rings with involutions in which 2 is unit, referring the reader
to [86], [71] and also [6], [7] for an extensive discussion.

Let (R, *) be a ring with involution, let A € Cent(R) be such that A*A =1 and
let .# be an additive full subcategory of Mod-R such that the isomorphism classes
of . form a set (e.g. finite projective modules). The Witt-Grothendick group of
R, *, A and .#, denoted /V[7(/\, M) consists of formal differences of isometry classes
of regular A-hermitian forms h : M x M — R with M € .#. The addition in
W()\7 M) is given by orthogonal sum (which is easily checked to be well-defined on
isometry classes), i.e.:

([ha] = [h2]) L ([hs] = [ha]) = [h1 L hs] — [ha L hd]

(here hy,...,hs are A-hermitian forms, [h;] denotes the isometry class of h; and
the negative signs are formal differences). The Witt Group of R, *, A and ., de-
noted W (), .#) is obtained modding out metabolic hermitian forms from W (), .Z).
These are the hermitian forms h : M x M — R such that there is a summand of
M, N, satisfying N = N+ := {x € M|h(z, N) = 0}. (When R is a field, the
metabolic forms are hyperbolic forms. For general rings, metabolic forms are stably
hyperbolic; see |86, §7, Lm. 3.7].) Several texts have considered “non-symmetric”
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Witt-Grothendick/Witt groups which are obtained by replacing hermitian forms
with arbitrary regular (not-necessarily-symmetric) bilinear forms, e.g. [38].

The constructions of /W()\, M) and W (A, #) can be carried out as is into our
situation by replacing “A-hermitian” with “k-symmetric”, where & is an involution
of K. (This turns out to result in a Witt-Grothendick/Witt group of a hermitian
category, as the next section would imply.) However, several variations can be ob-
tained by weakening the regularity assumption the forms, namely, one can construct
W and W using isometry classes of injective or surjective forms. Furthermore, in
case of non-symmetric Witt-Grothendick/Witt groups, one can construct the group
from isometry classes of right regular or left regular forms (rather than two-sided
regular forms), thus obtaining left and right versions of the non-symmetric Witt-
Grothendick/Witt group. However, Examplesandimply that one cannot
construct a Witt-Grothendick group from the isometry classes of stable or semi-
stable forms.

2.7. Categories with a Double Duality

In this section, we present categories with double a duality which are a cate-
gorical generalization of our previous bilinear forms. We explain how our definition
is connected to hermitian categories (or categories with duality; see [T1], |86, Ch.
7], [7]), which generalize classical bilinear forms, and show that our new notion of
bilinear forms cannot be understood as a special case of a hermitian category.

As in section [2.T] let us first recall what are hermitian categories. Our descrip-
tion follows [7], which calls hermitian categories categories with duality. We shall
stick to that name henceforth. A category with duality is a triplet (&, *,w) such
that & is a category, * : & — &/ is a contravariant functor and w : id — 2 is a
natural transformation (which is usually assumed to be an isomorphism) satisfying
why owpr- = idps- for all M € o7, If o/ is additive or exact, then  is assumed to
be additive or exact respectively. A bilinear form in (&7, *,w) is a pair (M, b) such
that M € o and b € Hom,, (M, M*). Define b = b* o wy; € Hom,y (M, M*). Then
b and b play the role of the right and left adjoint maps. The map b — b is easily
seen to be of order 2, hence b can be recovered from b. A bilinear form (M, b) will
be called symmetric if b = b and (right) regular if b is an isomorphism.

When w is assumed to be an isomorphism (which is the case in all texts seen
by the author), it is common to identify M with M** via w. In particular, b is
identified with b* € Hom g (M**, M*) and only the latter is used.

2.7.1. Definitions. Inspired by section[2.2] we define a category with a double
duality to be a quintet (7, [0], [1], @, ) consisting of a category &7 equipped with
two contravariant functors [0], [1] : &/ — & and natural transformations ® : id —
[1][0] and ¥ : id, — [0][1] satisfying

idyo =0 0®y0  and  idyu = N 0 Uy
for all M € o/. If o is additive, then we will require [0] and [1] to be additive.
(This implies ® and ¥ respect the additivity of <. It is a general fact about
natural transformations between additive functors.) We do not require ® and ¥ to
be isomorphisms. The reason for this will be explained below.

By Corollary there is a natural isomorphism I4 p : Hom(B, Alll) —
Hom(A, BI) given by 14 5(f) = fI% 0 ® 4. Note that I4 g also determines ® and
U by @4 = I4 g (idgn) and Uy = IZ[}JI,A(idA[O])v S0 a category with a double
duality can also be defined as a quadruple (7, [0], [1],I) with <7, [0], [1] as before
and T4 p : Hom(B, Al — Hom(A, BI%) being a natural isomorphism.
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ExaMpPLE 2.7.1. By Proposition [2.2.1] any ring R and a double R-module K
give rise to a category with a double duality structure on Mod-R. However, as
shown in Example 2353 U and ® need not be isomorphisms, which explains why
we did not assume that in the definition.

A bilinear pairing in (<7, [0],[1], ¥, ®) (or &, for brevity) is a triplet (A, B,b)
where A,B € & and b € Hom, (B, AY). In this case, let b denote I4p(b) €
Hom,, (A, BI%). (The maps b and b play the role of the right and left adjoint maps
respectively.) A bilinear form in & is a pair (M, b) such that (M, M, b) is a bilinear
pairing.

If (M,b) and (M’,b") are two bilinear forms, then an isometry from (M,b) to
(M’,¥') is an isomorphism o € Hom (M, M') satisfying o/l 0 b’ 0 o = b. In this case
(M, b) and (M', V') are called isometric.

A bilinear form (M, b) will be called:

RO) right regular if b is an isomorphism;

) right monic if b is monic;

) right epic if b is epic;

) right stable if for all o € Endg (M) there exists unique 7 € Endg (M)
such that ol ob=bor (or equivalently, boo=7l0lop ; see the diagrams

in Proposition [2.2.6]);

(R5) right semi-stable if for all 0,7 € Endgy (M), bo o = bo 1 implies 0 = 7.

The left analogues of (R0)-(R2) and (R5) are defined by replacing b with b, and the
left analogue of (R3) is defined by replacing o and 7.

Now let w : [0] — [1] be an isomorphism of functors. A right u-asymmetry
of a bilinear form (M,b) is a map A € Endg (M) such that ups ob = bo A (see
Proposition for explanation). We can now consider the following property:

(R4) The bilinear form (M, b) has a unique right u-asymmetry.

Left asymmetries are defined with respect to an isomorphism v’ : [1] — [0]; a left
u/-asymmetry is a map A € End (M) such that v/, ob = bo. Again, the inverse
of an invertible right u-asymmetry is a left u~!-asymmetry. A bilinear form (M, b)
will be called u-symmetric if b =u o b.

So far, it is clear from section [2.2]that our new definition of bilinear forms agrees
with that of section (if o is induced by a ring R and a double R-module K).
However, not all results of sections [2.3] and 2.5 hold for bilinear forms in categories
with a double duality, the reason being that maps that are monic and epic in &7
need not be invertible.

It is now left to explain what are the categorical analogues of an involutions and
augmentable anti-isomorphisms. Rather than spelling out the definitions, which are
simple yet not intuitive at all, we first explain what stands behind them, collecting
some useful facts along the way. This will be done in the following two subsections.

2.7.2. Involutions. Let us restrict for a moment to the case where &7 arises
from a ring R and a double R-module K. By Proposition any isomorphism
u : [0] — [1] corresponds to an anti-isomorphism x of K. Since £~! is also an
anti-isomorphism of K, we can define u = u,-1 : [0] — [1], which functions a an
alternative “inverse” of u. However, Proposition does not tell us how to get @
from u by purely categorical means and this is what we shall now tend to.

With k as before, let b : A x B — K be a bilinear paring. Then the map
b* : B x A — K defined by b*(y,x) = b(x,y) is also a bilinear pairing. Let
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Bilg (A, B) denote the set of bilinear pairings b : A x B — K. Then by Corol-
lary Bilg (A, B) is in one-to-one correspondence with Hom (A, B°l). There-
fore, the map b — b* : Bilg(A, B) — Bilg(B, A) gives rise to a map v, 4 p :
Hom(A, By — Hom(B, A’} and a direct computation shows that v, ap =
Ip s0(uw,B)+ Where (ug B)+f = Uk, B ofﬁ Namely, the following diagram commutes:

(ur,B)x

Hom(A, Bl%) =5 Hom(A, BY)

\ lIB'A
Vi, A B

Hom(B, A%

In the same manner, v;lAB = vy-154 = LaB 0oUg-1 4, so we can extend the
previous diagram as following;:

(UN,B)*

(7) Hom(A, Bl)) Hom(A, BI')

IA,BT \n,A,B J/IB,A
\
Hom(B, Ay <———— Hom(B, A%)
U—1 4)x
Let us now move back to arbitrary categories. Diagram suggests that if an
isomorphism w : [0] — [1] admits an “inverse” u, then the following diagram should
commute:

(uB)x

(8) Hom,, (A, B%)) —5 Hom,, (A, BY)
IA,BT I, a

Hom,, (B, A[l]) <~—— Hom (B, A[O])

(ua)«
Therefore, we need to find an isomorphism % : [0] — [1] such that
(9) (tia)e =I5 0 (up)y ' oI5y : Hom(B, Al%) — Hom(B, AM)

(or less formally, I o, = (Iou,)~1). It is therefore natural to ask whether % can be
determined from w,. It turns out that the answer is yes and moreover, any natural
transformation f4 5 : Hom(A, BI’)) — Hom(A, BM) is of the form (ug). for some
ug : [0] — [1]. This is verified in the following proposition.

PROPOSITION 2.7.2. Let of and B be categories and let F,G : B — o be two
contravariant functors. Then there is a one-to-one correspondence between natural
transformations v : F' — G and natural transformations fap : Homy (A, FB) —
Hom (A,GB) given by v — u, and f — uy where (up)a = fra,a(idpa). In
addition, u is an isomorphism if and only if u, is

8 Other texts use Hom(A, U, B) to denote (u,,B)+. We chose the latter for brevity.
9 By saying fa,p is natural, we mean that for all A, A’ € &/, B,B’ € %, a € Hom (A, A’)
and 8 € Homg (B, B’) the following diagram commutes:

fa,
Hom(A, FB) L Hom(A,GB)

FﬂooaT TG,Booa
fA’,B/

Hom(A’, FB') —— Hom(A’,GB’)



84 2. BILINEAR FORMS OVER RINGS

PROOF. It is straightforward to check that u, is a natural transformation (the
fact that w is natural is needed) and that u,, = u.

Let f be a natural transformation as above and let u = uy. We first claim
that f = u,. Let A € &, B € # and let ¢ € Homy (A, FB). Then the following
diagram commutes since f is natural:

Hom(4, FB) —*" - Hom(A, GB)

”’T TW

Hom(F B, FB) Hom(FB GB)

Therefore, fa,py = fap(idrpgoy) = frp p(idrp) o = up o1, which implies
fap = (up)s. It is left to verify that w is natural. Let A € &/, B € # and
1 € Hom (A, B). Then the following diagram commutes:

Hom(FB, FA) 7™ Hom(FB,GA)
Fon TG’L{JO
Hom(FB, FB) 7% Hom(FB,GB)

Since f = uy, we get ua o FYp = frp a(Foidpp) = Gy o (fre,pidrs) = GYoug,
as required.

If v is an isomorphism, then it is easy to see that so is uy. If u, is an iso-
morphism, then define f4 p : Homg (A, GB) — Homg (A, FB) to be the inverse
of u,. By what we have just shown, uy : G — F is a functor morphism. Observe
that (uowuys). = (idg)«, hence the correspondence implies u o uy = idg. Similarly,
uf oy = idp, hence u is an isomorphism. O

REMARK 2.7.3. The last proposition slightly resembles Yoneda’s Lemma (see
[42] Th. 5.34]) and also Theorems 3.2 and 3.2* in [53] (described below). However,
it seems that it cannot be rendered to either of them and moreover, Theorems 3.2
and 3.2* in [63] can be easily proved using it.

With Proposition and (9) in mind, for any isomorphism w : [0] — [1] and
A € o/, we define:

(10) ia = (I o 0 (wam)i ! o Iy ) (idg0) € Hom (A, AM) .
Then @ : [0] = [1
(11) ug = (I:Am o (uam); "o IA[%) )(id 4101)
= (L g © (wam) ) (Wa) = I o (w0 Ta)
= (u;‘[lo] oW 4) oW, = ‘Ifg] o (uuo]) oW 40

is a functor isomorphism and by the definition of I4 p:

This leads to the following definition:

DEFINITION 2.7.4. For any natural isomorphism w : [0] — [1], let @ : [0] — [1]
be the natural isomorphism defined by us = \I!E] o (ug}[o])*1 oW 400. The map u will
be called an involution (of (7, [0],[1],®,¥)) if u = .

Note that we know from (9) and Proposition that @ is an isomorphism,
but this is not obvious from our definition (since ¥ is not an isomorphism).

PROPOSITION 2.7.5. In the previous notation, u has the following properties:
(i)ﬁzuandu q)[o]ou[]lo(bA[l forall A e of.
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(ii) For any bilinear pairing‘(\éB,b), TUaougob = b. Moreover, u is an
involution <= wuag oup ob="b for any bilinear pairing <= for all
A,Be o, (ua)solpao(ug)solap = 1dgom(B, a0 (or less formally,
(us 0 I)? =1id).

(iif) Define § : [1][0] — [0][1] by dpr = Uppio) © UESI]- Then dp; is a natural
isomorphism satisfying ¥ = § o ® and dy; = u[I\l/I] oupm. (By symmetry,
the natural transformation (5~M = Upyi0) oﬂgow] also satisfies these identities,
but § # 6 in general.)

(iv) If o arises from a ring R and a double R-module K and u = u,, for some
anti-isomorphism k of K, then w = u,—1. In particular,  is an involution
if and only if U, = Uy

ProoF. (i) That Up = u, is straightforward from @D, hence by Proposi-
tion u = u. To see the second equality, note that by diagram (g), (") =
(Ua); " =1Ip g0 (up)sol, p. By Proposition

uy' = (Tam 40 (wam)s 0 Iy am)(idam)

and a computation similar to would show u uA = <I>£4} o u[0]1 o,

(i) Observe that @4 o up ob = ((Tia)s © Ip a0 (up)eolap)(b) and the right
hand side is b by . To see the second assertion, observe that the computation

we just carried out implies uy o up ob = b for any b € Hom (B, Al%) if and
only if (ua)soIpao(ug)solap = idpom(B,a01)- The latter is equivalent to the
commutativity of when replacing s with ua. Since (4a). is the only map
making the diagram commutative, it follows that (T4). = (u4)« for all A € &, so
by Proposition u = w and u is an involution. The oppositive implications are
obvious. (The courageous reader is welcome to try verifying (i) and (ii) with direct
computation. Beware: this is trickier than (iii) below).
(iii) Let M € «7. Observe that the following diagram commutes:

wt
M Mo ™ Al
[0][1] [1][1]
l J/CD wtt iqu

P A1 VLG IR P31 [P PR VLG N 4] 1 3 VLB V{1 BY
MOIGIEY CIEAIEY wt
M u[ll M \Ij[l] M

[

Mwm A prlooloi) MO pojoypy M plola]
(The squares commute because ¥ : id — [0][1], «[* : [1][1] — [0][1] and
@l 2 [0][1][1] — [1] are natural transformations. The top right triangle follows
from Proposition [2.2.1)). By moving along the border of the diagram from the top
left object to the bottom right object, we see that

\11[1\1/[][0] o (ug\lj[o][o])il o \I/M[o][o] o ’UJBS[] o®y = UE\Z] o idM[l]u] O(ug\l/[])il oWy =Wy .

However, by definition, the left hand side is dp; o @y, hence ¥ = § o &. That
Upsl0] © UESI] = ug\l/[] o Uy follows by moving along the diagram from MM to the
bottom left object along the second and third rows.

(iv) By (7), (us-1)« = (@)«, hence u,—1 = u by Proposition Therefore,
2.2.7)

u, is an involution <= wu, =u,-1 <= k= k! (by Proposition O
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2.7.3. Augmentation. We will now define augmentable natural isomorphisms
w : [0] — [1] using the ideas of the previous subsection. (The categorical definition
of an augmentation map for a given bilinear form will be given a the end of this
subsection). As with involutions, we first present the intuition behind the defini-
tion, so assume R is a ring, K is a double R-module, x is an anti-isomorphism
and v : idyod-r — idMod-g is natural transformation. Set uw = wu, and observe
that for any bilinear pairing b : A x B — K and v € Endg(B), the identity
b(z,y)™ = b(z,vpy) is equivalent to (14 5o (ua)«olp a0 (up).)(Ad)) = y[g] o Adj
(this is a straightforward computation). Therefore, that v is an augmentation for
K is equivalent to T4 g o (ua)« 0 Ip a0 (up)s = (’yg])*. The latter is illustrated in
the following commutative diagram:

(uB)«

Hom(A, BI)) —=% Hom(A, B! ELEN Hom(B, A%

J{(v&?» i(uu*

Hom(A, Bl Hom(B, Al

I, B

Now let (&7,[0],[1],®,¥) be any category with a double duality and let
u : [0] = [1] be an isomorphism of functors. Then by Proposition there ex-
ists a unique natural transformation ¥ = F(u) : [0] — [0] such that (Fg)« = [a g o
(UA)* OIB,AO (’LLB)* for all A, Be . In fact, by @, IA,BO(U*)B,AOIB,A = (ﬂgl)*
Hence
Alu)=u'ou

(since (Vp)« = (Up")« o (up)« = (Up' oup).). More explicitly, we have:

~

Ya = (Lg00,4 0 (ugm)« 0 Lg g0 © (wa)«)(id a0r)

= (upm o ((ua 0id ) 0 ®4))% 0 @ 4
= (uyq o u[g] o @A)[O} o P 40

B9 61010 ¢ 0

Alo) © D 40 .

We say that u is augmentable if there exists a natural transformation v : idg — ide
such that #~You =7 = ~4%. Such a v will be called an augmentation transformation
for u.

Given a bilinear form (M, b), a map vy € End (M) will be called an augmen-
tation map for b (w.r.t. u) if 7([)0] =7(u)m.

PROPOSITION 2.7.6. In the previous assumptions, if &/ contains a generator
X such that the map [0] : End o (X) — Endy (X)) is injective (we can replace [0]
with [1] here since [0] = [1]), then u has at most one augmentation transformation.

PROOF. Assume 3,7 : idy — idy are augmentations. Then g9 = ~0) = 7.
In particular, E(()] = vgg], hence our assumptions imply 8x = yx. Now, that X is
a generator is well known to imply S = v. Indeed, if A € & is any other object
and 84 # 4, then there exists a : X — A such that 4 o # y4 0 a. But

Baoa=aofx =aoyx =4 0 q, a contradiction. O

We finish this subsection by showing that under certain assumptions, all functor
isomorphisms u : [0] — [1] are augmentable. Following section call an object
A € o, right (left) semi-reflexive if ¥4 (®4) is monic and right (left) reflexive if
Uy (Py) is bijective.
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PROPOSITION 2.7.7. Assume all objects in <7 are right reflexive. Then any
natural isomorphism u : [0] — [1] is augmentable and admits a unique augmentation
transformation

PROOF. We shall make use of Proposition [2.5.6] whose proof can be easily
generalized to arbitrary categories with duality. Let w : [0] — [1] be a natural
isomorphism and let ¥ = F(u) : [0] — [0] be as above. Since all objects in &7 are
right reflexive, the map f +— fI% from End, (A) to End . (Al%) is invertible for all
A € of. Thus, for all A € o7, there is unique y4 € End(A) such that ’yf] =7a.
We are done if we prove that v is natural. Indeed, let A, B € &/ and f € Hom,y,.
Then (vz 0 f)I = flloq5 =74 0 fI = (f oy, s0 Proposition implies

ypof=foya. O

2.7.4. The Connection to Categories with Duality. It is clear that a
triplet (o7, *,w) is a category with duality if and only if (o7, *, *,w,w) is a category
with a double duality. Given a category with a double duality (<, [0], [1], @, ¥)
and an involution u : [0] — [1], it turns out that there is a natural transformation
wy, : idg — [0][0] such that (<7, [0],w,,) is a category with duality. This and much
more is verified in the following theorem:

THEOREM 2.7.8. Let (7, [0],[1], ®, V) be a category with a double duality. Then
there is a one-to-one correspondence between involutions u : [0] — [1] and natural
transformations w : idg — [0][0] for which (&7, [0],w) is a category with duality.
Moreover, if u is such an involution corresponding to w : idg — [0][0], then there is
a natural one-to-one correspondence between bilinear forms in (0], [1], ®, ¥) and
bilinear forms in (<7 ,[0],w) that sends u-symmetric forms to symmetric forms

Before proving the theorem, we give an explicit example of this correspondence:

EXAMPLE 2.7.9. Let R be a ring, let K be a double R-module and define [0]
and [1] as in section By Propositions and iv), there is a one to one

correspondence between involutions of K and involutions u : [0] — [1].

Let % be an involution of K. For all M € Mod-R, define wy; : M — MO0
by (wayz)f = (fz)* where z € M, f € M. Keeping this convention for « and f,
observe that wyz € MO gince

(wz)(f-7) = ((f -r)2)" = ((fz) ©o )" = (f2)" O1 7 = (wa)f) O1 7

and wys is R-linear since

(W(z-r)f = (f(z-r)" = ((fz) ©17)" = (f2)" o r = (W) f) ©o 7 = ((wz) -7)f .

In addition:

(Whiowsro) o = (@i (@aror )T = (@ygo ) (wrrz) = (wnz) )" = (f)™ = fa,

hence wg\(}] o wysro) = idys0. Therefore, (Mod-R, [0],w) is a category with duality
and it can be checked that correspondence in Theorem [2.7.8] sends w, to w just

defined.

We first prove the following lemma.

10 Note that if there exists a functor isomorphism u : [0] — [1], then being right reflexive
is equivalent to being left reflexive by Proposition iii). Thus, the assumptions on & are
effectively left-right symmetric.

H 1t s possible to define isomorphisms of categories with a double duality (see the next
section) and then show that (<7, [0], [1], ®, ¥) is isomorphic to (<7, [0],[0],w,w). As this is not
needed for the chapter, we leave it to the reader to verify.
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LEMMA 2.7.10. Let o/ be a category and let * : &/ — o/ be a contravariant
functor. The there is a one-to-one correspondence between natural transformations
w :idgy — ** and natural transformations va g : Hom(A, B*) — Hom(B, A*). The
correspondence is given by w — v, where v, is defined by v, A 5(f) = f*owp
for f € Hom(A, B*) and v — w, where w, 4 = v~ a(ida~). In addition, if w
corresponds to v, then wjowa» =ida- for all A € & if and only if va povp .a =id
forall A,B € o .

PROOF. We leave it to the reader to check that v, and w, are indeed natural.
Given w as above, wy, 4 = Uy, 4+ a(idas) = idg+« owa = wy for all A € &7, hence
Wy, = w. In addition, for any v as above and f € Hom(A, B*), the following
diagram commutes (since v is natural):

v

Hom(B*, B*) —% Hom(B, B**)

lof lf*o

Hom(A, B*) —~Z~ Hom(B, A*)

Therefore, vy, 4,8(f) = f* owy,p = f*ovp- p(idp-) = va,(idp- of) = va r(f),
hence v,,, = v.

To finish, if w corresponds to v, then for all A, B € & and f € Hom(B, A*),
va,B(vpaf) =vap(ffowa) = (ffowa)*owp = wiof* owp = wjowa-of (in the
last equality we used the fact w is natural). Noting that we can take B = A* and
f =1ida-, it follows that w) ows+ = id4- for all A € &/ if and only if v4 povp 4 = id
for all A,B € & O

ProOF OF THEOREM 2.7.8 The natural transformations v : Hom(A4, BI%) —
Hom(B,A[O]) satisfying va g o vgp 4 = id are in one-to-one correspondence with
natural transformations f : Hom(A, BI%) — Hom(A, BM) for which I po fg a0
Ip ao fap =id. Indeed, let v correspond to f if and only va g = Ip ao fa . The
correspondence is then obvious from the following diagram:

Hom(A, B)) ELLY Hom(A, BIY)

VA,B
IA,BT \\ llB,A
VUB,A

Hom(B, All) - Hom(B, Al)
fB.A

By Lemma the v-s are in one-to-one correspondence with natural trans-
formations w : id, — [0][0] for which (<, [0],w) is a category with duality, and
by Propositions and (ii), the f-s are in one-to-one correspondence with
involutions w : [0] — [1]. Therefore, there is a one-to-one correspondence between
natural transformations w : idg, — [0][0] for which (7, [0],w) is a category with
duality and involutions w : [0] — [1].

Now let u correspond to w. We will represent bilinear forms in (<7, [0], [1], @, ¥)
and (7, [0],w) by their left adjoint (rather than their right adjoint), i.e. as a pair
(M, E) with M € o and b € Hom (M, M), By mapping each form to itself, we
get a natural one-to-one correspondence between bilinear forms in (<, [0], [1], @, ¥)
and in (7, [0],w). In addition, a form (M,b) is u-symmetric in (<7, [0], [1], ®, ¥)
& b=upyobwhereb=1I;;"),(b) < b= (Inaro(un).)(b) < b=uvanm(b)
where vy g =Ip a0 (up)s < b= (g)[o] owys (since v = vy, by the construction
of the correspondence) <= b is symmetric in (<7, [0],w). O
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Tracking along the proof, one can see that if u : [0] — [1] is an involution, then
its corresponding w : id. — [0][0] is given by simple formula:

wA = (IA,A[U] o (UA)*)(idA[o]) = IA,A[O] (UA) — u[AO] ° (I)A
and u can be recovered from w by:

- . - [0 1
Uy = (IA,lA[O] 0V, a,400)(id gp01) = IA,lA[O] (1dE4][0] owa) = w[A] oWy .

(However, it is not clear from the formulas that u is an involution if and only if
wfg] O Wylo] = idA[o] for all A € (527)

REMARK 2.7.11. We can now see that in a certain sense our definition of bi-
linear forms from section [2.1] cannot be explained as a special case of a category
with duality. Indeed, there are rings R with a double R-module K admitting no
involution (e.g. Example and the examples following it), hence by Proposi-
tions and[2.7.5|iv), there is no involution w : [0] — [1]. But then Theorem[2.7.§]
implies that there is no w : idyoa-g — [0][0] for which (Mod-R, [0],w) is a category
with duality, and hence (Mod-R, [0], [1], ®, ¥) cannot be equivalent to a category
with a double duality coming from a category with duality (i.e. a c.w.d.d. of the
form (&, *,*,w,w)).

2.7.5. Further Remarks. Categories with a double duality can be general-
ized even more, if one is only interested in bilinear pairings and not in bilinear
forms. Define a pairing context as a sextet C = (&, %4,[0],[1], ®, V) such that <
and # are categories, [0] : B — & and [1] : &/ — A are contravariant func-
tors, and ® : idy — [1][0], ¥ : idg — [0][1] are natural transformations satisfying
\I/[B?] o (I)B[o] = idB[o] and (I)%] o \IJA[1] = idAu] for all A € o and B € #. As be-
fore, this induces a natural isomorphism I4 5 : Homg(B, Al'l) — Hom, (A, BI%)
(A€ o, Be RB)given by 14 5(b) =bl0c®,, and ®, ¥ can be recovered from I as
described above. A bilinear pairing in C is a triplet (A4, B,b) with A € &/, B € A
and b € Homg(B, AM). However, one cannot define bilinear forms without some
identification of objects in & with objects in .

2.8. The Transfer Principle

The transfer principle of categories with duality says that, roughly speaking,
every category with duality is “locally” the category of A-hermitian forms over some
ring with involution. This allows to transfer the theory of arbitrary categories with
duality to the theory of hermitian forms; see [86] Ch. 7, §4] or [71] for details. In
this section we extend this result to categories with a double duality. That is, we
prove that every object in an additive category with a double duality is contained in
an additive full subcategory that is isomorphic (as categories with a double duality)
to a full subcategory of a category with duality obtained from some ring R and a
double R-module K. Our new transfer principle also benefits the theory categories
with duality as it allows transfer in situations that were not applicable before.

We begin with defining morphisms of categories with a double duality.

DEFINITION 2.8.1. Let (<7, [0],[1], ®, ) and (&', [0),[1]), D', ¥’) be categories
with a double duality. A morphism of categories with a double duality from <
to &' consists of a triplet (F,0,601) such that F : o — ' is a functor and
0; : F[i] — [i]'F is a natural isomorphism (i = 0,1) satisfying

GO,M[l] OF(bM - 05(?]1\/4 O@vaM,

Oy 0 FUar = 6% 0 Wy
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If o and &' are additive then F is required to be additive as well. The morphism
(F,0q,61) is called an equivalence of categories with a double duality if F is an
equivalence of categories.

Let oy be a full subcategory of o/ . If F is only defined over <, then (F, 6, 01)
is called a sub-morphism of categories with a double dualitylEI

Ifu: [0] = [1] and «' : [0) — [1)" are natural isomorphisms, then (F,0y,601) is
said to pass u to u' if gy, 000 = 61,0 © Fup.

The following proposition shows that the theory of bilinear forms over a cate-
gory with a double duality can be transferred (in a certain sense) along morphisms
and sub-morphisms.

PROPOSITION 2.8.2. Let (F, 6y, 601) be a sub-morphism of categories with a dou-
ble duality from (7, [0],[1], @, ¥) to (&', [0], [1), D', '), and let <% denote the do-
main of F. Let By (resp. B') be the category of bilinear forms (M,b) over o
(resp. ") with M € oty (resp. without restriction), with isometries as morphisms.
Then:

(i) (F,0q,0,1) induces a functor G : By — AB'. The functor G is faithful (resp.
faithful and full), provided F is.

(ii) If u : [0] — [1] and «' : [0] — [1)' are natural isomorphisms such that
(F,00,01) passesu to v, then G sends u-symmetric forms to v’ -symmetric
forms.

PROOF. (i) Define G : By — % by G(M,b) = (FM, 01 p o Fb) and Go = Fo
for every bilinear form (M,b) € %, and isometry o : (M,b) — (M',V) in Hy.
Observe that Go is indeed an isometry since (Go)' o GV 0o Go = (Fo )V 00 a0
FVY oFo =0, 0F(cM)yoFtY o Fo = 0,50 F(cMob oa) =0, 0 Fb = Gb.
That G preserves composition is straightforward. Now let o’ : (M,b) — (M',¥)
be another isometry. If F' is faithful, then Go = Go¢’ implies Fo = Fo’, hence
o = o/. This means G is faithful. Now assume F is also full and let 7 be an
isometry from G(M,b) to G(M',V’). We need to find and isometry o : (M,b) —
(M',¥') such that Go = 7. Since F is faithful and full, there is an isomorphism
o € Homg (M, M') such that Fo = 7. We claim that o is an isometry from (M, b)
to (M','). Indeed, (Ga)[l], o Gb o Go = Gb, so the previous computation implies
that 01 3 o F(oll ot/ 0 ) = 61 pr o Fb. Multiplying by 0;11\4 on the right yields
F(ocM ot/ 0 0) = Fb and since F is faithful, we get o' 00’ 0 o = b, as required.

(ii) Let u,u’ be as above and let (M, b) be a u-symmetric bilinear form. Recall
that this implies that b = wuy; o b = upr o blO o ;. We need to prove that
(O1,m) = Uppr0(01m OFb)[O]/ o @y Indeed, Wy, 0 (61,1 OFb)[O]/ 0@y = upps0
(Fb)[o],og[l(?]](/fo(ID%M = U/FMO(Fb)[O]/OemM[o] oF®,y = u%M0007A10F(b[0])oF<I>M =
O1,m 0 Fups o F(b[O]) o F®p = 61,07 0 F(up o plol o ®pr) =01 0 0 Fb (we used the
fact 6y is natural and that (F, 6o, 61) passes u to u'). O

Henceforth, (7, [0], [1], ®, ¥) is an additive category with a double duality. Fix
an object A € & and let R4 = End(A). We let «7|4 denote the full subcategory
of &/ whose objects are (isomorphic to) summands of A™ for some n € N. Let Fy
be the functor Hom(A, _). Observe that for every M € </, Hom(A, M) can be
made into a right R4-module by defining

f-r=for vV f € Hom(A, M), r € R4 = End(A4) .

This makes F4 into an additive functor from &/ to Mod-R4. The following propo-
sition is well known.

12 The reason we do not call F a morphism of c.w.d.d. from & to &’ is that @4 might not
be a c.w.d.d. Indeed, [0] and [1] are not assumed to send % into itself.
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PROPOSITION 2.8.3. Once restricted to o/ | 4, the functor Fu is full and faithful.
That is, for every M, N € /|4, the following map is bijective:

FA : Homg{(M,N) — HOHlMOd_RA(FAM,FAN) .

PRrROOF. Since Hom is biadditive and M, N are summands of A™ for sufficiently
large n, it is enough to check this for M = N = A, which is routine. O

REMARK 2.8.4. If & is a Grothendieck category (e.g. Mod-R for some ring R)
and A is a generator of &, then the GabrielU-Popesco Theorem ([70]) asserts that
F4 is faithful and full on all of &/ (rather than just <|4).

REMARK 2.8.5. If all idempotents in & split, then Fa(<7|4) = proj-Ra, the
category of right finite projective R 4-modules.

Let K4 := Hom(A, Al). Then K4 can be made into a double R 4-module by
defining

f@or:rmof and foO1r=for

for all f € K4 and r € R4. Thus K4 induces an double duality structure on
Mod-R 4, which, abusing the notation, we denote by (Mod-R 4, [0],[1], ®, ¥). The
transfer principle is phrased in the following theorem.

THEOREM 2.8.6 (Transfer Principle). There is a faithful full sub-morphism of
categories with a double duality from /|4 to Mod-Ry.

PROOF. By the previous proposition, F4 is an equivalence of categories from
| 4 to its image. Hence it is enough to define natural transformations 6; : Fa[i] —
[i]F'a such that (Fa,6p,61) is a sub-morphism of categories with a double duality.

Let M € o/. Define 0, ps : Fa(MU) — (FaM)[ (i = 0,1) by

borr(t) = [frstH oWy of],
01,0 (8) [f = fMos]

where

¢ Fu(M©) = Hom,, (A, MO |
Fa(M™My = Hom (A, M) |

FA(M) = HOIn,Q{(A,M) .

m M Mm

s
f
(Observe that (Fa M)l = Homp, (Hom, (A, M), (K 4);) and (K 4); = Hom(A, All)
considered as a right R4-module w.r.t. ®; defined above.) Throughout the proof,
s,t, f would continue to denote arbitrary elements of the sets specified above and
r is always an element of R4.

We now have several technical checks to do. (The reader can skip to the end

of the proof without loss of continuity.) The maps 6y as and 61 are R4-modules
homomorphisms since

(Oop(t-7))f =((to 7’)[1] oWyrof)= rlto (t[l] oWprof)=(0o,mt)f ©or
= ((Oomt) -7)f
(1 (s 1)g=gMo(sor)=(gM os)or=(61ms)g @1 r=((61,m5) 7)g -
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(The additivity of 6y as and 61 is clear.) In addition, for every M, M’ € <,
o € Homg (M', M) and f' € FM' = Homg (A, M'), one has
(Fa0) o) = (Boa)(Fao)f) = Boart) (oo ) =t o o (o0 1)
16 600 6wy o f = (0 o 1)1 0wy o f
= (Fa(d®)t)M oWy o f' = (00,010 (Fa(c! ™)) '
(61,008)((Fao)f') = (61,m8) (0 0 f') = (00 f)I]
fMoollos= Mo (Fa(ol))s = (010 ((Fa(o™))s)) .
Thus, (FAO')[O] o 90,M = GO,M/ @) FA(O'[O]) and (FAO')[l] o 01,M = 917M/ @) FA(O'[l]),
implying 0y and 6; are natural. Next, we have
((QO,M[H o Fa®yr)f)s = (90 m (Fa®ar)f))s = (GO,MU] (Parof))s
= (‘IDMOf) oW,mos= fi oég\l/l] oW,mos= fMos
= (Or,05)f = (@raaf)(O1,005) = (O 4, (Pran f))s

(Fao)M(01,019)) '

(O, 00000 0 FaVnr) )t = (04 pgior (Fa¥ar) )t = (01,0000 (s © f))E
_ t[l] o (\IJM o f) = (6‘07”[15)]0 = (\IJFAMf)(QOJV[t)
= (e([)l’]]w(\llFAMf)>t

50 Oy pyi1 0 Fa®as = 01y, 0 ®pyar and 0y yyi0 0 Fa¥ay = 0, 0 @y To finish,

we need to show that 6y ps and 6; ps are bijective. As everything is additive and
M is a summand of A™ for some n € N, it is enough to show that 6y 4 and 61 4 are
bijective. Indeed, the maps 7; : (FAA)l — F4(AF) = Hom,, (A, A) defined by

) = t'(id)Mody, |
m(s) = s'(ida)

forallt’ € (F4A)% = Hompg, (Ra, (K4)1) and s’ € (F4A) = Hompg, (Ra, (K4)o)
are inverses of 0y 4, 61,4 since

(Go,a(not))r = (Bo,a(t' (ida) 0 ®a))r = (¢'(ida) % 0 D g) T oWy 0
= (ID[l] ot/ (id )0 o\Iler—q)[]o\I/A[l]ot(ldA)oT
= t'(ida) ©1r =t (idar) =t'(r)
Oralms)r = ((01,4)(s'(ida)))r = rV 0 s'(ida) = &'(ida) @o 7
= §(ida-r)=5'(r).
That ng 0 8p,4 = id and 71 0 01 4 = id is easy and thus left to the reader. O

REMARK 2.8.7. We can also endow Hom (A, Al’)) with a double R4-module
structure by letting

fOor=for and f@lr:r[o]of.
The resulting double R-module is isomorphic to K 4 and the isomorphism is the map
IZ}A : Hom(A, A%y — Hom(A, AlM). Identifying Hom(A, AM) with Hom(A, Al°))
in this way, the map 6y of the last proof can be described by the formula 6y 5/ (t) =
[f — fl%0t] (here £ ot lies in Hom(A, Al)) rather than Hom(A, Alll)). Thus,
although it is not clear at first sight, the definitions of 6y and 6; are basically the
same up to 0-1 exchange.

The next proposition shows how F4 interacts with natural isomorphisms from
[0] to [1].
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PROPOSITION 2.8.8. Assume that u : [0] — [1] is a natural isomorphism (resp.
involution). Then K a has anti-isomorphism (resp. involution) k and (Fa,6,01)
passes u to w, (that is, we puar © 0o,m = 01,00 © Faupg for all M € o7 4).

PROOF. Define x : K4 — K5 = Hom(A,A[l]) by £(f) = ((ua)s o lga)f =
ua o fl0o®,. Tt is straightforward to check that « is an anti-isomorphism and by
Proposition ii), k2 = id when w is an involution. The equality w,, z,a 000, m =
01,0 © Faupr holds since for all t € F4 (M%) = Hom, (A, M) and f € FaM =
Hom,, (A, M), we have

(uk,pant(Bort))f = (ko (Bomt))f = rk((Bont)f) = /{(tm oWy o f)
= uao° (tm oWy o f)[o] o®y=uas0f%0 \I/E‘S} ot 6,

fm oups o \IIESI] oy 0t = f[l] ouprot = (01,pm(uprpot))f
= (O m(Faua)t))f -
(Recall that u, = ko _.) O

The previous results imply that everything we have proved for bilinear forms
over rings in the previous sections also applies to arbitrary categories with a double
duality. However, precaution should be taken since a bilinear form which is epic
in &/ might not be epic (i.e. surjective) once transferred to Mod-R 4. Nevertheless,
monic bilinear forms over 7| 4 are transferred to monic (i.e. injective) bilinear forms
over Mod-R 4.

REMARK 2.8.9. Under mild assumptions, we can say quite a lot about the
structure of K 4: Assume that there is a right regular bilinear form (A4, bg). Then
bo induces an anti-endomorphism * of R4 given by r — b~' or! o b. Let K be the
double R s-modules obtained from R4 by defining x ©gr = r*x and x ©1 r = ar
(z,7 € Ra). Then K = K4 as double R4-modules. The isomorphism is given by
k — bo k. In particular, if by is u-symmetric for some « : [0] — [1], then * is an
involution and the bilinear forms on &/|4 are equivalent to sesquilinear forms over
(Ra,*). When restricted to categories with duality, the last observation is just the
classical transfer principle.

REMARK 2.8.10. Observe that the transfer principle we have obtained in this
section is interesting even for categories with duality. Indeed, the standard transfer
in categories with duality (see the end of the previous remark or [71], [86] Ch. 7])
can be applied only for objects A admitting a regular symmetric or skew-symmetric
bilinear form by. We have dropped this condition, as well as the dependency in by,
which is inherent in the classical transfer.

2.9. Rings That Are Morita Equivalent to Their Opposites

In this section, we use our new notion of bilinear forms to partially answer a
problem that was suggested to the author by David Saltman (to whom the author
is grateful). Consider the following three properties that a ring R might posses:

(1) There is a ring with an involution (S, *) and S is Morita equivalent to R.
(2) There is a ring with an anti-automorphism (S, *) and S is Morita equiva-
lent to R.

(3) R is Morita equivalent to R°P.
While (1)==-(2)==-(3) is obvious, one could ask whether there are other implica-
tions between (1), (2) and (3). Indeed, in [82], Saltman proves (2)==-(1) in case R
is an Azumaya algebra over some commutative ring, and the following conditions
are well known to be equivalent when R is a f.d. simple algebra (e.g. [2, Ch. X]):

(1') R has an involution of the first kind,
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(2') R has an anti-automorphism fixing Cent(R).

(However, (2')=A4-(1) for Azumaya algebras.) We will show below that (3)=-(2)
for a large family of rings and against expectations, (2)=~ (1) even for f.d. algebras.
The results to follow, as well as some improvements such as a new proof of Saltman’s
result, can also be found in [40].

It will be useful to introduce some general notation for this section: For a
ring R, let proj-R denote the category of finite projective right R-modules and
let Iso(proj-R) denote the isomorphism classes of proj-R. The isomorphism class
of P € proj-R will be denoted by [P]. Let R and S be rings. By saying M is
an (S, R)-progenerator we mean that M is an (S, R)-bimodule, Mp and ¢M are
progenerators (of the appropriate categories), R = End(sM) and S = End(Mg).
Recall that an (S, R)-progenerator exists precisely when R is Morita equivalent to
S. For a detailed discussion of Morita equivalence, see [58] §18], [80], §4.1] and also
[72] Ch. 4].

We begin by proving (3)==(2) for certain rings.

DEFINITION 2.9.1. Let (M,+) be an abelian monoid. An element x € M is
called indecomposable if x = y + z implies y = 0 or z = 0. We say (M,+) is
strongly finitely generated if M is spanned as a monoid by a finite set of indecom-
posable elements.

A ring R is said to be of (right) finite projective representation type (abbrev.:
FPRT) if (Iso(proj-R), ®) is strongly f.g., i.e. if R admits finitely many indecom-
posable finite projectives (up to isomorphism) and any finite projective module is a
direct sum of finite number of indecomposables.

Note that if (M,+) is a monoid and S is a generating set for M consisting of
indecomposable elements, then S is the only generating set consisting of indecom-
posable elements and it consists of all indecomposable elements. In particular, any
automorphism of M permutes S.

EXAMPLE 2.9.2. Any semiperfect ring has FPRT since (Iso(proj-R),®) =
(NF, +) for some k € N; see [80] §2.9]. More generally, if R? has a Krull-Schmidt de-
composition (i.e. a representation as a sum of indecomposables which is unique up to
isomorphism and reordering) for all n € N, then R has FPRT (since (Iso(proj-R), ®)
is spanned by the indecomposable components of R). For example, this holds when
R is homogeneous semilocal (i.e. R/ Jac(R) is simple artinian), as follows from [26].
Other examples of rings with FPRT include maximal orders in f.d. simple algebras
over global fields. This follows from [72] Th. 26.4, §35-36].

THEOREM 2.9.3. Let R be a ring with FPRT that is Morita equivalent to its
opposite, then there exists a ring with anti-isomorphism (S, *) such that S is Morita
equivalent to R.

PrROOF. Let P be an (R°P, R)-progenerator. We make P into a double R-
module by letting ®; be the standard right action of R on P and ®¢ be the right
action of R on P obtained by twisting the left action of R°P. Observe that for i €
{0,1}, Rl = Hom(Rg, P1_;) = P; and hence R~ = Hom(P;, P;) = Rp. It is
now routine to verify that R is reflexive and since being reflexive is preserved under
finite direct sums and passes to summands, any finite projective right R-module is
reflexive. For i € {0,1} define ¢; : Iso(proj-R) — Iso(proj-R) by ¢;[P] = [P].
Then ¢; is well-defined and the previous discussion implies ¢; = ¢]_,. Moreover,
since [i] preserves direct sums, ¢; is a monoid isomorphism.

Since (Iso(proj-R), @) is strongly f.g., there exists indecomposable Py, ..., P; €
proj-R such that S := {[P1],. .., [P:]} generates Iso(proj-R). Let M = P, ®---® P;.
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Then ¢; permutes S, hence [M] = [M™M]. This gives rise to a right regular bilin-
ear space (M,b, P) (take Adj would be the isomorphism M = M), Since M is
finite projective, it is left reflexive, so by Proposition ii) b is also left regu-
lar. Therefore, there is an anti-automorphism * : Endg(M) — Endr (M), namely
the one that corresponds to b (see Propositions and . As S generates
Iso(proj-R), M must be a progenerator, hence Endr (M) is Morita equivalent to R
and we are through. O

REMARK 2.9.4. Define an equivalence relation on Iso(proj-R) by [P] ~ [Q]
<= there exists n € N such that [P"] = [Q"]. Then Iso(proj-R/ ~,®) is a
monoid. Tt is easy to see that Theorem also holds when Iso(proj-R/ ~, ®) is
strongly finitely generatedH The proof is similar, but one obtains a module M
for which [M] ~ [M!M]. By replacing M with M™ for n sufficiently large, we may
assume M = MU and proceed with the proof.

Other finiteness assumptions on proj-R also imply the existence of M with
M = MU, For example, if Iso(proj-R) is finite (see [4] and related papers for such
examples), then one can take M = Q1®- - -®Q where @1, . .., Q; are representatives
for the isomorphism classes of proj-R.

The proof of Theorem [2.9.3] had two stages. The first was to show that any
(R°P, R)-progenerator gives rise to a duality from proj-R to itself and the second
consisted of finding a generator M € proj-R with M = MU, or equivalently, a right
regular bilinear space (M, b, P) (with P as above). We will now show that any ring
with anti-isomorphism (S, %) for which S is Morita equivalent to R is obtained via
this principle (compare with [82] Th. 4.2]).

PRrROPOSITION 2.9.5. Let R be a ring that is Morita equivalent to R°P and
let M be an R-progenerator. Then any anti-isomorphism x of S := Endg(M) is
induced from a right regular bilinear space (M, b, P), where P is obtained from some
(R°P, R)-progenerator. Moreover, if * is an involution, then P admits an involution
Kk and b is k-symmetric.

PrOOF. Consider M as an (S, R)-bimodule and observe that M can be made
into an (R°P, S)-bimodule by defining r°P - m - s = s* 'mr. Define P = Rro» P =
rov Mg ®g s Mr and make it into a double R-module by letting:

(z®sy) ©or =129y, (z®sy) 11 =xQYr Ve,y€ M, rc R .

It is now clear that b : M x M — P defined by b(z,y) = = ®g y is a bilinear
form. In addition, for all s € S, b(sz,y) = (sz2) sy = (v-5*) Qs y = ¢ ®g s*y =
b(x, s*y), hence the corresponding anti-endomorphism of b is , provided b is regular.
However, we postpone the proof of the latter fact to Chapter [3| (Theorem ,
where we shall generalize the construction of P. If % is an involution, then the map
k: P — P defined by (z®@y)" = y®z (x,y € M) is well-defined and it is easy
to check that it is an involution of P and b is k-symmetric. Finally, ro» Pr is an
(R°P, R)-progenerator because it is the tensor product of an (R°P, S)-progenerator
(namely, gorMg) and an (S, R)-progenerator (sMpg). (This fact is a consequence
of Morita’s Third Theorem; see [58], §18D].) O

Note that Proposition only promises us some (R°P, R)-progenerator, but
in general, a given (R°P, R)-progenerator P need not admit a regular bilinear form
(M, b, P) with M a progenerator (hence the proof of Theorem does not work
for arbitrary rings). This is demonstrated in the next example. Can it be that all
(R°P, R)-progenerators P are “bad” (in the sense of not having a regular bilinear

13 The author does not know if this condition is implied from R having FPRT, but this is
true in case R is right noetherian.
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space (M,b, P))? We believe that the answer is yes. In particular, we conjectures
that (3)=£(2) in general.

EXAMPLE 2.9.6. Let F' be a field and let R = lim {My(F)®"},en. Then any
finite projective right R-module is obtained by scalar extension from a finite pro-
jective over My (F)®™ < R. It now not hard (but tedious) to show that the monoid
(Iso(proj-R), @) is isomorphic to (Z[3] N [0,00),4). (If V, is the unique indecom-
posable right projective over My (F)®™, then V,, ® R is mapped to 27".)

Let T denote the transpose involution on My (F). Then T = lim {T®"},en is
an involution of R. Now let P = R? € proj-R. Then Endg(P) & M2(R) & R
and using f, we can identify Endr(P) with R°P, thus making P into an (R°P, R)-
progenerator. We claim that there is no regular bilinear form (M, b, P) with 0 #
M € proj-R. To see this, identify Iso(proj-R) with Z[1] N[0, 00) and observe that
monoid isomorphisms g, 01 : Z[3] N [0,00) — Z[3] N [0,00) of Theorem m
satisfy ¢o(1) = 1 and ¢1(1) = 2, hence po(z) = 1z and ¢i(z) = 2z for all
z € Z[3] N [0,00). But this means ¢1(z) # z for all 0 # z € Z[3] N [0,00), so
M 2 MW for all 0 # M € proj-R.

The next example shows that (2)=A(1). The example we bring was suggested
by Scharlau in [85] as an example of a ring with an anti-automorphism but without
involution. However, it turns out that any ring that is Morita equivalent to this
example does not have an involution.

ExXAMPLE 2.9.7. Recall that a poset consists of a finite set I equipped with a
transitive reflexive relation which we denote by <. For a field F' and a poset I,
the incidence algebra A = F(I) is defined to be the subalgebra of the I-indexed
matrices over F' spanned as an F-vector space by {e;;|1,7 € I, i < j}.

The poset I can be recovered (up to isomorphism) from A as follows: The
ring B = A/ Jac(A) is a semisimple ring. Let eq,...,e; denote the set of central
idempotents in B for which e; Be; is simple and let ¢; = length(e; Be;). Since Jac(A)
is nil, ey, ..., e; can be lifted to orthogonal idempotents fi,..., f; € B (the f-s are
uniquely determined up to conjugation). Define I' = {x;; |1 < <t,1 < j < 4},
and let z;; < ziy <= fiAfy # 0. Then A = F(I’). This implies that two
incidence algebras are isomorphic (as rings) if and only if their underlying posets
are isomorphic. Moreover, any anti-automorphism (resp. involution) of A permutes
e1,...,e, preserves £1,...,4;, reverse the order in I’, and thus induces an anti-
automorphism (resp. involution) on I’. Tt follows that A has an anti-automorphism
(resp. involution) if and only if I has one.

Any poset (I, <) gives rise to an equivalence relation ~ on I defined by i ~ j
<= i <jand j <i. The quotient set I/~ can be made into a poset by defining
[z] < [y] <= = <y (where [z] is the equivalence class of z). It is well known
that two incidence algebras F'(I) and F(J) are Morita equivalent if and only if
I/~ = J/~ as posets. The converse is also true, any ring that is Morita equivalent
to F(I) is an incidence algebra F(J) with I/~ = J/~.

Now observe that if I admits an involution, then so is I/~. Therefore, by the
previous paragraphs, if we can find I such that I = I/~ (i.e. < is anti-symmetric)
and [ admits an anti-automorphism but no involution, then any ring that is Morita
equivalent to F'(I) does not have an involution. (Otherwise, this would imply that
I = I/~ has an involution). Such an example was given in [85] by Scharlau (for
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other purposes); I is the 12-element poset whose Hasse diagram is:

TN

_— 0

—_ °
[ ]

(Using Scharlau’s words, it is “the simplest example I could find”.) The anti-

automorphism of [ is given by rotating the diagram by ninety degrees clockwise.

oe<——020
*e——> 0

o <—

REMARK 2.9.8. Incidence algebras are a good source of examples for rings
without anti-automorphisms that are Morita equivalent to their opposites — just
take I such that I 2 I°P but I/ ~ = [°?/ ~. The simplest such example is
I ={1,2,3} with the relation I x I'\ {(3,2),(3,1)}. In this case, the poset algebra
is the algebra of 3 x 3 matrices of the form

O ¥ ¥
O ¥ ¥

Note that in this case I/ ~ has an involution, hence F(I/ ~) has an involution
although F(I) does not even have an anti-automorphism. Moreover, by Propo-
sition this means that there is a symmetric regular bilinear form over F(I)
defined over a faithful F'(I)-module, despite the fact that F'(I) does not admit an
anti-automorphism.

REMARK 2.9.9. Call a semiperfect ring R basic if Ry is a direct sum of non-
isomorphic indecomposable projectives. Every semiperfect ring has a unique basic
ring that is Morita equivalent to it (see [58) Prp. 18.37] and the preceding discus-
sion). For instance, in case R = F(I) for some field F and a poset I, F(I/ ~)
is the basic ring that is Morita equivalent to R. The proof of Theorem [2.9.3| now
implies that if a semiperfect ring is Morita equivalent to its opposite, then then
the basic ring which is Morita equivalent to it has an anti-automorphism. Indeed,
the basic ring that is Morita equivalent to R is just Endgr(Py @ -+ @ P;) where
Py, ..., P, are the indecomposables in proj-R (up to isomorphism). In addition,
Example was based on the observation that if F'(I) has an involution, then so
does its basic ring F'(I/~). The author believes that the this claim actually holds
for other families of semiperfect rings.

2.10. Addendum

In Example[2.4.12] we have defined M to be the free monoid over {x¢, z1, 22, ... }
subject to the relations:

Tok4+1T2k = 1 = Topy1Top42

Tn4242kL2k = L2kTn+2k; T2k4+1Tn+2k+3 = Tn+2k+1L2k+1
for all n,k > 0. The example relies on the fact that xg # z2 and this addendum
is dedicated to verify that. In fact, we will solve the word problem in M and show
that any element of M admits a unique canonical form.
We start by recalling the Bergman-Bokut Diamond Lemma. For proof, see
[18].
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PROPOSITION 2.10.1 (Diamond Lemma). Let X be a set and — a reduction
relation on X satisfying:

(i) Any element of X can be reduced only a finite number of times.
(ii) If a — b and and a — ¢ (a,b,c € X), then b and ¢ have a common

reduction d € X (i.e., b 5 d and ¢ 5 d, where =5 is the transitive closure
of = ).

Then any element of X has a unique irreducible reduction.

Let F' denote the free word monoid on the letters {xg, z1, z2,...}. Inspired by
the relations of M, we define four families of reduction rules on the words of F'
(denoted LILIIT and IV) given by:

I zopr172p —> 1
Il: wopt1®op2 — 1
III: 2, y040kTop — TopTniok (“even indices move left”)
IV: Zokt1Zntok+3s — Tniokt+1T2k+1 (“odd indices move right”)

(where n,k > 0.) Let — denote the union of all these reduction relations. We will
now prove that the conditions of the Diamond Lemma hold.

LEMMA 2.10.2. In the previous notation:

(i) Any word in F can be reduced only a finite number of times.
(ii) Leta € F. Ifa — b and a — ¢ then b and ¢ has a common subreduction.

PRrROOF. (i) Each reduction decreases the sum of the indices of the letters in
the word. Therefore, only finitely many reductions can be applied on a given word.

(ii) Let a, b, ¢ be given. Denote by ¢; and to the type of the reductions a — b
and a — ¢ respectively (recall that there are four such types: LILIII and IV). We
now split into cases, checking separately all possible pairs (t1,%2). By symmetry,
we may assume t; < t3. We may also assume that the letters exchanged in the
reduction a — b overlap those exchanged in a — ¢. (Otherwise, it clear that b and
¢ have a common reduction.) We also ignore the case b = ¢ for obvious reasons.

In the rest of the proof, our notation will consist of diagrams of reductions. To
avoid extra notation, a condition on an arrow means that the reduction is valid
(only) when the condition holds. We let * be the anti-endomorphism of F' obtained
by sending z, to x,11. Observe that it preserves the reduction relation. We will
always assume m, n, k are non-negative integers.

(t1,t2) is one of (I,I), (III), (ILII): Here either b = ¢ or the letters ex-
changed in a do not overlap.

(t1,t2)=(I,III): The case is resolved as in the following diagram (n > k):

a = ...I2n+3l’2n+21‘2k...%b: R 155}
C= ... 0on43%2kT2pn - .. —> ... L2k T2n4+1L2n - - -

(t1,t2)=(IL, III): (n > k):

a = ...x2n+1$2n+2x2k...—>b:...xgk...
l’ = T
n>k
C= ... 02n4+1T2kT2n, « .- —> ... L2k T2n—1L2n - - -

(t1,t2)=(I,IV): Apply * on the diagram of case (t1,t2) =(II,III).
(t1,t2)=(IL,IV): Apply * on the diagram of case (t1,t2) =(I,III).
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(t1,t2)=(IILIII): (n > 2k + 2 > 2m + 4; we removed all the dots; it suffices
to check the overlaps.)
4 = TnTopPom —> b = Top@n_2Tom ——> TopPomTn—4
C= TplomT2k—2 — > L2mTn—-2T2k—2 — > L2mL2k—2Tn—4

(t1,t2)=(IV,IV): Apply * on the diagram of case (¢, to) =(IILIII).
(t1,t2)=(IILIV): (n > 2m + 3,2k + 2; Again, we removed the dots.)

L2k —2L2m+4+1Tn—2

y \
k<

m
b= Tom41T2kTn—2 ——> T2kT2m—1Tn—2 Tok—2Tn—4T2m+1
T ke{m,m+1}
a4 = T2m+4+1TnT2k Tn—2
\L ke{m,m+1}

C = Tp—2T x ——> Tpn—2X2k—2T XokTLp—4T —
n—242m+1 2kk>m+1 n—242k—24L2m+1 2kbn—4L2m—1

M/

Tp—2T2kT2m—1
We conclude that in all cases, b and ¢ have a common reduction. O

We can now assert by the Diamond Lemma that any element of F' has a unique
irreducible reduction w.r.t. —. This implies that two words in F are equal in M if
and only if the have the same irreducible reduction. (This solves the word problem
in M.) In particular, zog # x9 in M since both words are irreducible.






CHAPTER 3

Bilinear Forms and Anti-Endomorphisms

The following theorem is a classical result about bilinear forms over fields that
lies at the heart of the connection between quadratic forms and involutions; for
proof and generalizations see [57, Ch. 1].

THEOREM 3.0.1. Let F' be a field and let V be a f.d. vector space. Then there
is a one-to-one correspondence between regular bilinear forms b : V. xV — F,
considered up to scalar multiplication, and anti-automorphisms of Endp (V) pre-
serving F'. The correspondence is given by sending each form b to its corresponding
anti-automorphism x, i.e. the anti-automorphism satisfying

blox,y) = b(z,0"y) Va,y€V, o € Endp(V) .

Moreover, under this correspondence, symmetric and anti-symmetric forms corre-
spond to orthogonal and symplectic involutions, respectively.

Our goal in this chapter is to generalize Theorem to bilinear forms over
rings, as defined in the previous chapter. That is, we would like to show that the
map sending a right regular bilinear form to its corresponding anti-endomorphism
induces a one-to-one correspondence between the right regular bilinear forms on a
given module M € Mod-R, considered up to a certain equivalence, and the anti-
endomorphisms of End(M). We will show that: (1) the correspondence fails over
arbitrary rings, and in particular over f.d. algebras, (2) under mild assumptions on
the module M (e.g. being finite projective) or on the base ring R, the correspondence
holds in its original setting and (3) in some cases the correspondence holds under
a slight adjustment, namely the anti-endomorphisms correspond to certain right
stable bilinear forms rather than to right regular bilinear forms. For example,
when R is a semiprime Goldie ring (e.g. an semiprime noetherian ring), the adjusted
correspondence holds when M is a f.g., faithful and torsion-free.

Byproducts of the work include several results about general rings of quotients
and pseudo-Frobenius (abbrev.: PF) rings, such as:

(1) Let Rbearing and let S be a (two-sided) denominator set such that RS™1
is right PF ring. Then for any faithful f.g. S-torsion-free M € Mod-R,
End(MS~1) is the mazimal symmetric quotient ring of End(M).

(2) For any faithful right module M over a right PF ring, End(M) coincides
with its maximal symmetric ring of quotients.

(3) Suppose R is an Ore domain and D is the division ring of fractions of R.
Then End(M ®pg D) is the (two-sided) classical fractions ring of End(M)
for any torsion-free f.g. M € Mod-R.

In addition, the adjusted correspondence holds for M in each of these cases.

The contents of each section are described at the end of section [3:1} which also

serves as a preface. Some results of this chapter can also be found at [39].

3.1. The Correspondence

Let R be aring and let M be a fixed right R-module. Set W = Endr (M) and let
End™ (W) (Aut™ (W)) denote the set of anti-endomorphisms (anti-automorphisms)

101
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of W. Recall that a bilinear space (M, b, K) is right regular if Ady : M — MU s
bijective (see section for all relevant definitions). In this case b is right stable,
i.e. for every w € W, there exists unique w’ € W such that

b(wz,y) = b(x, wy) Ve, y € M .

We denote the map w — w’ by a = «a(b). It is routine to verify that it lies in
End™ (W). Furthermore, if b is k-symmetric w.r.t. to some involution x of K, then
« is an involution. Indeed,

b(z, wy) = b(wy, z)" = b(y,w*x)" = b(wz,y) = b(x,w*"y)

for all z,y € M and w € W, so the right-stability of b implies w = w** (see
Proposition .

Denote by Bil,eg(M) the class of all right regular bilinear forms over M (the
forms can take values in any double R-module, hence this is not a set; we will soon
make this class into a category). In this section, we will explain in detail how to
make the map b — «(b) : Bil,eg(M) — End™ (W) into the ideal correspondence
described in the preamble.

Our first step is to introduce an “inverse” to b — «(b). While this requires
most of the work in Theorem and its generalizations (using tools such as the
Skolem-Noether Theorem), our new notion of bilinear forms allows an easy and
explicit construction of such an inverse.

Let a € End™ (W) and let A, B be two left W-modules. Define:

A®z B

ARy B= .
@ (wa®b—a@w*b|a€ Abe Bywe W)

For a € A and b € B, we let a ®, b denote the image of a ®z b in A ®, B (the
subscript a will be dropped when obvious from the context).

REMARK 3.1.1. For any B € W-Mod and « € End™ (W), let B* denote the
right W-module obtained by twisting B via a. Namely, B* = B as sets, but B* is
equipped with a right action ¢, : B X W — B given by x ¢, w = w®z for all x € B
and w € W. Then the abelian group A ®, B can be identified with B* ®u A.
Therefore, ®, is an additive bifunctor and W" @, B = B™.

Now consider M as a left W-module and let « € End™ (W). Define K, =
M ®, M and note that K, is a double R-module w.r.t. the operations

(T ®aY) @or =21 Quy and (2 ®aY) O17 =2 Qg yr

(r,y € M, r € R). It is now clear that the map b, : M x M — K, defined by
bo(z,y) = R4 y is a bilinear form and

(12) bo (W, Y) = WT Rp Yy = T Rp W'Y = by (z, W Y)

for all z,y € M and w € W, hence a(b,) = «, provided b,, is right regular. In fact,
the pair (b,, K, ) is universal w.r.t. satisfying in sense that if b: M x M — K
is another bilinear form satisfying , then there is a unique double R-module
homomorphism f : K, — K such that b = f ob,. Moreover, assume « is an
involution. Then K, admits an involution k, given by z ® y — y ® = and b, is
Ko-symmetric, so every involution corresponds to a symmetric form!

EXAMPLE 3.1.2. Let F' be a field and let « be an anti-automorphism of M,, (F) =
End(F™) preserving F. We will show below that K|, is just F' with ® and ®;1 being
the standard action of F' on itself. Moreover, if « is an involution, then k, = idp
if a is orthogonal and k, = —idp if « is symplectic.
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Let us summarize what we have done so far: For every bilinear form b €
Bil,eg (M), we have defined the anti-endomorphism a = «(b) € End™ (W) to be the
unique anti-endomorphism of W satisfying.

b(wz,y) = bz, wy) Ve,y e My, we W

(namely, « is the corresponding anti-endomorphism of b). In addition, for every
a € End™ (W), we constructed a bilinear space (M, by, K,) and showed that it is
universal w.r.t. satisfying (I2). The maps b — a(b) and a + b, will induce, after
suitable adjustments, the desired correspondence.

Our next step is to define some equivalence relation on Bil,es(M). Call two
bilinear forms b : M x M — K and &/ : M x M — K’ similar if there is an
isomorphism f € Hompnog.gr(K, K’) such that b’ = fob. In this case, f is called a
similarity from b to b’ and we write b ~ t'. The class Bil,g (M) can be made into a
category by taking the similarities as morphisms, and we let Iso(Bilyeg (M) denote

its isomorphism classes. Clearly any two similar right regular forms b, b’ satisfy
a(b) = a(b).

ExaMPLE 3.1.3. Let F' be a field and let V be a f.d. F-vector space. Then two
bilinear forms b,b’ : V x V — F are similar if and only if they are the same up to
(non-zero) scalar multiplication.

We conclude the previous paragraphs by stating that we would like to have a
1-1 correspondence as in the following diagram
b—a(b)
—
(13) Iso(Bileg(M)) End™ (W) .
-
ar+by

One can easily verify that this description agrees with the correspondence of The-
orem B.0.11

However, it turns out that the correspondence in fails in general, and for
two gaps, which the reader might have already spotted:

(a) b, is not always right regular (e.g. see Example below).
(b) ba(s) need not be similar to b, even when both b and b, ;) are regular (see

Example [3.4.8]).

In addition, it is still open whether that b is right regular implies that so is bqs)-
We note that the problems (a) and (b) occur even when considering bilinear forms
over f.d. algebras.

REMARK 3.1.4. For a bilinear space (M,b, K), let im(b) denote the additive
group spanned by {b(z,y)|z,y € M}H It is easy to see that im(b) is a sub-double-
R-module of K. We will say b is onto if im(b) = K. It might look as if problem (b)
would be solved if we insisted on considering only forms that are onto, but this is
not the case. The forms constructed in Example are onto, thus demonstrating
that problem (b) is inherent.

Problem (a) is solved when restricting to special cases, e.g. when M is finite
projective or a generator (see section. However, these cases are not so common.
Another way to approach (a) is to replace Bilyeg(M) with Bily (M) in (13)), where
Bilg; (M) is the category of right stable bilinear forms on M (with similarities as
morphisms). Note that b, is right stable if and only if it is right semi-stable (see
section for definitions). In particular, if b, is right injective, then it is right
stable (in contrast to arbitrary right injective forms; e.g. Example [2.4.9)). We will

1 Caution: in general im(b) is not the image of b in the usual sense.
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show below that this adjustment is indeed crucial sometimes. In particular, there
are anti-automorphisms « such that b, is right stable but not right regular (and
not even right injective; see Example .

While extending the domain of b — «(b) to Bilg; (M) only worsens problem (b),
it turns out that it can be solved completely by restricting the domain of b — «(b)
to the image of « — b, (up to similarity). This calls for the following definition:

DEFINITION 3.1.5. A bilinear form b : M x M — K 1is called generic if it is
right stable and b is similar to ba(b)ﬂ

Since a(b,) = « (provided b, is right stable), b, is always generic, and by
definition, any generic form is obtained this way, up to similarity. As implied from
our previous comments, generic does not imply right regular nor does right regular
imply generic (unless special assumptions are made on the module M).

PROPOSITION 3.1.6. Let (M,b, K) and (M, ,K") be two right stable bilinear
spaces. Then:

(i) If b and V' are generic, then a(b) = a(b') implies b ~ b'.
(ii) If b is generic, then it is onto (in the sense of Remark|[3.1.7)).
(i) If b is generic and a(b) = «a(V'), then there exists a unique double R-
module homomorphism [ such that b/ = f ob.
(iv) If b is generic and a(b) is an involution, then K has an involution k and
b is k-symmetric
(v) by is generic. (In particular, by is right stable.)

Proor. (1) By definition, b ~ ba(b) ~ ba(b’) ~b.

(ii) Clearly by (s is onto and since being onto is preserved under similarity, b is
onto.

(iii) The universal property of b, implies that there is a unique double R-
module homomorphism g : K@) — K’ such that ' = g o b (define g(z ®q ) y) =
V' (z,y) for all 2,y € M). Let h be a similarity from b to by(). Then f = goh is the
required morphism. The uniqueness of f is easy to prove and is left to the reader.

(iv) We can identify K with K, and b with b, (). Then by ) is Kq(p)-symmetric,
as explained above.

(v) We only need to check that by is right semi-stable. By the universal
property of b, ) there is f € Hompmod-r(Kap), K) such that b = foby). We are
now done by the following Lemma. O

LEMMA 3.1.7. Let (M,b,K) and (M,V', K') be two bilinear spaces and let [ €
Hompmod-r (K, K') such that b’ = fob. Ifb is right (left) semi-stable then so is b.

PROOF. We treat only the right case. Assume o € End(M) is such that
b(xz,oy) = 0 for all z,y € M. By applying f on both sides we get V'(z,0y) = 0,
hence o = 0, as required. O

Let Bilgen(M) stand for the category of generic bilinear forms over M with
similarities as morphisms. Then the last proposition implies:

2 Generic forms as defined now should have been called right generic. However, we will not
consider left generic forms in this chapter. Moreover, we shall see in section below that the
left and right definitions can be united into a left-right symmetric definition.

3 If b is not generic, then this is false even when b is regular; see Example below.
Example above already demonstrates that in case b is only right regular.
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COROLLARY 3.1.8. In the previous notation, provided b, is right stable for all
a € End™ (W), there is a one-to-one correspondence:
bsau(b)
(14) So(Biln(M)  End=(W)
T

Note that Proposition v) implies that any right stable form b can be turned
into a generic form by replacing it with b, ). This process is called generization
and it is a useful tool for studying bilinear forms.

REMARK 3.1.9. Call two right stable bilinear forms weakly similar (denoted
~y) if they have similar generizations. Then under the assumptions of Corol-
lary|[3.1.8] there is a one-to-one correspondence between Bilg (M) / ~,, and End ™~ (W).
However, we could not find a natural way to make Bily (M) into a category whose
isomorphism classes are the equivalence classes of ~,, i.e. defining weak similari-
ties. As a thumb rule, a definition of weak similarities would be appropriate if it
applied to arbitrary bilinear forms, rather than just right stable forms.

In section we present some of the basic properties of b,, such as when it
admits an asymmetry. We also show that provided b, and bg are regular, K, = Kg
if and only if & o 7! is an inner automorphism. Section explains how the map
b — b, interacts with orthogonal sums. (Namely, assume e € E(WW) is such that
e® =e. Then a1 := a|ewe € End™ (eWe) = End™ (Endgr(eM)) and we can from
bo, : eM x eM — K,,. How does b,, relate to b,?) The results obtained are
used to give an explicit description of K, in case M is a generator. Section
present various examples. In particular, problems (a) and (b) are demonstrated. In
section [3.5] we provide sufficient conditions for b, to be right regular. For example,
be, is right regular when M is a finite projective and regular when M is a generator
and o € Aut™ W. Sections and present conditions that insure b, is right
injective, e.g. those described in the preamble. In addition, in section [3.7] we obtain
several results about general quotient rings and right PF rings that are of interest
in their own right (e.g. Theorem Corollary . In section we show
how to generalize the generization process to non-stable bilinear forms.

We note that most of our results about regularity or injectivity of b, assume
« is an anti-automorphism; we will usually get a one-to-one correspondence be-
tween (left and right) stable generic forms, considered up to similarity, and anti-
automorphisms of W.

3.2. Basic Properties

Let R, M and W be as in the previous section and let « € End™ (W). In
this section we present some basic properties of K, and b,. In particular, we
discuss when is K, = Kz (for 8 € End™ (W)) and when b, has an asymmetry.
Throughout, Inn(WW) denotes the group of inner automorphisms of W (i.e. those
given by conjugation with an invertible element of ).

PROPOSITION 3.2.1. Let o € End™ (W) and assume by, is right stable. Then
by is left stable (semi-stable) <= « is bijective (injective).

PROOF. This follows from Proposition [2.3.4] O

PROPOSITION 3.2.2. Let a € End™ (W) and assume there exists A € W such
that w**X = Aw for allw € W and A\*\ € W* (e.g. if o® € Inn(W)). Then the
map k : Ko — K, defined by (x @4 y)" = y ®q Az is well-defined, it is an anti-
tsomorphism of K, and X\ is a right k-asymmetry of by. Moreover, if A°X = 1,
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then rk is an involution. Conversely, if b, is right reqular and K, has an anti-
isomorphism (or involution) K, then there exists A € W as above and k is induced
from A.

ProOF. This is similar to the proof of Proposition ii) (which is actually
a special case of this proposition — take M = Rpg). Nevertheless, we will repeat
the argument since there are additional details to be added. Throughout, w € W,
r€ Rand x,y € M.

The map x is well-defined since

(Wx ®a Y)" =Y ®a AT =Y Qo WAL = W'Y Ry AT = (T Qp wY)" .

To see that & is invertible, it is enough to check that x? is invertible. This holds
since

(2 ®a y)™ =M ®a ANy = ®a ANy ,

and the map = ®, y — T @4 A* Ay has an inverse given by & @,y + T @4 (A*A) " 1y.
(The latter is well-defined since (A%\)~! commutes with im(a); see Remark )
That (k ®; r)® = k" ®1_,; r for all k € K is straightforward and hence & is an anti-
isomorphism. In addition, the last equation also implies that x is an involution if
A®X = 1. That A is a right k-asymmetry of b, is routine.

If b, is right regular and K, has an anti-isomorphism x, then b, has a right

k-asymmetry A, and by Proposition i) and Lemma [2.3.12] A satisfy all the
requirements. The anti-isomorphism x is necessarily induced from A\ because

(T ®a y)" = ba(7,Y)" = ba(y, \T) =y @ Az . U

We do not know if the second part of the last proposition holds under the
weaker assumption that b, is right stable.

COROLLARY 3.2.3. If « € End™ (W) and o? is inner, then b, is right reqular
if and only if by, is left reqular.

PROOF. Proposition [3.2.2] implies K, has an involution. In addition, « is
bijective (since a? is). Therefore, we are done by Proposition [2.3.13 (]

PROPOSITION 3.2.4. Let o € End™ (W) and ¢ € Inn(W). Then Ko =2 Koa
as double R-modules. Conversely, if a, 8 € End™ (W) are such that b, and b are
right regular and K, = Kz as double R-modules, then there exists ¢ € Inn(W)
such that = poa.

PROOF. Let u € W be such that p(w) = u twu for all w € W. Define
[ Ko = Kaop by f( ®a ) = @gpoa uy. Then f is well-defined since

f(wx Oa y) = wx ®<pooz uy =x ®<pooz (uwauil)uy =x ®g0004 Uway = f(l‘ ® way) s

and it is easy to see that f is an isomorphism of double R-modules (its inverse is
given by & ®gpon Y — T ®q u~y). Therefore, K, = Koq.

To prove the second part of the proposition, it is enough to show that if
b,c: M x M — K are two right regular bilinear forms, with corresponding anti-
endomorphisms « and 3, then there exists ¢ € Inn(W) s.t. f§ = ¢ o a. Indeed,
define u = (Ad})~' o Adl € W*. Then for all z,y € M, c(x,y) = (AdLy)z =
(Ady (uy))x = b(x,uy). Therefore, for all w € W:

1

c(x, wPy) = c(wz,y) = b(wz, uy) = b(z, wuy) = c(z,u wuy)

1

and it follows that w® = v~ 'w®u, as required. ]
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We finish this section by presenting a left analogue of b,. Assume A, B €
W-Mod. In section [B-1] we have defined A ®, B and we now similarly define

Aoy B

Ay® B = .
@ (a®@wb—w*a®bla€ Abe Bywe W)

In addition, we define . K = M,® M and ,b: M x M — K by b(z,y) = 2,® y.
All the results of this chapter have left versions obtained by replacing b,,, K, with
ob, o K and every right property with its left analogue.

We also note that if « is bijective, then A ®, B is naturally isomorphic to
Ay-1® B (via  ®4 Y ¢ To-1® y) and by, is similar to ,-1b, hence both right and
left versions of our results apply. We will use freely the fact that A®, B & B*Qw A
and A,® B = A*®y B. (Recall that for A € W-Mod and o € W-Mod, A% denotes
the right W-module obtained by twisting A via «; see Remark )

3.3. Relation to Orthogonal Sums

Let R, M and W be as in the previous section and let o € End™ (W). In this
section, we shall examine how the map a — b, interacts with orthogonal sums.
We shall then use our results to describe K, explicitly in case M is a generator of
Mod-R. This in turn is then used to show that b, is regular for all « € Aut™ W
(provided M is an R-generator) and to justify the assertions made in Example[3.1.2]

Let a € End™ (W) and assume there are orthogonal idempotents ey, ...,e; € W
such that 1y = > e; and e = e; for all . Then «o; := a|¢,we,; i an anti-
endomorphism of e;We;, hence we can form b,, : e;M x e,M — K,,. It is now
natural to ask what is the connection between by, K, and {ba,, Ko, }!_;.

To make this less obscure, let M; = e;,M € Mod-R. Then M = @221 M; and
for all ¢ # j:

ba(Mi,Mj) = ba(eiMi,Mj) = ba(Mi,E?Mj) = ba(Mi,eiMj) = ba(Mi,O) =0 s
hence b, = by L -+ L by where b; = by|ns,xn,- As clearly b;(wz,y) = b;(x, w*iy)
for all w € e;We; and x,y € M;, there is a unique double R-module homomorphism
fi + Ko, — K, such that b; = f;ob,,. It is given by fi(z Qu, ¥) = 7 Q4 -
Our question thus becomes whether f; is an isomorphism, or at least injective.
In general, the answer is “no” (even when all forms involved are right regular).
However, in special cases, a positive answer can be guaranteed.

ExAMPLE 3.3.1. The maps f; are neither injective nor surjective in general:
Let F be a field, let R be the ring of upper-triangular 2 x 2 matrices over F' and let
M = Rg. We identify End(Mg) = End(Rg) with R in the standard way. Define
a:R— Rby [¢8]" =[29] and let e; = e;; (where {e;;} are the standard matrix
units). Then « is an anti-endomorphism satisfying e = e; for ¢ = 1,2. Define M;,
«;, b; and f; as above. We shall now compute f; and fs explicitly.

Firstly, we claim K, = R via z ®, y — 2%y where the double R-module
structure on R is given by x ©g r = r®z and x ©®1 r = zr for all z,r € R. This is
easily seen once noting (rR)*®r (rR) = Rvia xQ@py — 0,y = y*x. Next, make
K := My(F) into a double R-module by defining z ©o r = r’z and 2 ®, r = ar
(where rT is the transpose of r € R). It is easy to see that the map K,, — K
given by = ®,, ¥y — 2Ty is an injection of double R-modules. (Indeed, o; = id, ge,
and e;Re; = F, hence K, = M; @4, M; = M, ®p M; via £ @4y — = @p y and
M; ®  M; embeds in My(F) via 1 @ y + x1y.) We can thus identify K,, with K
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and K,, with {[§9] € K|a € F} C K. The isomorphisms are given by:
a b ® a v o aa’  ab’
0 0 10 0 ba' bV
0 0 ® 0 O 0 0
0 ¢ @210 0 e

This allows us to compute f; and fy explicitly — under the previous identifications

they are given by:
a b a b
a([eal) = 1ol

0 0 0 0
(0 2]) - [0 %)
(Indeed, the first formula easily follows from f7( [‘gg,/ ‘gg,/ D= fA0088],[45]) =
ba([88], (40 ]) =[a8]"[4 Y] = [2¢ '] and the second is shown via similar
computation.) In particular, f; is neither injective nor surjective and fo is not
surjective. Note that b1, ba, ba,, ba, and b, are all right regular. This easy fact
is left to the reader. (Alternatively, that bg,, ba, and b, are right regular follows
from Theorem [3.5.5] below, because M, M; and M, are finite projective, and by, by
are right regular because they are summands of b, see Proposition i).)

LEMMA 3.3.2. Let N € Mod-W, M € W-Mod and let e € E(W). Define
p:NeQReweeM = N Qw M by t Qcwey— Qwy. Then:
(i) WeM = M = ¢ is onto.
(ii) WeW =W = ¢ is an isomorphism.

PROOF. (i) Let x € N, y € M. Then there is ¥/ € M and w € W such that
y = wey'. Thus, z Qw y = = Qw wey’ = zwe Qw ey’ = p(rwe Rewe €y'), S0 @ is
onto.

(i) Write 1y = >, wju; where uy,...,u; € We and uj,...,u; € e and
define 1 : N @y M — Ne Qcw, eM by (z @w y) = >, 2u; Qewe uiy. Then 1) is
well-defined because

Y@Ewewy) = Z TWU; Dewe UY = Z Tujuiwu; @ewe Uiy
i i5J
! !/ /
= Z TUj ReWe UWjWUUY = quj Rewe wjwy = P(r @ wy),
,J J
and it is straightforward to check that ¢ = ¢~ 1. O

REMARK 3.3.3. An idempotent e € E(W) satisfying WeW = W is called full.
This condition is equivalent to eWy (or wWe) being a progenerator (so eWe is
Morita equivalent to W in this case).

PROPOSITION 3.3.4. In the notation prior to Example[3.3.1}
(i) Ko =23 fi(Ka,)-

(ii) If by is right stable, then so is by, .

(iii) If WM; = M, then f; is onto.

(iv) If e; is full (i.e. We,W = W ), then f; is an isomorphism.

PROOF. (i) It is enough to prove x Qo y € Y, fi(K,,) for all x,y € M. Indeed,
TRaY = Z” €T Ra Y = Em‘ er®aefejy =7 . exQqey =, fi(e;x®aq, €Y).

(ii) It is enough to prove b,, is right semi-stable. Indeed, observe that b, =
fi © ba,, so this follows from the proof of Lemma [3.1.7] (note we have identified
End(M;) with e;We; C End(M)).
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To see (iii) and (iv), let e = e;. Identify K, with M* @w M and K,, with
M ®@ewe M; = M®e ®ewe eM. Then under these identifications, f; is the map ¢
of Lemma [3:3:2] hence we are through. O

COROLLARY 3.3.5. Let M € Mod-R, W = End(Mg), o € End™ (W) and
n € N. Identify End(MFp) with M, (W) and let § € End™ (M, (W)) be defined by

ﬁ a «
w11 .. Win w1y e Wy
Wpi ... Wpn w§, wy,

Thenn-b:=by L --- L by is similar to bg (and in particular, K, = Kg).
—_————
n times

PRrROOF. Let {e;;} be the standard matrix units of U := M, (W), let 3; =
Bles;ve,; and let ¢; : M — M™ be the embedding of M as the i-th component of
M™ Let 1 < i <n. Then g; : K, — Kp, defined by g;(z ®q y) = ¥ix ®p, ¥y
is an isomorphism (this is straightforward), and since Ue;;U = U, f; : K3, — Kz
defined by fi(z ®p, y) = ¥ ®p y is an isomorphism (Proposition [3.3.4iii)). Thus
h:= fiog; : Ko — Kgis an isomorphism and it is independent of i since h(x®,y) =
Vi @p iy = €€ @p Yiy = €5 Rp efj%x =z @y forall z,y € M. It
is now routine to verify that h is a similarity from n - b, to bg. ([

COROLLARY 3.3.6. Letb: M x M — K be a bilinear form and letn € N. Then
b is generic <= n-b is generic.

Proor. By Corollary b is right stable if and only if n - b is right stable.
Assume this holds and let «, 8 be the corresponding anti-endomorphisms of b, n - b,
respectively. Then it is easy to check that 3 is obtained from « as in Corollary [3.3.5]
and hence bg ~ n-b,. Now, if b is generic then b ~ b, hence n-b ~ n-by ~ bg. On
the other hand, if n-b is generic then n-b ~ bg ~ n-by. Let My = M x0x---x0 C
M™. Then the previous similarity induces a similarity (n-b)|n, xar, ~ (n-ba)|ay x My
and this clearly implies b ~ b,,. O

The previous corollary leads to the following question, which is still open.

QUESTION 2. Let by : M1 x My — K and by : My x My — K be two generic
bilinear forms. Is by L by always right stable? Provided it is, is it always generic?

We shall now exploit Proposition [3.3.4] to provide an explicit description of K,
in case M is an R—generatorﬁ We first recall the following definition.

DEFINITION 3.3.7. Let M be a right R-module and W = Endr(M). The mod-
ule M is called faithfully balanced if the standard map R — Endw (M) is an
isomorphism.

ExXAMPLE 3.3.8. It is well known that any generator of Mod-R is faithfully
balanced (e.g., see [80, Exer. 4.1.14]).

Let M be a generator of Mod-R. Then Rp is a summand of M™ for some n € N.
Let e : M™ — R be the projection from M™ to Rgr. Then e is an idempotent in
End(M}) which we identify with U := M, (End(Mg)) = M, (W). Observe that
vUe 2 gy M™ via ue — u(1lg). (Here 1g is the unity of R, considered as an element
of M™. The inverse of this isomorphism is given by = — [y — z-e(y)] € U.) Identify
Ue with M™. Then, End(yM") = End(yUe) = eUe and since MF is faithfully

4 Recall that a module M € Mod-R is called a generator (or an R-generator for brevity) if
for all A, B € Mod-R and 0 # f € Hom(A, B) there is g : M — A such that f og # 0. This is
equivalent to Rr being a summand of M™ for some n € N; see [58] §18B].
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balanced (it is a generator), it follows that R = eUe as rings, so we may assume
R = eUe. In particular, Ue and M™ coincide as (U, R)-bimodules and e;;Ue is just
the i-th copy of M in M™ (where {e;;} are the standard matrix units in U).

PROPOSITION 3.3.9. Keeping the previous notation, let « € End™ (W) and
define € End™ (U) as in Corollary . Make e’Ue into a double R-module by
letting

u®or = rPu, u©LT =ur VreR=eUe, ueeUe
and define b: M x M = e Ue x eq1Ue — ePUe by b(x,y) = 2Py. Then:
(i) b ~ b. The similarity is given by © @4 y + 2Py (x,y € M = e Ue).
(ii) Assume r is an involution. Then, when identifying K, with eUe®, kq is
Just ﬁ'eﬁ Ue-

PRrOOF. (i) We can understand K, as K, where 81 = f|e;,Ue,,- By Proposi-
tioniii), the map f; : Kg, = K3, given by z®g3, ¥y — £®gy, is an isomorphism
(because Ue;1U = U). Consider Kz as (Ue)” ®y Ue. Then the latter is isomorphic
to (Ue)? o5 e = ePUe via @y u — 0 u = v’z (this is a general fact; for any
A € Mod-U, Ay Ue = Ae). Part (i) now follows by composing the isomorphisms
K, — Kg and K — e?Ue. This is illustrated in the following:

enUe®g, enflle =2 UerglUe = (Ue)’®@yUe = ePUe
z®p Y = TRy YyQu = yoga =2ty

(ii) Assume « is an involution and identify K, with e®Ue. Then for all x,y €
e11Ue, (r @4 y)* = y @4 x, so under the identification we get (x°y)" = y’z and
the latter equals (zy)? since 3 is also an involution. Thus, #,, coincides with 3 on

U O
e’Ue.

COROLLARY 3.3.10. Assume M € Mod-R is free of rank n € N, let W =
End(Mg) and let « € Aut™ (W). Then (K,)} = R™ as right R-modules. (Recall
that (K, )1 means “K, considered as a right R-module w.r.t. ®1”)

PROOF. Assume M = R"™ and identify W with M,(R). Let {e;;} be the
standard matrix units of W. Then by Proposition [3.3.9] we may assume K, =
ey Weqr (take e = e171). Consider K; := e Weq; a right R-module. Then K; = K;
for all 4, j (the isomorphism being multiplication on the left by ef;). Thus, (K,)} =
Ki® - @K, =(,e)Weyn = Weq1 = R} as right R-modules. O

COROLLARY 3.3.11. Assume M € Mod-R is a generator, let W = End(Mpg)
and let o € End™ (W). If « is injective, then b, is left injective. If a is bijective,
then by, is regqular.

Proor. By Corollary and Proposition i), we can replace b, with
n - by, thus assuming n = 1, U = My(W) = W, e;; = 1 and § = « in pre-
vious computations. (This step is not really necessary, but it simplifies the ar-
guments to follow.) Let b be as in the last proposition. Then it is enough to
prove b is injective/regular. Indeed, b(x, M) = 0 implies 2® € ann’Ue. Since
U = End(Mg) = End(Ue,ye), vUe is faithful, so 2 = 0. Thus, if « is injective,
x = 0, and thus b,, is left injective.

Now assume « is bijective. We claim that b is left surjective. This is easily seen
to be equivalent to the fact that any f € Homg(Ue, e*Ue) is induced by left multi-
plication with an element of (Ue)? = ¢’U. Indeed, viewing f is an endomorphism
of Ue, we see that f(x) = ux for some u € U (because U = End(M}) = End(Ueg)).
Replacing u with e’u if needed (it is not needed), we may assume u € €°U, as re-
quired. Thus, b is left surjective and hence left regular by the previous paragraph.
That b right regular follows by symmetry. (]
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We will give another proof for the second assertion of Corollary [3.3.11] in sec-
tion We finish with the following example that proves the claims posed in

Example 3.1.2]

EXAMPLE 3.3.12. (i) Let F be a field, let V' be a nonzero f.d. vector space, let
W = Endp(V) and let a € End™ (W). Note that o(Cent(W)) C Cent(WW). Thus,
« induces an anti-endomorphism of Cent(W), which we freely identify with F'. Let
e be any primitive idempotent of W := End(Vr). Then e induces a projection from
V to Fr, hence Proposition [3.3.9| implies K, = e*We as double F-modules. Since
isomorphism between F' and eWe is given by a — ae (a € F'), the double F-module
structure on e*We is given by

(e*we) O a = (ae)*(e“we) = e*a®e“we = (e“we)a”
(the last equality holds since a® € F' = Cent(W)) and
(e®we) ®1 a = (e“we)a .

Therefore, k ©g a = k ®1 a® for all a € F. In addition, by Corollary
e*Werp = Fr (but dim pe®We might be larger than 1!). Moving the 0-product
along this isomorphism we get that K, = I where F is considered as a double
F-module via the actions k ®¢ a = a®k and k ®, a = ka. In particular, if « is an
F-algebra isomorphism, then ®g = ®1 and b, : V X V — F is just a “classical”
bilinear form (i.e. a standard (non-symmetric) bilinear form over a field). Since any
classical regular bilinear form b : V' x V' — F gives rise to such «, it follows that all
classical regular bilinear forms are generic.

The previous argument still works if we replace F' with any commutative ring
C and take e to be e;; for some i. The only exception is the fact that (K,); need
not be isomorphic to C¢, but rather (K, )} = C™ where V = C", ie. (K,)1 is a
rank-1 projective.

(ii) Keeping the notation of (i), assume « is an involution of the first kind. By
Proposition [3.3.9(ii), £ is just a restricted to e*We, which we henceforth identify
with K,. We will now compute k,, by carefully choosing the idempotent e.

Assume first « is orthogonal. Then « is obtained from a classical regular non-
alternatin symmetric bilinear form b : V x V — F. In this case, it is well known
that V' admits a basis z1,..., 2, such that b = (bl pxa,r) L -+ L (o, Fxa,F)
(even when char F' = 2; see [86 Th. 3.5] for char F # 2 and [1] for arbitrary
characteristic). Take e to be projection from V to x1 F with kernel zo F'®- - - ®x, F.
Then it is easy to see that e® = e (see the proof of Proposition 2.6.2(ii)). Now,
e“We =e“Fe = eF so it is clear that ko, = idg_ .

Now assume « is symplectic, i.e. « is the corresponding anti-endomorphism of
an a classical regular alternating form 6 : V x V' — F. Then it is well known that
dim V' is even and V admits a basis z1,..., 2, such that

1 i+j=n+landi>j
b(zi,z;) = —1 i+j=n+landi<j
0 otherwise

Take z1,...,z, to be the standard basis of V' and identify W with M,,(F'). Then
bler1zi, xj) = b(z;, ennx;) for all 4, j, hence b(e11x,y) = b(x, enny) for all z,y € V.

This implies ey = en, and similarly, one obtains eY; = —e,1. Take e = ej;.
Then e*We = e4We1 = ennWerr = e F. Since €2y = —ep1, it follows that
Roa = — id[{a.

5 A bilinear form b : V x V. — F is alternating if its associated quadratic form is 0, i.e.
b(z,z) = 0 for all x € V. Symmetric alternating bilinear forms exists only when char F = 2.
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A similar argument would show that when « is an involution of the second
kind, ke is just a|p, where K, is identified with F' as in (i). (Thus, b, is just an
a|p-hermitian form.)

3.4. Examples

Before we turn to prove our main results about the regularity or injectivity of
bo, we present a series of examples with explicit computations of b, and K,. In
particular, the examples demonstrate problems (a) and (b) of section

We begin with a positive example in which b, is always right regular.

ExAMPLE 3.4.1. Let R be a ring and let a be an anti-endomorphism of R.
Identify R with End(Rg) in the standard way. Then K, = R via £ ®4 y — %Y.
Here R is a considered as a double R-module by

TOor =1r%, T O =2, Ve, r € R .

The proof is similar to the argument in the second paragraph of Example [3.31]
above. Identifying K, with R, b, is given by b, (z,y) = z*y. Thus, by Example
b, is right regular, so there is a one-to-one correspondence between generic
bilinear forms on R and anti-endomorphism of R, as in . (We will show below
that this still holds if we replace Rr with any finite projective R-module.)

The next two examples demonstrate that the correspondence in fails in
general, even over f.d. algebras.

EXAMPLE 3.4.2. Consider the Z-module M = Z[%]/Z. It is well known that
End(Mz) = Z, where Z,, are the p-adic integers. (This follows from Matlis’ Duality
Theory; see [63] or [58] §3I]). Take a = idz, € End™ (Mz) and note that K, =
M ®q M = M @z, M. The module M is p-divisible, hence for all x,y € M,

t@y=z@p"(p "y=a@")rep ty=plrep "y .
(The “quotient” p~™y is not uniquely determined, but this does not matter to us.)
As p™x = 0 for sufficiently large n, it follows that z ® y = 0. This implies K, = 0,
hence b, = 0 (!). Moreover, the universal property of b, implies that there is no
bilinear form 0 # b’ : M x M — K’ satisfying b/ (wz,y) = V' (x, w*y) for all w € Z,
and z,y € M. In particular, a does not correspond to a right stable form on M.

ExXAMPLE 3.4.3. Let F be a field and let R be the commutative subring of
M;(F') consisting of matrices of the form:

a
b a

C a

Let = e9; and y = eg; (where {e;; } are the standard matrix units of M3(F’)). Then
{1, z,y} is an F-basis of R. Consider the elements of M = F as row vectors and let
{e1,e2,e3} be the standard F-basis of M. Then M is naturally a right R-module
(the action of R being matrix multiplication on the right) and a straightforward
computation shows that End(Mpg) = R, i.e. all R-linear maps f : M — M are of
the form m +— mr for some r € R. Let o = idgp € Aut™ (R). Then we may assume
M®,M =M ®gr M. Now:

baler,e1) = e1®e; =xzea®e; =ea®ae; =0
ba(e2761) = eaR®e; =ex®yes =yes ez =0
bo(es,e1) = e3Re; =e3@xea =xe3®ea =0.

Therefore, b, (M, e1) = 0, hence b, is not right injective. Moreover, let o : M — M
be defined by o(z,y,2) = (y,0,0). Then o € End(Mg) and b, (z,0y) = 0 for
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all x,y € M, implying b, is not right semi-stable (and hence not right stable).
Similarly, b,(e1, M) = 0 and b, is not left semi-stable. In addition, a detailed
computation would show that {e; ® e;|i,7 € {2,3}} is an F-basis for K,, and
this is easily seen to imply that b is not right nor left surjective. In particular, the
correspondence fails for M.

The next examples demonstrate that b, can be stable even when it is not
regular.

EXAMPLE 3.4.4. Let R be a commutative ring admitting a proper nonzero ideal
A <Q R with the following properties:

(a) Ag is flat and ann(A4) = 0.

(b) A% = A.

(¢c) End(AR) = R, i.e. all R-linear maps f : A — A are of the form a — ar
for some r € R.

Let a = idgnq(ay) = idr. Then we can identify A ®, A with A ®g A. Since Ag
is flat, the latter is isomorphic to A? = A via 2 ® y — xy (see [58], §4A]). This
is clearly a double R-module isomorphism, where the actions ®g and ®; on A are
the standard action of R on A. Thus, b, is similar to b : A x A — A defined
by b(z,y) = zy. Moreover, b(A,z) = 0 implies © € ann A = 0, hence b is right
injective, thus right stable. However, b is not right regular since id4 # Ady(a) for
all a € A. (Indeed, if idy = Adj(a), then 1 —a € ann(A) = 0, hence 1 = a € A
which contradicts our assumptions.) Similarly, b is left stable but not right regular.

It is left to provide an explicit example of R and A. Let F' be a field. Then
any of the following satisfies (a), (b) and (c):

(1) R=F[z9]10<geQ]and A= (z7]0 < q € Q).
(2) R=]ly, FFand A= Py, F.

In (1) any ideal of R is flat since R is a Priifer domain, and in (2) any ideal of R is
flat since R is von-Neumann regular; see [58, §4B]. The rest of the details are left
to the reader.

We also note that in case (1), the stable generic bilinear forms on A correspond
to anti-automorphism of R as in (but there is no correspondence between
reqular generic forms on A and Autf(R))ﬁ This follows from Theorem
below (take @ to be the fraction field of R.)

EXAMPLE 3.4.5. Let F be a field and let T = F[z" |0 < r € R]. For any set S
of non-negative real numbers, let Is denote the ideal of S generated by {z°|s € S}.
Define R = T'/I[1 o) and let M = I o0)/1(1,00)- Then M is a right R-module and it
is routine to check that End(Mp) can be understood as the ring W of formal power
series 3.°° | a,x°" with {,}52, C F,0<¢e; <eg <e3--- < land g, 5 1
subject to the relation 2 = 0 for all € > 1. (The element 2 € W acts on M like
€ + I[l,oo) € R).

Let o = idw and identify K, with M ®yw M. We make M into a double R-
module by letting both ®¢ and ®; be the standard action of R on M. To simplify
the notation, let 7 := 7 + I(1 o) € M for 7 € I(g o). We claim that K, = M as
double R-modules via @ ®y b~ ab. Indeed, as F-vector spaces:

M@ M

span p{wz® @p =¥ — 7° @p wes |w e W, g,¢’ € (0,1]}

M ®@w M =

6 Moreover, there are no regular bilinear forms on A. This follows from the fact that AM] &
Al > Rp 2 Ap.
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The set {17 ®@p 2°" | e,&’ € (0,1]} is an F-basis for the nominator, and the denomi-
nator is easily seen to be spanned by

51,...,646(0,1], — —
€1+ €2 =¢€3+¢€4 }U{xal BF %2
It is now straightforward to check that the map f : M@y M — M sending 25 @ gz
to zete’ is a well-defined F-vector space isomorphism. As f is easily seen to be a
double R-module homomorphism, we conclude that M @y M = M, as required.
Thus, b, is similar to b : M x M — M defined by b(@,b) = ab. Observe that
b(T, M) = b(M,T) = 0, hence b is right and left degenerate (i.e. not injective).
However, b is right stable since any w € W satisfying b(a, wb) = 0 for all @,b € M
satisfies w2 = 0 for all ¢ > 0 (take a = b = °/2) and this implies w = 0. Therefore,
b, is right semi-stable, hence right stable. Similarly, b, is also left stable.

Now consider the ring homomorphism 3 : R — R defined by 8(g(z) + Ij1,00)) =

g(2%) + I1 o0y Then a similar argument would show that Kz = K, where K is M
equipped with double R-module structure given by:

T QF 52 — 23 QF xt4
{ €1+ex>1

£1,€2 € (0,1], }

50or=p(r)s 5O1 1 =735r VseM, rcR,

and b, is similar to b : M x M — K defined by b(a,b) = B(a + Ij1 0))b. Then b is
again right and left degenerate and right stable, but b is not left semi-stable since
b(wM, M) =0 for w = z'/? € W.

The next two examples demonstrate what might happen when M is a gener-
ator, but o € End™ (End(M)) is not bijective. In particular, they imply that the
injectivity of a in Corollary [3.3.11]is essential.

EXAMPLE 3.4.6. Let N be any nonzero torsion Z-module and let M = Z® N €
Mod-Z. We consider the elements of M as column vectors. Then
End(Zz) Hom(N,Z) } B [ Z 0 ]

W :=Endz(M) = [ Hom(Z,N) End(Nz) N End(Ngz)

)
Note that M is a generator and e := [} §] € W is a projection from M to Zz. Thus,
we can identify M with

N 0

Define a € End™ (W) by [¢ 9]" = [¢ 9] where @ is the image of a € Z in End(Ny).
Then by Proposition b is similar to b: M x M — e“*We = We = M defined

We:[Z 0}

by o([56].1580) =[58)" (58 =[52][5 8] [£5 8] It is now easy to see that b
is right injective but not left injective. In addition, b is not right regular. To see

this, let 0 # f € End(Nz) and note that the homomorphism [ §] [f(oy) 8] €

Homy (M, (K4 )o) does not lie in im(Ad}).

EXAMPLE 3.4.7. View N := Z[%]/Z as a Zp-module as in Example w Then
End(Nz,) = Zy. Define M = Z, & N € Mod-Z, and consider the elements of M
as column vectors. Then

W i Endy (M) End(Z,) Hom(N,Z,) } _ [ Z, 0 }

~ | Hom(Z,,N)  End(N) N 17,
Let e € W be as in the previous example and identify M with We. Define
o € End™ (W) by [£9] = [59]. Then by Proposition [3.3.9, K, is isomorphic

Yy z
to e*We = 0We =0, so b, is the zero form!

Our last example demonstrates that b, ;) need not be similar to b.
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EXAMPLE 3.4.8. Let 1 <n € N and let F be a field. Denote by T, the ring of
upper-triangular matrices over F'. For 0 < i < n, let M; denote the right T;,-module
consisting of row vectors

(0,...,0,%,...,%x) € F"
\w—/
with T, acting by matrix multiplication on the right. It is not hard to verify that
dimp Homy, (M,,, M,,/M,,) = 1 for all 0 < i < n. In particular, Endg, (M,,/M,,) =
F for all 0 < m < n. We need the following fact which easily follows from the
Krull-Schmidt Theorem (see Theorem above or [80, Th. 2.9.17]): Assume
ap+---+an =bo+---+b, and @, (M, /M;)% = @?:O(Mn/Mi)bi. Then a; = b;
for all 0 < ¢ < n. (The assumption ag+---+a, = bo+ - - + b, was needed because
M, /M, is the zero module.)
Make K = M, (F) into a double T},-module by defining

A@()BZBTA A®y B=AB

forall A€ K and B € T,,. Then b: M,, x M,, — K defined by b(z,y) = 2Ty is a
bilinear form. For 0 < u,v < n, let K, , denote the matrices A = (4;;) € K for
which A;; = 0if 7 < v or j < wv. For example, when n = 3, K; » and Kj( consist
of matrices of the forms:

0 0 O 0 0 O

0 0 = , 0 0 0

0 0 = * % %
respectively. Then K, , is a sub-double-T,,-module of K, hence K/K, , is a double
T,-module in its own right and b, , : M, x M, — K/K, , defined by b(z,y) =
Ty + K, is a bilinear form.

We claim that b, , is right regular when v > 0 and (left and right) stable if

(u,v) # (0,0). Indeed, it is easy to check that b, , is right injective if v > 0.
Moreover, in this case (K/Kyu)o = MY & (My/M,_,)" " as right T,,-modules

n

(the summands are the columns of K/K,, , = M, (F)/K,,) and hence
dimp Homy, MY = dimp Homy, (M,,, (K/Kux)o)
= vdimp Homr, (M,,, M,,) + (n — v) dimp Homp, (M,,, My, /M, ) =n .

Therefore, dimension considerations imply Ady  is bijective, i.e. by, is right reg-
ular. To see that b, , is right stable when (uﬂ)) # 0, observe that kerAdgu’U
is always contained in M,_; (which a unique maximal submodule of M,). As
Homr, (M, My, 1) = 0, it follows that Hom (M, ker Ady ) = 0, hence by, ,, is right
semi-stable. Now observe that Endy, (M,) = F' (i.e. all endomorphisms of M, are
given by z — xa for some a € F) and b, ,(az,y) = by(z,ay) for all z,y € M,
and a € F'. Thus, b, , is right stable with corresponding anti-endomorphism id.
The form b, ,, is left stable by symmetry.

We have thus shown that the forms {b, , |0 < u,v <n, (u,v) # (0,0)} have the
same generization and we now claim that this generization is similar to b. Indeed, let
a =idr € End™ (F). Then dimp K, = dimr M,, ®, M,, = dimz M, @ M,, = n>.
The universality of b, implies that there is a double T,-module homomorphism
f: K, — K, that must be onto since im(b) = K E| Since f is clearly F-linear and
dimp K = n?, dimension considerations imply that f is an isomorphism. Thus, b
is the generization of all the forms {b, , |0 < u,v <n, (u,v) # (0,0)}.

We now exhibit an interesting phenomena — the forms

{buw |0 <wu,v<n, (u,v) # (0,0} U{bpn}

7 Recall that im(b) was defined to be the additive group spanned by {b(z,y) | z,y € My}.
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share the same generization (up to similarity), but they are pairwise non-similar.
The reason is that (K/Ky,,)o 2 (K/Ky . )o for distinct pairs (u,v), (v/,v") €
{0,...,n—=1}2U{(n,n)}\ {(0,0)}, so there cannot be an isomorphism from K, , to
Ky . Indeed, (K/Ky )0 = MY & (My/My—)" " and MY & (My,/Mp_,)" " =
MY & (M, /M,_,)""" implies (u,v) = (u/,v') by the fact stated above. In par-
ticular, the forms {b, , | (u,v) € {1,...,n — 1}?} are non-generic regular forms.

We also point out that if (u,v), (u/,v") € {0,...,n—1}2\ {(0,0)} are distinct
and satisfy uwv = w'v’, then any double T,,-module homomorphism from K/K, , to
K /K, . is not injective nor surjective. For otherwise, it would have to be bijective
since dimp K/K,, , = dimp K /K, .. This shows that the problem of defining weak
stmilarities, posed in Remark is far from trivial. In particular, one cannot
expect weak similarities to merely consist of morphisms between double modules.
In addition, we also note that K/K, , does not have an anti-isomorphism when
u # 0, although «(by,) = idF is an involution. This is true because

(K/Ku,v)l = M:j & (Mn/Mnfv)n_u e M:z) & (Mn/Mnfu)n_U = (K/Ku,v)o
when u # v (and an anti-isomorphism on K/K,, , clearly induces an isomorphism
(K/Ku,v)l = (K/Kuyv)0)~

To finish, observe that the form by, (v > 0) is right degenerate and can thus be
classified as “badly behaved”. However, we have seen that its generization is regular,

which can be considered as “well behaved”. This demonstrates how generization
can make badly behaved forms into well behaved forms.

We could neither find nor contradict the existence of:

e An anti-automorphism « such that b, is right regular but not left regular.
(In this case a? cannot be inner, as implied by Corollary )

An example of a f.g. torsion-free module M over a noetherian integral domain and
a € Aut™ (End(M)) such that b, is not regular (but necessarily injective, as we shall
see at the end of section , was found after the submission of the dissertation
and can be found in [39].

3.5. Conditions That Imply b, Is Right Regular

Let R, M and W be as in section [3.1] In this section we present conditions
on R, M, W and « that ensure b, is right regular, as well as other supplementary
results.

Assume momentarily that W and R are arbitrary rings and let Mod-(W, R)
denote the category of (W, R)-bimodules. Let A € Mod-W, B € Mod-R and C €
Mod-(W, R). Then Hompg(B,C) is a right W-module w.r.t. the action (fw)m =
f(wm) (where f € Hompg(B,C), w € W and m € M), and there is a natural map

I'=TaBc: AQw HOIIIR(B,C) — HOHIR(B,A(X)W C)

given by (I'(a ® f))b =a ® f(b) for all f € Hompr(B,C),a € Aand b€ B.
Now assume M € Mod-R, W = End(Mg) and o € End™ (W). Then M can be
viewed as a (W, R)-bimodule. Therefore, we have a map

I'= FM“,M,M T MY Quw HOHIR(M7M) — HOHIR(M,M(X Qw M) .
The following lemma shows that up to certain identifications, Adj_is I'.

LEMMA 3.5.1. In the previous notation, there is a commutative diagram

M @y End(Mp, Mp) —— Homp (M, M® @y M)

ld) J{so
Ady

M s Ml
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where MY = Homp(M, (K4 )o) and 1, ¢ are bijective.

PROOF. Let ¢ be the identity map M* — M (recall that M = M as sets)
composed on the standard isomorphism

M* Qw End(MR,MR) =M*Qw W = M* .

Then 1 is given by ¥(m @w w) = m oo w = w*m and its inverse is m — m ® 1.
The map ¢ is defined by ¢(f) = do f where § is the isomorphism M@y M — K,
given by = Qw y — y ®, . The diagram commutes since for all z,y € M and
weW:

(Ady, (Y(z @w w)))y = (Ady, (W)Y = ba(y, wz) = y Qo Wz
= wy Qo z = (z @w wy) = 6((L(z @w w))y) = (¢(I'(z @w w)))y . [

It is now of interest to find sufficient conditions for T' to be bijective (injective,
surjective). This is done in the following lemma.

LEMMA 3.5.2. Let A € Mod-W, B € R-Mod and C € Mod-(W, R). Then:

(i) If one of the following holds:
(a) A is finite projective.
(b) A is projective and B is f.g.
(¢) B is finite projective.
(d) B is projective and A is f.p.
Then T' is bijective.
) If A is projective, then T is injective.
ii) If B is projective and A is f.g., then T is surjective.
) If there is an exact sequence Ay — Ay — A — 0 and B is projective, then:
(a) T'a,,B,c is surjective => I' 4 p.c is surjective.
(b) Tay,B,c is bijective and I' 4, p,c is surjective => T4 p ¢ 1s bijective.
(v) If there is an exact sequence 0 = A — Ag — Ay and Hompg(B,C) is flat
(in W-Mod), then:
(a) Ta,.B,c is injective => ' 4 p ¢ is injective.
(b) Ta,,B,c is bijective, T 4, p,c is injective and wC is flat = T'a p.c
is bijective.
(vi) If there is an exact sequence By — By — B — 0 and A is flat, then:
(a) Ta,p,,c s injective => I'4 p ¢ is injective.
(b) T4 B,,c is bijective and T4 p, ¢ is injective => I'4 p,c is bijective.

In particular, this implies that:

(vil) If A embeds in a free module and Hompg(B, C) is flat, then T' is injective.
(viii) If A embeds in a flat module, B is f.g. and Hompg (B, C) is flat, then T is
injective.
(ix) If A is flat and B is f.p., then T is bijective.

PrOOF. We prove (i), (ii) and (iii) together: Since I' is additive, we may replace
projective with free and finite projective with f.g. and free. Assume A = @,.; W,
then I' becomes the standard map €, ; Homg(B, C) — Homg(B,@,; C). This
map is clearly injective and provided I is finite, it is bijective. In addition, it is
also easy to verify it is surjective if B is f.g. Now assume B = @, ; R. Then I'
becomes the standard map € : A® [[,.; C — [[;c;(A ® C), which is bijective if T
is finite. In addition, by [58] §4F], ¢ is surjective if A is f.g. and bijective if A is
finitely presented.
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(iv) We have a commutative diagram with exact rows:

A; @ Homg(B,C) —— Ay ® Homg(B,C) —— A ® Homg(B,C) ——=0

\LFALB,C \LFAO,B,C lFA,B,C

Homp(B, A1 ® C) — Hompg(B, Ag ® C) —— Homp(B,A® C) ——=0

(The bottom row is exact because B is projective.) Then (a) and (b) now follow
from the Four Lemma and the Five Lemma, respectively.

(v) and (vi) are very similar to (iv) and are left to the reader.

(vii) Let 0 - A — Ag — A; be an exact sequence with Ag free. Then ', 5.c
is injective by (ii), hence T'4 g ¢ is injective by (v), since Hompg(B, C) is flat.

(viii) Let 0 - A — Ay — A; be an exact sequence with A flat and let
By — By - B — 0 be a projective resolution with By finitely generated. Then
T a,.B,.c is bijective by (i)-(c), hence I' 4, p,¢ is injective (by (vi), since Ay is flat),
so I'4,p,c is injective (by (v), since Homp (B, C) is flat).

(ix) Let By — By — B — 0 be an exact sequence with By and By being
finite projective. Then I'4 g, ¢ and I'4 g, ¢ are bijective by (i)-(c), hence 'y 5 ¢
is bijective (by (vi), since A is flat). O

COROLLARY 3.5.3. Let M € Mod-R, W = End(Mg) and o« € End™ (W).

Then:
(i) If M or M® are finite projective, then b, is right reqular.
ii) If My is projective and M*® is f.g., then b, is right surjective.
ii) If M* embeds in a free right W-module, then b, is right injective.

) If M® embeds in flat right W-module and Mg is f.g., then b, is right
injective.
(v) If M« is flat and Mg is f.p., then b, is right regular.

(
(i
t

v

Proor. By Lemma that b, is bijective (injective, surjective) is equivalent
to I'prear, 01 being bijective (injective, surjective). Observe that Hompg (Mg, w Mg) =
Wy and hence Hompg (M, M) is flat. Parts (i)-(v) of the corollary now follow from
parts (i), (iii), (vii), (viii) and (ix) of Lemma [3.5.2] respectively. O

REMARK 3.5.4. Let o be an anti-automorphism of W, then M¢ is (resp.: em-
beds in) a free/projective W-module if and only if M is. Since any flat module is a
direct limit of f.g. free modules (see [60]) and twisting commutes with direct limits,
the previous assertion holds upon replacing “free” with “flat”.

We now get the following remarkable result.

THEOREM 3.5.5. If My is finite projective then there exists a one-to-one corre-
spondence between 1so(Bilgen (M)) and End™ (W) as in (14). Moreover, all generic
forms on M are right reqular

Proor. This is clear from Corollary i). O

In addition, we now have another proof for the second part of Corollary [3.3.11

THEOREM 3.5.6. If MR is a generator and « is an anti-automorphism of W,
then by is regular. In particular, there is a one-to-one correspondence between

regular generic forms on M, considered up to similarity, and anti-automorphisms
of W.

8 However, generic forms on M need not be left regular! Just take a to be non-bijective.
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PROOF. It is well known that y M is finite projective (see [80, Exer. 4.1.14];
this follows from the discussion before Proposition . Thus, My, is finite
projective, so we are done by Corollary [3.5.3(i) (ba is left regular by symmetry, as
explained at the end of section . O

The following example includes additional cases when b, is right regular or
right injective for all & € Aut™ (W).

ExXAMPLE 3.5.7. (i) If W is semisimple, then any W-module is projective. In
particular, M is projective, hence by Corollary iii), by is right injective for
all @« € End™ (M). For example, it is well known that W is semisimple if M is
semisimple and f.g. (hence b, is actually right regular in this case). In addition,
by [58, Thms. 13.1, 13.3], W is semisimple if M is quasi—injectiveﬂ (abbrev.: QI)
non—singulaﬂ of finite uniform dimension

(ii) More generally, if W is von-Neumann regularB then any W-module is flat
(|58, Th. 4.21]) and in particular M <. It follows that if My is f.g. (f.p.), then b, is
right injective (regular). For example, W = Endr(M) is von Neumann regular if
M is QI and non-singular by [58, Th. 13.1].

(iii) A ring R is called right pseudo-Frobenius (abbrev.: PF) if any faithful right
R-module is a generator (this is equivalent to R being right self-injective, semilocal
and soc(Rg) C. R; see [58, Th. 19.25]). Hence, provided M € Mod-R is faithful,
we can apply Theorem to assert that b, is regular for all & € Aut™ (W). Any
semisimple ring or a local artinian ring with a simple right socle is a two-sided PF.

(iv) If R is a Dedekind domain and Mp is f.g. then Mg is generator over
R/ ann(M). This follows from classification of f.g. modules over Dedekind domains
(e.g. see [T2] Th. 4.14]). Therefore, as in (iii), b, is regular for all @ € Aut™ (W).

3.6. Conditions That Imply b, Is Right Injective — Commutative
Localization

Let M, R and W = Endg(M) be as in the previous section. In the following
two sections, we will provide conditions on R, M, W and o € End™ (W) ensuring
that b, is right injective.

The results of both sections will be based on the following lemma.

LEMMA 3.6.1. Let M,R,W and « be as above. Assume that there are rings
R' DR, W DW and a (W', R')-bimodule M' containing M as a (W, R)-bimodule
such that W' = Endg/(M'). Furthermore, assume « extends to an anti-endomor-
phism of W', denoted o. Then by is right injective implies is b, right injective.

9 A module Mg is QI if any homomorphism from a submodule of M to M can be extended
to an endomorphism of M. Any injective module is QI, but not vice versa. For example, Z/p™ €
Mod-Z is QI but not injective for any prime p € N. See [68] §6G]

10 A module My is called non-singular if annpg(m) is not essential in R for all m. For example,
the non-singular Z-modules are precisely the torsion free modules. See [68] §7].

1 The uniform dimension of a module Mg, denoted u.dim Mz is defined to be the largest
n s.t. M contains a direct sum of n non-zero modules. For example, any module containing an
essential noetherian submodule has a finite uniform dimension. See [58] §6].

12 A ring W is von-Neumann regular if for all x € W there exists y € W such that zyz = z.
The endomorphism ring of a semisimple module is always von-Neumann regular.
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PROOF. Since M is a (W, R)-submodule of M', M is a (right) W-submodule
of (M')*". Therefore, we have a commutative square:

M Qw HOmR(M7WM) _— (M/)al R HOIHR/(M/7W/M/)

Hom (M, M* @y M) ——— Homp/ (M, (M")* @y M')

Since the top arrow is injective (it is just the inclusion M* — (M’)®), that
I‘(M,)(I/7M,7M, is injective implies I'ase ar,as is injective, so we are through by
Lemma 3511 O

Our strategy in this section will be to take R’ of Lemma[3.6.1]to be a localization
of R. For that purpose, we shall now briefly recall the basic properties of (classical
non-commutative) localization (also known as Ore localization). For a detailed
discussion, see [80] §3.1] or |58, §10].

Let S C R be a multiplicative monoid. A classical right fractions ring of R
(w.r.t. S)is a ring R’ equipped with a homomorphism ¢ : R — R’ such that

(1) »(S5) € (R)*.

(2) R ={p(r)e(s)"|r € R,s € S}

(3) kerp={re R|3s€ S:rs=0}.
We will usually omit ¢ from the notation, writing 7s~! instead of ¢(r)¢(s)
The ring R’ exists precisely when S is a right denominator set, namely (1) for all
se€Sandr € R, sRNrS # 0 and (2) if sr = 0 for some s € S and r € R,
then there exists s’ € S such that rs’ = 0. (For example, if S C Cent(R), then
S is a right denominator set.) In this case, R’ is unique up to isomorphism and
we write RS™! := R’. Furthermore, there is an exact functor M — MS~! from
Mod-R to Mod-RS~! and a natural R-module homomorphism M — MS~! with
kernel {m € M| 3s € S : ms = 0}. When this kernel is trivial, M is said to be
S-torsion-free. We will not bring here the construction of RS~! and MS~!, but
instead record the following two useful facts:

-1

o If zy,...,2, € MS™!, then there exists my,...,m, € M and s € S such
that z; = m;s~! for all 7.
e If mi,my € M and s1,s2 € S, then mlsl_l = m282_1 (in MS—1) if and
only if there are ay,as € R such that mia; = moas and sya; = sqas € S.
(Intuitively, this means mys;" = (miay)(s1a1)™! = (maas)(sea)™! =
MaSy 1.)
Note that the standard map R — RS~! is injective if and only if S consists of
regular elements (i.e. non-zero-divisors). If RS™! exists when S is the set of the
all regular elements, then we say R is right Ore and call RS~ the classical right
fractions ring of R, which is denoted by Q7 (R).

When S is a left and right denominator set of R, then rings RS~! and S™'R
coincide. We then call S a denominator set. In the special case where S consists
of all regular elements in R, we get that Q7 (R) coincides with Q% (R) (i.e. the
classical left factions ring of R), provided both exist.

Our first step will be to establish that under mild assumptions, anti-endomor-
phisms of R extends to RS™!.

PROPOSITION 3.6.2. Let S be a right denominator set of a ring W. Assume
a € End™ (W) is such that S* C S. Then there is o/ € End™ (WS~1) extending
a. Moreover, if a is bijective and S* = S, then o is bijective (in this case S is
necessarily a two-sided denominator set).
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PROOF. Define o/ : W' — W' by o/ (ws™!) = (s%)~lw®. We need to check
that o/ is a well-defined anti-automorphism of WS~1.

To see that o is well-defined, assume w; 31_1 = U)252_1. Then there are ay,as €
W such that sja; = ssas € S and wia; = weas. In addition, there are v € W
and t € S such that (s¢)"lw$ = vt~ implying w't = s{v. Therefore, (s1a;)%v =
ads§v = afwft = (wyar)®t, which means (s§) 1w = vt~ = ((a151)%) " (a1w1)
(recall that sja; € S and S C S). Similarly (s§) lws = ((a2s2)®) ! (agws), hence
(wlsl_l)o‘ = (wgsgl)" (becase s1a1 = s2a9 and wia; = waaz).

Next, we need to verify that « is an anti-endomorphism of W’. That 1* =1
is clear. Let z,y € W. Then there is s € S and wy,wy € W such that x = w;s™!
and y = wys~!. It is now easy to see that (z +y)® = z® + y®. In addition, there
exist v € W and t € S such that s lwy = vt7! = wyt = sv = t*w§ = v*s®
= w§(s*)7! = (t*)"1v®. We now get:

(zy)® = (wis™lwes™H)* = (wiv(st) T = ((s1)*) " (wrv)®
()71 (1) Mo = (%) g (s) M = g%
so « reverses order of multiplication.

If o is bijective and S® = S, then we can extend a~! to WS~! as we did with
a. It is straightforward to check that this extension is the inverse of «'. O

Keeping our general assumptions on R, M and W, assume S is a right denom-
inator set in R and M is S-torsion free. Then any endomorphism of M naturally
extends to an RS !'-endomorphism of M’ := MS~! hence we can view W as
a subring of W’ := Endgg-1(M’) (the map W — W' has trivial kernel because
M < MS~1). The following proposition is well known.

PROPOSITION 3.6.3. In the previous notation, if S is central in R and M 1is
f.g., then W' = WS~! where S = {m > ms|s € S}.

PRrROOF. For all s € S, write § = [m — ms] € W. Then § is clearly invertible
in W’ (its inverse is the map x + zs~* € W’). Now let {z1,...,2¢} be a set of
generators for M and let w’ € W’. Then there are my,...,m; € M and s € S such
that w'x; = m;s~! for all i. Therefore, w's(M) C M, implying w's € W. It is left
to verify that if Sw’ = 0 for some s € S and w’ € W, then w't = 0 for some t € S.
However, this is trivial because S consists of regular elements. (Indeed, W — W’
and § C (W')*)) O

COROLLARY 3.6.4. Under the assumptions ofProposition if o € End™ (W)
is such that (§)O‘ - §, then « extends to an anti-endomorphism o' : W' — W',
Furthermore, if by is right injective (e.g., if MS™! is finite projective over RS™1),
then so is b,,.

PROOF. This follows from Propositions [3.6.3] 3.6.2) and Lemma [3.6.1] O

The condition (§ )™ C S of the last corollary is usually very limiting. Our next
results concern special cases in which it can be dropped.

COROLLARY 3.6.5. Keep the assumptions of Proposition|3.0.5 and assume all
reqular central elements of W' are invertible (e.g. if W' is artinian, local or simple).
Then any o € Aut™ (W) extends to an anti-automorphism o : W' — W' and if by
is right injective, then so s by,.

PROOF. By Proposition [3.6.3] W’ is a localization of W w.r.t. some right de-
nominator set consisting of central regular elements. Therefore, the assumptions
on W’ imply it is also the localization of R w.r.t. the set T of all central regular

elements in W. Since « is bijective, a(T") = T' and hence Proposition implies

that « extends to some o/ € Aut™ (W’). We are done by Lemma O
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LEMMA 3.6.6. Let M be a faithfully balanced R-module and let W = End(MRg).
Then Cent(R) = Cent(W).

PrOOF. Let r € Cent(R). Then the map w, : m — mr from M to itself
clearly lies in Cent(W). Similarly, for all w € W, the map r, : m — wm lies in
Cent(R) (since Mg is faithfully balanced). For all m € M and r € Cent(R) we
have mr = w,m = mr,,., hence r = r,.. Similarly, w = w,., for all w € W. The
map 7 — w, : Cent(R) — Cent(W) is easily seen to be a ring homomorphism, so
we are through. O

COROLLARY 3.6.7. Keep the assumptions of Proposition[3.6.3 and assume that:

(1) S is the set of all reqular elements in Cent(R). (Caution: This need not
be the set of central reqular elements in R.)
(2) MS~! is a balanced RS~'-module (e.g. if MS™! is an RS~'-generator).

Then the assertions of Corollary[3.6.5 apply.

PROOF. All regular elements of Cent(RS~!) are invertible, so by the previous
lemma all regular elements of Cent(W') are invertible. Since W’ = WS~! and §
is a set of regular central elements of W, it follows that W/ = WT~! where T
is the set of all regular elements in Cent(W). The set T is preserved under any
anti-automorphism of W, so we can argue as in Corollary [3.6.5] O

We conclude some special cases of the previous corollaries in the following
theorem.

THEOREM 3.6.8. Let M € Mod-R be f.g., let W = End(Mg) and let S be a
central multiplicative submonoid of R such that M is S-torsion-free. Assume that
at least one of the following holds:

(i) All central regular elements of End(MS~1) are invertible and MS™1 is
either finite projective or a generator in Mod-RS™!.
(ii) S consists of all reqular elements of Cent(R) and M S~ is a generator.

Then for any o € Aut™ W, b, is injective. In particular, there is a one-to-one
correspondence between stable gemeric forms on M, considered up to similarity,
and anti-automorphisms of W. Furthermore, any generic form on M is injective.

PRrOOF. Let W’ = Endgg-1(MS~1). Then Corollaries and imply
that any o € Aut™ (W) extends to an o’ € Aut™ W’ (note that when (ii) holds,
M Sgé_l is faithfully balanced because it is a generator). Since M S~ is a generator
or finite projective as an RS~ !-module, b, is right regular (Theorems and
3.5.6)). Therefore, b, is right injective and by symmetry, it is also left injective. [

EXAMPLE 3.6.9. (i) Let C' be a integral domain with fractions field F' and
let A be a f.d. F-algebra. A C-order in A is a C-subalgebra R C A such that
FR = A. Such orders are extensively studied in the literature, especially when
A is semisimple (e.g. see the classical works [72], [92] and related papers). If R
is a C-order in A, then clearly A = RS™! where S := C'\ {0}. Furthermore, for
any f.g. S-torsion-free right R-module M, the ring W’ := End4(MS~1) is a f.d.
F-algebra, hence all regular elements in W’ are invertible. Therefore, that if MS~1
is projective or a generator as an A-module, then the assertions of Theorem [3.6.8
apply. Also note that when A is semisimple, any f.g. A-module is finite projective
and when A is quasi-Frobenius (e.g. a finite group algebra), any faithful A-module
is a generator.

(i) Generalizing (i), let R be a ring and let S be a central multiplicative sub-
monoid such that RS~1! is 7-regular (e.g. a semiprimary ring; see section [1.2)). Let
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M Dbe a f.p. S-torsion-free R-module. Then MS~! is also f.p., hence by Corol-
lary W' := End(MS™!) is m-regular. By [58, Ex. 11.6(2)], this implies all
regular elements in W’ are invertible, so we can apply Theorem @l if MS—!is
finite projective or a generator.

(iii) Let C and F be as in (i), let R be any torsion-free C-algebra and let
A=R®cF=R(C\{0})~!. Write S = C \ {0}. Then the endomorphism ring of
any R-module is a C-algebra. If « is anti-endomorphism of End(M) that respects
the C-algebra structure, then a(§ ) C S. Thus, we can apply Corollary

REMARK 3.6.10. We could not find R, M, W and « as in Theorem [3.6.8] such
that b, is not regular. However, we believe such examples should exist.

The question of what happens when we localize R in a non-central set is more
difficult and will be dealt in a more general context in the next section. Roughly
speaking, we will show that the assertions of Theorem hold when S is any
two-sided denominator set and M S~ is a torsionless RS~ !-generator (the latter is
always satisfied when RS~! is a right pseudo-Frobenius ring). However, when R is
an Ore domain, we can provide an answer without introducing additional notation,
and we shall now tend to this.

A right Ore domain is a domain that is right Ore (i.e. Q[;(R) exists). It turns
out that a domain R is right Ore <— u.dimRgr < © <= u.dimRr =1 and
that in this case Q7,(R) is division ring. Examples of right Ore domains include
right noetherian domains, PI domains and twisted polynomial rings over right Ore
domains; see [58], §10B] for more details.

PROPOSITION 3.6.11. Let R be a (two-sided) Ore domain (e.g. a noetherian
or a PI domain), let S = R\ {0} and let M be a f.g. S-torsion-free R-module.
Then Endgg—1 (MS™!) = Q(Endr(M)) = Q% (Endr(M)) and b, is injective for
all o € Aut™ (End(RS™1)).

PrOOF. Let D = Q7 (R) = Q%(R). Then D is a division ring, hence V :=
MS~! is a f.d. right D-vector space. Let ¢t = dim V.

We first claim that for any f.g. module N < Vj there is a D-basis {e1,..., et}
such that N C eyR+ - -+ e, R. Indeed, let x1,...,2s € N be a set of generators
for N and let {e1,...,e;} be an arbitrary D-basis of V. Then we can write x; =
Zzzl e;d;; with di; € D. Since R is left Ore, there is s € S and r;;-s in R such that
di; = s~ 'r;;. Therefore, x; = Zzzl(eisfl)mj €Y, eis 'R, so {exs™h, ... e}
is the required basis.

For the rest of the proof, let {m1,--- ,ms} be a set of generators of M. Clearly
s > t and w.l.o.g. we may assume {mq,...,m;} is a D-basis of V. In addition,
let W = End(M), W’ = End(MS~!) and let T be the set of regular elements in
W. We will consider elements of W as elements of W’. Observe that under this
identification, an element w € W' lies in W if and only w(M) C M. In order to
show W' = Q7,(W) = Q% (W), we need to prove T'C (W')* and

cl
W ={wu ' fweWueT}={u " w|lweWuecT}.

Let u € W\ (W’)*. Then there is 0 # z € V such that u(z). Since V.= MS~1
there is s € S such that 0 # zs € M. Let {e1,...,e;} be a D-basis such that
M C > e;Randlet w:V — V be defined by w(e;) = xs. Then w(M) C M, hence
w € W. Since clearly uw = 0, it follows that u ¢ T. Therefore, T C (W’)*

Let w € W’'. Then w(M) + M is f.g., hence there is a D-basis {e1,...,et}
such that w(M) + M C > e;R. Define u : V. — V to be the unique D-linear map
satisfying u(e;) = m;. Then u lies in W (because u(M) C M) and it is clearly
invertible in W', thus u € T. Furthermore, uw(M) C M, hence uw € W. It now
follows that W' = {u='w|w € W,u € T}.
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Now observe that w=!(M) C. Vg (because M C. Vg), and since the intersec-
tion of essential modules is also essential, N := w=!(M)N M C, Vx. This implies
wdimNg = uw.dimVz = u.dimVp = ¢ (see [58, Cr. 6.10(2), Exer. 10.18(5)]).
Therefore, there are 0 # e1,...,e; € N such that eeR® --- @ e,R C N. Note
that {e1,...,e;} must be a D-basis. Now let {e},...,e;} be a D-basis such that
M C3Y e/Randletu:V — V be defined by u(}>_ eid;) = > e;d;. Thenu(M) C M
and u € (W')*, hence u € T. Moreover, wu(M) C w(N) C M, so wu € W. Thus,
W' = {wu™!|w € W,u € T} and we conclude that W' = Q7 (W) = Q4 (W).

To see the final assertion of the proposition, let « € Aut™ (W). Then o(T) =T,
so by Proposition « extends to an anti-endomorphism o’ € End™ (W'). By
T heorem b is right regular by (since Vp, is finite projective), hence by Lemma
b, is right injective. By symmetry, b, is also left injective. O

3.7. Conditions That Imply b, Is Right Injective — General Case

This section generalizes the results of the previous section to non-commutative
localizations and, more generally, to rational extensions. Reading this section re-
quires basic knowledge about rational extensions, maximal rings of quotients and
pseudo-Frobenius rings (abbrev.: PF rings). Non-experts are advised to read the
preliminaries chapter before continuing, if they have not done so yet. Alternatively,
one can skip this section without loss of continuity.

3.7.1. Preliminaries. We begin by recalling some facts about rational exten-
sions of rings and modules. For an extensive discussion and definitions we refer to
[80] and [58]. Our notation and terminology mostly follow the latter reference.

Let M € Mod-R and N < M. Throughout, N Cy M (N C, M) means that
N is densﬂ (essential') in M, or equivalently, that M is a rational (essential)
extension of N. For all x € M, x7' N denotes the right ideal {r € R : zr € N}. It
is well known that N Cy M (N C. M) implies 27N C4 Rr (z7'N C. Rg). We
define the following submodules of M:

ZM)={zx e M : anngx C. Rg}, TM)={zxe M : anngz C4q Rg} .

The module Z(M) is called the singular radical of M and M (resp. R) is called
(right) nonsingular if Z(M) =0 (resp. Z(Rg) = O)E The rational (injective) hull
of M will be denoted by E(M) (E(M)).

A ring @ containing R will be called a right quotient ring of R if R Cy QRE
If @ is both a left and right quotient ring of R, then @ will be called a quotient
ring of R. We let Q" (R) (Q%,..(R)) denote the mazimal right (left) quotient ring
of R. Recall that this ring is maximal in the sense that if ' is any other right
quotient ring of R, then there exists a unique embedding of @’ in Q7. (R) that

max
fixes R.

We will need the following facts to proceed:

ProposITION 3.7.1. Let M, N, K € Mod-R.
(i) If f € Hom(N, M), then f(Z(N)) € Z(M) and f(T(N)) € f(T(M)).
(ii) If NCe M and T(N)=0 (Z(N)=0), then T(M) =0, (Z(M)=0)

13 Recall that N is dense in M if for all z,y € M with z # 0 there exists r € R such that
zr # 0 and yr € N. This is equivalent to Hom(N’/N, M) =0 for all N C N’ C M.

14 The names “big” and “large” are also used in the literature.

15 Other texts use Sing(M) instead of Z(M).

16 The term “quotient ring” usually refers to a quotient of the ring by an ideal (i.e. an
epimorphic image of the ring) and thus many authors prefer to use “ring of quotients” instead of
“quotient ring” (which usually leads to cumbersome phrasing). However, as we do not consider
quotients of rings by ideals anywhere in this section, there is no risk of confusion.
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(i) If N Cy M and T(K) = 0, then any homomorphism f € Hom(N, K)
extends uniquely to [’ € Hom(M7E(K)). In particular, if f(N) =0, then
f=0.

(iv) Let @ be a right quotient ring of R and assume M and N have a right Q-
module structure extending their right R-module structure. Then provided
T(Mgr) = 0, Homg(N,M) = Hompg(N,M). Moreover, the Q-module
structure on M 1is the only one extending its R-module structure.

(v) Let Q, N, M be as in (iv) and assume T(Ng) = 0. Then Ng C4 Mg if
and only if Np Cq Mg. N

(vi) If Z(M) =0 and N,K C M, then E(M) = E(M) and N Cq K if and
only if N C. K. In particular, if R is right nonsingular, then T (M) =
Z(M) for all M.

(vii) If M embeds in a free product [[,.; Rr, then T (M) = 0.

(viii) Let Q be a right quotient ring of R and let Q' be a right quotient ring of Q.
Then Q' is a right quotient ring of R. In particular, Q} .(Qh.(R)) =
max(R)

PRrOOF. (i) This is immediate since anng(fz) O anngz for all z € N.

(i) We have 0 = T(N) = NNT(M). Since N C. M, this implies 7 (M) = 0.
The argument remains valid upon replacing 7 with Z.

(iif) Let f" and f” be two extensions of f. Then there is a nonzero homo-
morphism g : M/N — K given by g(z + N) = f'(z) — f"(z). For all z € M,
anng(z + N) = 27N C4 Rpg, hence z + M € T(M/N) and by (i) g(z + M) €
T(K)=0. As this holds for all z € M, g =0 and [’ = f”.

To see that f exists, we may assume K = E(K). By [568, Th. 8.24], it is
now enough to prove that Hom(M /N, E(K)) = 0. Indeed, the previous argument
implies T(M/N) = M/N and (ii) implies T (E(K)) = 0, so we are done by (i).

(vi) Let f € Hompg (N, M). We need to prove f € Homg (N, M) (the opposite
implication is clear). Let € N and define h : @ — M by h(q) = f(zq) — f(z)q.
Then h is an R-module homomorphism and h(R) = 0. Therefore, by (iii), h = 0,
hence f is Q-linear. To see that the Q-module structure on M is unique, put N =
Q¢ and observe that there is a natural isomorphism Mg = Homg(gQq,Mg) =
Hompg(g®r, Mr). Therefore, the -module structure on M is induced from the
Q-module structure on Homp(gQr, Mg), which depends only on MRE'

(v) Clearly Np C4 Mg implies Ng C4 Mg (this holds for any @ containing
R). To see the converse, assume Ng C4 Mg and let z,y € M with « # 0. Then
there is ¢ € Q such that xq # 0 and zq,yq € N. Let A = ¢ 'R C4 Ry and observe
that £qA # 0 (because T(Ng) = 0). Therefore, there is a € A such that xz(ga) # 0
and y(qa) € N. We are done because qa € R.

(vi) See [568| Ex. 8.18(5) and Prp. 8.7].

(vii) It is enough to prove T(Rg) = 0. Indeed, let 0 # v € R and let z = u,
y = 1. Then yr € ann” u implies zr = 0, hence ann” u ¢4 Rp.

(viii) By (vii), T(Rgr) = 0, hence by (i), T(Qr) = 0 (because R C4 Q), thus
by (v), Qr Ca Q (because Qq C4 Qg), so Rr Ca Q- O

Part (vii) of Proposition calls for the following definition, which is taken
from [58].

DEFINITION 3.7.2. A right R-module M is called torsionless if it embeds in

some free product [[,.; Rr. Equivalently, M is torsionless if for all x € M there
exists f € Homp(M, Rg) with f(z) # 0.

17 This can also be proved directly: If M admits two @Q-module structures ¢1,02 : M xXQ — M
that extend its R-module structure, then for all z € M define h : Q — M by h(q) = 201 q¢—x02q.
Then A is an R-module homomorphism vanishing on R, so it must be 0.
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Recall that a module M € Mod-R is called a cogenerator if for all A, B € Mod-R
and 0 # f € Hom(A, B), there exists ¢ € Hom(B, M) such that go f # 0. All
right R-modules are torsionless precisely when Rp is a cogenerator. Such rings are
called right cogenerator rings.

3.7.2. Localizing at a Quotient Ring. In the previous section, we have
considered localization of modules w.r.t. some denominator set. We shall now
introduce a generalization of this process that works for arbitrary right quotient
ring of R. Namely, for any right quotient ring @ of R, we will construct a functor
M — MQ defined on modules M € Mod-R with 7 (M) = 0. To do this, we first
recall the following fact.

PROPOSITION 3.7.3. For all M € Mod-R with T(M) = 0, E(M) can be en-
dowed with a unique Q... (R)-module structure extending its R-module structure.

max

PROOF (SKETCH). [ If we can show existence, then the uniqueness is guaran-
teed by Proposition iv).

Let M be an arbitrary right R-module. Consider the set X of pairs (A4, f)
where A C; Rpr and f € Hompg(A, M) and define an equivalence relation on X

by (4, f) ~ (B,g) if f and g agree on some dense right ideal of R. Let M =
{IA, f]| (A, f) € X} where [A, f] is the equivalence class of (A, f). Then M is a
right R-module w.r.t. the operations:

[A, f]+[B.g] = [AN B, flanp + glans),  [A fl-r=[""As = f(rs)]

and there is a natural R-module homomorphism M — M given by sending m € M
to [Rg,r — mr| € M. The kernel of this homomorphism is 7 (M), hence M embeds
in M if T(M)=0. It is well known that Q
the multiplication on Ris given by:

(A f]-[B.gl=lg"(A),fog]  VI[A[L[BgeR.
By letting [A, f] range over M instead of }AE, the previous formula defines a right

" «(R) can be understood as R where

T ax (R)-module structure on M.

We now claim that when 7 (M) = 0, M E(M) as R-modules, so we can
transfer the Q.. (f2)-module structure on M to E(M). Indeed, for all z € E(M),
let f, : R — E(M) be given by fy(r) = xr. Define ¢ : E(M) — M by i(z) =
[z~ M, f,] (note that = M C,4 Rg because M C4 E(M)). Then 1) is casily seen
to be an R-module homomorphism. It is injective because if fqc and f, agree on
a dense right ideal then they must be equal by Proposition iii) and it is
surjective because for any [A, f] € M, f extends to some f' € Hom(RR, E(M))
(again by Proposition 111)) and thus f' = f, for some z € E(M). O

Let M be a right R-module with 7 (M) = 0 and let @ be a right quotient ring of
R. Then Propositions and iV) imply that E (M) has a unique @-module
structure extending its R-module structure. In this case, we define M@ to be the
Q-submodule of E(M) generated by M. Part (iv) of the following proposition
shows that MQ is a “correct” generalization of MS~1.

PROPOSITION 3.7.4. Let 4R denote the category of right R-modules M with
T(M)=0. Then:
(i) The map M — MQ is an additive functor from Mg to Mg.

18 We could not find a reference proving Proposition explicitly (possibly due to a lack
of applications); most textbooks on ring theory do not mention this fact (e.g. [58]), or prove it
only when R is right nonsingular (e.g. [80]), or treat it implicitly under the more general (or too
general) context of torsion theories.
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(ii) Any endomorphism of M € Mg extends uniquely to an endomorphism of

MQq. In particular, Endr(M) embeds in Endg(M@Q) = Endg(MQ).
(ii) If M € MR is a generator (resp. torsionless), then so is MQq.

(iv) Let S be a right denominator set in R consisting of reqular elements. Then
any M € MR is S-torsion-free and MRS~ = MS~! as RS™'-modules.
(v) E(Mg) = E(MQq).

ProOOF. (i) If N, M € g, then by Propositioniii)7 any f € Hompg(N, M)
extends uniquely to an R-homomorphism f' : E(N) — E(M), which is a Q" (R)-
homomorphism by Proposition iv). Therefore, f' maps NQ into M@ and it
is routine to verify that M — M@ becomes a functor once defining fQ := f'|ng.

To see that M — MQ is additive, it is enough to prove that E(Ml @ M) =
E(M,) @ E(My) for all My, My € .#["] Indeed, by [58, Prp. 8.19], E(M; & M,)
embeds in E(M;) ® E(My) and M; & M, is fixed under this embedding (this holds
for arbitrary modules). Therefore, it is enough to prove My & My C4 E(Ml) @
E(Ms). Let (z1,22), (y1,52) € E(M;) & E(Ms,) be such that (21,22) # 0. Then
yflMl,yglMg C4 Rr and hence A := yflMl ﬂy;lMg Cyq Rg. W.lo.g. 1 # 0and
therefore A ¢4 anng 271 (otherwise z1 € T(M;) = 0). Take some r € A\ anng 7.
Then r satisfies (y1,y2)r € M1 & Mz and (z1, z2)r # 0, so we are done.

(ii) This is immediate from (i) and Proposition [3.7.1]iii) (because Mg Cq4
MQRg).

(iii) If M is a generator, then there is an epimorphism f : M™ — Rpg for some n.
Therefore, there is a homomorphism fQ : MQ™ — Qg. Since 1 € im(f) C im(fQ),
fQ is onto, implying M@ is a QQ-generator. Now assume M is torsionless. Then for
all m € M, there is a homomorphism f,, : M — Rg such that f,,(m) # 0. Define
fiMQ— (Qo)M by f(m) = ((fmQ®)Z)menr- Then ker FNM =0, hence ker f =0
(because M C. MQpg). Thus, MQ is torsionless.

(iv) Assume that ms = 0 for some m € M and s € S. Then sR C anng m.
We claim sRr C4 Rgr and therefore m = 0. Indeed, if x,y € R with  # 0, then
yS N sR # ¢ (because S is a right denominator set) and hence there is ¢t € S such
that yt € sR. As t is regular, xt # 0, so sRr Cg4 Rp, as required.

Observe that M Cq4 M § -1 as R—modulesm hence there is an embedding of
R-modules f : MS~! — E(M) which is an RS~!-homomorphism by Proposi-
tion iv) (because Rp C4 RSy'). It is now easy to see that the image of f is
MRS~!. Since ker fNM = 0, it follows that ker f = 0, hence f : MS~' — MRS™!
is an isomorphism.

(v) By Proposition m(v), any rational extension of M Qg is a rational ex-
tension of M@ r and hence of Mg. Therefore, we can view E(MQQ) as an
R-submodule of E(M) and by Proposition (iv), the former is in fact a Q-
submodule of the latter. Now, MQgr Cq E(M)g implies MQo C4 E(M)g, so

E(MQQ)Q Ca E(MR)Q and thus equality must hold. O

REMARK 3.7.5. At this level of generality, we do not know whether MQ =
M ®r Q or MQ",. . (R) = E(M). However, it is well known that MS™! = M @p
RS™1L.

3.7.3. The Maximal Symmetric Quotient Ring. Our next step would be
to prove an analogue of Proposition for right or left quotient rings (rather than

19 Caution: In general, the module E(Ml @ M>) does not coincide with E(Ml) @ E(Mg);
see [58] Ex. 8.21].

20 Tndeed, let z, y € MS~! with  # 0. Then we can write y = ms—! for some m € M and
s € M. Thus, ys € M and xs # 0 (because xss~! = x # 0).
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classical fraction rings). However, this turns out to be impossible, since an anti-
automorphisms of R need not extend to Q7 .. (R). To overcome this, we introduce
the maximal symmetric quotient ring of RH This construction was apparently first
suggested in [87] and was lengthly studied in [59]. As this notion rarely appears
in textbooks, we shall include proofs regarding it.

LEMMA 3.7.6. Let R C @ be rings such that Rp C. Qr.- Then Q is a left
quotient ring of R if and only if for all ¢ € Q there is a dense left ideal A Cq rR
such that Aq C R.

PROOF. Assume rR C4 rQ. Then for all ¢ € @,
Rg':={reR:rqeR}CyRg.

Therefore, A = Rq~ "' is a dense left ideal satisfying Ag C R. To see the converse, let
x,y € Q with x # 0. Then there is A C; gR such that Ay C R. Since R C. Qg,
there is @ € R such that 0 # za € R. Now, Aza # 0 (otherwise, xa € T(Rg) = 0),
implying that there exists r € A such that rza # 0. This r satisfies rx # 0 and
ry € R, so rR C4 rQ. O

PROPOSITION 3.7.7. Let R be a ring and let Q = Qh.(R). Define
max () :={¢ € Q| FJACy rR: A C R} .

max

Then Q% .«(R) is a (two-sided) quotient ring of R. Moreover, it is mazimal in
the sense that any other quotient ring of R, Q', admits a unique embedding into
5 ax(R) (as extensions of R). Up to isomorphism, Q2 .. (R) is the only mazimal

quotient ring of R.

max (

PRrOOF. Provided Q.. (R) is a ring, Q3 .. (R) is clearly a right quotient ring
of R (because it is contained in @ R)) and by the previous lemma it is also a
left quotient ring of R.

To see that Q2 .. (R) is a ring, let ¢,q € Q2. (R). Then there are A, A’ C4 R
such that Ag, A'¢’ C R. This implies (ANA")(¢+¢’) C R, hence ¢+¢' € Qmax( ). In
addition, B := {a € A|aqg € A’} C4 rR (because B = f~1(A’) where f: A — rR
is defined by f(a) = aq). This implies Bqgq’ C A'q’ C R, so q¢’ € Q.. (R), as
required.

Now let ' be any quotient ring of R. Then Q' is a right quotient ring, hence
there exists a unique embedding ¢ : Q" — Q.. (R) that fixes R. By Lemma [3.7.6]
any ¢ € Q' admits a left ideal A C; Rp such that Ag C R. This means that Ap(q) C
R and hence im ¢ C Q3. (R), as required. The uniqueness of the embedding follows
from Proposition M(lll), since the embedding is an R-module homomorphism.

The maximal quotient ring of R is unique up to isomorphism because being a
maximal ring of quotients is a universal property. Details are left to the reader. [

max(

The ring Q3. (R) of the last proposition is called the mazimal symmetric
quotient ring of R. Observe that it can also be defined as a subring of Q¢ .. (R) by
max( ) - {q € Qmax( ) ‘ JA Ca RR qA - R} (IH fa‘Ct Qmax( ) is the largeSt
extension of R that is contained in both Q7 .. (R) and dex( ).) We now have the
following:

PROPOSITION 3.7.8. Let W be any ring. Then any a € Aut™ (W) extends

uniquely into an anti-isomorphism o : QT (W) — Q% .. (W). If one considers

s (W) as a subring of both Q. (W) and Q°. . (W), then o restricts to an

max
anti-automorphism of Q... (W).

21 Note: The maximal symmetric quotient ring is not the Martindale symmetric ring of
quotients which is often used when studying semiprime rings.
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PRrROOF. Consider « as a ring isomorphism a: W — WP, Then it is well
known that o extends to an isomorphism o’ : Q7. (W) — Q% (W) = Q% (W)™
(note that the last isomorphism fixes W°P). This gives rise to an anti-isomorphism
o Q. (W) — Q.. (W) that extends a.

Forallge Q.. (W)and A < wW, AgC W <= ¢* A* CW and A Cy wW
— A Cy Wy. Thus, ¢ € Q.. (W) <= ¢* € Q5. (W) (where the latter

5 ax(W) is the copy of Q3 ) inside Q%,,.(W)). O

max
EXAMPLE 3.7.9. An anti-automorphism « € Aut™ (W) need not extend to an
anti-endomorphism of Q7 .. (W). Let F' be a field and let V' = F" for some n > 1.

max (

max (

Define W = {[§}] |a,b € F,v € V}. Then by [68, Ex. 13.26], Q" .. (W) =
M,,+1(F) and the embedding W — Q7 .. (W) is given by
U1
a v al,
[ 0 b } ~ .
0 ... 0 b

where I, is the unity of M, (F) and v = (v1,...,v,). Define o € Aut™ (W) by
(651" = [8Y] and assume by contradiction that a can be extended to an anti-
endomorphism of M,,4+1(F'), which we also denote by «. Let T be the trans-
pose involution. Then « o T is an F-algebra endomorphism of M,,11(F) and thus
inner by the Skolem-Noether Theorem. This means that @ = ¢ o T for some
¢ € Inn(M,,41(F)) and therefore, X and X* has the same characteristic polyno-

mial for all X € M,,1(F). But this is absurd (if n > 1) because
1-1, 0] [0-I, 0
0 0 - 0 1 |-
(Note: The ring W just defined seems to have originated in a paper by Zelmanowitz
and Li ([62] Ex. 2.7]), who only considered the case F = Q and n = 2 for other
purposes. The example was then generalized by Lam in [58] Ex. 13.26] to arbi-

trary F and n and was used to demonstate that Q. (W) and Q.. (W) might be
isomorphic as rings, but not as extensions of W.)

3.7.4. Main Result and Consequences. Let M be a right R-module with
T(M) = 0. A rational extension of M, M’ is said to have the extension property if
any endomorphism of M extends to a (necessarily unique) endomorphism of M’
In this case, W := Endgr(M) can be considered as a subring of W’ := Endg(M’).
For example, by Proposition [3.7.4] M@ has the extension property for any right
quotient ring @ of R. Our main result is:

THEOREM 3.7.10. Let Q be a quotient ring of R, let M be a right R-module
with T (M) =0 and let M’ be a right Q-module such that Mr Cq My and My has
the extension property w.r.t. M. Assume that:

(0) MQ Zng OTQ Qmax( )
(1) Mg, is a torsionless generator.

(2) W’ :=Endgr(M’) is a quotient ring of W := Endg(M).
Then there exists M" € Mod-Q3 . (R) such that:
() MQ Cd Mé CLTLdMR Cd M]/é
M" has the extension property w.r.t. Mg and Mg.
(r)(M") = Endr(M") = Qfax(W).

max

(i)
(1113 EndQ;

max
(iv) M{. (g is a torsionless generator.
me( )

22 This is not to be confused with the extension property of homorphisms used to define
injective modules.
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Moreover, in this case, by is injective for any o € Aut™ (W).

We shall postpone the proof of Theorem [3.7.10] to the end of this section,
bringing first its various applications. However, at this point, we can easily deduce
the final assertion of the theorem from (i)-(iv): By Proposition o extends
to an anti-endomorphism of Q. (W) = Endg: (r)(M") and since Mggm () s a
generator, b, is regular. Therefore, by Lemma b, is right injective (the left
injectiveness follows by symmetry).

The hardest obstruction for applying Theorem is condition (2), which is
by no means easy to verify. Therefore, let us first record some cases in which it is
satisfied. (These cases will in fact be used in the proof of Theorem[3.7.10}) To begin
with, note that condition (2) is satisfied if M is f.g., @ = RS~ and M = RS~}
for some central denominator set S consisting of regular elements, as implied by

Proposition [3.6.3]
LEMMA 3.7.11. Let @ be a (two-sided) quotient ring of R, let X, A, B € Mod-R
and let 0 # f € Hom(A, B).

(i) Assume there is n € N and a generator G € Mod-R such that:
(1) X* Cy4G.
(2) T(B)=0.
Then there exists g € Hom(X, A) such that f o g # 0.
(ii) Assume that:
(1) B is dense in a f.g. R-module, By, and By embeds (as an R-module)
in a torsionless right Q-module, T .
(2) X is faithful and T(B) = 0.
Then there exists g € Hom (B, X) such that go f # 0. If Q = R, then the
assumption that By is f.g. can be dropped.
(iii) Assume that:
(1) Ris commutativ@ or semiprime.
(2) X is dense in a f.g. R-module, X1, and X is dense (as an R-module)
in a generator of Mod-Q, G.
(3) T(X)=0and T(B)=0.
Then there exists g € Hom(X, A) such that go f # 0.

PROOF. (i) Since G is a generator there is h € Hom (G, A) such that foh # 0.
By Proposition iii), foh|xn # 0 (otherwise, f o h|x» would be a nonzero
extension of the zero map from M™ to B). Therefore, f o h must be nonzero on at
least one of the copies of X in G. Let g be the restriction of h to that copy. Then
g is clearly the required homomorphism.

(ii) Pick some nonzero by € im(f). It is enough to find ¢ € Hom(B, X) with
g(bg) # 0. Condition (1) implies that there is A € Homg (T, Qq) such that h(by) #
0. Let {b1,...,b:} be a set of generators for By. Then since pR C4 rQ, there is
r € R such that rh(b;) € R for all 0 <14 < ¢ and rh(by) # 0. Since X is faithful,
there is « € X such that xrh(by) # 0. Now define g : B — X by g(b) = arh(b).

If @ = R, then we can take r = 1 regardless of the generators of Bj, so the
assumption that Bj is finitely generated is superfluous.

(iii) Since Gg is a generator, there is n € N such that Qg is a summand
of G™. Denote by m : G" — Qg the corresponding projection and observe that
M" Cq M} Cq G

Let By = im(f) and let U = anng By. Then U < R and Ug is not dense in
Rp (because T(B) = 0). Therefore, by [58, Ex. 8.3(4)] there exists x € R such

23 This implies Q is commutative; see [58, Lm. 14.15].
24 Caution: In general M Cq M’ and N Cyq N’ does not imply M & N Cy M’ & N’ (see [58]
Ex. 8.21]). However, it is routine to check that this is true when M = N and M’ = N’.
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that U = 0. Condition (1) now implies that there is y € R such that Uy = 0.
(This is clear if R is commutative. If R is semiprime, then RzRNU = 0 because
(RxRNU)? =0, hence Ux C U N RxR = 0.) Therefore, again by [58] Ex. 8.3(4)],
rU Za rR.

Let {my,...,m;} be a set of generators for M]*. Then since gRR C4 rQ,
Rr(m;)~t:={r € R : rn(m;) € R} C4 rR and this implies that

¢
L:={reR:rr(M) CR}= ﬂ Rr(m;)™' C4 rR .
i=1

Thus, L\ U # ¢ (because pU €4 rR). Let r € L\ U. Then there is b € By such
that br # 0. Let a € A be such that f(a) = b, let Xo = 77 }(R) + X' C G% and
define h : X9 — A by h(z) = arn(z). Then for any x € X5 with w(z) = 1g we
have f(h(x)) = f(ar) = br # 0, so f o h # 0. By definition, X™ C X, and since
X" Cq G%, X™ Cq Xo. Therefore, by Proposition M(iii), foh|xn # 0 and we
can proceed as in (i). O

REMARK 3.7.12. (i) In part (iii) of the last lemma (and also of the next theo-
rem), one can replace condition (1) with the weaker assumption:

(1) For all J < R, ann” J = 0 implies ann’.J = 0 (or equivalently, gJ Cq rR

implies JR gd RR)

This condition fails for nonsingular rings, as implied by the next example.

(ii) There is a f.g. faithful module M over a (prime Goldie) ring R s.t. M is
not dense in a generator but M? is dense in a generator. Indeed, let p be a prime
number, let

n{[5 2]+ [% 8]

and take M to be the right R-module consisting of matrices of the form [{§] in
R. Then M? is isomorphic to Jac(R) which is dense in R. However, R is local
and hence must be a direct summand of any generator. This means that if P is a
generator containing M, then u.dim P > u.dim R = 2. However, u.dim M =1
and hence M cannot be essential in P (see [58, Th. 6.1]).

ExAMPLE 3.7.13. Lemma iii) fails upon dropping condition (1), even
when R is nonsingular. For example, let F' be a field, let R be the ring of 2 x 2
upper-triangular matrices over F, let X = Q7 (R) = Q% ..(R) = My(F) (see [58,
Ex. 13.13]) and let A consist of the matrices in R of the form [§§]. Then X is
obviously dense in a QY. (R)-generator and Q.. (R) is a two-sided quotient ring

of R. However, Homp(X, A) = 0, so the claim of Lemma [3.7.11iii) fails regardless
of B and f.

T € Ly, a,b,c,d € pZ<p>}

Despite the last example, we believe that part (iii) of the following theorem
(which relies on Lemma [3.7.11iii)) holds when R is nonsingular.

THEOREM 3.7.14. Let @ be a (two-sided) quotient ring of R, let M be a right
R-module with T(M) = 0 and let M’ be a rational extension of M satisfying the
extension property. Write W = Endgr(M) and W' = Endg(M’). Then:

(i) If M™ is dense in a generator of Mod-R for some n € N, then W' is a
general Tight quotient ring of W.
(ii) Assume that:
(1) There exists a f.g. R-module My such that M C M; C M’ and M’
embeds (as an R-module) in a torsionless Q-module.
(2) M is faithful.
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Then W' is a general left quotient ring of W. If Q = R, then the assump-
tion that My is f.g. can be dropped.
(iii) Assume that:
(1) R is commutative or semiprime.
(2) M is dense in a f.g. R-module, My, and M, is dense (as an R-
module) in a generator of Mod-Q (which need not contain M’ ).
Then W' is a general Tight quotient ring of W.

In particular, if the assumptions of (i) and (ii) or (ii) and (i) are satisfied, then
condition (2) of Theorem is satisfied.

PRrROOF. Throughout, we will freely consider elements of End(M) as elements
of End(M").

(i) We need to prove that Wy, C4 WY, That is, for all u,v € W’ with v # 0,
there is w € W such that uw € W and vw # 0. Indeed, let N = M Nu~t(M).
Then by Lemma [3.7.11](i) (take X = M, A= N, B =v(N) and f = v|y; note that
v|n # 0 because N C4 M’), there exists w € Hom(M, N) such that v|y ow # 0.
Since uvw(M) C u(N) Cu(u=t(M)) C M, uw € W, as required.

(ii) We need to prove that wW Cy4 wW’. That is, for all u,v € W’ with v #£ 0,
there is w € W such that wu € W and wv # 0. Indeed, let B = w(M) + M. Then
B C4 u(Mj)+ My, which is finitely generated. Therefore, by Lemma ii) (take
X =M, A=v"!(B)and f = v|a), there exists w : B — M such that wovl,-1(p) #
0. Note that w extends to an endomorphism of M’ because w|y € End(M) (and
the extension of w|y to M’ must agree with w on B by Proposition [3.7.1f(iii)).
Thus, we have wv # 0 and since wu(M) C M, wu € W, as required.

(iii) Argue as in (i) using part (iii) of Lemma instead of part (i) (take
X=M,A=N:=Mnu (M), B=v(N)and f =v|y). O

REMARK 3.7.15. One can prove a “dual” claim to part (i) of the last theorem,
namely, if M is a cogenerator with 7 (M) = 0, then W’ is a general left quotient
ring of W. However, this boils down to triviality because these assumptions imply
M’ = M. For otherwise, there would be a nonzero homomorphism from M'/M to

M, which is impossible by the proof of Proposition iii).

COROLLARY 3.7.16. Let @ be a quotient ring of R and let M, M; C Mod-R
be such that M Cq My, T(M) =0 and M;Q has the extension property w.r.t. M.
Then:
(i) If M is faithful, My is f.g. and M1Qq is torsionless, then End(M1Qr) is
a left quotient ring of End(Mg). When Q = R, the assumption that M
is f.g. can be dropped.
(ii) If at least one of the following holds:
(1) R is semiprime or commutative, My is f.g. and M1Qq is a generator.
(2) M is a generator.
then End(M;QRr) is a right quotient ring of End(MRg).
If both (i) and (ii) are satisfied, then conditions (0)~(2) of Theorem[3.7.1( are sat-
isfied for M' = M, Q and, in particular, b, is injective for all @ € Aut™ (Endg(M)).

PROOF. Apply Theorem [3.7.14 with M’ = M;Q. d

In case Q of the corollary is a classical localization of R (i.e. @ = RS™! = S™'R
with S a (two-sided) denominator set), we can prove a slightly stronger version of

Corollary [3.7.16]

COROLLARY 3.7.17. Let S be a (two-sided) denominator set of R consisting of
reqular elements, let M, M; € Mod-R be such that M C4 My, T(M) = 0, M is
f.g. and M1S~" has the extension property w.r.t. M. Then:
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(i) If M is faithful and M, Sy, is torsionless, then End(M1Sz") is a left
quotient ring of End(MEg).

(ii) If M1S™! is an RS™'-generator, then End(M’) is a general right quotient
ring of End(M) for any rational extension M' of M with the extension
property.

If both (i) and (ii) are satisfied, then conditions (0)-(2) of Theorem|[3.7.10| are satis-
fied for M' = M1S~! and, in particular, b, is injective for all o« € Aut™ (Endg(M)).

PrOOF. Note that MS~! = MRS~ by Proposition iv), so part (i) is
just a special case of Corollary (1) We thus turn to part (ii).

Let Q = RS™! = S7!R. Then there is n such that (M;S71)" = eQ ® V for
some V € Mod-Q and e € (M1S™!)" with anng e = 0. Let {m4,...,m:} be a set
of generators for M{*. Then we can write m; = eq; + v; for unique ¢; € @ and
v; € V. There exist s € S and 71,...,7 C Rs.t. ¢ = s 'r; for all 4 (here we need
Q = S7'R). Therefore, replacing e with es~!, we may assume M} C P := eR® V.
The r.h.s. is clearly a generator of Mod-R and M™ is dense in (M;S~1)" and hence
in P. We are now done by Theorem [3.7.14(i). O

REMARK 3.7.18. Keeping the notation of Corollary [3.7.17} note that if @ :=
RS~ is right Kasch (i.e. Q¢ contains a copy of any simple right ()-module), then
T(M)=0 <= M is S-torsion-free. Indeed, one direction follows from Proposi-
tion iv). To see the converse, assume by contradiction that A := anng(m) Cq4
Ry for some m € M. Then a routine argument shows that AS~! C; RS™! = Q
(as Q-modules). However, @ is right Kasch, so by [58 Cr. 8.28], AS™! = Q. This
means 1 = as~! for some a € A and s € S, thus implying s € A. But then ms = 0,
so m = 0 since M is S-torsion-free.

In general, that M is S-torsion-free need does not imply 7 (M) # 0 even when
S consists of all regular elements in R. For example, let F' be a field and take
R=Q =]y, I, S=R*and M = R/ Py, I

The previous corollaries become much sharper when Q or RS™! is right Pseudo
Frobenius (abbrev. PF). Recall that a ring @ is said to be right PF if all faithful
right @-modules are generators. This turns out to be equivalent to Q)¢ being an
injective cogenerator (see [54, Ch. 12] and [58] Th. 19.25]; also see [67], [94]), hence
all right Q-modules are torsionless and all faithful right Q-modules are cogenerators.

THEOREM 3.7.19. Let @ be a quotient ring of R and let M be a faithful right
R-module satisfying T (M) = 0 which is dense in a f.g. R-module M. Assume Q
is Tight PF. Then MQ = E(MR). Furthermore, if one of the following holds:

(1) there is a (two-sided) denominator set S consisting of regular elements
such that Q = RS™1,

(2) M is dense in an R-generator,

(3) R is commutative or semiprime,

then End(MQRr) = Q... (End(Mg)) and by, is injective for alla € Aut™ (End(Mg)).

max

ProoF. Proposition v) implies E(Mp) = E(MQQ), so it is enough to
prove E(M Qo) = MQg. Indeed, MQq is faithful, so the preceding discussion
implies M Qg is a cogenerator, and since T(MQq) € T(MQgr) = 0, E(MQQ) =
MQqo by Remark Therefore, MQ = E(MR). In particular, M@ must
coincide with M;Qg-

Since M Qg is a torsionless generator, Corollaries [3.7.16| and [3.7.17] imply that
we can apply Theorem with M’ = MQ to obtain a module M" as in that
theorem. As M7}, is a rational extension of MQ = E(MR)7 necessarily M" = MQ,
so we are done. O
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ExaMPLE 3.7.20. Recall that a ring R is said to be a right order in a ring
containing R if Q@ = Q7;(R) (and the latter exists). (Equivalently, R is a right order
inQifSCQ*and Q = {rs~!|r € R, s € S} where S is the set or regular elements
in R.) Two-sided orders in right PF rings satisfy condition (1) of Theorem
and these turn out to be quite common. For example, Goldie’s Theorem ([45])
characterizes the right orders in semisimple rings as the semiprime right Goldie
rings (i.e. rings with ACC on right annihilators and finite right uniform dimension;
see [58] §11A] or [80] §3.2]), so noetherian semiprime rings are orders in semisimple
rings (and thus in right PF rings).

More generally, sufficient and necessary conditions for R to be a right order in
a QF or a right PF ring were given by Shock in [89], [90] and [91]. We also note
that if R is an order in a QF ring @, then so is RG for any finite group G. Indeed,
it is easy to see that RG is an order in QG and the latter is noetherian (clear) and
self-injective by [74].

REMARK 3.7.21. Condition (3) of Theorem [3.7.19|implies condition (1) in many
cases, namely when R is semiprime or when @) is commutative with ACC on right
annihilators (e.g. if Q is QF). Indeed, if R is commutative and @ has ACC on right
annihilators, then R has ACC on right annihilators (this is straightforward), hence
by [68, Cr. 13.16], Q@ = QLax(R) = QL (R) (Q = QLax(R) because Qg is injective).
To see the semiprime case, recall that any right PF ring is semilocal and satisfies
soc(RRr) C. Rp (see [58, Th. 19.25]). Now, Q is semiprime by [58, Exer. 13.8],
hence Jac(Q) Nsoc(Qqg) = 0 (because this is a nilpotent ideal). Since soc(Qg) Ce
Qq, Jac(Q) = 0, which implies @) is semisimple (because @ is semilocal). This
means R has ACC on annihilators (because @ has) and u.dim Rg = u.dim Qr =
u.dim Qg < oo (because Rr Ce Qr), hence R is a semiprime right Goldie. The
same argument implies R is also a left Goldie ring and thus Q" (R) = Q% ..(R) =

L(R) = Qu(R).

In general, a commutative PF ring need not have ACC on annihilators. See

[58, Ex. 19.24] (the example is due to Osofsky).

Theorem also has interesting consequences in the “trivial case” R = Q =
5 ax(R) and M = M'. Many examples of rings with R = Q% (R) can be found
in [69], [24] and related papers, and the following corollary enables one to find even

more.

COROLLARY 3.7.22. Let R be a ring satisfying R = Q2. (R). Then:

(i) For every torsionless generator M € Mod-R, there is a torsionless gener-
ator G € Mod-R such that M C4; G, G has the extension property w.r.t.

M and End(G) = Q3 . (End(M)).
(ii) If Rg is a cogenerator, then any generator M € Mod-R satisfies End(M) =
5 ax(End(M)). If R is right PF, then any faithful module M € Mod-R

max

satisfies End(M) = Q2. (End(M)).

max

Proor. (i) Apply Theorem with Q = R and M; = M. Take G to be
M". Conditions (0)-(2) of the theorem are automatically satisfied.

(ii) When Rp is a cogenerator, M is torsionless and a cogenerator (because R
is a summand of M™). Thus, by Remark E(M) = M, so if we apply (i),
G must necessarily be M. If R is right PF, then Rp is a cogenerator and M is a
generator, so the previous argument implies End(M) = Q2. (End(M)). O

max

To demonstrate the non-triviality of the last corollary, we note that it is well
known that if P is a finite projective over a QF algebra, then End(P) need not
be QF (and thus not PF). (In this case P cannot be faithful, for otherwise it
would be a progenerator, and since being QF is a categorical property, this would
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imply End(P) is QF.) The problem of determining when End(P) is QF (when P is
projective) and its obvious generalization to PF rings were considered in [77], [97]
and related papers.

3.7.5. Proof of the Main Result. We finally turn to prove Theorem [3.7.10

LEMMA 3.7.23. Let Q be a right quotient ring of R and let e € E(R) be such
that ann% Re =0. Then eQe is a right quotient ring of eRe and Recre Cq Q€cRe-

PrROOF. Let z,y € eQe be such that z # 0. Then there is » € R such that
zr # 0 and zr,yr € R. Thus xrRe # 0, hence there is s € Re such that zrs # 0.
This implies x(erse) = zrs # 0 and y(erse) = yrs € R, hence eQe is a right
quotient ring of eRe. The second assertion is shown in the same manner. O

LEMMA 3.7.24. Let W be a ring, let e € E(W) and consider We as a right eWe-
module. If ann” eW = 0, then We is torsionless. The converse holds when ywWe is
faithfully balanced (i.e. the standard map W — End(Weewe) is an isomorphism,).

PrROOF. Assume ann” eW = 0 and let 0 # « € We. Then there exists y € eW
such that yz # 0. Now, the map f : We — eWe defined by f(w) = yw is an
eWe-module homomorphism satisfying f(z) # 0. Conversely, assume We, .y, is
torsionless and End(Weewe) = W. Then wWe is faithful, hence for all 0 £ x € W
there is z € We such that zz # 0. Since zz € We, there is an eWe-module
homomorphism f : We — eWe such that f(zz) # 0. As End(Weew.) = W,
the homomorphism f is given by f(w) = yw (w € We) for some y € elW. Thus,
yrz # 0, hence x ¢ ann” eW (because yx # 0). Therefore, ann” eW = 0. O

We are now ready to prove Theorem |[3.7.10} This is done in several steps.

Proor oF THEOREM [B.7.10. STEP 1. Without loss of generality, we may
assume R = @Q and M = M’ (use Proposition to see that this is indeed
allowed). We thus drop M’ and @ from our notation henceforth (in Step 2, M’ will
be redefined as a different module). Note that Mg is now a torsionless generator.

Next, we claim that we may assume R = QF . (R). Indeed, just replace

max

M with MQ%,.(R). The latter is a torsionless QF .. (R)-generator by Proposi-
tion [3.7.4](iii) and part (ii) of that proposition implies M Q% (R) has the extension
property w.r.t. Mp. In addition, parts (i) and (ii) of of Theorem imply that
End(MQ3,,..(R)) is a two-sided quotient ring of End(M). (Apply the theorem with

R, Q5 . (R), M, MQ% .. .(R) in place of R, Q, M, M’'. In part (i) take G = M and

max max

in part (ii) take My = M.)
STEP 2. Let W = End(Mg) and let W' = Q2 ,...(W). Since My, is a generator,

there is n € N such that M™ =2 Rr @& N. Repeating the argument in the comment
before Proposition we may assume that there is e € E(U), where U :=
M, (W), such that R = eUe, M = e Ue (as (W, R)-bimodules) and M™ = Ue
(as (U, R)-bimodules). Define U’ = M,,(W’) and, abusing the notation, let M’ =
e1nU’e. Then M’ is a (W', R)-bimodule and we claim it is the required R-module
M", i.e. My, satisfies (i)-(iv).

STEP 3. We start by observing End(w/M') = eU’e. Indeed, let U’ = M,,(W')
act on (M')" from the left in the standard way. Then ¢ (M’')" & U’e and it
is well known that End(yU’e) = eU’e (where eU’e acts on the right by standard
multiplication). It is now routine to verify that End(y/(M')") = End(w/M’), so
our claim is proved.

Since M™ = Ue, we may identify End(Uepr) with M,,(W) = U. As End(yUe) =
eUe = R, it follows that Ue is faithfully balanced (in both Mod-R and U-Mod).
In addition, Ueg is a torsionless generator (since Mg is). Thus, by Lemma
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ann” eU = 0. Moreover, yUe is faithfully balanced, thus faithful, so anng Ue =
anny(yUe) = 0. Now, Lemma implies that eU’e is a two-sided quotient
ring of R = eUe and (M')" = U'ep is a rational extension of M™ = Uep, hence
Mp C4 My, (this is straightforward). As R = Q% (R), it must coincide with eU’e.
Therefore, Rp is a summand of (M’)%, hence My, is a generator. Furthermore,
annf;(eU’) C annj;(eU) = 0 and annf;(eU’) = U Nannj, (eU’), so annj, (eU’) = 0
because Uy C. U{;. This implies (M’)% is torsionless (Lemma and hence
so is M. We have thus shown that Mp Cy My, and My, is a torsionless generator
with End(y/M') = R. In addition, M}, clearly has the extension property w.r.t.
Mp. This settles (i), (ii) and (iv).

STEP 4. We finish by showing (iii), i.e. W’ = End(M},). (The last assertion of
Theorem [3.7.10] was verified immediately after its statement, so this concludes the
proof.) First observe that W' acts on Mp, = e;1U’e on the right by left multiplica-
tion. This action is faithful (for otherwise the action of U’ on U'e = (M')™ would
be non-faithful), so we can consider W’ as a subring of End(Mp,) that contains W.
Since M7, is torsionless and Mp, is a generator, parts (i) and (ii) of Theorem
imply End(M7F,) is a two-sided quotient ring of W. As W' = @Q,..(W), we must

max

have W' = End(M},), as required. O

REMARK 3.7.25. We do not know if the module M’ constructed in step 2 of
the last proof coincides with M (this would imply M"” = M'Q% .. (R) in Theorem
3.7.10). Part (ii) of Corollary presents special cases in which this can be
guaranteed. Furthermore, we do not know if M’ is unique w.r.t. to being a rational
extension of M satisfying Q% .. (End(M)) = End(M’). However, the map M +— M’
is a closure operation (i.e. (M') = M’) defined for all torsionless generators over
rings R with R = Q3 . (R).

max

3.8. An Easy Proof for a Result of Osborn

As an application of the previous theory, we present an easy proof for a special
case of a result of Osborn:

THEOREM 3.8.1 (Osborn). Let (W, «) be a ring with involution such that 2 €
W> and every element w € W with w® = w is either a unit or nilpotent. Let o
denote the induced involution on W/ Jac(W). Then Jac(W)N{w € W : w® = w}
consists of nilpotent element and one of the following holds:

(i) W/ Jac(W) is a division ring.
(ii) W/Jac(W) = D x D°P for some division ring D and under that isomor-
phism o exchanges D and D°P.

(iii) W/ Jac(W) = My(F) for some field F' and under that isomorphism o is

a symplectic involution (i.e. it is induced by a classical alternating bilinear
form).

PROOF. See [66] §4]. O

Osborn’s result has several generalizations (see papers related to [66]) and his
proof is based on Jordan algebras. Theorem allows us to give a new proof
for the special case where W is semisimple (Osborn’s result can be deduced for
semilocal rings using this special case; see [66] §4]). Our assumptions are milder,
though.

THEOREM 3.8.2. Let (W, «) be a ring with involution such that W is semisimple
and the only x-invariant idempotents in W are 0 and 1. Then one of the following
holds:

(i) W is a division ring.
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(ii) W =2 D x D°P for some division ring D and under that isomorphism «
exchanges D and D°P.

(iif) W = My(F) for some field F' and under that isomorphism « is a sym-
plectic involution.

PROOF. We may assume W is not the zero ring. Let {ej, ..., e,} be the prim-
itive idempotents of Cent(W). Then « permutes ey, ..., e,. Assume n > 1. Then
we have e; # e for all . This implies e; +e{' is a non-zero a-invariant idempotent,
hence e; +€f = 1. Thus, n = 2 and e] = ea. Write W; = ¢;W. Then W = W; x W,
and «a exchanges Wp and Ws. If 0 # e € W is an idempotent, then e* € W5, hence
e+ e is a non-zero a-invariant idempotent, implying e4+e“ =1 and e = 1y,. This
means Wi is a simple artinian ring with no non-trivial idempotents, hence it is a
division ring. As Wy = WP via «, (ii) holds.

Now assume n = 1. Then W is simple artinian, hence we can write W =
End(DkD) for some division ring D. Let b = b,, K = K, and k¥ = Kk,. Then b :
DF x D¥ — K is a regular k-symmetric bilinear form by Theorem Moreover,
by Corollary dim(K;)p = 1.

We claim that if DF = U; ® Uy with b(Ul,UQ) = b(Ug,Ul) =0, then U; =0
or Uy = 0. Indeed, let e be the projection from D* to U; with kernel Uy. Then it
is straightforward to check that b(ex,y) = b(ex,ey) = b(z, ey) and hence e® = e.
Therefore e=1or e =0, so Uy = D¥ or Uy = 0.

Assume there is z € D* such that b(z,z) # 0. Define L = 2+ = {y €
D¥|b(z,y) = 0}. We claim that D*¥ = L @ zD. Clearly = ¢ L, hence xtD N L = 0.
On the other hand, for all v € D¥, there exists d € D such that b(z, ) ®1d = b(x, )
(because dim(K7)p = 1), hence b(z,v — zd) = b(z,v) — b(xz,x) @1 d = 0 and this
implies v = zd + (v — zd) € D + L. Now, since b is x-symmetric b(L,zD) =
b(xD,L)* = 0, so by the previous paragraph, L = 0. But this means k = 1.
Therefore, W = End(D},) is a division ring and (i) holds.

We may now assume that b(z,x) = 0 for all z € D¥. Then x = —idg since
0 = bx+y,x+y) = blx,y) + bly,z) = blx,y) + b(z,y)~ for all z,y € DF.
Furthermore, for all z,y € D* and a € D we have b(z,y) ®9 a = b(za,y) =
—b(y,za) = —b(y, ) ®1 a = b(z,y) ®1 a, hence ®9 = ®1. This implies that for any
0#ke€ K and a,b € D, we have k ©1 (ab) = (k©1a) ©1b = (kGpa) ©1b =
(k®1b)®pa=(k©®1b) ®1a=k® (ba), hence ab = ba. Therefore, D is a field
and K is isomorphic as a double R-module to D, with ®¢, ®; being the standard
right action of D on itself. As b(z,2) = 0 for all z € D*, b is a classical alternating
bilinear form. We are thus finished if we prove that £ = 2 (as this would imply
W = End(D%) = My(D), as in (iii)). However, this follows from the well-known
fact that every regular alternating form is the orthogonal sum of 2-dimensional
alternating forms (and b cannot be the orthogonal sum of two non-trivial forms as
argued above). O

3.9. Generization of Arbitrary Forms

We finish this chapter by suggesting a way to define non-stable generic forms.

Let (M, b, K) be a bilinear space over a ring R and let W = End(Mg). A pair
(0,0") € W x W will be called b-adjoint if b(ox,y) = b(x,o'y) for all z,y € M. For
example, all pairs in {0} x Hom(M, ker Ad;) are b-adjoint. Let P(b) denote the set
of b-adjoint pairs in W x W and define:

M ®y M
(or@y—r®oy|r,ye M, (5,0') € P(b))

Ky =
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The image of z ®z y in K} will be denoted by = ®;, y. We make K into a double
R-module by letting

(z®py) @or = ar Q) Y, (zQ@py) O17 =z &4 Yr,

for all z,y € M and r € R. The generization of (M,b, K) is defined to be
(M, bgen, Kp) where bgep is the bilinear form defined by bgen(z,y) = = ®p y. The
form bgen has the following universal property: If (M,b', K’) is another bilinear
space such that P(b) C P(b'), then there exists a unique f € Homppod-r(Kp, K')
such that o’ = f o bgen. (In particular, taking b’ = b yields that b can be recovered
from bgen.)

When b is right stable with right corresponding anti-endomorphism «, b, is
easily seen to be similar to bge,. (Indeed, P(b) = {(0,0%) |0 € W} so K, = K, via
by 2 ®qy — x®py.) Thus, the map b+ bgen is a generalization of the generization
defined in section[3.1] However, in contrast to the one-sided definition of section[3.1]
the generization just defined is a left-right symmetric process. In particular, if b is
left stable with left corresponding anti-endomorphism «, then ,b is also similar to

bgen-
PROPOSITION 3.9.1. Let (M,b, K) be a bilinear space. Then:
(i) P(bgen) = P(b).

(11> (bgen)gen - bgen'
(iii) b is right (semi-)stable <= bgen is Tight (semi-)stable.
(iv) If P(b) is a symmetric relation on End(M), then the map ky : K — K

defined by (x ®@py)"™ =y Qp x is an involution, and bgen is Kp-symmetric.

PrROOF. (i) That P(b) C P(bgen) is clear. To see the converse, let f: K — K
be the double R-module homomorphism satisfying b = f o bgen. Then (o,0’) €
P(bgen) implies bgen (0, y) = bgen(x, 0'y) for all z,y € M. Applying f to both sides
yields b(oz,y) = b(z,0'y), so (0,0") € P(b).

(if) This is follows from (i) and the definition of bgey.

(iif) This also follows from (i), since being right stable or right semi-stable can
be phrased as a property of P(b) (e.g.: b is right stable precisely when P(b) is a
function).

(iv) This is straightforward. O

It is now natural to call a bilinear form b : M x M — K generic when b ~ bgen.
Furthermore, call two bilinear forms b, b’ on M weakly similar if P(b) = P(b'). By
part (i) of the last proposition, this is equivalent to bgen = b, Proposition iv)
also calls for a new notion of symmetry — call b pre-symmetric if P(b) is a symmetric
relation. While all these new notions deserve further attention, the author could

not pursue them further due to time and space limitations.

EXAMPLE 3.9.2. Let b : Z2 x Z? — Z be the bilinear form defined in Exam-
ple namely, b(z,y) = 27[§9]y. Then b is not left nor right stable, but it is
generic. Indeed, the analysis done in Example [2.4.9] shows that

Pe)={([¢%].[5%D]abcdeZ}
(we consider End(Z?) as Ma(Z)). Let
ea=[slezls], ex=[c]l®z[]], es=[{]®z[5], es=[}]®z]7]
and let €; denote the image of e; in Kp. Then {eq,...,e4} is a Z-basis for 72 Ry 72
and it not hard (but tedious) to verify that
e1Z + es + e3Z. + e 7
el + esZ + (2e1 —e))Z
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Thus, K, = Z via Y €;a; — a1 + 2a4. Denoting this map by f, one sees that f is
a similarity from bge, to b. Indeed:

flogen([23],[52])) = fl@iymer + x1y2€2 + T2y1€3 + Toy2es)
= ziy1 + 22012 = b([ 23], [45]) -






CHAPTER 4

Isometry and Decomposition

In a paper from 1974 ([786]), C. Riehm, basing on the work of Wall, solved the
isometry problem of classical (non-symmetric) regular bilinear forms over fields,
where solving means reducing it to isometry of hermitian forms over other fields.
Extensions of the solution to degenerate forms ([44]) and to sesquilinear forms ([75],
[84]) soon followed and similar techniques were used to study pairs of symmetric
bilinear forms (e.g. see [88]). While this topic was somewhat ignored in the 80’s and
the 90’s, it has regained considerable interest in the last decade, the main problems
now being providing canonical representatives for isometry classes (e.g. [25], [51],
[501, [52], [43]), various decompositions of forms (e.g. [31], [38], [93]), determining
conjugation classes w.r.t. special matrices (such as unitary matrices; e.g. [30], [28])
and other topics (e.g. [61], [29]). Many of these papers consider pairs of bilinear
and sesquilinear forms as well.

In this final chapter, we present a method for generalizing the work of Riehm
and its predecessors to bilinear forms over rings. Moreover, we will show that there
is a canonical way of translating the theory of arbitrary non-symmetric forms into
the theory of regular symmetric forms and many of the previously mentioned refer-
ences turn out to “factor” through it. Strictly speaking, we show that the category
of arbitrary bilinear forms over a category with a double duality (see section is
isomorphic to the category of symmetric regular bilinear forms over some category
with dualityﬂ This allows us to apply results originally designed for symmetric
bilinear forms over categories with duality to non-symmetric or non-regular forms
over rings. The applications are numerous and include:

(1) Witt’s Cancelation Theorem: Let by, ba, bs be (not-necessarily symmetric)
bilinear forms over a good ring (e.g. artinian ring in which 2 is a unit).
Then by L by 2 b; L bg <= by = b3 (where “=” denotes isometry).

(2) The isometry problem of bilinear forms over good rings can be reduced to
isometry of hermitian forms over division rings.

(3) The notion of isotypes (see below) can be suitably generalized to bilinear
forms over a good ring. Any form over such a ring is the orthogonal sum
of isotypes of different types and these isotypes are uniquely determined
up isometry. (This also applies to degenerate forms!)

(4) Classification of the indecomposable bilinear forms over good rings (gen-
eralizing [93] and [38]).

(5) If R is a f.d. algebra over an algebraically closed field F' and b is an F-
linear (not-necessarily-symmetric) bilinear form over R, then there exists
an exact sequence of F-algebraic groups 1 — U — O(b) - G — 1 where
U is unipotent, O(b) is the isometry group of b and G is a product of
copies of O,(F), GL,,(F) and Sp,(F). The terms in the product are
determined by the types of the isotypes appearing in the decomposition of
b into isotypes (compare with [14]).

1 Categories with duality are also called hermitian categories.

141
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Furthermore, these results hold for (arbitrarily large) systems of bilinear forms.
(Additional applications were not included due to space and time limitations.)

The first two sections of this chapter are not mandatory and provide a survey
of Riehm’s solution to the isometry problem of classical regular bilinear forms over
a field and a (somewhat selective) survey of the theory of hermitian categories,
respectively. In section we prove the categorical equivalence mentioned above
and discuss some of its implications. However, in order to apply the equivalence
properly, we need to make sure that the category with duality we obtain satisfies
several properties. This is done in section [£.4] Section explains how to extend
the previous results to systems of bilinear forms. As the equivalence is a very
powerful, yet very unexplicit tool, sections [f.6H4.10] are concerned with providing
an explicit approach to study bilinear forms over rings. The results obtained are
merely a “pull-back along the equivalence” of known results on symmetric regular
bilinear forms over categories with duality, but they are proved explicitly, with no
trace of categories. Section [£.6] covers the basics of Kronecker modules of bilinear
forms and their connection with the asymmetry of the form, section [£.7] defines and
discusses hyperbolic forms, section [£.§ presents a “dictionary” for translating claims
on bilinear forms to ring theoretic claims and section shows how to “lift” some
of these claims from an epimorphic image of the ring to the ring itself. Section [.10]
deals with additional technical issues. The rest of the chapter is concerned with
applications: section [£.11] classifies indecomposable bilinear spaces, section [£.12] is
devoted to isotypes and in section we prove Witt’s Cancelation Theorem (for
non-symmetric non-regular systems of bilinear forms) and show how to reduce the
isometry problem of bilinear forms over good rings to isometry of hermitian forms
over division rings. Finally, section uses the previous results to prove some
strong structural results about bilinear forms and isometry groups, provided the
base ring is a f.d. algebra over an algebraically closed field.

4.1. Survey: Isometry of Classical Bilinear Forms

We begin with a short overview on how to solve the isomorphism problem
of regular bilinear forms, where by solving one (always) means reduction to the
isomorphism problem of hermitian forms, and possibly other “easy” problems. We
have included this procedure because it presents many basic tools and concepts,
such as isotypes. In addition, it demonstrates how decomposition of bilinear forms
into orthogonal sums is essential to solve the isomorphism problem. Our exposition
roughly follows Richm ([76]), Scharlau ([84]) and also the author’s M.Sc. Thesis
([38]); proofs can be found in these references. For simplicity, we shall not consider
the case char F' = 2.

Let F be a field with char F' # 2. For every monic polynomial f(z) € F[z] with
£(0) # 0, define f*(x) = £(0)'a*&/ f(z~1). Then f* = f and (fg)" = f*g" for
all monic f, g € F[z] with f(0),g(0) # 1.

Let V be a f.d. F-vector space and let b: V xV — F be a regular bilinear form.
Then b admits a (right idz-)asymmetry, namely, a map A € End(V) satisfying

b(u,v) = b(v, Au) Yu,v €V .
Let f\ denote the minimal polynomial of A. It turns out that f = f\, hence we

Ns

can write fx = (p1p})™ -+ (pepf)™*¢i'" - - q5* where p1,pi, ..., pe, D}, 1, - -, qs are
distinct monic primes and ¢; = ¢} for all 1 <7 <s.

THEOREM 4.1.1. In the previous notation, let
P o= {lpp))"1<i<t,1<m<m}
Q = {¢'l1<i<s,1<n<n}.
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Consider V as an F[z]-module by letting x act as \. Then V can be expressed as a
direct sum of F|x]-modules
V= @ Vg

geEPUQ
such that:
(i) V, = (F[x]/g)* as F[z]-modules for some k € NU {0},
(ii) the spaces {Vgy}gepug are pairwise orthogonal, i.e. b(Vy, V) = 0 for every
distinct g,g' € PU Q (hence b =L,epua (blv,xv,))-
Moreover, if V = @gE’PUQ Vy is another such decomposition, then (Vy,blv, xv,) =
(Vgl,b|Vy’><Vy’) fO’F all gePU Q.

The existence of a decomposition satisfying (i) easily follows for the classifica-
tion of f.g. modules over principal ideal domains. Part (ii), as well as the uniqueness
of the decomposition up to isometry, are not trivial. The previous theorem calls for
the following definition:

DEFINITION 4.1.2. The regular bilinear space (V,b) is called an isotype (or an
fr-isotype) if V = (Flz]/fr)* as F[z]-modules for some k € N and f\ = (pp*)™
for some monic prime p € Flx] with p # p* or fx = ¢" for some monic prime
q € Flz] with ¢ = q*.

Theorem thus reduces the isomorphism problem of bilinear forms into the
isomorphism problem of g-isotypes. This process is a basic step in many of the
papers mentioned earlier.

It turns out the the parameter g strongly affects the diversity of isometry classes
of g-isotypes.

THEOREM 4.1.3. Let g € F[z]| and let (V,b) be a g-isotype. Assume that at
least one of the following holds:
(1) g = (pp*)™ for some n € N and prime p € Flx] with p # p*.
(2) g=(x—(=1)™)™ for some n € N.
Then V is the direct sum of F|x]-modules Vi & Vo such that:
(i) Vi, Vo are totally isotropic (i.e. b(V1, V1) = b(Va,V2) =0).
(ii) If (1) holds, then Vi = (F[z]/p™)* and Vo = (Flz]/(p*)™)* (as Flx]-
modules) for some k € N.
(iii) If (2) holds, then V|, = Vo = (F[z]/g)* (as F|x]-modules) for some k € N.
In any case, the isometry class of b is determined by dimV' and g.

PROOF (PARTIAL, SKETCH). We only show the existence of V; and V5 in case
(1) holds. Provided V; and V5 exists, we show that b is uniquely determined up to
isometry by ¢ and dim V.

Assume (1) holds and view V as an F[)\] := F[z]/g-module. Then the Chinese
Remainder Theorem implies F[A] = F[z]/p" x F[z]/(p*)". Thus, any F[A]-module
U decompose into a direct sum of an F[z]/p™-module and an F|[z]/(p*)"-module,
namely U = anngy (p™) @ anngy ((p*)™) (and F[A] acts on each component via the
isomorphism F[\] & F[z]/p™ x Flx]/(p*)"). Let V; = anny (p™) = kerp™(\) and
Vo = anny ((p*)") = ker(p*)™(X). Since Vi is free, (V1) pia)/pr and (V) play/pe)n
are also free of the same rank, so (ii) holds.

To see (i), let a be the corresponding anti-endomorphism of b. Then it is easy
to see that A = A~! (Lemma ii), ~v = idy in our case). Also observe that
the image of (p*)™ in F[x]/p™ is a unit, hence (p*)™(Aly,) € GL(V7) := Autg(V7).
Let a = p*(0)". Then (p°)" (%) = (p)*(A\"1)" = a((p")**)(\) = ap" (A). Now let
u,v € V1. Then there is ug € V7 such that u = (p*)"(\)ug. Therefore, b(u,v) =
b((p*)™(N)ug,v) = b(ug, (p*)™(A*)v) = b(ug, ap™(A)v) = b(ug, 0) = 0, as required.
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Now assume (V’,b') is another g-isotype. Write V' = V{ & V3 for V{, V4
satisfying (i) and (ii) and let A\ be the asymmetry of b'. Then Aly; and X[y, are
conjugate (since they have the same canonical rational form by (ii)). Thus, b = ¥’
by Proposition below (the proof is a well-known argument). O

In light of the previous theorem, we need to solve the isomorphism problem for
g-isotypes only when g = ¢ for some prime ¢ € F|z] with  — (—1)" # ¢ = ¢*. The
latter turns out to be equivalent to the isomorphism problem of hermitian forms
over Flx]/q.

Let K/F be a f.d. field extension admitting an F-linear involution «. Assume
that there is A9 € K such that A\pA§ = 1 and let U be a K-vector space. Recall
that a biadditive map h: U x U — K is called an («, \g)-hermitian form if

h(a:a, y) = aah('rv y)7 h(x,ya) = h(a:,y)a, h(.l?, y) = h(%ﬂ?)a/\o

for all z,y € U and a € F. Let Tr : K — F be a non-zero F-linear map such that
Tr(a) = Tr(a®) for all a € K. Such a map always exist. We now have:

PROPOSITION 4.1.4 (Riehm). Assume K = F[Ao] and let U be a f.d. K-vector
space. Let H(a, Ag) denote the set of (a, Ao)-hermitian forms defined on U and let
B(\g) be the set of bilinear forms on U having Ao as a (right idF—)asymmetryﬂ
Then H(a, \y) = B(\g) via h — Troh.

Assume (V,b) is a g-isotype, where g = ¢" as above. Let \ be the asymmetry
of b and define

me) = { QSO o) £ e
! A=AL-1) ge) = (w+ (—1)m)"
(Note that degq is even if g(1),q(—1) # 0.) It is easy to verify that
(15) b(mu,v) = eb(u, mv) Yu,v €V,

and 7 generates the unique maximal ideal of F'[A] (which is (¢()))). Let U = V/7V
and define a bilinear form byeq : U X U — F by byeq (W, ) = (7" 1u,v) (this is well-
defined by )E| Consider U as a vector space over K := F[\]/m = F[z]/q and
let Ao := "~ !X, Then K admits an involution o sending T (and hence \g) to its
inverse. As )\g is easily seen to be the asymmetry of b,eq, Proposition implies
that there is an (o, A\g)-hermitian form h : U x U — K such that b,.q = Troh. The
following theorem states that the isometry class of b is determined by the isometry
class of h.

THEOREM 4.1.5 (Riehm). Let (V,b), (V,b') be two g-isotypes having the same
asymmetry X and assume g = ¢™ as above. Let h, h' be the («, \g)-hermitian forms
induced by b and b’ as just explained. Then b = b’ if and only if h = I'.

To finish, we note that Riehm’s solution was extended by Gabriel to degenerate
forms ([44]). Roughly speaking, Gabriel proved that every bilinear space (V,b) can
be decomposed as a sum of a regular part and an essentially degenerate space
and that decomposition is unique up to isometry. While the isomorphism problem
of the regular part is solved as above, Gabriel showed that the degenerate part
is determined up to isometry by its Kronecker module (see below). We will not
describe Gabriel’s results here, but rather state them later in section [£.11] where
we shall provide a new easy proof. Somewhat ironically, the techniques used by
Gabriel (i.e. the Kronecker modules) are essential to deal with bilinear forms over
rings, regular or not.

21n [76], Riehm also requires the forms in B(Ag) to satisfy b(za,y) = b(z,ya®) forall z,y € U
and a € K. However, since we assume K = F[\g], Riehm’s extra condition is automatically
satisfied because b(Aox,y) = b(z, A§y)-

3 The letters “red” in brea stand for “reduced”.
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4.2. Survey: Categories with Duality (Hermitian Categories)

In this section, we briefly survey the theory of categories with duality (also
called hermitian categories). This theory, designed to handle hermitian forms over
rings with involution, has initiated in 70’s and was developed by various authors
including Bak ([6]), Knebusch ([55]), Quebemmann Scharlau and Schulte ([71])
and others (see also [86, Ch. 7] and [7]). We will recall most of the definitions and
bring some of the fundamental results in this area. All proofs can be found in [71]
or [86].

DEFINITION 4.2.1. A category with duality is a triplet (J,*,w) such that
is a category, * : J — F is a contravariant functor and w : id y — *x is a natural
transformation satisfying

(.L)}kw O Wpr* = ldM*
forall M € 5. If &/ is an additive category, then we require x to be additive.

A bilinear form over J€ is a pair (M,b) such that M € 5 andb € Hom(M, M*).
The form (M,b) is called symmetric if b = bi=0b"o wys. In this case, b is called
regular if it is bijective.

An isometry from a bilinear form (M,b) to a bilinear form (M’ V') is an iso-
morphism o : M — M’ such that c* ol oo =b. If 7 is additive, then we define
(M,b) L (M"V):=(Mae M, bdb) (we identify (M & M')* with M* & M'™).

We will usually omit * and w from the notation, writing S instead of (S, x, w).

REMARK 4.2.2. It is customary to assume w is a natural isomorphism, but as
in section we will not enforce it. Note that if (M,b) is a regular symmetric
form over 7, then wys = (b*)~1 o b is bijective.

ExAMPLE 4.2.3. Let (R,a) be a ring with involution and let A € R be a
central element satisfying A\ = 1. For all M € Mod-R, let M* = Hom(M, RR).
Then M* is a right R-module w.r.t. (f -r)m = r*- (fm) (where r € R, m € M,
f € M*). Furthermore, there exists a natural transformation wy : M — M**
given by (wym)f = A- (fm)®. Then (Mod-R, *,w) is a category with duality.

The bilinear forms on Mod-R correspond to (a-)sesquilinear forms over R.
Indeed, for every sesquilinear form b : M x M — R, the pair (M, Ad;) (which
clearly determines b) is easily seen to be a bilinear form over Mod-R. Furthermore,
b is (a, A)-hermitian (i.e. b(z,y) = Ab(y,x)?) if and only if (M, Ady) is symmetric.
In fact, the category of sesquilinear (A-hermitian) forms over R can be understood
as the category of (symmetric) bilinear forms over Mod-R.

REMARK 4.2.4. Let 7 be an additive category with duality. It turns out that
locally 7 looks like the previous example. More precisely, every object in J# is
contained in a full subcategory that is isomorphic (as a category with duality) to
a full suchcategory of proj-R (the category of finite projective right R-modules),
considered as a category with duality w.r.t. some involution « of R and A € Cent(R)
with A*X = 1. This is the principle of transfer and we refer the reader to [71] or
section above for a detailed discussion.

In order to proceed, we need to assume that 2 is invertible in J# EI That is, 57
satisfies the following condition:

(C0) 2idps is an isomorphism for all M € 7.

Furthermore, we also consider the following conditions:

4 This can be avoided by replacing bilinear forms with quadratic forms (see [71]). We have
omitted the definition and the details since we are only interested in bilinear forms.
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(C1) All idempotents in ¢ splitE|
(C2) End(M) is complete semilocal for all M € 7.

In addition, it will be sometimes more convenient to consider the following stronger
version of (C2):
(C2') End(M) is semiprimary for all M € 7.

While conditions (C0) and (C1) are easy to satisfy, conditions (C2) and (C2') are
very strong, so let us exhibit some examples in which they are satisfied.

EXAMPLE 4.2.5. (i) Let F be a field. An F-category is a preadditive category
% such that for every M, N € ¢, Hom(M, N) is endowed with a f.d. F-vector space
structure and composition is F-bilinear. In this case, End(M) is a f.d. F-algebra
for every M € €, hence condition (C2') holds.

(ii) By Theorem m (resp. Corollary , the category of f.p. right R-
modules satisfies (C2’) (resp. (C2)) whenever R is semiprimary (resp. complete
semilocal with Jacobson radical f.g. as a right ideal).

Conditions (C1) and (C2) imply that every object in S has a Krull-Schmidt
decomposition (see Theorem and that the endomorphism ring of every inde-
composable object is local (and complete by (C2)). If ¥ is a set of isomorphism
classes of indecomposable objects in J#, we say that an object M € S is of type-3
if for any indecomposable summand A of M, we have [4] € ¥ (where [4] is the
isomorphism class of A). We also let ¥, denote the set of isomorphism classes of
indecomposable summands of M.

The following three theorems imply that regular symmetric bilinear forms over
categories with duality satisfying conditions (C0)—(C2) have a very special struc-
ture.

THEOREM 4.2.6 (Decomposition into Isotypes). Assume conditions (C0)-(C2)
hold. Let (M,b) be a bilinear form over S and let Xy = {{[A], [A*]} | [4] € Zpm}.
Then there exists a decomposition

CEX M
such that M¢ is of type-C. The summand (Mc,be) is uniquely determined up to
isometry by (M,b) and (.

Let A € 5 be an indecomposable object and let ¢ = {[A],[A*]}. A bilinear
form (M,b) is called a (-isotype if M is of type-(. The previous theorem thus
asserts that every bilinear space over a category with duality satisfying (CO0), (C1)
and (C2) is a sum of isotypes, which are uniquely determined up to isometry.

DEFINITION 4.2.7. Let M € 5. The hyperbolic form H(M) is defined to be
(M & M*,bpr) where
bar = [0 98] € Hom(M & M*, (M & M*)*) = Hom(M & M*, M* & M**) .

WM

A bilinear form (M,b) is called hyperbolic if (M,b) 2 H(N) for some N € .

THEOREM 4.2.8. Assume conditions (C0), (C1) and (C2) hold. Let A be an
indecomposable object such that there is no regular symmetric bilinear form on
A (e.g. if A 2 A*). Then every {[A],[A*]}-isotype is hyperbolic. Moreover, an
{[4], [A*]}-isotype (M,b) is determined up to isometry by [M].

5Let o bea category and A € /. An idempotent e € End o (A) is split if there exist B € &7,
i € Hom(B, A) and p € Hom(A, B) such that iop = e and poi = idg. If & is additive, then
condition (C1) means that every idempotent e € End o/ (A) corresponds to a summand of A (such
a summand need not exist in general).



4.2. SURVEY: CATEGORIES WITH DUALITY (HERMITIAN CATEGORIES) 147

THEOREM 4.2.9. Assume conditions (C0), (C1) and (C2) hold. Let A be
an indecomposable object such that there exists a symmetric regular bilinear form
(A, h). Let L = End(A) and let « be the involution of L corresponding to h (i.e.
a:x v h~tox*oh). Then D = L/Jac(L) is a division ring and « induces an
involution on D, which we continue denoting by a. Consider mod-D (the category
of f.g. D-modules) as a category with duality w.r.t. « and X\ = 1 as in Ezam-
ple @ and let F€| 4 be the full subcategory of F consisting of objects of type
{[A4]} = {[A], [A*]}. Then there exists a homomorphism of categories with duality

- 2|4 — mod-D

such that A = Dp, and for every two bilinear forms (M,b),(M',b') over S and
every isometry oo : (M,b) — (M', V') there exists an isometry o : (M,b) — (M', V)
with @ = og. In particular, the isometry problem of {[A]}-isotypes can be reduced
to isometry of 1-hermitian forms over D.

The last three theorems show that the isometry problem of symmetric regular
bilinear forms in a category with duality satisfying (C0)—(C2) can be reduced to:
(1) isomorphism and decomposition problems in ¢ and (2) isometry of hermitian
forms over division rings. The applications of this principle are numerous; for
instance, we get:

COROLLARY 4.2.10 (Witt’s Cancelation Theorem). Let (My,b1), (Ma,bs),
(Ms,b3) be symmetric reqular bilinear spaces over a hermitian category € satisfy-
ing (00)*(02) Then (Ml,bl) 1 (Mg,bg) = (Ml,bl) 1 (M3,b3) < (Mg,bg) =
(Ms3,b3).

ProoF. This holds since Witt’s Cancelation Theorem holds for hermitian forms
over division rings of characteristic not 2. (Moreover, Witt’s Cancelation Theorem
holds for symmetric regular forms over semilocal rings; see [73].) O

COROLLARY 4.2.11. Let F' be an algebraically closed field and assume 5 is an
F-category such that x is F-linear. Then the isometry class of a reqular symmetric
bilinear form (M,b) is determined by [M].

PRrROOF. Reduce to isometry of 1-hermitian forms over f.d. division F-algebras
with F-linear involution «. Since I is algebraically closed, the only such division
ring is F" and @ = idp. As F' is algebraically closed, a hermitian form is determined
up to isometry but the dimension of its underlying vector spaces. The corollary
follows immediately. O

REMARK 4.2.12. (i) The assumption that the conditions (C0)—(C2) hold for all
objects in &7 is usually superfluous. In most of the previous results, it is enough
to assume that the bilinear form under question, (M, b), satisfies 2 € End(M)*, all
idempotents of End(M) split and End(M) is complete semilocal.

(ii) All previous results hold when replacing (C2) with the slightly milder con-
ditionff

(C2") End(M) is semiperfect pro-semiprimary (w.r.t. some ring topology) for
all M € 2.

The proofs remain almost the same. (In addition, we give a detailed proof of the
critical arguments in section below.) This is important since by Theorem m
the category of Hausdorff f.p. right R-modules satisfies (C2") when R is first count-
able semiperfect pro-semiprimary (e.g. a complete semilocal ring). Furthermore,

6 To writing these words, we do not know whether (C2”) is indeed weaker than (C2); see

section m
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condition (C2”) passes from an object to its summands (Proposition ii)),
while it is not clear to us if the same applies to (CQ)D

The reader may have spotted some similarity between the results of this section
and the results of Riehm from the previous section. In the next section we will show
that this is no coincidence — there is a canonical way to translate the theory of
non-symmetric forms into the theory of symmetric forms, and the results of Riehm,
Gabriel and others “factor” through it.

4.3. From Non-Symmetric to Symmetric

Until now, we have stated some known results which are due to various authors.
Beginning from this section, we describe our own work.

In this section, we will prove a deep result showing that the isometry problem
of bilinear forms is equivalent to the isometry problem of regular symmetric forms.
More explicitly, we will prove that the category of (arbitrary) bilinear forms over a
category with a double duality (see section or the summary below) is isomorphic
to the category of regular symmetric bilinear forms over another category with
dualityﬁ The latter category will be the category of Kronecker modules. Once that
is achieved, the rest of this chapter will be dedicated to reduce this result into
“down-to-earth” results[]

Let us begin by first recalling the classical definition of Kronecker modules. In
the sense of [44], a Kronecker module over a field F' consists of a quartet (U, f,g,V)
where V, U are vector spaces and f, g € Hom(U, V). Kronecker modules correspond
to modules over the Kronecker algebra, K(F) = [g F%F ], which is the path algebra
of the quiver:
X\

[ ] [ ]
~—

(the vector spaces U,V correspond to the vertices and f, g correspond to the ar-
rows). In the second half of the nineteenth centaury, Kronecker gave an explicit
description of the indecomposable Kronecker modules (of finite dimension) and
moreover, provided an algorithm for decomposition of a given module. As the
Krull-Schmidt Theorem implies that a Kronecker module is determined up to iso-
morphism by its indecomposable factors (with multiplicities; see section , the
isomorphism problem of Kronecker modules can be considered as solved or at least
very well-understood (see [44] §3] for more details).
Any bilinear form b: V x V — F gives rise to a Kronecker module

(V, Adg, Adg, V™)
(where V* = Homp(V, F)). As mentioned above, such Kronecker modules were
used by Gabriel and others (see [44] and related papers) to reduce the isomorphism

problem of arbitrary classical bilinear forms to nondegenerate forms. However, in
this chapter we shall consider Kronecker modules for completely different purposes.

Throughout, (<, [0],[1], ®,¥) is a category with a double duality (see section
[2.7). Recall that this means [0],[1] : &/ — & are contravariant functors (written

7 This boils down to the question whether for every complete semilocal ring R and e € E(R),
eRe is also complete semilocal. This is not trivial since Jac(eRe)™ = (e Jac(R)e)™ might be strictly
smaller than e Jac(R)™e in general (but equality holds for n = 1).

8 Categories with duality are also known as “hermitian categories”.

9 A similar result, applying to arbitrary symmetric bilinear forms over a category with duality
was obtained in [16]. Furthermore, several days before submitting this work, I was introduced
with the unpublished (and recent) work [17], which proves a similar principle for arbitrary bilinear
forms over categories with duality. Both of these references assume all objects in the given category
with duality are reflexive, which is not necessary for the result obtained here. See Remarks m
andbelow for more details. (Eventually, the authors of [IT] and I have combined our results
and submitted them together in [11].)
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exponentially) and @ : idg : [1][0], ¥ : id,y — [0][1] are natural transformations
Satisfying \II[I\?[] o (I’M[o] = idM[o] and (135\14] o] \IJM[l] = idM[1] for all M € /. These

identities induce a natural isomorphism
I4 B :Hom(B, A[l]) — Hom(A, B[O])

given by Ia p(f) = fI% o ®4; its inverse is given by I;lB(g) =gl oWUp. If o is
additive (or preadditive), then we require [0] and [1] to be additive.

A bilinear form over («,[0],[1],®, ¥) (or just & for brevity) is a pair (M,b)
such that M € « and b € Hom(M, M!Y). In this case we define b = Inga(b) =

bo®,, € Hom(M, M), A bilinear forms is right (resp. left) regular if b (resp. b) is
bijective. An isometry from (M,b) to (M’,b') is an isomorphism o € Hom(M, M")
such that ol o’ 0 o = b.

Henceforth, («7,[0],[1], ®, ¥) is a fixed category with a double duality.

DEFINITION 4.3.1. A Kronecker module over &7 (or (<,[0],[1],®,7)) is a
quartet (M, fo, f1,N) such that M,N € o/ and

fo € Hom(M, Ny, f, € Hom(M, N!!) |

A homomorphism between two Kroneker modules (M, fo, f1, N) and (M’, f, f1, N')
is a formal pair (o, 7°P) with o € Hom(M, M) and 7 € Hom(N', N) such that:

fooo=1"fy and  floo=7"of .

The composition of two morphisms of Kronecker modules (o, 7°P) : (M, fo, f1,N) —
(M, fo, fi, N') and (o', 77°P) « (M, fo, f1, N') — (M", fo, f{', N") is given by

(o', 7°P) o (0,7°P) = (0/ o 0, (T 0 7')°P) .

This makes the class of Kronecker modules into a category which we denote by
Kr(&).

EXAMPLE 4.3.2. Let R be a ring and let K be a double R-module. Then
Mod-R admits a standard structure of category with a double duality induced by
K, hence we can consider Kronecker modules over Mod-R. These would be quartets
(M, fo, f1, N) with M, N € Mod-R and f; € Hom(M, N) for i € {0,1}. Note that
precaution should be taken as these Kronecker modules do not naturally correspond
to (ring theoretic) modules over the Kronecker algebra K(R) := [5 #3F]. The
latter correspond to quartets (M, f, g, N) such that M, N € Mod-R and f,g €
Hom (M, N) (and we shall stick to this description henceforth).

Nevertheless, when K admits an anti-isomorphism «, there is a functor from
Kr(Mod-R) to Mod-K(R) given by F : (M, fo, f1, N) = (M, u. n o fo, f1, NO) (see
Proposition for the definition of u,; recall that wu, n : NI — NI s a natural
isomorphism). A morphism (o, 7°P) in Kr(Mod-R) will be mapped by F to (o, 71)).

In general, the functor just defined is neither faithful nor full. However, if Z :=
(M, fo, f1,N) and Z' := (M, f§, fi, N') are Kronecker modules such that N, N’
are reflexive (see section [2.5), then the map [1] : Hom(N’, N) — Hom(N'1, N[1)
is bijective (Proposition iii)), implying that F : Homgiod-r)(Z, Z') —
Homioq-k(ry(FZ, F'Z') is bijective. Thus, once restricted to the category of Kro-
necker modules (M, fo, f1, N) with N reflexive, F' becomes faithful and full.

For example, if R is a field and K is the double R-module obtained from R by
letting ®¢ and ®; be the standard right actions of R on itself, then every f.d. R-
module is reflexive. Thus, the category of “finite dimensional” Kronecker modules
is equivalent to the category of f.g. K(R)-modules. As the latter is equivalent to
the category of Kronecker modules in the sense of [44] (see above), we get that
at least in the f.d. case, our new definition of Kronecker modules agrees (modulo
equivalence of categories) with the definition of Gabriel in [44].




150 4. ISOMETRY AND DECOMPOSITION

The category Kr(</) inherits some of the properties of 27. This is demonstrated
in the following proposition.

PROPOSITION 4.3.3. In the previous assumptions:

(i) If o preadditivﬂ (in which case we assume [0] and [1] are additive), then
s0 is Kr(&/). The sum of two morphisms (o1, 7;"), (01,7,¥) € Hom(Z, Z")
is given by (o1 + o2, (11 + 72)°P).

(ii) If o is additive, then so is Kr(«/); the direct sum of two Kronecker mod-
ules (M, fo, f1, N), (M', f, f1, N') € Kv(&) is given by

(Ma M, fo® fo, 1@ fi,NoN') .

(iii) If o is preadditive and all idempotent morphisms in o split, then all
idempotent morphisms in Kr(<?) split.

(iv) Let F be a field. If of is an F-category and [0],[1] are F-linear, then
Kr(«) is an F-category.

PRrROOF. This is routine. O
For every Kronecker module Z = (M, fo, f1, N) € Kr(«), define its dual by
Z* = (N, In o (F1), It (fo), M) = (N, f{% o @y, £ 0 Wy, M)

The map Z — Z* is a contravariant functor from Kr(</) to itself, where the dual
of a morphism (o,7°P) € Hom(Z, Z’) is defined to be (7,0°P) € Hom(Z"™*, Z*).
(Indeed, if Z' = (M’, £}, f/,N), then o/ o (f]” o ®y/) = (] 0 )V 0 By, =
(Mo )0 oy, = fl[o] o7l 6 @y, = (fl[o] o ®y) o7 and similarly ¢! o (f(l)[l] o
Uyr) = (fél] o ®y)orT, so (1,0°°P) lies in Hom(Z™*, Z*).) In addition, clearly
xk = idg. Therefore, (Kr(&),x*,id) is a category with duality, where id is the
identity isomorphism from the identity functor idy () to ** = idg,( d)ﬂ

Our newly defined duality structure on Kr(«?) allows us to consider symmetric
bilinear forms over Kronecker modules. Such forms consist of pairs (Z, (o, 7°P))
with Z = (M, fo, f1, N) € Kr(«/) and (o, 7°P) € Hom(Z, Z*) (which implies 0,7 €
Hom(M, N)). The form (Z,(o,7°P)) is symmetric if (o,7°P) = (0,7°P)* o idy,
ie. if 0 = 7, and regular if (o, 7°P) is invertible, i.e. 0,7 are invertible. We let
Sym, ., (Kr(7)) denote the category of regular symmetric bilinear forms over Kr()
and Bil(«7) denote the category of arbitrary bilinear forms over 7. The morphisms
in both categories are isometries.

Observe that any bilinear space (M,b) € Bil(«/) induces a Kronecker module,
namely

Z(M,b) = (M,b,b, M) .

(For example, in the special case where &7 is obtained from a ring R and a double R-
module K, the Kronecker module of b : M x M — K will be (M, Adj, Ad;, M)). The
following proposition characterizes the Kronecker modules obtained from bilinear
spaces.

PROPOSITION 4.3.4. In the previous assumptions:
(i) Z = Z(M,b) for some bilinear form (M,b) € Bi(&) <— Z = Z*.
(ii) The following conditions are equivalent:
(a) Z = Z(M,b) for some bilinear form (M,b) € Bil(</).
(b) There exists an isomorphismn : M — N s.t. (fl[o] o®y)on =% f,.

10 The category & is preadditive if for all N,M € «/, Hom(M, N) is equipped with an
additive group structure such that composition is biadditive.

1 The appropriate notation for id above should have been id but this is somewhat

iy (o)
incomprehensible, not to mention that it looks peculiar.
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(¢) There exists an isomorphismn : M — N s.t. (f(gl] oWn)on=nMof.
(d) There exists an isomorphism n: M — N s.t. (n,n) € Hom(Z, Z*).
(e) There exists a symmetric reqular bilinear form (over Kr(</)) on Z.

PROOF. (i) Z = Z* <= M =N, fo = Iyan(f1) and fi = I}, (fo) <
M = N and fo = IM,M(fl) — Z= Z(M,fl)

(ii) First, observe that the preceding discussion implies that (Z, (n,7°P)) is a
symmetric bilinear form over Kr(«) and it is regular if and only if 5 is invertible.
Thus, (d) < (e).

We next prove (b) <:> (c). Assume (b) holds, i.e. ( 1[] o®y)on=nllo f.
Then thls implies n!* f[O] f(gl] onl9l, Composing on the right with U,
vields £ oyl o \PM a0 £ 0wy = gt o all 0wy o f =l o
(in the second equality we used the fact that ¥ is natural and in the last equality
we used Proposition . As the 1.h.s. equals f(gl] oWy on (since ¥ is natural),
(c) holds. That (c) implies (b) follows by symmetry.

By definition, (d) is equivalent to “(b) and (c)”. As (b) <= (c), we get (b) <=
(¢) <= (d). Assume (d) holds. Define Z’ = (M, nl% fo, nMo f, M). Then (idns,n)
is clearly an isomorphism from Z to Z’. In addition, by (c), (7! o fo)! o \IIM =
flonotlow,, = fMowyon=nllof and similarly, (g0 1) 0@y, = nllo f,.
Therefore, Z' = Z'* and by (ii), Z = Z' = Z(b) for some bilinear form b, i.e. (a)
holds.

Finally, assume (a) holds, i.e. there exists an isomorphism (o,7) : Z = Z(b)
for some bilinear form b. Write Z(b) = (4, go, 91, 4). Then 7% o fo = gy 0 0 and

Yo f; = g100. By (ii), Z(b)* = Z(b), hence gy = gg‘” o® 4. This and the previous
equations imply fl[o] odyo(roo) = fl[o] o0l o P00 = (T[l] of)lllod 00 =
(1 oa)[ lo® o0 = o'[o]og[ ]o@Aoo' =gl0 ]ogooo' =gl o7l ofO (TOU)[O]ofO,
hence 1 = 7 o o satisfies (b). O

REMARK 4.3.5. (i) Caution: Z = Z* does not imply that Z is isomorphic to a
Kronecker module of a bilinear form. This is demonstrated later and suggests the
following hierarchy:

(1) Z is of bilinear type (or just bilinear, for brevity) if Z = Z(M,b) for some
bilinear form (M,b) € Bil(&/),
(2) Z is self-dual it Z = Z*,
with (1) obviously implying (2). If Z 22 Z*, then Z is called non-self-dual.

(ii) For every Kronecker module Z = (M, fy, f1,N), there exists a bilinear
form (Mz,bz) such that Z @ Z* = Z(Mz,byz). It is given by (Mz,bz) where
My :=M & N and

bzi= [ f 1] € Hom(M & N, MM @ NU) .

In the special case where & is obtained from a ring R and a double R-module
K, the form by is given by the formula b((z,y), (z',y')) = (fiz')y + (fox)y' for
all z,2/ € M and y,y’ € N. (The form by is precisely the form induced from a
Kronecker module in the sense of [44].)

The highlight of this section (and one of the main highlights of this chapter)
is the following theorem which, roughly speaking, reduces the study of arbitrary
bilinear forms into regular symmetric bilinear forms.

THEOREM 4.3.6. There is an equivalence of categories

F: Bil(#7) = Sym,, (Kr(#))
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given by
F(M,b) = (Z(M,b), (idar,id3p))  and  Fo =(o,(07))
for all (M,b) € Bil(«?) and any morphism o in Bil(«).

PROOF. Let (M,b), (M',b') € Bil(«) and o € Homupg(u((M, D), (M',1')).
Then (idps, id}})* = (idar,1d}}), hence F(M,b) is indeed a symmetric regular form
reg (Kr(#7)). In addition, b = ollob/ oo, hence (6= 1)Mob = b'oo. Applying
[0] to the first equation yields bl%) = g% o ¥'1) o ¢[OM1Y, Composing this with ®,; on
the right and (o= on the left, we get (671)% 0b= (¢ 0 bl 0 dp; = ¥ o
ooy =0 ®yp 00 =¥ oo, Thus, (o,(c1)°P) € Hom(Z(M,b), Z(M',b')).

In addition,

(Fo)* o (idp,id3)) o Fo = (071, 0°) o (idpr,id3)) o (o, (07 1)P) = (idas,id3Y),

over Sym

so Fo is an isometry from F(M,b) to F(M',V’). That F preserves composition is
straightforward.

We now define an inverse of F'. Let (Z, (0, 7°P)) € Sym,.,(Kr(%/)) with Z =
(M, fo, f1, N). Then the discussion preceding Proposition implies that o = 7
and 0 : M — N is an isomorphism. In addition, Proposition [£:34] implies that
(fl[o] o®y)oo =00 fy. Define

G(Z,(0,0%)) = (M, oM o fy)
and for any isometry (n,0°P) : (Z,(o,0°P)) = (Z’, (o', 0'°P)), define
G(n,0°°) =n .

Write Z/ = (M, f{, f1, N'). Let us check that 7 is indeed an isometry from G(Z) to
G(Z"), which amounts to Mo (o’Mo fl)on = oo f,. First note that fjon = 8o f;
and (n,0°P)* o (¢’,0"°P) o (n,6°P) = (0,0°P) which means that 6 oo’ on = o. We
now get nltl o o/ o flon= nogMogllof, = (Boo o 77)[1] ofi =clof as
required. That GG preserves composition is routine.

It is fairly easy to see that GF' = idpj(). On the other hand, keeping the
above notation, we have

FG(Z,(0,0%)) = (M, (o o f1)% o @pr, 0 o f1, M), (idar, 1d5])) -

As (f(gl] oWy ) oo =ocltlof, we get that (o' o f)0 0 &), = fl[o] ool oy, =
A%odyoo=0l0 fy, so

(16) FG(Z,(0,0%)) = (M, 0 o fo,0!" o f1, M), (idys, 1d5P)) -

Define a natural transformation ¢ : idsymreg(Kr(ﬂ)) — FG by i = i(Z,(0,0°?P)) =
(idar, 0P). It is easy to see from that ¢ is an isomorphism. To see that
i is natural, let Z’,0’,7,0 be as above. We need to show that i(Z’, (¢/,0'°P)) o
(n,0°°) = FG(n,0°) 0 i(Z, (0,0°P)). Indeed, FG(n,0) = Fn = (n,(n~1)°P) hence
io(n,0°) = (idar, 0"°P) o (n,0°°) = (n, (000")P) = (n, (on™1)P) = (n, (n~")°P) 0
(idar, 0°P) = FG(n, 0°P) o1, as required. We thus conclude that F' is an equivalence
of categories. O

REMARK 4.3.7. A result of the same flavor was obtained by E. Bayer-Fluckiger
and L. Fainsilber in [16]. They showed that there is an equivalence between the cat-
egory of arbitrary symmetric bilinear forms over a category with duality (42, x, w)
(here w must be an isomorphism!) and the category of symmetric regular bilin-
ear forms over Mor(J¢), the category of morphisms in . The latter consists of
triplets (A, h, B) where A, B € # and h € Hom(A, B) with obvious morphisms.
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The contravariant functor  : (A, h, B) — (B*, h*, A*) together with the natural iso-
morphism @ : id — #* given by @4 5 ) = (wa,wp) makes Mor(J¢) into a category
with duality. The equivalence is given by F’ : (M, b) — ((M,b, M™*), (war,idas+)).
To understand how the result in [16] relates to Theorem assume that
(,0],[1], @, ¥) = (S, *, *,w,w). Then Kr(«7) admits a full subcategory . con-
sisting of Kronecker modules Z = (M, fo, f1, N) with fo = f1 (this is possible since
[0] = % = [1]). Observe that any symmetric bilinear form (M,b) over & = A
satisfies Z(M,b) € .. Now, there is a functor T : . — Mor (%) given by

T(M,f, f,N)=(M,f,N") and  T(0,7°") = (0,77)

for all (M, f, f,N) € . and any morphism (o, 7°P) in .. It can be checked that
T induces an isomorphism of categories with duality from . to Mor(.7) (see [71]
or section [2.8); the natural isomorphism i : T — «T is given by i(M, f, f, N) =
(wn,idps) (here we need w to be invertible!). Thus, Mor(s#) can be identified
as a full sub-category-with-duality of Kr(«/). This isomorphism also induces an
equivalence of categories Sym,.,(-7") = Sym,.,(Mor(J#’)) given by

((M,f,f,N),(G‘,O’Op» = ((M7f7N*)7(wN OU7U*)>

and T'(n,0°P) = (n,0%). The functor F : Sym(H) — Sym,,(Mor(7)) of [16] is
the composition of the functor Sym,,(-#) — Sym,,(Mor(J#)) just defined with
F of Theorem restricted to symmetric bilinear forms on &/ = J7.

We note that since the assumption that w is invertible is essential in [16],
Theorem is more general than [16] even for symmetric forms. We will exploit
this later to work with systems of bilinear forms, rather than a single form.

REMARK 4.3.8. Several days before submitting this dissertation, we were in-
troduced with the (still unpublished) work of E. Bayer-Fluckiger and D. Moldovan
(A7), [64]). Independently of us, they obtained results which are very similar to
Theorem [£.3.6 by using a very similar construction, which also applies to systems of
bilinear forms. Explicitly, they have shown that the category of I-indexed systems
of arbitrary bilinear forms over a category with duality (42, *,w) for which w is
a natural isomorphism is equivalent to the category of regular symmetric bilinear
forms over another category with duality. (We should note that Theorem can
also be applied to systems of bilinear forms; see section ) E. Bayer-Fluckiger,
D. Moldovan and I eventually published some of our results as a joint work; see
[i1].

To make Theorem fully applicable, we need to know whether conditions
(C0), (C1), (C2), (C2), (C2") of the previous section hold for Kr(«7). Indeed,
conditions (C0) and (C1) clearly pass from 7 to Kr(«/) (Proposition {4.3.3)), and
in section below we will see that the same applies to (C2') (Corol.
However, in general, not much can be said about when Kr(«/) satisfies (C2) or
(C2"); sufficient conditions appear in the following two sections.

Provided Kr(/) satisfies conditions (C0)—(C2), the results of section |4.2| imply
that bilinear forms over <7 have:

e Decomposition into isotypes (Theorem [4.2.6)).

o Witt’s Cancelation Theorem (Corollary.

e The isomorphism problem can be reduced to isomorphism and decompo-
sition of objects in Kr(«7) and isometry of hermitian forms over division
rings.

o If &/ is an F-category with F' algebraically closed and [0],[1] F-linear,
then the isometry class of a bilinear form (M, b) over & is determined by
[Z(M,b)].
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Moreover, under mild assumptions, these results apply to systems of bilinear forms
over categories with a double duality. This will be demonstrated in section

While this is quite impressive, the reader might now ask questions like: what
are the isotypes? how does the reduction of the isometry problem over <7 work in
practice? what does being hyperbolic in Kr(</) mean? etc. With the exception
of sections [L.4H45] the rest of this chapter is dedicated to answer these questions,
i.e. to decipher the isomorphism of Theorem Step by step, we will define
hyperbolic forms and isotypes, and reduce the isometry problem of bilinear forms
to isometry of hermitian forms. The discussion and proofs will be “category-free”
except some sporadic comments.

At the moment, we can answer the following question: How does Riehm and
its predecessors’ work relates to Theorem [£.3.6/? The answer is that the isotypes of
section become isotypes in Kr(Mod-F') after applying the isomorphism of The-
orem Furthermore, the isotypes discussed in Theorem are hyperbolic
in Kr(Mod-F') and actually correspond to the isotypes of Theorem In gen-
eral, a bilinear space (V,b) becomes hyperbolic in Kr(Mod-F) if and only if there
are totally isotropic subspaces Vi,Vo C V such that V = V; @ V5. In addition,
Theorem is just Theorem applied to Kr(Mod-F'). The proof of all these
statements is technical and thus left to the reader; parts of the proof can be found
in the remainder of the chapter.

4.4. Conditions (C2), (C2') and (C2")

Throughout, (£, (0], [1], ®, ¥) is an additive category with a double duality. In
this section we will show that under mild assumptions, the conditions (C2), (C2)
and (C2") pass from & to Kr(<7). Recall that these conditions are:

(C2) End(M) is complete semilocal for all M € <.

(C2") End(M) is semiprimary for all M € .
(C2") End(M) is semiperfect and pro-semiprimary (w.r.t. some topology) for all
Med.
Note that (C2")=(C2)=-(C2").

The results of Chapter [I] will play an essential role in this section, mainly

because of the following result.

PROPOSITION 4.4.1. Let Z = (M, fo, f1,N) € Kr(«), W = End(M) and
U =End(N). Then End(Z) is a semi-invariant subring of W x U°P.

PROOF. First observe that End(Z) can be understood as a subring of W x U°P
since it consists of pairs (¢, 7°P) with 0 € W and 7 € U.

For i € {0,1}, view H; := Hom(M, Nl1) as a (U°P, W)-bimodule by letting
uPh=ull o h and hw =how forall h € H;, we W and u € U. Let

S= [t o] < [% W] -

Then we can consider W x U°P as a subring of S via

(w,u®) = ([§ 2], [ 8]) -
Observe that fy € Hy and f; € H;. We claim that under the previous embedding,
End(Z) = Centyy xyos(t), where t = ([]90 8] , [8 ng]) Indeed, ([16’ ugp} , [ugp 3])
commutes with t <= ul%o fo = foowand ullo fj = flow <= (w,u?) €
End(Z). Thus, W, is a semi-centralizer subring of W x W°P_ so we are done by

Proposition b). O

As an immediate corollary, we get:

COROLLARY 4.4.2. If o has (C2'), then Kr(«7) has (C2’).
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PRrROOF. This follows from Proposition and Theorem [1.4.6] (because (C2')
implies W x U°P is semiprimary). U

Recall that a topological ring R is called linearly topologized (abbrev.: LT) if it
admits a local basis consisting of two-sided ideals. In this case, we let Zr denote the
set of all open ideals (see section for further details). We would like to get an
analogue of Proposition to T-semi-invariant subrings, so that we could apply
it to conditions (C2) and (C2"”). In case ® and ¥ are injective, there is a general
method to do this, but it is hard to deduce explicit results from it.

Keeping the notation of Proposition [f.4.1] observe that if ®x and Uy are
monic, then the map U°® — U; := End(NU) given by u°? +— ull is injective
(Proposition m(u)) Thus, we get the following embedding:

W 0 U°® H End(M) 0 Uy Hom(M,NM)
SC [Ho U°P] X [ 0 Wl] = [Hom(M,N[Ol) Uo 1o End(M)

C End(M @ N9) x End(NW @ M)

Now, if End(M @ N%) and End(N! @ M) are endowed with some Hausdorff linear
ring topologies, we can pull the product of these topologies back to S and the copy of
W x U°P inside S, thus making End(Z) into a T-semi-centralizer subring of W x U°P
(and T-semi-centralizer subrings are T-semi-invariant by Proposition[L.5.4[b)). The
problem is that it is very hard to say something about the structure of W x U°P as
a topological ring. Indeed, if the topologies on End(M @ N°) and End(NM @ M)
are denoted by 7 and 7o, respectively, then the topology induced on W x U°P is
Tw X Ty where Ty and 71y are defined as follows:

(1) Pullback 7, and 7 to W along the injections w ~ [% 9] € End(M @ N)
and w +— [J 0] € End(N™M @ M), respectively. Then 7y is the supremum
of the two topologies obtained in this manner.

(2) Pullback 7, and 72 to U°P along the injections u°P [8 u?()] | € End(M &
N and uoP [ug] 0] € End(NM @ M), respectively. Then 7y is the
supremum of the two topologies obtained in this manner.

However, in special cases, explicit statements can be shown. (This is perhaps the
place to note that we do not know if a ring which is pro-semiprimary w.r.t. to
two given ring topologies is pro-semiprimary w.r.t. to their supermum. A positive
answer would allow some improvement of the results that follow.)

PROPOSITION 4.4.3. Assume that & satisfies (C2") and for every M € <,
End(M) is right or left noetherian. Then:
(i) o satisfies (C2).
(ii) If ® and U are bijective, then Kr(</) satisfies (C2").

Proor. (i) By Proposition every pro-semiprimary LT ring which is right
or left noetherian is complete semilocal and its topology is the Jacobson topology
(i.e. the ring topology is spanned by powers of the Jacobson radical). Thus, (C2)
holds.

(ii) Assume @ and ¥ are bijective. By (C2”), End(M @& N°)) and End(N!M @ M)
are pro-semiprimary and semiperfect w.r.t. some linear ring topologies. Keeping the
previous setting, choose 71 and 75 above to be these topologies. Since ® and ¥ are
bijective, the maps u°P + ul® and u°P + ul'l are bijective (Proposition iii)).
Therefore, each of the two topologies induced on U°P in (2) makes it into a pro-
semiprimary ring (since if R is pro-semiprimary, then so is eRe for every e €
E(R); see Proposition [[.2.3). As U°® = End(N)P is right or left noetherian,
Proposition [1.9.10] implies each of these topologies is the Jacobson topology. Since
the same argument applies to W, we get that the topology induced on W x U°P
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is the Jacobson topology and W x U°P is complete semilocal. As End(Z) is a T-
semi-invariant subring of W x U°P w.r.t. this topology, Theorem implies that
End(Z) is pro-semiprimary and semiperfect. O

EXAMPLE 4.4.4. Let C be a commutative noetherian pro-semiprimary ring and
assume that for every M € &, End(M) is a C-algebra which is f.g. as a module
over C. (For example, if R is a C-algebra which is f.g. as a module over C, then
the category of f.g. right R-modules has this property). Then End(M) is pro-
semiprimary (by Corollary [1.9.12ii)) and noetherian (since End(M)c is f.g.) for
all M € &7, so the assertions of the previous proposition apply to .

The following proposition applies only for categories of modules, but it does
not assume ® and ¥ are bijective.

PRrROPOSITION 4.4.5. Let R be an LT ring and let K be a double R-module.
Make Mod-R into a category with a double duality in the standard way and assume
that

() (KoJ + K1J)=0
JETR
(here K; denotes K considered as a right R-module via ®;). For every M € Mod-R,
let Tpr be the ring topology on End(M) spanned by the local basiﬂ

{Hom(M, MJ)|J € Ig} .

Then for every Kronecker module Z = (M, fo, f1,N) € Kr(Mod-R) for which
v and TN are Hausdorff, End(Z) is a T-semi-invariant subring of End(M) x
End(N)°P. In fact, this holds for any linear ring topology on End(M) x End(N)°P
that contains Tar X T (where 7ot = {{z°? |z € X} | X € 7n }).

PROOF. Let us assume first that End(M)xEnd(N)°P is endowed with 7ps X757 .
Set W = End(M) and U = End(NN). We will use the notation of the proof of
Proposition

It is enough to endow S with a linear ring topology such that the embedding
WxU® < S'is a topological embedding (where the L.h.s. is endowed with 77 X7 ).
For all J € Ip, let K/ = KyJ + K1J. Then K7 is a double R-module. Also define
HY = Hom(M,Hom(N,K{_,)) € H; (i = 0,1), W’ = Hom(M, MJ) and U’ =
Hom(N, N.J)°P. Then, ¢z, H = 0 (since ez, K7 = 0), Nyer, W/ =0
(since 7 is Hausdorff) and (.7, U’ =0 (since 7y is Hausdorff). Let

J w7’ o v’ H{
@ =[] <[] es
We claim Q7 is an ideal of S. Once we have proved that, it is easy to see that the
local basis {Q7|J € Zg} induces a topology on S as required. Indeed, checking
that Q7 < S amounts to checking that W’/ QW , U’ <U°, U'H; + H;W’ C H;
and UH/ + H/W C H{ (i € {0,1}). The first two assertions are straightforward.
As for the others, let f° € U/, f' € WY and h,h/ € H;. Then for all z,y € M:
((fPh+ B fyx)y = (F(ha))y + (0 f'2)y = (ha)(fy) + (R (f'z))y €
(ha)(MJ)+ (B (MJ))y C ((hx)(M)) ©o J + ((h'(M))y) &1 J € KoJ + K1J = K7,
hence f°Ph + h'f’ € Hom(M,Hom(M, K{ ,)) = H{. Next, let fo? € U°P, f' € W
and h,h’ € H/. Then for all z,y € M:
((foPh+ 1 f)x)y = (f(ha)yy + (W fe)y = (ha)(fy) + (K (f'2)y €
Hom(M, K{_;)(fy) + Hom(M, K{_;)(y) € K" + K" = K”,

so fPh + k' f’ € Hom(M,Hom(M, K{_,)) = H{ and we are through.

12 This is the topology TlM of section
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Now assume 7 is a linear ring topology on W x U°P that contains 7as X Ty .
Observe that every ideal of W x U°P is a product of an ideal of W and an ideal of
U°P. Let B be a local basis of 7 consisting of ideals. For every A x B°P € B, define
S4B to be the S-ideal generated by

A 0 y B°P 0

0 B 0 A
It is easy to check that S4B N (W x U°P) = A x B°P and that SWUT @l
(note that W/ x U’ € 7 by assumption). Therefore, the linear ring topology on
S spanned by {S4E™ | A x B°? € B}, denoted g, restricts to 7 on W x U°P and

contains the ring topology spanned by {Q”|J € Zg}. Thus, 75 is Hausdorff and
we are through. U

COROLLARY 4.4.6. Let R be an LT ring which is first countable semiperfect and
pro-semiprimary and let K be a double R-module such that () ez, (KoJ+K1J) = 0.
Consider Mod-R as a category with a double duality in the standard way. Then
for every Kronecker module Z = (M, fo, f1, N) € Kr(Mod-R) for which M, N are
fp.-and Tp, TN of Propositionm are Hausdorff, End(Z) is semiperfect and pro-
semiprimary. The assumption that Tpr, Ty are Hausdorff can be dropped if R is
strictly pro-right-artinian (e.g. if R is right noetherian; see Chapter .

PROOF. Recall that 7y is just 7 of section By Theorem End(M)
and End(N) are semiperfect and pro-semiprimary w.r.t. 727 and 74", which contain
Ty and Ty, respectively. Thus, Proposition implies End(Z) is a T-semi-
invariant subring of End(M) x End(NV)°P, when endowed with 787 x (7V)°P. As
End(M) x End(N)°P is semiperfect and pro-semiprimary w.r.t. this topology, we
get that End(Z) is semiperfect and pro-semiprimary w.r.t. the induced topology,
by Theorem [1.5.15] The assumption that 75;, 7 are Hausdorff can be dropped
when R is strictly pro-right-artinian because in this case the Hausdorfness follows
from Corollary [.9.8] O

EXAMPLE 4.4.7. Let R be a Hausdorff LT ring and let o be an anti-endomor-
phism. Let K be the double R-module obtained from R by defining k ©®¢ r = 7%k
and k ©®1 r = kr. Assume « is continuous. Then for all J € Zg, there is I € Zp
such that I C a~1(J) and this implies Ko(I NJ) + K1(INJ) CI*R+ RJ C J.
As I'NJ € Ig, this means (7, (KoJ + K1J) C ();cz, J = 0. In particular, if
R is first countable semiperfect and pro-right-artinian, then the corollary implies
that the endomorphism ring any Kronecker module (M, fo, f1, V) over Mod-R with
M and N finitely presented is semiperfect and pro-semiprimary. (Here we endow
Mod-R with the the double duality structure induced by K.) Roughly speaking,
this means (C2") applies to the category of Kronecker modules with “f.p. support”.

4.5. Systems of Bilinear Forms

Most of the theory of this chapter applies to systems of bilinear forms and
not only to single forms. In this short section we will show how to obtain this.
Throughout, 7 is an additive category.

Let I be a nonempty set and assume that for every i € I, &/ admits a struc-
ture of a category with a double duality (7, [0];, [1];, s, ;). A system of bilinear
forms over (&, [0];,[1]s, s, U;)ier is a pair (M, {b;}icr) such that M € & and
b; € Hom(M, MM). Tf (M’,{b:}icr) is another system of bilinear forms, then an
isometry o : (M,{b;}icr) — (M',{b}icr) is an isomorphism o from M to M’
satisfying oMi o b, 0 0 = b; for all i € 1.
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It turns out that under mild assumptions, systems of bilinear forms can be
treated as a single form. This is demonstrated in the following proposition.

PROPOSITION 4.5.1. Keeping the previous assumptions, assume the direct prod-
ucts [[;¢; MOk and [Licr MU exist for all M € of . Then there exists a structure
of a category with a double duality on o, (/,[0],[1], ®, V), such that the category
of bilinear forms over (&, (0], [1], ®, V) is isomorphic to the category of systems of
bilinear forms over (&, [0;, [1];, ®i, ¥;)icr. The functors [0] and [1] are given by:

Mol — 1_[]\4[0]1-7 JV - HM[H

iel iel
(The functors [0] and [1] act on morphisms in the obvious way.)

ProOOF. We need to define ® and \If Let p; as (resp. g;,a) denote the projection
from MO to MO (resp. MM to M[i). Observe that every morphism f : M —
N is determined by the I-indexed set {p; x o flicr € [Lics Hom (M, N1) and
every such set gives rise to a morphism M — N, Using this, we define ®,; to be
the unique morphism from M to MO = TT. _ (MO satistying p;, a0 0 Ppr =

ql[o]’]& o ®@;, a for all ig € I. The map VU : id,; — [0][1] is defined in the same

manner. We leave to the reader the (very long) technical check that ® and ¥ are
natural and satisfy @E\l/[] oW, = ide and \1158} o ® 0 = idM[O] forall M € &
It is now easy to check that there is a one-to-one correspondence between
bilinear forms over (<,[0],[1],®,¥) and systems of bilinear forms over
(&7, [O]“ [1]“ (I),L', \I/i)iel given by (]\47 b) — (M, {qi,M o b}ie])- This map can be
made into a functor by sending all isometries to themselves. The details are left to
the reader. (]

We will keep using the maps p; ar and g; ps throughout the section. In addition,
we will also write (7, [0],[1], @, ¥) = [[(<, [0]:, [1]:, @i, Uy )icr-

EXAMPLE 4.5.2. Let R be a ring and let {K;};c; be a system of double R-
modules. Then each K; induces a structure of a category with a double duality on
Mod-R, which we denote by (Mod-R, [0];, [1];, ®;, ¥;). If we apply Proposition [4.5.1]

o (Mod-R, [0];,[1];, @i, ¥;)icr, then the resulting structure (Mod-R, [0], [1], @, ¥)
would be the one induced by the double R-module K := [];.; K;. Indeed, it is
fairly easy to see that a system of bilinear spaces {(M, b;, K;) };cr can be understood
as a bilinear form on M taking values in K. If 7; is the projection from K to K,
then the maps p; ar @ M — MU (vesp. ¢;pr : MM — M) are given by
pim(f) =m0 f (vesp. ¢im(f) = mio f).

Let (<, [0];, [1];, ®;, ;)sc1 be categories with duality and let (o7, [0], [1], @, ¥) =
11(«,10];, [1];, @i, ¥;)icr. In order to apply the conclusions at the end of of sec-
tion to systems of bilinear forms over (<7, [0];, [1];, P;, ¥;)icr, we need to know
whether one of the conditions (C2), (C2') or (C2”) holds for Kr(<7, (0], [1], ®, ¥).
Indeed, by Corollary - the condition (C2') is guaranteed to pass from &7 to
Kr(«,[0],[1], ®, \I') regardless of [0], [1], ®, ¥. However, we cannot apply Proposi-
tlon“ 4.4.3to Kr(«, [0], [1], P, ¥) as it is likely that ® and ¥ would not be bijective.
This gap is treated in the following proposition.

LEMMA 4.5.3. Keeping the previous notation, let Z € Kr(«/,[0],[1], ®, V) and
write Z = (M, fo, f1,N). Then for alli € I, Z; :== (M,p; n o fo,qin© f1,N) €
Kr(e, [0];, [1]s, @i, ¥;) and End(Z) = (;c; End(Z;).

ProOF. This is straightforward. (]
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PROPOSITION 4.5.4. Keeping the previous motation, assume that </ satisfies
(C2"), End(M) is right or left noetherian for all M € o/ and ®;, ¥; are bijective
for alli. Then o satisfies (C2").

PRrROOF. Let Z = (M, fo, f1,N) € Kr(«Z,[0],[1],®, V) and let {Z;}cs be de-
fined as in the lemma. Endow T := End(M) x End(N)°P with the Jacobson topol-
ogy. Then by the proof of Proposition [4.4.3] T is semiperfect, pro-semiprimary
and End(Z;) is a T-semi-invariant subring of T. Now, Proposition e) im-
plies that the intersection of T-semi-invariant subrings is again T-semi-invariant,
so by Lemma [£.5.3] End(Z) is a T-semi-invariant subring of 7. As the latter is
semiperfect and pro-semiprimary, Theorem implies that so is End(Z2). O

EXAMPLE 4.5.5. Let R be a right noetherian pro-semiprimary ring with 2 € R*
and let {«;}ier be a family of anti-automorphisms of R. Let K; denote the double
R-module obtained from R by defining r ©9 a = a“r and r ®; a = ra. Then
Witt’s Cancelation Theorem applies to systems of bilinear forms {(M, b;, K;) }ier,
provided M is finite projective. Moreover, the isometry problem of such systems
can be rendered to isometry of hermitian forms over division rings. Indeed, let & be
the category of finite projective R-modules and let (Mod-R, [0];, [1]:, ®;, ;) be the
category with double duality induced by K;. Then by Example[2.5.3} ®; r and ¥;
are bijective, hence ®; and U; are bijective on &2. Moreover, since (K;)o = (K;)1 =
Rg, R% = (K;)o =2 Ry and R = (K;); = Rp. Thus, [0);, [1); map & into (and
also onto) itself. It follows that (Z2,[0];,[1];, ®;, ¥;) is a category with a double
duality for which ®; and U; are bijective. Therefore, (£, [0];, [1];, ®;, ¥;)icr satisfies
the assumptions of the previous proposition, hence the assertions at the end of
section apply to systems of bilinear forms {(M, b;, K;) }ier with M € &. (That
End(M) is right noetherian pro-semiprimary for all M € &2 is a straightforward
argument; see Proposition m>

4.6. The Kronecker Module of a Bilinear Form

The time has come to explain how the equivalence of Theorem works
in practice. In the sections to follow, we will restrict to bilinear forms over rings
(rather than categories with a double duality) and explain what are hyperbolic
forms, what are the isotypes and how to reduce the isometry problem to isometry
of hermitian forms over division rings.

Throughout, R is a ring and K is a double R-module. By a Krnocker Module,
we mean a Kronecker module over Mod-R, considered as a category with a double
duality w.r.t. K. That is, a Kronecker module is a quartet (M, fo, f1, M) with
M, N € Mod-R and f; € Hom(M, N¥). Recall that every bilinear space (M, b, K)
gives rise to a Kronecker module (M, Ady, Adf, N), which we denote by Z(b).

This section is dedicated solely to the study of Kronecker modules. The facts
obtained will be used to show that there is a strong connection between the asym-
metry of a bilinear form (when exists) and its Kronecker module. This connection
explains the role of the asymmetry in the definition of the isotypes in section
In addition, we will also provide a description of the endomorphism ring of the
Kronecker module of a bilinear form in terms of the form.

We begin our discussion by generalizing several properties of bilinear forms to
Kronecker modules.

13 Historical note: What originally led us to consider Kronecker modules was the need to
have a replacement for the asymmetry in case K does not have an anti-isomorphism. In particular,
until the discovery of Theorem our point of view on Kronecker modules was that they are
generalizations of asymmetries.
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DEFINITION 4.6.1. Let Z = (M, fo, f1,N), Z' = (M’ f, 1, N') be Kronecker
modules.

(a) Z is called right stable if for allT : N — N there exists unique o : M — M
such that f1 oo = o fi-

(b) Z,Z’ are called right joinable if Z&Z' = (M oM’ fo® fl, fr® fi, N®&N')
is right stable.

(c) A left quasi-asymmetry of Z is a map ¢ € Hom(NI, NI such that
g0 f1 = fo.

(d) Let k be an anti-isomorphism of K. A left k-asymmetry of Z is a map

A € End(N) such that u,j\, o MW is a left quasi-asymmetry, i.e. “;jv °

Ao fy = fo
PROPOSITION 4.6.2. Let (M,b,K), (M’ 0/, K) be bilinear spaces. Then:

(i) b is right stable <= Z(b) is right stable.
(ii) b,V are right joinable < Z(b), Z(b') are right joinable.
(iii) Let k be an anti-isomorphism of K. Then A € End(M) is a left k-
asymmetry of b <= X is a left k-asymmetry of Z(b).

PRrROOF. (i) follows from Proposition and (ii) follows from (i) because
ZbLV)=2Z(0b)® Z('). To see (iii), observe that u;lM oMo Ad) = Adj —
b(\z, y)“_1 =b(y,z) for all z,y € M, or deduce (iii) directly from Propositionm

(]

PROPOSITION 4.6.3. For i = 1,2, let Z; = (M;, g;, hi, N;) be Kronecker mod-
ules. Then:

(i) Zi,Zy are right joinable <= for alli,j € {1,2} and 7 : N; — N; there
exists unique o : M; — M; such that rMohn; = hjoo. In particular, Z
and Z' are right stable.

(ii) Let k be an anti-isomorphism of K. If Zy ® Zs has a unique left k-
asymmetry A, then Z1, Zs have unique k-asymmetries A1, Ao and A =

A @ 20

PROOF. The proof of (i) is similar to the proof of Proposition and the
proof of (ii) is similar to the proof of Proposition iii). As the latter is not
phrased in terms of adjoint maps, we bring it here in full detail. We consider
elements of End(Ny & Ns), Hom(M; & M27N1[1] ® NQM)7 etc. as 2 X 2 matrices in
the standard way.

Let A be the unique asymmetry of Z; & Z5. Write A = [ii i;; 1, A = (a1 d12)
Ul 0

. 1 - _
(with ¢;; = )‘B’i]) and uni\,l@NQ = [0 o, | where u; = u,ﬁv Then

urquihy wiqzhy | _ | ur 0 Q1 Q12 hi 0| _ g O
Uaqa1hi  u2gaoha 0 us 21 q22 0 hs 0 g2 |~

But this implies ui)\ﬁ]hi = g;, hence \;; is a left k-asymmetry of Z;. Therefore,
A1 B Aog is a left k-asymmetry of Z; @ Z5, so the uniqueness of A implies A =
A11 D Aa2. The latter equality also implies A1 and Moo are unique. O

For the following proposition, recall that two endomorphisms o1 € End(M;)
and o € End(Ms) are conjugate, denoted o1 & o9, if there exists a module isomor-
phism f : My — Ms such that foo; =050 fE

14 See Proposition for the definition of w.

15 The converse is not true for bilinear forms (Example and hence not true for Kronecker
modules.

16 The notation o1 = o9 means that o1, o2 are isomorphic in the category of endomorphisms
of right R-modules.
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PROPOSITION 4.6.4. Let Z = (M, fo, f1,N), Z' = (M, f§, fi, N') be Kronecker
modules.

(i) Assume Z,Z' have unique left quasi-asymmetries q,q’ respectively. Then
Z = 7' implies that there exists an isomorphism 7 : N' — N such that
%0 g =¢ o7, The converse holds when Z,Z' are right joinable.

(ii) Let k be an anti-isomorphism of K and assume Z,Z' have unique left
k-asymmetries A\, X' respectively. Then Z =2 7' =—> X = X. The converse
holds when Z,Z' are right joinable.

PROOF. We only prove (ii); the proof of (i) is similar (and easier). Assume
(0,7°P) : Z — Z' is an isomorphism. We claim 77! o Ao 7 is a left k-asymmetry
of Z' and thus must coincide with A’. This would prove A = ). Indeed, u;jv, o
(7o Ao T)[l] ofl = u;le, oo o (T[l])fl ofl = 70l Uﬁv oMo fioo ! =
0o fooo™t =700 o (7I0))=1 o f1 = f5.

Conversely, assume Z,Z’ are right joinable and there is an isomorphism
7:N'" — N such that To M = XAo7. The fact Z, Z’ are right joinable implies that
there are unique o € Hom(M, M') and o’ € Hom(M’, M) such that 7o f; = fioo
and (1)1 o f{ = f1 o 0’. This is easily seen to imply (ida;)M o f; = f1 0 (¢/ 0 0)
and (idy ) o f{ = f] o (6 0 0’). By Proposition i), Z and Z' are right
stable and hence, ¢’ o 0 = idy; and o o ¢/ = idyy, ie. o is invertible with
o' = ¢/. We now claim that (o, 7°P) is an isomorphism from Z to Z’. In-
deed, 7M o fi = f{ o o follows from the definition of &, which in turn implies
floo = u;}\,, oNUo flog = u;}\,, oXNWorllof = U;jw o(roXN) Mo f =
u o Mor)Mofi =u oMo o fy =70 oyt o XMoo f; = 70000 f5. We
are done since o, T are isoinorphisms. 7 O

Let (M,b,K) be a bilinear space. The following corollary shows that under
mild assumptions, the conjugacy class of the right asymmetry of b (when exists and
unique) determines the isomorphism class of Z(b) and vice versa. This explains

why the isomorphism of Theorem takes the isotypes of section (“Riehm’s
isotypes”) to the isotypes of section (“isotypes of categories with duality”).

COROLLARY 4.6.5. Let (M,b, K), (M',b', K) be bilinear spaces and let k be an
anti-isomorphism of K. Assume b,b' have unique left k-asymmetries A\, \' respec-

tively. Then Z(b) = Z(b') = A = X. The converse holds when b,V are right
joinable (e.g. when b,b" are right regular).

ProOF. This follows from the proposition and Proposition iii). O

We now turn our attention to homomorphisms between Kronecker modules
obtained from bilinear forms. Let (M, b, K) and (M’, V', K) be two bilinear spaces.
Then (o, 7°P) is a homomorphism from Z(b) to Z(¥') if and only if

Ad}, oo =70 Adj and Ady oo =7 o Ad .
A straightforward computation shows that this is equivalent to
(17) V(ow,y') =b(z,7y')  and  V'(2',0y) =b(ra’,y)
for all z,y € M and z’,3’ € M. It follows that if o is an isometry from b to V',
then (o,071) is an isomorphism from Z(b) to Z(b'), hence the isomorphism class
of Z(b) is invariant under isometry. We will write b ~x, b’ to denote that b and ¥’
have isomorphic Kronecker modules.

Now consider the endomorphism ring of Z(b), denoted W;. This ring will turn
out to be of great importance, hence the explicit notation. By , Wy, consists of
formal pairs (o, 7°P) such that o,7 € W := End(M) and

(18) blox,y) = b(x, Ty) and b(x,oy) = b(rx,y)
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for all z,y € M. Thus, we can consider W, as a subring of W x W°P. The
equation implies that (o,7°P) € W, <= (7,0°P) € W}. Therefore, the map
(0,7°P) — (1,0°P), denoted by 8 = B(b), is a well-defined involution of W.

REMARK 4.6.6. One can also understand (3 as the map f — f* from End(Z(b))
to End(Z(b)*) = End(Z(b)). Furthermore, j3 is the corresponding involution of the
bilinear form (Z(b), (idas,id}})) € Sym,., (Kr(Mod-R)) (see Theorem [4.3.6)).

reg

REMARK 4.6.7. The ring Wj, as defined here was defined in the literature for
systems of quadratic and bilinear forms over a field. See [12] and [15], for instance.

PROPOSITION 4.6.8. Keeping the previous notation, define the radical and
quasi-radical of b to be

rad(b)
qrad(b)
respectively. Then:
(i) rad(b) = ker Adj Nker Ad} and qrad(b) = Hom (M, rad(b)).
(ii) qrad(b) x qrad(b)°P is an ideal of Wj.
(iii) If qrad(b) = 0, then W}, embeds in W via (0,7°P) — o. (The image of
this embedding is the set of elements o € W for which there is T € W

satisfying .)

PRrooF. (i) This is straightforward.

(ii) Let w,w’ € grad(b). Then b(wz,y) = 0 = b(x,w'y) and b(z,wy) = 0 =
b(w'z,y) for all z,y € M, hence (w,wP) € Wp. Thus, qrad(b) x qrad(b)°P C
Wp. Next, if (o,7°P) € W, then blowz,y) = b(wz,7y) = 0 = b(z,w'ry) and
similarly, b(z,cwy) = 0 = b(w'rx,y). This means ocw,w'r € qrad(b), hence
(o, 7°P)(w,w'P) € grad(b) x qrad(b)°P. Therefore, qrad(b) x qrad(b)°P is a left
ideal of W}, and a similar argument shows it is a right ideal as well.

(iii) Assume grad(b) = 0. If (0,0°P) € W}, then b(oz,y) = b(z,0y) = 0 and
b(x,oy) = b(0y,x) = 0, hence o € qrad(b), which implies ¢ = 0. Thus, the
homomorphism Wj, < W x W°P — W is one-to-one. O

A bilinear space (M, b, K) is called reduced if rad(b) = 0 and quasi-reduced if
qgrad(b) = 0. Every right or left semi-stable bilinear space is quasi-reduced, but
not necessarily reduced; see Example In addition, (M/rad(b),b, K) is always
reduced, where b is defined by b(x + rad(b), y + rad(b)) = b(x,y).

Now assume (M, b, K) is right stable. Then Proposition implies W} em-
beds in W = End(M). The following proposition explains the connection between
the involution 5(b) on W and the corresponding anti-endomorphism of b.

{r e M|b(x,M) =bM,x) =0},
{w e W |b(wM, M) =b(M,wM) =0},

PROPOSITION 4.6.9. Let (M,b, K) be a right stable bilinear space with corre-
sponding anti-endomorphism o and let W = End(M). Then ¢ : (0,7P) — o
is an isomorphism of rings with involution from (W, ) to (W{az},a), where
Wt = {w e W |w = w}.

PROOF. Observe that b(ox,y) = b(z,7y) <= 7 = 0. Thus, ¢((co,7°P)?) =
o(1,0%P) = 7 = 0% = (¢(0,7°P))?, i.e. ¢ is a homomorphism of rings with anti-
endomorphism. By Proposition iii),  is injective (qrad(b) = 0 since b is right
stable) and im(yp) = Wi} follow by a straightforward argument, hence we are
done. (]

REMARK 4.6.10. The ring WA} of the last proposition can be given a different
description in case b has an invertible k-asymmetry A — it just Centy,(A\). This
follows from Proposition i) which states that w®® = AwA~?! for all w € W.
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(In this case, W} can be understood as a T-semi-invariant subring of W by Propo-

sition [1.5.4{Db).)

4.7. Hyperbolic Forms

Recall that a regular symmetric bilinear space (V,b) over a field F' is called
hyperbolic if V' is the direct sum of two totally isotropic subspaces, i.e. V =V; &V,
with b(V1, V1) = b(Va, Vo) = 0. The bilinear space (V,b) is metabolic if V' admits a
subspace U C V such that U = {x € V |b(z,U) = 0}. Clearly hyperbolic implies
metabolic and the converse holds (for symmetric forms) when char F' # 2.

In this section, we extend the definition of hyperbolic forms to (non-symmetric
or non-regular) bilinear forms over rings as defined in Chapter [2[ and study their
properties. Throughout, R is a ring and K is a fixed double R-module.

DEFINITION 4.7.1. A bilinear space (M,b, K) is hyperbolic if M is the direct
sum of two totally isotropic submodules, namely there are My, My < M such that
M = M, ® My and b(Ml,Ml) = b(Mg,Mg) =0.

REMARK 4.7.2. The regular symmetric hyperbolic bilinear spaces over a field
F with char F' # 2 are precisely those isometric to (V,b) L (V, —b) for some regular
symmetric bilinear space (V, b) and many books define hyperbolic forms in this man-
ner. However, the obvious extension of this definition to arbitrary (non-symmetric)
forms is not equivalent to the hyperbolic forms defined here.

EXAMPLE 4.7.3. (i) Let F be a field, let n,m € N and let B € M, xm (F),
C € Myxn(F). Consider the block matrix A = [2 B] € M,,4,,,(F) and let b :
Frtm o prtm s F be defined by b(x,y) = 2TAy. Then b is hyperbolic since
Frtm = (F*x {0}™)® ({0} x F™) and both summands are totally isotropic. The
form b is regular precisely when A is invertible, namely when m = n and B, C are
invertible.

(ii) The isotypes discussed in Theorem are hyperbolic.

(iii) Let b be the zero form on M € Mod-R, namely b(z,y) = 0 for all x,y € M.
Then b is hyperbolic since M = M @ 0 and M, 0 are totally isotropic.

(iv) Let Z = (M, fo, f1, N) be a Kronecker module. In Remark ii), we
have defined the bilinear form bz : M @ N x M & N — K by

bz((z,y), (", y) = (fra")y + (fox)y' Va,o'eM, yy €N .
Then by is hyperbolic since bz (M, M) = bz (N,N) = 0.

It turns out that every hyperbolic form is of the form bz for some Kronecker
module Z.

PROPOSITION 4.7.4. Assume (M, b, K) is hyperbolic. Then there exists a Kro-
necker module Z such that b =by.

PRrROOF. Let Mj, M, be totally isotropic submodules of M such that M; &
My = M. Identify M with Mlm ® M2[i] via f — (f|amys fla,). Then since
Ady(My)(My) = b(My, M;) = 0 and Adf(M;)(M,) = b(My, M;) = 0, we have
Ady(My) € MY and AdY(My) € MY Thus, Z := (My, AdS|ar, , Adj|ar,, M) s a
Kronecker module. We claim b = bz. Indeed, for all z,2’ € M; and y,y’ € Mo,
we have b(z + 4,2’ +y/) = by, @') + ble,y’) = (Adjlana)y + (AdLluz)y’ =
bz(x+y, 2 +9y). O

The last proposition implies that the isometry class of a hyperbolic form should
be almost completely determined by its Kronecker module. This is verified in the
following proposition.
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PROPOSITION 4.7.5. Let (M,b,K) and (M',t/,K) be two hyperbolic bilinear
spaces and let My, My C M and M{, M}, C M’ be totally isotropic modules such
that M = My & My and M’ = M| & M),. Fori€ {1,2} let

Z; = (M;,Ady|n,, Ady|ar,, Ms—;)
Z, = (M],Ady|nr, Adp|ar, Mj_)
Then:
(i) Z1,Z},Z2, ZY are Kronecker modules, Z1 = Z5, Z1 = Z4* and (0,7°P) €

Hom(Z,Z;) < (7,0°°) € Hom(Z}, Zs).
(ii) Assume Zy = Z1. Then Zo = Z5 and b= V.

PRrROOF. (i) That Z,Z}, Z3, Z% are Kronecker modules was shown in Proposi-
tion m To see that Z; = Z3, observe that (Ad{)!Y o Uy, = Ad} and (Ad}) o
@y = Ad} (Corollary . Recall that we identify MM with Ml[l] ® M2[1] and
under that identification Ad; maps M; into Ms[,i, similar statements hold for
M’ and/or [0]. As ¥y = Uy, & Uy, and Oy = Pppy ® Poy,, we get that
(Adf|ap,)M o Wpy, = Ady|as, and (Ad)[a,)0 o @y = Adf|as,, hence Zy = Z3
and similarly, Z; = Z4*. The last assertion follows since (o, 7°P) € Hom(Z1, Z})
implies (7,0°P) = (0,7°P)* € Hom(Z{*, Z}) = Hom(Z}, Z5). The converse follows
by symmetry.

(ii) Let (o,7°P) : Z1 — Z{ be an isomorphism. Then o and 7 are invertible
and therefore by (i), (7,0°P) : Z5 — Z5 is an isomorphism. Define n = o @ 77 :
M — M’. Then 7 is clearly an isomorphism. We claim that 7 is an isometry from
bto b, ie b(nx,ny) =b(z,y) for all x,y € M. Since My, My, M{, M}, are totally
isotropic, it is enough to check the cases (x,y) € My x My and (z,y) € My x M.
Indeed, in the first case

b (na,ny) = b (ox, 77 1y) = bz, 777 y) = b, y) |

and in the second case

V(nz,ny) = b (r  z,o0y) = b(rrta,y) = bz, y) ,

as required. O

The proposition has a weaker analogue phrased in terms of asymmetry maps.
(This should be of no surprise given Proposition ) This analogue, stated and
proved below, was noted by several authors in less general scenarios (e.g. [76], [75]).

PROPOSITION 4.7.6. Let k be an anti-isomorphism of K and let (M,b, K),
(M, ¥, K) be two bilinear spaces with unique left k-asymmetries X, X', respectively.
Assume M = My & My, M' = M{ & M} and b(M;,M;) = 0, v'(M/, M) = 0
(i=1,2). Then:

(i) M(M;) € M; and N (M]) C M] fori e {1,2}.
(i) If AMar, = Alag and b, are right joinable, then N|v, = Ay and
(M,b,K) = (M')V,K).

ProOF. (i) Let 71,7}, Zy, Z5 be as in Proposition Then by Propo-
sition [.6.2{iii), A is a unique left r-asymmetry of Z(b). As Z(b) = Z; & Zs,
Proposition ii) implies that Ay, is a unique left x-asymmetry of Z3_; and
A = Aan @ Alag,- A similar claim holds for Z1, Z, and in particular, this implies
A(M;) € M; and N(M]) C M].

(ii) By Proposition (ii), Ala, = Ay implies Z = Z5, so by Proposi-
tion [1.7.5] Z; = Z{ and b = /. Finally, again by Proposition [4.6.4{ii), Z; = Z]
implies )\/‘]\/j2 = /\‘Mé O
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We will now show that the hyperbolicity of a bilinear form b can be described
in terms of the ring W} and its involution 8. The following definition is taken from
[13].

DEFINITION 4.7.7. An involution * on a 1ing S is called hyperbolic if there
exists an idempotent e € E(S) such that e + e* = 1.

PROPOSITION 4.7.8. Let (M,b, K) be a bilinear space and let 8 = 3(b). There
is a one-to-one correspondence between decompositions M = My @ My such that
M, and My are totally isotropic and idempotents e € E(W},) satisfying e + e = 1.
In particular, b is hyperbolic if and only if B is hyperbolic.

PROOF. Given My, M as above, define ey (resp. es) to be projection M — M,
(resp. M — M5) with kernel My (resp. M7). Then for all z,y € M we have

b(elx7 y) = b(€1$> €1y + er) = b(elma €2y) = b<elx + €2y, er) = b(.’l?7 er) ;

and similarly, b(z,e1y) = b(eaz,y). Thus, e := (e1,e5") € Wy, It is now clear that
e is an idempotent of W}, satisfying e + ¢# = 1. Conversely, given e = (e, e5’) €
E(W) with 1 = e +e® = (e1 + e2,e” + €5P), define My = ey M, My = eaM.
Then b(My, M;) = blesM,e; M) = b(M,ezes M) = b(M,0) = 0 and similarly
b(Ms, My) = 0. The rest of the details are left to the reader. O

REMARK 4.7.9. The definition of hyperbolic forms given in this section is the
“correct one” in the sense that the hyperbolic bilinear forms over R are precisely
those taken to hyperbolic forms over Kr(Mod-R) under the isomorphism of Theo-
rem (symmetric hyperbolic forms over categories with duality were defined in
section 4.2)). That is, (M, b, K) is hyerbolic <= (Z(b), (ida,id}})) is hyperbolic
over Kr(Mod-R). The easiest way to see this is to use that fact that (W}, 8(D)) is the
ring with involution corresponding to (Z(b), (idas,id}})) (see Remark with
the previous proposition. As we did not prove Proposition [£.7.8]in the general con-
text of categories with a double duality, let us verify directly that (Z(b), (idas,id%}))
is hyperbolic when b is.

By Proposition we may assume b = by with Z = (M, fo, f1,N) €
Kr(Mod-R). Consider

Zy=Ma0,[28],[f0],.00N)

1
Zy = (OEBN, |:8 IJVI‘]B(fl):l , [81N,1\6(f0)] 7]\4@90)

(recall that Iy s is the natural isomorphism Hom(M,N°) — Hom(N, M1M)).

— 0 I N(f1) 0 In,nm(fo) _ e
Then Z1® %y = (M@N, | ? x| [ 0 It | 0@ N) = Z(bz). In addition,
0 .

we can identify Z, with ZF. Now, if we consider the map (id,id°?) : Z(bz) —
Z(bz)* =Z(bz) asamap from Z1 ® Zo = Z1 ® 2T = Z{ ®(Z1)" = Z{ ® Z4, it is
. b 0 idzf - 0 id*Zl

given by [idzl 0 } = {idzl 0

bilinear form over Kr(Mod-R).

} , hence (Z(bz), (idymen,id}ey)) is a hyperbolic

4.8. A Dictionary

Throughout, R is a ring, K is a double R-module and (M, b, K) is a bilinear
space. Let W = End(MEg) and let 5 = 3(b) be the involution of W, (as defined in
section . In the previous section we have seen a first example of how properties
of b can be translated into properties of W}, namely that b is hyperbolic if and
only if £ is. In this section we shall extend this approach by showing that various
properties of b can be phrased in terms of W, Wj, and . This will result in a
“dictionary” enabling us to prove claims on b by proving their analogue statements
about W, Wp, 8 and vice versa. In particular, we will see that the ring W} holds
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a lot of information on b and forms related to it. (The results of this section are
expected, given Theorem [£.3.6] and Remark [4.6.6] However, for the applications, it
will be beneficial to work things out explicitly.)

4.8.1. Decomposition. By a decomposition of (M,b, K) (or just b) we mean
a representation of (M, b, K) as an (inner) orthogonal sum

(Mq,b1,K) L -+ L (M, b, K)

with each M; nonzero. Clearly this induces a decomposition of M, namely M =
@le M;. A bilinear space is called indecomposable if all its decompositions has
length 1 (i.e. t =1).

A wunital decomposition of a ring S is an ordered set of nonzero pairwise or-
thogonal idempotents {eq, ..., e;} whose sum is 158 If S has an involution * and
ef =e; for all i, then {ey,...,e:} is called *-invariant. It is well known that decom-
positions of M correspond to unital decompositions of W. Similarly, it turns out
that decompositions of b correspond to S-invariant unital decompositions of Wy,

PROPOSITION 4.8.1. There is a one-to-one correspondence between decomposi-
tions of b and B-invariant unital decompositions of Wy,. In particular, b is indecom-
posable precisely when W), does not contain non-trivial B-invariant idempotents.

PROOF. Observe that a S-invariant idempotent in W, consists of a pair (e, e°P)
with e € E(W) (but e € E(W) need not imply (e, e®?) € W3). Given a S-invariant
unital decomposition {(e;,e;")}_,, let M; = e;M and b; = b|p,xn,. Then
{(M;,b;, K)},_, is a decomposition of b. (Indeed, b(M;, M;) = b(e;M,e;M) =
b(M,e;e;M) = b(M,0) = 0 for ¢ # j.) Conversely, if (M,b,K) = (My,b,K) L
oo L (Mg, by, K), let e; be the projection from M to M; with kernel Z#i M;. Then
for all z,y € M, b(e;x,y) = bi(e;z,e;y) = bz, e;y), hence (e;,e¥) € W,. Thus,
{(ei,eP)}i_, is a S-invariant unital decomposition of W,. The rest of the details
are left to the reader. O

DEFINITION 4.8.2. A subspace of (M, b, K) is a bilinear space (M1,b1, K) such
that My C M and by = b|pr,xar,- In this case, by is called o subform of b. The
subspace (M, b1, K) (or just by ) is is a summand of (M, b, K) (orb) if there exists a
subspace (Ma,bo, K) of (M,b, K) such that (M,b, K) = (My,b1,K) L (Ms,bs, K).
In this case, (Ma,ba, K) is called a complement of (My,b1, K).

When b is quasi-reduced, any summand of b admits a unique complement and
these summands correspond to S-invariant idempotents in W;. This is verified in
the following propositions.

PROPOSITION 4.8.3. Assume b is quasi-reduced. Then any summand of b admits
a unique complement.

Proor. Let (Mi,b1, K) be a summand of (M, b, K) and let (Ms,be, K) and
(M4, by, K) be complements of (My,by, K). It is enough to prove My = MJ. Let
{(e1,€5P), (e, 7)) (resp. {(e],€?), (eh,e5P)}) be the S-invariant unital decom-
position corresponding to b = by L by (resp. b = by L b}). Then clearly eje} = €]
and eje; = e;. We now have:

bz, ery) = blerr,y) = blererr, y) = blerx, €1y)

= b(z,e1€ely) = b(x,ely) = blejz,y) ,
and similarly b(ejx,y) = b(z,e}y). Thus, (e1,e)?) € W} which in turn implies
(0, (e1 — €})°P) = (e1,e5P) — (e1,€’P) € Wy, The form b is quasi-reduced, so by

17 The set {e1,...,et} is also called a complete set of orthogonal idempotents. We have
changed it into unital decomposition for brevity.
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Proposition iii), we must have e; — €] = 0, hence es = e, and My = eaM =
! _ A
ey, M = M}, O

REMARK 4.8.4. With the notation of the last proof, note that M> need not be
the orthogonal complement of M7, namely:

M- ={x € M : b(z, M;) = b(M;,z) =0}
(but we always have My C Mj-). For example, take any right stable form (b, M, K)
with N := ker Ad] Nker Adj # 0 (e.g. the form of Example [2.4.4). Then b = by L
by is right stable (Corollary [2.6.6) and, abusing the notation, by is clearly the

complement of itself. However, (M @ 0)* = N @ M # 0@ M. Nevertheless, it is
straightforward to check that when b is right injective, My = Mj-.

PRrROPOSITION 4.8.5. Assume b is quasi-reduced. Then there is a one-to-one
correspondence between summands of b and S-invariant idempotents in Wy,

PROOF. Let e; € E(W;) be a S-invariant idempotent. Then {e;,1 —e1} is a
unital decomposition of W, and hence it gives rise to a decomposition (M, b, K) =
(M1,b1,K) L (Ma,bs, K). Let e; be the idempotent corresponding to b;. Con-
versely, given a summand by of b, let by be its unique complement and let {e1, ez}
be the p-invariant unital decomposition corresponding to b = b; L by. Then by
corresponds to e;. The rest of the details are left to the reader. O

REMARK 4.8.6. Recall that by Proposition [£.7.8] idempotents e € W, with
e + ef = 1 correspond to representations of M as a direct sum to two totally
isotropic submodules. However, in contrast to the last proposition, totally isotropic
submodules M; C M admitting a totally isotropic My < M s.t. M = My & M- do
not correspond to idempotents e € W}, satisfying e +e” = 1, even when b is regular.
In particular, Ms is not uniquely determined by M;.

For example, let F' be a field and let b : F2x F? — F be the regular alternating
form defined by b((x1,z2), (y1,¥2)) = Z1y2 — x2y1. By Proposition we may
identify (Wy, 8) with (W{O‘Q}, «) where « is the corresponding anti-endomorphism of
b. It is easy to check that ais given by [¢4]% = [ 4 b] forall [¢ ] € My(F) =W
and hence W{®’} = W{id} — . Now, any 1-dimensional subspace of F? is totally
isotropic, hence Mj above cannot be uniquely determined. In addition, e = [} 3]
and ¢’ = [{ ] are idempotents in W = W), = My (F) such that e+e® = ¢’ +¢'* =1
and eF? = ¢/F? = F x 0. Thus, M; = F x 0 does not correspond to a specific
idempotent eg € W, with eg + e = 1.

4.8.2. Isometry of Summands of M and b. Let (My,b1, K), (Ms,bs, K)
be two summands of (M,b, K) (we do not assume b = by L bg). We shall now
present necessary and sufficient conditions (in terms of W;, and ) for by and by to
be isometric. By Proposition[4:8:1} we may assume that M; = e; M and My = eo M
for some [-invariant idempotents (e1,e]’), (e2,e5") € W, (the idempotents e, o
are uniquely determined when b is quasi-reduced, as implied by Proposition |4.8.5]).

DEFINITION 4.8.7. Let (S, *) be a ring with involution. Two x-invariant idem-
potents e, e’ € E(S) are called isometric if there exists s € €’ Se such that

!
s*s = e, and ss*=¢€ .

In this case, s is called an isometry from e to €.

PROPOSITION 4.8.8. Let M;,b;,e; be as above. Identify Hom(M;, M;) with
ejWe; (i,j € {1,2}) in the standard way. Then isometries from by to by correspond
to isometries from (e1,ei¥) to (e2,e5?) (in Wy) via o <+ (o, (c~1)°P). (Here o1
stands for the unique element of eyWeo satisfying o ~'o = e; and oo~ = e3).
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PROOF. Let w € Hom(M;, Ms) = esWe; be an isometry from b; to be and let
w’ € Hom(Ms, M) = e;Wey be its inverse. We claim that (w, w’°P) € W,. Indeed,
for all z,y € M, b(wz,y) = ba(eqwz, eqy) = by (w'eswz, w'eqy) = by (w'wz, w'y) =
by (e1z,w'y) = b(z,w'y) and similarly, b(z, wy) = b(w'z,y). The element (w,w'°P)
is an isometry from (ey, €P) to (eq, e5”) since (w, w’°P)? (w, w'°P) = (w'w, wPwW'P) =
(e1,e7?) and (w, wP)(w,w'°P)P = (ww', w°Pw°P) = (eq,€5").

Conversely, if (w,w'°P) € W, is an isometry from (eq,e]’) to (e, e5’), then
(e1,e?) = (w,wP)? (w,w°P) = (w'w,wPwP), hence e; = w'w and similarly
e2 = ww'. This means that w induces an invertible map from M; to My (its
inverse is w’). The element w is an isometry from by to by since by (wejx, wery) =
b(wz, wy) = b(z,w'wy) = b(z,e1y) = b(z,e1e1y) = blerz,e1y) = bi(eix,ery) for
all z,y € M. (]

REMARK 4.8.9. Taking e; = e5 = 1y in the previous proposition implies that
Wy, contains a copy of the isometry group of b, namely the group of isometries from
b to itself. The proposition also implies that this group corresponds to the elements
u € W)* satisfying u~! =P, as one would expect.

Now let My, Ms be two summands of M (we do not assume b|nz, xary , bl v, x M,
are summands of b). Assume b is right stable with corresponding anti-endomorphism
«. The following proposition shows that it is possible to express the fact that
b1 = blar, xar, and be := b|ps, M, are isometric in terms of o and W. We may of
course assume that M; = ey M and My = ea M for some eq, es € E(W) (but ey, es
need not be a-invariant nor unique).

PROPOSITION 4.8.10. In the previous notation, the following are equivalent:
(i) b1 = bo.
(ii) There are w1 € eaWey and wy € e1Wey such thatﬁ

« a a «
wiwy = €e1éq, Wy W2 = €59 €2, WaW1 = €1, wiWe = €9 .

Furthermore, there is a one-to-one correspondence between isometries from by to bs
and pairs (wy,ws) as in (ii).

ProoF. Throughout, we identify Hom(M;, M;) with e;We, for all i, j € {1,2}.
Let o : M7 — M be an isometry from b; to by. Then there are w; € esWey,
wy € e;Wey such that o(r) = wir and o~ (y) = wey for all x € My and y € Mo.
As wow; induces the identity homomorphism on M;, we have wow; = e; and
similarly wyws = es. Now let z,y € M. Then b(z,wfwiy) = b(wiz,wy) =
b(wierz, wiery) = blo(erx),o(ery)) = blerx,ery) = b(x,efery), hence wfw; =
efe; and similarly w§ws = eSes.

Conversely, assume wi,ws as above are given. Define o : M; — Ms and
T: My — M by o(x) = wiz and 7(y) = way. Then it is straightforward to check
Too =1idy, and o o7 = idyg,. In addition, for all z,y € My, b(o(z),0(y)) =
b(wiz,wry) = bz, ww1y) = b(z,efery) = blerx,e1y) = b(x,y), hence o is an
isometry from by to bs. O

REMARK 4.8.11. The element ws is uniquely determined by w; in the sense
that it is the only element in e; We, satisfying wow; = e; and wiws = es. Indeed,
if wf also satisfies these relations, then w) = whes = whwiws = eqws = wa.
(A less explicit yet more intuitive explanation for this is that ws is induced from
ot My — M; where o : My — My is defined by o(z) = wiz).

18 The second equality is in fact superfluous since the other three imply w§ws = w§efejws =
wiwFwiwe = (wiwz)* (wiws) = eFea.
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4.8.3. Isometry of Forms Related to b. Recall that for two bilinear spaces
(M,b,K) and (M',¥, K), we write b ~k, b’ to denote that Z(b) = Z(v'). That is,
there are isomorphisms o € Hom(M, M') and 7 € Hom(M', M) satisfying (17)). In
this subsection, we will show that isometry classes of bilinear forms b’ with b ~, b’
correspond to congruence classes of invertible 5-symmetric elements in Wj,.

Let (S,#) be a ring with involution. Two elements z,y € S are called *-
congruent if there is s € S* such that x = s*ys. This is an equivalence relation
which we denote by ~,, and its equivalence classes are called congruence classes
(w.r.t. x). An element z € S is called *-symmetric if 2* = z. Being x-symmetric
is preserved under the relation ~,. The set of x-symmetric elements in .S will be
denoted by Sym(S, *). For example, Sym(W;, 8) consists of elements of the form
(w,w°P) in W.

Henceforth, we will use [-] to denote both isometry classes and congruence
classes w.r.t. . In case of ambiguity, the latter will be denoted by [-]g.

PRrOPOSITION 4.8.12. There is a one-to-one correspondence between isometry
classes bilinear spaces (M', V', K) with b’ ~k, b and congruence classes of elements
in Sym(W,, 8) N W,~.

PRrROOF. Let (M',¥, K) be such that & ~x, b and let (o,7°P) : Z(b) — Z (V')
be an isomorphism. The correspondence is given by sending [b'] to [(To, (70)°P)].
However, we need to prove several things before we can assert this is indeed a
correspondence.

First, we need to show that 7o € Sym(W;, 3) N W,*. Indeed, by , for all
x € M and 2’ € M’, we have V' (', 0x) = b(r2’, z) and V' (ox, ') = b(x, 72’). Thus,
for all z,y € M, b(roy,x) = V' (oy,o0x) = by, Toy), implying (70, (70)°P) € Wy,
Repeating this argument with (77!, (071)°P), which is also an isomorphism from
Z(b) to Z(V') (since (7,0°P) = (o, 7°P)* is an isomorphism from Z(b')* = Z(b') to
Z(b)* = Z(b)), yields that o~ '7~! € W}, hence o1 € W,*.

Next, we need to show that [(7o,(70)°P)] is independent of ¥, o and 7. Let
(b, M", K) be another bilinear space with [0”] = [b] and let (1, 6°P) : Z(b) — Z(b")
be an isomorphism. We need to prove that [(7o,(70)°P)] = [(6n, (61)°P)]. Let
¢: b — V" be an isometry. Then for all z,y € M,

b(OCT ™ a,y) = 0" (¢ e my) = V(77 , ¢ hpy) = b, 07T Hpy)
and similarly b(x,0(t"1y) = b(c~1¢( " Inx,y). Thus, s := (o1 1n, (OCT~1)°P)
lies in Wy, As (¢t7Y) - (7o) - (671¢ 1) = O, it follows that s*(7o, (70)°P)s =
(6, (6m)°P), hence [(Ta, (T0)°P)] = [(6n, (6n)°P)].

Now drop the assumption [b”] = [b'] and assume [(70, (T0)°P)] = [(n, (6n)°P)]
instead. We need to show that b’ = o'. Let s = (u,w°P) € W, be an element
satisfying s*(7o, (10)°P)s = (6n, (6n)°P). Then u,w are automorphisms of M sat-
isfying wrou = 6n. Define ( = 6~ 'wr € Hom(M’, M"). Then ¢ = 6~ (wr) =
= 1(Onu=to™t) = nu=to~! and for all z,y € M’, we have

b"(Cx, Cy)

10_—1y)

Uﬁly) = b/(l"vo'w?ilnuilaily) =b'(z,y) .

V' (0 wrz, nu o y) = b(wrz, T pu”
1

= b(rz,un ‘nu”

Thus, ¢ : b/ — b is an isometry and [b'] = [b"].

To finish, we prove that every w € Sym(W,) N W, is of the form 7o for some
b 0,7 as above. Define ' : M x M — K by ¥ (x,y) = b(wz,y) = b(x,wy) (the
latter equality holds since (w,w°P) € W3). Then (o, 7°P) := (1,w°P) is clearly an
isomorphism from Z(b) to Z (V') satisfying [ro] = [w]. O

The previous proposition reduces the isomorphism problem of semi-stable bi-
linear forms to (1) congruence of elements in W}, and (2) isomorphism of Kronecker
modules.
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EXAMPLE 4.8.13. It might seem a little surprising that Proposition [£.8:12|holds
even for non-quasi-reduced forms, so let us exhibit the correspondence in a non-
quasi-reduced example. Assume b is the zero form. Then all bilinear forms b with
b ~k, b must also be zero and hence isometric to b. We thus expect only one
congruence class in Sym(W, 3) NW,*. Indeed, in this case W, = W x W°P and for
all (w,wP), (w',wP) € Sym(Ws, 8) "W, we have (w, w°P) ~g (w', w'°P) because
(1, (1)) (w, woP) (1, (w'w=1)oP) = (', w'oP).

REMARK 4.8.14. If b is right regular and K has an anti-isomorphism «, then b
has a unique right xK-asymmetry, A. In this case, the bilinear forms b’ with b’ ~g, b
are the right regular forms admitting a (unique) k-asymmetry which is conjugate
to A. (This follows from Proposition [4.6.4{ii) since any two right regular forms are
right joinable. In addition, it easy to see that if Z(b) = Z(b'), then b is right regular
if and only if ¥’ is.)

4.8.4. Summary. The correspondences presented in this section and in sec-
tion [£.7] are summarized in the following table:

Property or Object Corresponds To

1.| decompositions of (M, b, K) [B-invariant unital decompositions of W},

2.| summands of b (provided b is quasi-
reduced)

[B-invariant idempotents in W

3.| b is indecomposable

W, does not contain S-invariant idem-
potents other than 0 and 1

4.| isometries between summands by, by
of b

isometries from e; to es in W, where
e; is the a [-invariant idempotent such
that b; = ble, mrxe;m (€; is uniquely de-
termined if b is quasi-reduced).

5.| isometries between by := ble, Mxe; M
and by := ble, Mrxe,mr Where e1,69 €

E(W)

pairs (w1, wy) € eaWey x egWesy satis-
fying wow1 = e1, wiws = ea, Ww; =
efe; and wSwy = eSesy

6.| representations M = My & M, with
M, M> totally isotropic

idempotents e € E(W};) such that e +
F=1
e’ =

7.] b is a hyperbolic form

[ is a hyperbolic involution

8.| isometry classes of forms b with

congruence classes in Sym(W;, 3) N\W,*

b ~kr b

The table implies that the ring W, and its involution £ hold a lot of information
about the form b and other forms related to it. However, the ring W}, is still far too
complicated to allow an immediate usage of our “dictionary”. In the next section
we will show that under mild assumptions, most properties mentioned in the right
column of the table can be “lifted” from W,/ Jac(W}) to Wy. Furthermore, we shall
later see that Wy, / Jac(W}) is often semisimple. Once that is achieved, we will have
the tools to provide direct proofs to the consequences of Theorem as well as
other applications.

4.9. Lifting Along the Jacobson Radical

In this section, (R, %) denotes a ring with involution and J is an ideal of R such
that J* = J (usually J would be Jac(R)). The involution * induces an involution
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on R := R/J which we also denoted by *. The image of 7 € R in R will be denoted
by 7.

Motivated by the previous section, this section is concerned with presenting
sufficient conditions on R, J, * to allow the lifting of various properties of (R, *) to
(R, *). In particular, we will consider lifting of *-invariant idempotents, isometries
between them, x-isotropic idempotents and *-congruences.

DEFINITION 4.9.1. The ideal J is called idempotent lifting if J C Jac(R) and

for every e € E(R) there exists e € E(R) such thate =e.

EXAMPLE 4.9.2. (i) Any nil ideal is idempotent lifting (see [80], Cr. 1.1.28]).
(ii) A semilocal ring is semiperfect if and only it its Jacobson radical is idem-
potent lifting (by definition).

The following well-known facts will be used throughout the section.

_ ProPOSITION 4.9.3. If J is idempotent lifting, then any unital decomposition
of R, {e;}1, can be lifted to R, i.e. there is a unital decomposition of R, {e;}11,
such that €; = ¢;.

PROPOSITION 4.9.4. Let e € E(R). Then:
(i) Jac(eRe) = eJac(R)e.
(ii) If J < R is idempotent lifting, then eJe is idempotent lifting in eRe.

4.9.1. Lifting *-Invariant Idempotents. Henceforth, J is idempotent lift-
ing.
LEMMA 4.9.5. For a right ideal I < Rp, the following are equivalent:
(a) I =eR for some e € E(R) with e = e*.
(b) R=1@ (ann’I)*.
(¢) R=1I@®ann"(I*).
The idempotent e of (a) is unique, i.e. if ¢ € E(R) is such that ¢ = €' and
I =¢R, then e = e'lEI

ProOOF. (a)==(b) and (a)==(c) easily follows from the fact that for all e €
E(R), ann‘(eR) = R(1 — ¢) and ann"(Re) = (1 — €)R.

(b)==(a): We can write 1 = e+ (1 —¢) where e € I and (1 —e¢) € (ann®I)*. Tt
is well known that e and 1 — e are idempotents and I = eR. As 1 —e € ann’ eR =
ann’ I, we get (1 —e)*e = 0, implying e = e*e. But e*e = (e*e)* = e*, s0 e = €*.

(¢c)==(a) follows by repeating the previous argument with e*(1 —e) instead of
(I —e)e*.

To finish, assume I = 'R and €’* = ¢’. Then, e/ = e/ = e*e’* = (e'e)* = e* =
e (the first and next to last equalities hold since eR = ¢'R). O

*

THEOREM 4.9.6. Assume J <R is idempotent lifting. Then for any *-invariant
idempotent € € E(R) there is a x-invariant idempotent e € E(R) such that e = 5

PRrOOF. Take some f € E(R) with f = . Since ¢ = ¢*, f+ (1 — f)* — 1
lies in J and hence f + (1 — f)* is invertible (because J C Jac(R)). Therefore,
R=fR+ (1— f)*R. On the other hand, if r € fRN (1 — f)*R, then (1 — f)r =0
(because r = fr) and f*r = 0 (because (1 — f)*r =), hence (1 — f + f*)r =0,
which implies » = 0 since (1 — f) 4+ f* € R*. Therefore, R = fR® (1 — f)*RE

1914 is worth pointing that this property is special for *-invariant idempotents and fails for
arbitrary idempotents.

20 Compare with [100), Lm. 3], which proves the same claim when J is nil.

21 This can also be shown using the fact fR and (1 — f)*R are projective covers of eR and
(1 — e)R, respectively.
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Now, since (ann’ fR)* = (1 — f)*R, Lemma implies that there is e € E(R)
such that e = ¢* and eR = fR. Finally, Lemma [4.9.5 also implies that ¢ is the only
x-invariant idempotent generating eR and therefore € = €. O

COROLLARY 4.9.7. Any x-invariant unital decomposition {e;} of R can be lifted
to a x-invariant unital decomposition of R. That is, there exists a x-invariant unital
decomposition {e;} of R such that€; = e; for alli. In particular, if R is semiperfect,
then any x-invariant unital decomposition can be lifted from R/ Jac(R) to R.

PRrROOF. Lift €1 to e; € E(R) with e = ey using Theorem Now induct on
(I1—e1)R(1—ey) and (1—ey)J(1—eq) (we are allowed do this due to Lemmal4.9.4(ii)).
(]

EXAMPLE 4.9.8. If * is not an involution but merely an anti-automorphism,
then Theoremmight fail. For example, let p > 2 be a prime number, S = Z,),
R = My(S), J = Jac(R) = pR = My(pS) and let * be the anti-automorphism
defined by:

A= [52)70 A1)
Then J is idempotent lifting since R is semiperfect. In addition, * acts as the
transpose involution on R/Jac(R) = Mz(Z/p), so R/ Jac(R) has plenty of non-
trivial x-invariant idempotents. On the other hand, the set of *-invariant elements
in R is contained in the subring {a € R : a** = a} which is the centralizer of:

R

0 1 0 1 » 1

in Ma(S). It is not hard to verify that the centralizer of X in My(Q) is Q[X] =
Q[z]/ (2® + (p* — 2) + 1), which is a field (since p > 2). Therefore, M(S) admits
no non-trivial x-invariant idempotents. In particular, there are *-invariant idempo-
tents in R/ Jac(R) that cannot be lifted to R.

4.9.2. Lifting Isotropic Idempotents. We will now consider lifting of idem-
potents € € R satisfying € + ¢* = 1 and, more generally, idempotents ¢ € R such
that € is orthogonal to €*. Such idempotents are called isotropic (or *-isotropic).
In contrast to the previous subsection, the mere assumption that J is idempotent
lifting does not guarantee such a lifting, as shown in the following example.

EXAMPLE 4.9.9. Let n € N be such that p = n? + 1 is prime (e.g. n = 2). Let
S be the ring Z[,/p] localized at the prime ideal (,/p) and let I = \/pS = Jac(9).
Let R = M>(S) and define * : R — R by

A*_[ﬁ n ]_1AT{*/]5 " } .
Let J = Jac(R). We have R/ Jac(R) = My(S)/Ma(I) = M3(S/I) = M2(Z/p). The
action of * on R/J can be described as:

e R e 0 T]7" 7[0 T
r=la] 7ao]=11 0] 1]
It is now easy to check that the matrix unit € := e;; € M2(Z/p) = R/J satisfies
€ + ¢* = 1. However, despite that R is semiperfect and J is idempotent lifting,
there is no e € E(R) such that e+ e* =1 and € = ¢.
To see this, consider the bilinear form b : S? x S? — S defined by b(z,y) =
T VP 1
n p
addition, (W3, B(b)) = (R, *) by Proposition m Thus, e as above exists <=
B(b) is hyperbolic <= b is hyperbolic (Proposition . But the latter is
impossible since b is anisotropic, i.e. b(x,z) # 0 for all 0 # z € S2. (Indeed,

x } y. Then b is stable and * is its corresponding anti-endomorphism. In
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consider b as a form over R rather than S. Then the quadratic form corresponding
to b is 2-dimensional and has discriminant n? — ¢ = —1, hence it is anisotropic@

DEFINITION 4.9.10. Let I < R. The ideal I is called (x-)symmetric if I = I*.
In this case we define:

Sym(I)={xel|xz=2a"} and Symd(I) ={z+z* |z e€I}.

These sets are called the x-symmetric elements of I and the x-symmetrized elements
of I, respectively. The ideal I is called (x-)symmetrized if it is symmetric and
Sym(I) = Symd(I).

A ring with involution (R, *) is dyadic if it admits a non-symmetrized symmet-
ric ideal. Otherwise, it is non-dyadic.

The results of this section would apply in their full strength when (R, %) is non-
dyadic. The dyadic is more complicated and will not be treated here. The following
proposition ensures that (R, *) is non-dyadic whenever 2 € R* (take a = 1), hence
justifying the name “non-dyadic”.

PROPOSITION 4.9.11. Let a € Cent(R) and let I < R be symmetric. Then:
(i) Sym((a+ a*)I) C Symd(al + a*I) + aann(a + a*).
(ii) If a+a* € R*, then I is symmetrized. In particular, R is non-dyadic.
(i) If aann(a + a*) =0, then Symd((a + a*)I) C Sym(I).

PRrOOF. (ii) and (iii) easily follow from (i). To prove (i), let y € Sym((a+a*)I).
Then there exists « € I such that y = (a + a*)z. Now, (a + a*)z =y = y* =
(a + a*)z* implying « — 2* € ann(a + a*). Therefore,

y=(a+a" )z =(a"z)+ (a"z)" +a(x —2*) € Symd(al + a*I) + aann(a + a*)
(note that we used a € Cent(R)). O

LEMMA 4.9.12. Assume that there are symmetric ideals 1, Jy, J1 < R such that
IJo+ JoI C Jy C Jy C I and Sym(Jy) C Symd(I) + Ji. Let g € E(R/Jp) be an
isotropic idempotent. Then there exists an isotropic idempotent &1 € E(R/Jy), and
€0, €1 has the same image in R/I.

PrROOF. Let us work in R = R/J; and set I' = I/Jy, J) = Jo/J1. Then
(J§)? =I'J) = J§I' = 0. In particular, J§ is nilpotent, hence there exists e € E(R’)
whose image in R/Jy is e9. Now take arbitrary x € R with  + J; = e. Since
ee* + J) = J} and (zz*) = zz*, xo* € Sym(Jy) and hence there is y € I such that
zx* — (y + y*) € J1 (because Sym(Jy) C Symd(I) + J1). Let a be the image of y
in R (so a € I'), then ee* = a + a*. By replacing a with eae*, we may assume
a =ea = ae* € el'e*. Now, ee* € J{ implies

aa =aa* =a*a=a"a* =ae=a"e=¢€e*a=¢€"a* =0

(because I' Jjy = J{I' = 0). Define g = e — a and observe that

@ = 2—ea—ae—ad’=e—a=yg,
g9 = (e—a)(e" —a*)=ee" —ea” —ae* +aa* =ee* — (a+a") =0,
g9 = (e"—a")(e—a)=e'e—e'a—a’e+a‘a=c"e.

Thus, g is an idempotent with gg* =0, g*g € J| and g =e; in R/I;.
Repeating the previous argument with g* in place of e would yield an element
b e I' with g*g = b+ b* satisfying:

bb = bb* = b*b = b*b* = gb = gb* = bg* = b*g* =0 .

22 The discriminant of a quadratic form az? + 2bxy + cy? is defined to be b? — ac. It is well
known that (over fields) the quadratic forms is isotropic if and only the discriminant is a square.
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We finish by taking 1 = g — b and noting that as before, we have €2 = &1, ejea = 0
and €167 = gg* = 0. O

REMARK 4.9.13. Under the lemma’s assumptions one can also show that for
every g9 € E(R/Jy) with efeg = 0, there exists e € E(R/Jy) with efe; = 0, and
€0,&1 has the same image in R/I.

For the next theorem, recall that a Hausdorff linearly topologized (abbrev.:
LT) ring is called complete if R = Jim {R/I}1ep for some local basis of ideals B. In
this case, this holds for any local basis consisting of ideals (e.g. for Zr — the set of
all open ideals of R). See section for additional details.

THEOREM 4.9.14. Assume R is a complete Hausdorff LT ring admitting sym-
metric ideals J, O Jo D J3 D ... and [y D Iy D I3 D ... such that for alln € N:
(a) Jn C L, and InJy + Jpln C Jpgs-
(b) Sym(J,) C Symd(I,) + Jnt1-
Also assume that one of the following holds:
(¢) Every open ideal contains I, for somen (e.g. if R = @R/Im as a topo-
logical ring).
(¢") Every open ideal contains J, for some n and R is compact (i.e. R is an
inverse limit of finite rings).
Then for every isotropic € € E(R/J1), there exists isotropic e € E(R) such that e, e
has the same image in R/I;.

PROOF. A repeated application of Lemma (with I, J,,, Jpa1 in place of
I, Jo, J1) yields idempotents €,, € E(R/J,) with e; = € such that e,e}, = ele, =0,
and £,41,&, has the same image in R/I,.

Now, if (c) holds, then for every U € Zp there is n = n(U) such that U D I,.
Let ey be the image of ¢, € R/J, in R/U. Then ey is independent of n and the
elements {ey }yer, are compatible with the standard maps R/U — R/V (U,V €
Zr). As R is complete, there is e € R such that ey = e+ U for all U € Zg and it
is routine to verify that e satisfies all the requirements (it is enough to check them
modulo I, for all n € N).

If (¢/) holds, then take arbitrary elements {z,}52, with &, = x,, + I,. Since R
is compact, {z,}52; has a converging subsequence. Let e denote its limit. Then e
is easily seen to satisfy all the requirements. O

REMARK 4.9.15. Assume that conditions (a),(b) of the previous theorem hold
for (R, x) and for the ideals {I,}52,, {J,}52,. Then for any e € E(R) with e = e*,
conditions (a) and (b) also hold for eRe and {el,e}22,, {eJne}s> ;. To see this,
notice that Sym(ele) = eSym(I)e, Symd(ele) = e Symd(I)e for every symmetric
ideal I < R. The proof is straightforward.

COROLLARY 4.9.16. Assume R is pro-semiprimary and (R,*) is non-dyadic
(e.g. when there exists a € Cent(R) such that a+a* € R* ). Then for every isotropic
idempotent € € E(R/ Jac(R)), there is isotropic e € E(R) such that e = e+ Jac(R).
In particular, = is hyperbolic on R <= x is hyperbolic on R/ Jac(R).

Proor. Take I, = J,, = Jauc(R)TH1 in the previous theorem. Conditions (a) is
clear and condition (c¢) follows from Proposition [1.5.17} To see (b), note that since
(R, *) is non-dyadic, Sym(J,) = Symd(J,,) = Symd([,) C Symd(I,,) + Jp+1. O

4.9.3. Lifting Congruences and Isometries. Recall that two elements
a,b € R are called (x-)congruent, denoted a ~, b, if there exists u € R* such
that u*au = b. Congruence is an equivalence relation. In addition, two #-invariant
idempotents e,e’ € E(R) are called isometric if there exists s € €' Re such that
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s*s = e and ss* = ¢’. In this case, s is called an isometry from e to €. In this
subsection, we will prove that under certain assumptions, congruences between ele-
ments and isometries between idempotents can be lifted from R/.J to R. As in the
previous subsection, we begin with a counterexample showing that the assumption
that J is idempotent lifting is insufficient for this.

EXAMPLE 4.9.17. Let S = Zsy be Z localized at (3), let R = My(S) and let
J = Jac(R) = 3R. Let * be the transpose involution and consider the matrices

0 1 3 1
A—{IO] and B—[lg].
Since A = B, A ~, B. However, if A ~, B, then there would be P € My (S) such
that A = PTBP implying —1 = det A = (det P)?(det B) = 8(det P)2. But this
implies f% € (Q*)?, a contradiction.

EXAMPLE 4.9.18. Let S, R, J be as in the previous example and let A = [} 9] €
My(S). Define b : S? x S — S by b(x,y) = 2TAy. Then b is regular and its
corresponding anti-endomorphism # is given by X* = A"'XTA. Let e = e1; and
e/ = egy, where {e;;} are the standard matrix units in R. Then e = e*, ¢/ = €’
and in R = R/J one has €3, = €2 (because A = 13). Therefore, €569 = €
and €21€5, = e’, hence €, is an isometry from € to e/. However, e and e’ are not
isometric. Indeed, by Proposition[4.8.8] it is enough to verify that the restrictions of
b toim(e) = S x {0} and im(e’) = {0} x S are not isometric, which is clear because
these forms have discriminants 1 and 7, respectively, and 1 # 7 mod (S*)2.

LEMMA 4.9.19. Let I, Jo, J; C Jac(R) be symmetric ideals such that I* C J; C
Jo € I and Sym(Jy) C Symd(I) + J1. Let e,¢’ € E(R) be *-invariant and let
a € (eRe)* N Sym(eRe,*),b € (¢/Re’)* N Sym(e'Re’,*). Assume that there exists
ug € € Re and vg € eRe’ such that all the following equations hold modulo Jy:

Voo = €, Uy = €, upaugy =b .
Then there exists uy € €’ Re and vy € eRe’ such that the following equations hold
modulo J:

VU = e, uv = €, urau; =b
andug +1 =w +1,vo+1=v1+1.

PROOF. Let o’ denote the inverse of a in eRe and note that a’* = a’ since
a* = a. Observe that upauy — b € Sym(Jp). As Sym(Jy) C Symd(I) + Jy, there
exists ¢ € I such that (¢ + ¢*) + (upaul — b) € J1. By replacing ¢ with e’ce’, we
may assume ¢ = €’ce/. Define u; = ug + cvja’. Calculating modulo Jq, we have:

wiau; = (ug + cvga)a(ul + a'voc) = upau + cvga’ auly + upaa’voc*

= wgaugy + cogug + uovoc™ = ugaug + c(ugvo)* + ugvoc”

= wpauy + ce' + e =upaul +c+cF =b.
Now let v1 = 2vy — vou1v9. Then modulo Ji:

U1V = 2’LL11)0 — UL VoUL V) = U1V + (6/ — ulvo)ulvo

= wuvg + (¢ —ugvg)e’ = uvg + e’ —ujvg =€

(the third equality holds since ¢’ —ujvg € Ji, €' +Jo = urvg+Jo and JZ C 12 C Jy)
and in the same way, viu; = e mod J;. [l

THEOREM 4.9.20. Assume R is a complete Hausdorff LT ring, let J; O Jo 2
J3D...and Iy O I, D I3 D ... be symmetric ideals such that:

(a) Jn C 1, and I2 C Jy 1 [

23Notice that this is stronger than condition (a) of Theorem [4.9.14
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(b) Sym(Jn) c Symd(ln) + Jn+17

and at least one of the following holds:

(¢c) every open ideal contains I, for somen (e.g. if R = @R/In as a topo-
logical ring),

(") every open ideal contains J, for some n and R is compact (i.e. R is an
inverse limit of finite rings).

Then the following hold:

(i) Let a,b € Sym(R) N R*. Then a ~, b if and only if a + J; ~. b+ Jp.
Furthermore, if © + J1 € R/J) satisfies b = xz*ax mod Jy, then exists
y € R* such that b = yay* and x,y have the same image in R/I;.

(ii) Let e, e’ € E(R) be x-invariant. Then e is is isometric to €/ < e+ J;
is isometric to €' + J1. Furthermore, if u+ J is an isometry from e to €,
then there exists an isometry v from e to € such that u,v has the same
image in R/I;.

ProOOF. We will prove (i) and (ii) in the same manner: If the assumptions of
(i) hold, let e = ¢/ = 1, u = 2* and v = (z*) ™!, and if the assumptions of (ii) hold
let a =e, b=¢ and v = u*. Then u € ¢'Re, v € ¢'Ve and modulo Ji, vu = e,
uv = ¢’ and uau* = b.

Let vy = w and v; = v. A repeated application of Lemma (with
Unt1, Un, Unt1, Un, Iny Jnt1, Jn in place of uy, ug, vy, vo, I, J1, Jo) would yield w,, v, €
R such that

/
Vplly = €, UpUy = €, upau,; =b

modulo J, and u,41 + I, = Uy + In, Upy1 + I, = v, + I, for all n € N. Arguing
as in the proof of Theorem this implies the existence of @, € R such that
di=e, 0b0=¢,tat*=band 4+ =u+ 1,0+ =v+ 1.

If e = ¢’ =1 asin (i), then this clearly implies a ~, b. If a = e and b = ¢’ as in
(ii), then €' = b = Gat* = det* = 44*. Multiplying by ¢ on the left yields o = @*
and hence, e = 94 = 4*@, implying @ is an isometry from e to €’. O

COROLLARY 4.9.21. Assume R is pro-semiprimary and (R,x*) is non-dyadic
(e.g. if exists a € Cent(R) such that a + a* € R*). Then:
(i) Let a,b € Sym(R)NR*. Then a ~, b <= a+ Jac(R) ~, b+ Jac(R).
(ii) Let e,e € E(R) be x-invariant. Then e is isometric to ¢’ <= e+ Jac(R)
is isometric to ' + Jac(R).

PRrROOF. This is similar to the proof of Corollary U

REMARK 4.9.22. The assumption a,b € Sym(R) N R* in Corollary [4.9.21]i)
(and also in Theorem 1)) is essential. For example, take any ring R with
2 € R* and Jac(R)? = 0. Then the conditions of Corollary hold. However,
for any non-congruent a,b € Sym(Jac(R)) with a ~, b, we have a + Jac(R) =
0+ Jac(R) ~x 0+ Jac(R) = b+ Jac(R). In addition, for every x € Jac(R) \ Sym(R)
and ¢ € Sym(R) N R*, the elements a,a + x lie in R* and are not congruent
(since a € Sym(R) and a + 2 ¢ Sym(R)), but @ and a + = have the same image in
R/ Jac(R), hence a + Jac(R) ~ (a + x) + Jac(R).

We finish this section with the following open question, which has many con-
sequences if answered in the positive. The motivation for the question is that
quasi-moo-regular rings (see section [1.5)) resemble Henselian valuation rings.

QUESTION 3. Do Theorem and Theorem hold under the weaker
assumption that R is a quasi-mo-reqular LT ring?
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4.10. Sufficient Conditions for W, to Be Semiperfect

In the flavor of conditions (C2), (C2') and (C2”) above, most of our results
would apply to bilinear spaces (M, b, K) such that W), is semiperfect or semiperfect
and pro-semiprimary. This section is therefore devoted to supplying sufficient con-
ditions for this to happen. Some general results of this type were already obtained
in section [£:4] However, we will focus here on more explicit conditions.

Throughout, R is a ring and K is a double R-module. Recall that if R is an
LT ring, then any right R-module M can be topologized by taking {MJ|J € Zg}
as a local basis. By saying that M is Hausdorff we mean it is Hausdorff w.r.t.
this topology, which amounts to [ Jern MJ =0 (see section for a detailed
discussion).

PROPOSITION 4.10.1. Let (M,b, K) be a bilinear space. Assume that one the
following holds:

(AO) R is semiperfect moo-regular (e.g. right or left artinian) and M is f.p.

(A1) R is a semiperfect quasi-roo-reqular LT ring, M is Hausdorff f.p. and
mJEIR(KOJ+ KlJ) = O

(A2) R is complete semilocal with Jacobson radical f.g. as a right ideal, M s
f.p. and b is stable.

(A3) K has an anti-isomorphism k, b is k-symmetric and stable and M is a
finite direct sum of LE-modules.

(A4) M is of finite length.

(A5) End(M) is right or left noetherian and complete semilocal and M is re-
flezive (e.g. if there exists a reqular bilinear space (M, ,K)).

Then Wy, is semiperfect.

PRrROOF. Throughout, let W = End(M). Note that (A0) is just a special case
of (A1) (endow R with the discrete topology).

If (A1) holds, then End(M) is semiperfect quasi-ms.-regular (w.r.t. ) by
Theorem ii). By Proposition Wy is a T-semi-invariant subring of W x
We°P and hence semiperfect quasi-ms.-regular by Theorem [1.7.1

If (A2) holds, then W = End(M) is semilocal complete by Corollary Let
« be the corresponding anti-automorphism of b. Then W, = Wwie’} by Proposi-
tion As any automorphism is continuous w.r.t. the Jacobson topology, o? is
continuous. Therefore, Wie’} is a T-semi-invariant subring of W hence semiperfect
pro-semiprimary by Theorem [I.7.1]

If (A3) holds, then W is semiperfect. Since b is symmetric, its corresponding
anti-automorphism is an involution, hence by Proposition Wy, =W.

If (A4) holds, then W is semiprimaryﬁ hence W x W®P is semiprimary. By
Proposition W), is a semi-invariant subring of the latter and hence semipri-

mary by Theorem [I.7.1}
If (A5) holds, then Proposition implies W}, is complete semilocal. O

In the same manner one can prove:

PROPOSITION 4.10.2. Let (M, b, K) be a bilinear space and assume that one of
the following holds:

(BO) R is semiprimary and M is f.p.

24 Sketch of the proof: Write M = @::1 M; with each M; indecomposable. Llet {ei}t_, be
the unital decomposition of W corresponding to M = @::1 M;. By Proposition 1.2.3* i), it is

enough to verify that e;We; = End(M;) is semiprimary, and this follows from Fitting’s Lemma
(see |80, §2.9]).
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(B1) R is a semiperfect first-countable pro-semiprimary LT ring, M is Haus-
dorff f.p. and () ;ez, (KoJ + K1J) = 0.

(B2) R is complete semilocal with Jacobson radical f.g. as a right ideal, M is
f.p. and b is stable.

(B3) K has an anti-isomorphism k, b is k-symmetric and stable and End(M)
is semiperfect pro-semiprimary (see Theorem for conditions on M
that imply this).

(B4) M is of finite length.

(B5) End(M) is right or left noetherian and complete semilocal and M is re-
flexzive (e.g. if there exists a regular bilinear space (M,b', K)).

Then Wy, is semiperfect pro-semiprimary.

The next results present additional sufficient conditions that apply for systems
of bilinear forms. Henceforth, I is a set and K’ = [[,.; K. Observe that any system
of bilinear forms {(M, b;, K)};er corresponds to a bilinear form b : M x M — K’
(see section which we denote by [[;c; bi-

ProPOSITION 4.10.3. Assume R is an LT ring and M is Hausdorff and endow
W := End(M) with the topology T defined in Proposition [4.4.5 Let {b;}icr be a
system of bilinear forms on M taking values in K such that there exists ig € I for
which b, is regular. Let b =[],.; bi and assume that one of the following holds:

(1) W is complete semilocal.
(2) K has an anti-isomorphism.

el

Then Wy, is isomorphic as a ring to a T-semi-invariant subring of W.

PROOF. Let a be the corresponding anti-automorphism of b;, and let h; =
(Adzi0 )"'oAdy, € W. Observe that b;(z,y) = (Ady,y)z = (Adgi0 hiy)x = b, (x, hiy).
As b;, is regular, b is reduced, hence we may identify W} with its projection to W
(Proposition iii)). We claim that under this identification W, = W{e"} n
Centw({hi, h(i)f | xS I})

Indeed, ifw € W{O‘Q}ﬂCentW({hi, hf‘_l |i € I}), then b;(wx,y) = by, (wzx, hiy) =
biob(, w®hiy) = by (, (b w)™y) = big (&, (Whe™")*y) = biy (2, hywy) = bi(z, wy)
and b;(w%z,y) = b, (w*x, hiy) = biy (x, w**h;y) = b, (z, whyy) = b, (x, hwy) =
bi(z,wy). Hence b(wz,y) = b(z, w*y) and b(z, wy) = b(wx,y), implying w € W,
Conversely, if w € Wy, then there exists u € W such that b;(wz,y) = b;(x, uy) and
bi(z, wy) = b;(ux,y). Taking ¢ = iy implies w® = u and u® = w, hence wW** = w
and w € W} Furthermore, we now have bio (2, hywy) = bi(z,wy) = b;(w*x,y) =
bio (W, hiy) = big(w, why) and by, (b wa,y) = big(wa,hyy) = bi(wa,y) =
bi(x, wy) = by, (x, hyw*y) = by, (whf‘_lx,y), so h;w = wh; and hf‘_lw = whf‘_l,
as required.

By Proposition b), Centyy ({hs,h® " |i € I}) is a T-semi-invariant subring
of W. As part (e) of that proposition implies that the intersection of two T-semi-
invariant subrings of W is T-semi-invariant, we are done if we prove that Wi’} is
T-semi-invariant. To show this, it is enough to verify o2 is continuous. Indeed, if
(1) holds, then any automorphism 7 of W is continuous since y(Jac(W)) C Jac(W),
implying v(Jac(W)™) C Jac(W)" (and {Jac(W)™ | n € N} is a basis for the topology

on W). If (2) holds, then b;, has an invertible right k-asymmetry A, so a? is inner
by Proposition i), hence continuous. d

COROLLARY 4.104. Let {b;}icr be a system of bilinear forms on M taking

values in K and assume that there exists i9p € I such that b;, is reqular. Let
b= [Licsbi- If the following holds:
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(A6) K has an anti-isomorphism, R is semiperfect quasi-no-regular LT ring
and M is Hausdorff f.p.,

then Wy, is semiperfect. If one of the following holds:

(B6) K has an anti-isomorphism, R is first countable semiperfect and pro-
semiprimary LT ring and M is Hausdorff f.p.,
(B7) R is complete semilocal with Jacobson radical f.g. as a right ideal and M
is f-p-,
then Wy, is semiperfect and pro-semiprimary.

PRrROOF. In all cases, the previous proposition implies that W) is isomorphic
to a T-semi-invariant of W := End(M), once endowed with 7 (or 7). If (A6)
holds, then W is semiperfect quasi-my-regular (by Theorem , hence W is
semiperfect by Theorem The same argument implies that when (B6) holds,
W) is semiperfect and pro-semiprimary. If (B7) holds, then W is complete semilocal
by Corollary [[.8:] and again we are though by Theorem [I.7.1] O

REMARK 4.10.5. The following important observation will be used implicitly
throughout the following sections: If b is a bilinear form such that W} is semiperfect
(semiperfect and pro-semiprimary), then so is Wy for every summand o’ of b. This
follows from the fact that being semiperfect (semiperfect and pro-semiprimary)
passes from a ring S to eSe for every e € E(S) (Proposition .

4.11. Indecomposable Bilinear Forms

It is time to put the infrastructure we have developed into action. We begin
with classifying the indecomposable bilinear spaces in various situations. To view
this in the right context, note that classical regular indecomposable bilinear forms
were classified implicitly in [76], [75] and explicitly in [38], [93] (the latter uses a
different approach than the others). The degenerate case was treated in [44]. In
addition, a characterization of indecomposable regular hermitian forms in a Krull-
Schmidt category with duality appears in [86, Ch. 7, Th. 10.8]. In contrast to
previous works, our exposition applies to all bilinear forms, regular or non-regular,
and shows that both cases can be treated with the same toolsP%

Let us set some general notation: (M, b, K) is a bilinear space over a ring R and
W = Endg(M). We let W, := W,/ Jac(W,) and @ = w + Jac(W,) for all w € W,
The involution 3 := B(b) induces an involution on W3 which we keep denoting by

B.

Recall that a Kronecker module Z is of bilinear type if Z = Z(b) for some
bilinear form, self-dual if Z =2 Z* and non-self-dual otherwise. We let [Z] denote
the isomorphism class of Z.

THEOREM 4.11.1. Keep the previous assumptions and assume (M,b, K) is in-
decomposable. If Wy, is semiperfect (e.g. if one of the conditions (A0)-(AG),(B7) of
the previous section holds), then exactly one of the following holds:

(i) Wy is a division ring. In this case Z(b) is indecomposable.

(ii) Wy =2 D x D°P for some division ring D and 3 exchanges D and D°P. In
this case Z(b) = Z' & Z"™ for a non-self-dual indecomposable Kronecker
module Z'. The set {[Z'],[Z"*]} is uniquely determined by b.

25 The description to follow relates the indecomposable forms with the result of Osborn
classifying rings with involution without non-trivial idempotents invariant under the involution
(see section . Based on a conversation the author had with Manfred Knebusch several years
ago, this connection also seems to be new.
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(iii) Wy = My(F) for some field F and B (on Wy) is a symplectic involution.
In this case, Z(b) = Z'® Z"™* for some self-dual indecomposable Kronecker
module Z'. If 2 € R*, then Z' is not of bilinear type. The isomorphism
class [Z'] is uniquely determined by b.

The proof requires the following two well-known lemmas.

LEMMA 4.11.2. Let o/ be an additive category in which all idempotents split.
Let A € o/, W = End(A), J = Jac(W) and e, e’ € E(W). Let B = eA := im(e)
and B’ = €' A :=1im(e’). Then the following are equivalent:

(a) B= B

(b) There are x € ¢We and y € eWe' such that yr = e and xy = ¢’.
(¢c) The right W-modules eW and e'W are isomorphic.

(d) The right W/ J-modules eW/eJ and e'W/edJ are isomorphic.

PROOF. The equivalences (a) <= (b) is routine (take = to be the isomor-
phism from B to B’ and y to be its inverse; x,y can be understood as elements of
e'We,eWe', respectively). (b) <= (c) is just a special case of (a) <= (b) — take
o/ = Mod-W and A = Wy,. To see (b)==-(d) note that the equations yzr = e,
xy = €' also hold modulo J. Applying (b)=(c) with W/J in place of W now
yields (d). Finally, (d)==(c) follows from the fact that eW is the projective cover
of eW/eJ (as W-modules); the uniqueness of the projective cover implies that any
isomorphism eW/eJ — ¢'W/e'J lifts to an isomorphism eW — ¢'W. O

LEMMA 4.11.3. Let F be a field, let V be a two-dimensional vector space,
let b : V. xV — F be a regular classical alternating bilinear form and let o
be its corresponding anti-endomorphism. Then for every non-trivial idempotent
e € E(Endp(V)) and w € eEndp(V)e®, one has w® = —w.

PROOF. Clearly e® is a non-trivial idempotent. As V is 2-dimensional, this
implies dim e*V = 1. Write e*V = vF. Then for all x,y € V, there are s,t € F
such that ez = vs and e“y = vt. We now have

bz, wy) = bx,ewey)=ble*x,wey) = b(vs, wvt)
= b(v,wv)st = —b(wv,v)st = —b(v,w*v)st
= —b(vs,wvt) = —b(e“x,w e y) = —b(x, ew*ey)
= b(z,—wy),
so w* = —w (since b is right stable)m O

Proor orF THEOREM [L.I1.Jl By Proposition [£.8.1] W} does not have non-
trivial B-invariant idempotents. As W, is semiperfect, Theorem implies that
W4 does not have non-trivial S-invariant idempotents. Therefore, by applying
Theorem to Wy, (which is semisimple) we get that either (i) W5 is a division
ring, (ii) W3 & D x D°P for some division ring D and 3 exchanges D and D°P or
(iii) Wy = My (F) for some field F and 3 (on W) is a symplectic involution.

If (i) holds, then we are clearly through, so suppose (ii) or (iii) hold. In both
cases, there are primitive idempotents e,&’ € W, with ¢ +& = 1. As W, is
semiperfect, €,&’ can be lifted to primitive idempotents e, e’ € W}, with e + ¢’ = 1.
Define Z = eZ(b) and Z' = €'Z(b). Then Z(b) = Z @ Z'. Since e, e’ are primitive
and End(Z (b)) = W, is semiperfect, Z(b) = Z® Z' is Krull-Schmidt decomposition,
i.e. it is the only decomposition of Z(b) up to isomorphism of terms and reordering
(see Theorem [L.I.1). As Z(b) = Z(b)* = Z* & Z'* is another such decomposition,
either Z' =2 Z* (and then Z = Z™*) or Z =2 Z* and Z' = Z'*.

26 Using similar ideas one can also prove e 4+ e® = 1.
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We now apply the equivalence (a) <= (d) of Lemma to e,e’ of the
previous paragraph with o being the category of Kronecker modules and A = Z(b).
This equivalence now reads as Z = eZ(b) = ¢'Z(b) = Z' = W, ='W, as
right Wj-modules. When (ii) holds, it is well known that W} 2 ¢'W, (e.g. since
these modules have different annihilators), hence Z 2 Z’. On the other hand, in
case (iii) holds, eW,, = ¢'Wy, so Z = 7', implying Z(b) = Z' @ Z' and Z' = Z'*
(since either Z = Z™* or Z' = Z'*). Tt is therefore left to verify that Z' 2 Z’* when
(ii) holds (which would imply Z = Z’* and Z(b) = Z' & Z'*) and that Z’ is not of
bilinear type when (iii) holds and 2 € R*.

Write ¢ = (e1,eS), ho = Adf, hy = Ad} and identify M with (eoM)! @
(1 — ex)M). Then Z' = €' Z(b) = (exM, hole,ar, hile,ar, €2M) and by Corol-
lary Z"™ = (eaM, holeynrs P1lesns, €1 M). Assume that there is an isomor-
phism (o,7) : Z' — Z'*. We consider 0,7 as elements of esWe; (where W =
End(M)), which we identify with Hom(e; M, eaM). Then rMop, le;nr = hilesnr o0,
hence b(7x,y) = b(x,oy) for all x,y € e;M. Recalling and the fact that
(e1,e57) € Wy, we get that b(rx,y) = b(eaTerz,y) = b(reix, e1y) = bleyx, oe1y) =
b(x,esoery) = b(x, oy) and similarly b(z, 7y) = b(ox,y). Thus, w := (o, 7°P) € W,
Now let u := (¢/,7"°P) : Z"™ — Z’ be the inverse of (o, 7°P), i.e. o/, 7" € e1Weq =
Hom(esM,e1 M), 0’0 = 7'7 = e; and o0’ = 77/ = e3. Then the same argument
would imply that u = (0/,7°P) € Wj,. Now, uw = (¢'0, (77')°P) = (e1,e5") = ¢’
and similarly, wu = (e, e?) = e®. Modulo Jac(W,) these equations become
uw = &' and wu = ¢'P.

Assume (ii) holds. Then &P is necessarily . Therefore, the previous equations
and Lemma imply that W, = /W, in contradiction to what shown above.
Thus, Z' % 7'~

Finally, assume by contradiction that (iii) holds, 2 € R* and Z’ is of bilinear
type. Then by Proposition [4.3.4] we can take o = 7 in the above computation, thus
obtaining w® = (0, 0°P) = w. However, w = (0,7°P) = (e10ez, (e17€2)°P) = e'we'?,
so by Lemma w? = —w. As 2 € R*, this implies w = 0, which is absurd.
Thus, Z' is not of bilinear type. d

For brevity, an indecomposable bilinear space whose Kronecker module has a
semiperfect endomorphism ring will be called a block. The previous theorem asserts
that there are essentially three families of blocks. A block satisfying conditions (i),
(ii) or (iii) we will be said to be of type-I, -II or -III, respectively. In case 2 € R*,
these types can also be characterized as follows: If (M, b, K) is a block, then

o (M,b,K) is of type-I if Z(b) is indecomposable,

e (M,b,K) is of type-1l if Z(b) & Z' @ Z"* with indecomposable non-self-
dual 7/,

e (M,b,K) is of type-IIl if Z(b) = Z' & Z"™ with indecomposable self-dual
non-bilinear Z’.

EXAMPLE 4.11.4. The previous characterization type-III blocks fails when 2 ¢
R*. That is, there are type-III blocks (M,b, K) such that Z(b) = Z' ® Z'*
and Z’ is of bilinear type. For example, let I’ be a field of characteristic two
and let b : F2 x F? — F be the classical alternating bilinear form defined by
b(z,y) = 27[9§]y. It is well known that b is indecomposable and it is straight-
forward to verify that Wj, = W, = My(F), hence b is of type-III. Observe that
Z(b) = (SL’lF, h0|w1F, h1|$1F, .TQF) D (.’EQF, h0|12F, h1|w2F> .’L‘lF) with {1‘1, .%'2} being
the standard basis of F2 and hg = Adj, hy = Adj. Since b is symmetric and
(F20 = (F?)1 = (F?)* := Homp(F?, F), we actually have hg = hy and ho(z;) =
x5 _; where {7,235} is the dual basis of {z1,x2}. It is now easy to verify that the
specified summands of Z(b) are isomorphic to Z(b') where b’ : F x F — F is defined
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by V' (z,y) = xy. (For example, the isomorphism from (21 F, holz, 7y b1|oy F, 22 F) to
Z(V') is given by (z1a — 1pa, (1pa — x2a)°P).) Thus, Z(b) = Z(V') @ Z(¥')* with
Z (V') clearly being bilinear.

EXAMPLE 4.11.5. Let F be a field of characteristic not 2 and let (V,b) be a
classical regular bilinear space over F. Let A denote the asymmetry of b and let
f and m), be its characteristic and minimal polynomial, respectively. Recall from
section that for every monic polynomial f € F[z] with f(0) # 0, we define
f* = f(0)txde/ f(x=1). Then in [38] (my M.Sc. thesis) I proved that

(i) b is a type-I block <= there exists a prime power p(x) € F[z] with
p = p* such that my = f =p and p(z) # (x — (—1)")™ for all n € N.

(ii) bis a type-II block <= there exists prime power ¢(z) € F[z] with ¢ # ¢*
such that my = f) = qq*.

(iii) b is a type-IIl block <= there exists n € N such that m3 = f\ =

(o (-1
In particular, whether b is a block can be determined from the conjugacy class
of A. (This should be expected as Corllary ii) implies that the asymmetry
determines the Kronecker module up to isomorphism.)

We now show that when 2 € R* and W, is semiperfect and pro-semiprimary
(w.r.t. some linear ring topology), type-II and type-III blocks are hyperbolic and
determined up isometry by their Kronecker-modules (compare with Theorem4.1.3]).

THEOREM 4.11.6. Assume 2 € R* and let (M,b, K) be a type-II or type-IIT
block such that Wy, is semiperfect pro-semiprimary (e.g. if one of the conditions
(B0)-(B6) is satisfied). Write Z(b) = Z' ® Z'*. Then b is hyperbolic and b = by .
In particular, b is determined up to isometry by [Z(b)].

PrOOF. By Theorem either W;, = D x D°P for some division ring D
with 3 exchanging D and D°P or W, = My(F) for some field F with # being
a symplectic involution. In both cases, it is easy to see that ( is hyperbolic on
Wy, i.e. there exists e € E(W}) with e +¢' = IE hence by Corollary B is
hyperbolic on W,. Therefore, by Proposition b is hyperbolic, i.e. there are
totally isotropic My, Ms < M such that M = M; & M5. On the other hand, by is
also hyperbolic, so we can write M = M/ & M} with bz (M1, M{) = bz (M5, M) =
0. Let Z1,Z1, Zs, Z} be as in Proposition m (with bz in place of ¥’). By part
(ii) of that proposition, it is enough to prove Z; = Zj or Z; = Z) (in the latter
case replace Z] and Zj). However, this follows from the Krull-Schmidt Theorem
since 71 @ Zo=Z(b) 2 Z' @ 7 2 Z(by) = Z1 D Z,. d

We finish with the following observation: Assume 2 € R*. In order to find the
Kronecker modules of the indecomposable blocks, it is enough to (1) find all inde-
composables Kronecker modules with semiperfect endomorphism ring and (2) de-
termine for each indecomposable whether it is bilinear, self-dual and non-bilinear
or non-self-dual. After this is accomplished, the Kronecker modules of the blocks
are given (up to isomorphism) by:

e [Z] where Z is indecomposable of bilinear type. (In this case, Z = Z(b)
for a type-I block b.)

o [Z®Z*] where Z is a non-self-dual indecomposable. (In this case, ZHZ* =
Z(b) for a type-II block b.)

e [Z® Z*] where Z is a self-dual non-bilinear indecomposable. (In this case,
Z ® Z* = Z(b) for a type-III block b.)

27 In fact, this holds for all non-trivial idempotents.



4.12. ISOTYPES 183

After finding the indecomposables in Kr(Mod-R), the hardest part in this process
is usually determining which self-dual indecomposables are bilinear.

We will now apply this principle to get an easy proof of Gabriel’s classification
of classical indecomposable degenerate bilinear spaces over a field (see [44] or the
end of section [4.1)). Strictly speaking, Gabriel proved that any such bilinear space
is hyperbolic and determined up to isomorphism by its Kronecker module; his proof
is based on a careful analysis of the different families of indecomposable Kronekcer
modules over a field. We will prove a slightly more accurate statement:

COROLLARY 4.11.7. Let F be a field of characteristic not 2. Any classical
degenerate indecomposable bilinear form over F is a block of type-II. Furthermore,
it is hyperbolic and thus determined up to isometry by it by its Kronecker module.

PROOF. In the proof we will use the classical notion of Kronecker modules
over a field, namely, quartets (U, fo, f1, V) such that U,V are f.d. vector spaces and
fo, f1 € Hom(U, V). This is allowed by Example

Let Z = (U, fo, f1,V) be an indecomposable Kronecker-module. To see the first
assertion, it is enough to prove that if Z is self-dual, then fy and f; are bijective
(as this wouldn’t allow degenerate blocks of types I or III). The indecomposable
Kronecker modules over F are well known (e.g. see [44]) and the ones with U 2V
(which is required for Z = Z*) are of the form

(Fn7 13'A7Fn) or (Fn717Jn7Fn)7(Fn’Jn’]"Fn)

where A is any indecomposable invertible linear transformation and .J, is a 0-
diagonal Jordan block. As (F™, 1,J,,F") 2 (F",1,J,, F")* = (F",JL 1, F"),
the Kronecker modules (F", 1, J,,, F™) and (F", J,,1, F™) are not self dual. Thus,
Z = (F",1,A, F™), implying fo and f; are invertible. The other claims follow from

Theorem [4.11.6|since (B4) holds (i.e. the base module is of finite length). O

QUESTION 4. Can the previous corollary be generalized to degenerate forms
over other rings?

4.12. Isotypes

In this section we define and study isotypes. We keep the notation W, :=
W,/ Jac(Wy,) of the previous section.

DEFINITION 4.12.1. Let Z be an indecomposable Kronecker module and let { =
{[Z2],[Z2*]}. A bilinear space (M,b, K) is called a (-isotype if Z(b) is of type-(, i.e.
Z(b) is isomorphic to a direct sum of copies of Z and Z*. If moreover (M,b, K) is
a block, then it called a (-block.

By Theorem every block is a (-isotype for a uniquely determined (.
Moreover, a bilinear form b for which W is semiperfect is a (-isotype if and only
if it is a sum of (-blocks (as implied by Theorem |4.11.1] and the Krull-Schmidt
Theorem).

Henceforth, for every Kronecker module Z, let ¥, denote the isomorphism
classes of the indecomposable summands of Z and set

Sz = {120, 12°}H12) € 37}
(compare with the notation Xy, Y of section .

THEOREM 4.12.2. Let (M,b, K) be a bilinear space.
(i) If Wy is semiperfect, then b :J‘Cefz(b> be where each be is a (-isotype.

(ii) If moreover Wy, is pro-semiprimary and 2 € W, then the isotypes be of
(i) are determined up to isometry by b and (.
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The proof requires the following two lemmas.

LEMMA 4.12.3. Let &/ be an additive category and let Ay, ..., Ay € &7 be pair-
wise non-isomorphic objects with local endomorphism ring. Let W; = End(4;),
Ji = Jac(W;) and A = @;_, A} (where ny,...,ny € N). Then

Jac(End(A Z M, (J;) + Z Hom(A}", A )
i#£]

(we identify M,,,(W;) and Hom(A}", AnJ) as subsets of End(A) in the standard
way). In particular,

End(A)/ Jac(End(A)) = [[ M, (Wi/J;)
=1

PRrOOF. This is a well-known argument. Let W = End(A). Since Jac(eWe) =
eJac(W)e = Jac(W) N eWe for all e € E(W), we can reduce the proof to showing
that Jac(M,,, (End(W;))) = M, (Jac(W;)), which is well known, and Hom(A4;, A;) C
Jac(End(A; @ A;)) for any two distinct 1 < 4,5 < ¢, which we verify below. ThlS
would imply Jac(W) 2 25_, My, (J;) + iy Hom(A", A;”) and the reverse inclu-
sion follows since a quotient by the r.h.s. (which is an ideal by the argument below),
yields a semisimple ring.

It is thus left to verify that Hom(A;, A;) C Jac(End(A; & A;)) for any two
distinct 1 < 4,5 <t. Wlo.g. ¢ =1and j = 2. Let U = End(4; ® A2) and let
e1, ea be the projections from A; @ As to Ay, As, respectively. Then Hom (A, As) =
eaoUeq, hence we need to prove that w € Jac(U) for all w € esUe;. Let u € U.
It is enough to prove that 1 + ww is invertible. Indeed, e;juw € e;Ue;. We claim
that ejuw ¢ (enUe;)*. Assume by contradiction that ejuw € (e1Ueq)™. Then
w # 0 and there exists v’ € e;Ue; such that u'uw = e;. This implies (wu'ues)? =
w(u'ueqw)u'ues = wu'uey. As wu'ues € eaUey = End(As) and End(As) is local,
wu'ues € {e2,0}. Since 0 # w = (wu'ues)w, necessarily wu'ues = ey and it follows
that u'ues is an isomorphism from As to A; (its inverse is w), a contradiction to the
assumption A; 2 Ay. Thus, ejuw is not a unit in e;Ue; = End(A;). As the latter
is local, e; 4+ ejuw is invertible in e;Ue;. Let a be its inverse. Then a 4+ ey € U*
and (a+ e)(14+uw) = aer (1 +uw) + ea(1 +uw) = e + g + esuw = 1+ esuw. As
(1 + equw)™! = (1 — equw) (straightforward), it follows that 1 + uw is invertible
in U, as required. (Notice that this argument also implies that Hom(A;, As) -
Hom(Az, A1) C eg Jac(U)es = Jac(Az) which justifies the claim in parenthesis at
the end of the previous paragraph.) O

LEMMA 4.12.4. Let (R, *) be a ring with involution that does not contain an in-
finite set of orthogonal idempotents. Then there exists unique unital decomposition
{ei}t_; of R with the following properties: (1) each e; is *-invariant and central in
R and (2) e;Re; does not contain non-trivial central x-invariant idempotents.

PROOF. Let S be the set of all non-zero central *-invariant idempotents satis-
fying (2). It is enough to prove that S is a unital decomposition of R. First, note
that S # ¢ since R does not contain an infinite sum of orthogonal idempotents.
Next, let e, f € S be distinct. We claim that ef = fe = 0. Indeed, since e, f are
central and *-invariant, ef is a central *-invariant idempotent in eRe. Thus, ef =0
or ef = e. In the latter case, 0 # e € fRf. As e is central and S-invariant, we must
have e = f, a contradiction. Therefore, ef = fe = 0 which means that S consists
of pair-wise orthogonal idempotents. The assumptions on R imply that S is finite
and hence h :=1— 3% _qe is a *-invariant cental idempotent which is orthogonal
to all elements of S. If h # 0, take central S-invariant 0 # h' € E(hRh) satisfying
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(2). Then A’ € S (by definition) and 0 # A’ = hh’ = 0 (since h is orthogonal to all
elements of S), a contradiction. Thus, necessarily h = 0 and we are through. O

PrOOF OF THEOREM [£12.2] (i) By Theorem (M,b,K) is an orthog-
onal sum of blocks {(M;,b;, K)}!_,. Take (M¢,b¢, K) to be the orthogonal sum of
the ¢-blocks in {(M;, b;, K)}_,.

(ii) Since Jac(W}) is idempotent lifting, W, does not contain an infinite set
of orthogonal idempotents. Therefore, by Lemma i), there exists a unique
central S-invariant unital decomposition {¢;}!_; such that ;W e; does not contain
non-trivial central S-invariant idempotents. Now let {e;} S0 be the S-invariant
unital decomposition of W, corresponding to b =L ceSom be (see Proposition.

We claim that {e¢ | € Sz} = {ei|1 < i < t}. By the uniqueness of the set
{e:|1 < i < t}, it is enough to check that for any (, € is S-invariant, central and
ECWZ,EC does not contain non-trivial central S-invariant idempotents.

Let ¢ = {[Z],[Z*]} € Sz@). That e is S-invariant is clear. To see it is central,
let 7/ := ZC#C’Efzw) Z(ber). By definition, Z(b) = Z(be) ® Z" and [Z],[Z*] ¢ 7.
Therefore, by Lemma ec¢, which is the projection from Z(b) to Z(b¢) with
kernel Z’, becomes central in W,.

We now show that €<Wb€< does not contain non-trivial central S-invariant
idempotents. If Z is self-dual, then Z(b:) = Z™ for some n € N. Thus, e.W e, is
simple artinian by Lemma and thus has no non-trivial central idempotents,
as required. If Z is non-self-dual, then Z(b;) = Z™ @& (Z*)™ for some n,m € N
and Z 2 Z* (in fact, n = m since Z(b¢)* = Z(b¢)). Let f1, fo be the projections
from Z(be) to Z",(Z*)™, respectively. Then by Lemma then only non-
trivial central idempotents in e Wyec are fy, fo. It is enough to show that they
are not -invariant. Indeed, assume by contradiction that f, is -invariant. Then
by Theorem there exists a fS-invariant f € E(ecWpe¢) such that ?/ = fi.
Let b = by L by be the decomposition corresponding the unital decomposition
{f’,1 = f'} (Proposition 4.8.1). Then f'Z(b) = Z(b1), hence f'Z(b) is self-dual.
However, by Lemma 7 = f, implies f'Z(b) = f1Z(b) = Z™ which is not
self-dual by the Krull-Schmidt Theorem (as Z 2 Z*), a contradiction. That f, is
not B-symmetric follows by symmetry.

Now let b :J_C o b’< be another decomposition of b into isotypes and let
{e’c} a0, be the corresponding S-invariant unital decomposition of W,. By what

we have just shown, {e; [¢ € Sz} = {ei|1 <i <t} = {ec[¢ € Tz} Since
e¢Z(b) and e, Z(b) cannot be isomorphic for distinct ¢, ¢’ (Krull-Schmidt Theorem),
ecWy, % e, W, as right Wi-modules (Lemma . In particular, & must be
distinct from €, which forces e; = e for all { € Yz Now, e is isometric to
€. (as they are equal), hence e is isometric to e (Theorem 7 s0 be = b by
Proposition 4.8.8 (]

Let (M,b, K) be a bilinear space and let ¢ = {[Z],[Z*]} with Z indecompos-
able. Assume that 2 € W, and W}, is semiperfect and pro-semiprimary. We define

(M¢,be, K) as in Theorem |4.12.2in case ¢ € iz(b) and (M¢,be, K) = (0,0, K) oth-
erwise. The bilinear space (M¢, b, K) is then uniquely determined up to isometry
and the map b — b is additive in sense that

(b1 Lb2)¢ = (b1)¢ L (b2)¢

(whenever Wy, 15, is a semiperfect pro-semiprimary ring in which 2 is a unit).

REMARK 4.12.5. One can define isotypes without assuming W} is semiperfect
by defining them to be bilinear spaces (M,b, K) in which W} does not contain
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non-trivial central S-invariant idempotents. It can then be shown that if Jac(W})
is idempotent lifting and W}, does not contain an infinite set of orthogonal idem-
potents, then b is an orthogonal sum of isotypes b =15 | b; and b; L b; is not
an isotype for ¢ # j. If moreover W} is complete in the Jacobson topology (e.g. if
Jac(W}) is nilpotent), then the isotypes {b;}¥_, are determined up to isometry and
reordering. However, there is no obvious way to form families of isotypes as we did
above. (It is possible to say that two isotypes b and b’ are of the same kind if b L ¥’
is also an isotype, but the author does not know if this is an equivalence relation in
general. In addition, it is not clear what are the equivalence classes. Nevertheless,
we suspect that if R is an algebra over Z which is f.g. as a Z-module, then some
positive results can be shown.)

REMARK 4.12.6. Consider regular classical bilinear forms over a field F. Then
the Kronecker module of a bilinear forms is determined by the conjugacy class
of its asymmetry (Corollary and the conjugacy class is determined by the
Jordan decomposition (or, equivalently, the canonical rational form). Using this,
one can see that the isotypes we have defined in this section agree with the definition
given in section [L.1] for classical regular bilinear forms. However, now we also have
degenerate isotypes.

4.13. Isometry and Cancelation

In this section, we show how to reduce the isometry problem of bilinear forms
(M, b, K) for which W, is semiperfect pro-semiprimary with 2 € W, to isometry of
hermitian forms over division rings. This is then used to prove Witt’s Cancellation
Theorem.

Recall that Theorem [£:.12:2reduces the isometry problem of bilinear forms b for
which is W}, is semiperfect pro-semiprimary with 2 € W, to isometry of ¢-isotypes.
However, if ¢ = {[Z],[Z*]} for Z which is not of bilinear type, then the (-blocks are
necessarily of type-II or type-III. Therefore, in this case any (-isotype (M, b, K) is
hyperbolic and determined up to isometry by [Z(b)], as implied by Theorem
We may thus restrict our attention to (-isotypes with ¢ = {[Z],[Z*]} and Z of
bilinear type (which implies ( = {[Z]}).

Fix an indecomposable Kronecker module Z of bilinear type with End(Z) being
local and pro-semiprimary. W.l.o.g. we may assume Z = Z(bg) for some bilinear
space (Mo, bo, K). Let L = End(Z) and let D = L/ Jac(L). Then D is a division
ring. For every n € N, let

’I’L'b():boJ_-“J_b()
—_——
and set W,, = Wy, and W, = Wo4,. As Z(n - bg) = Z(bp)" = Z", we may
identify W,, with M,,(W7) and W,, with M,,(W1) = M,,(D). We let 3, denote the
involution induced by S(n - by) on W,.

PROPOSITION 4.13.1. Under the identification W,, = M,,(W7) we have

b
wip ... Win A(n-bo) wfl(bo) . wggbo)
Wp1 --. Wpn wﬁgbo) o wgébo)

PRrROOF. Recall that W,, = End(Z™) and S(n - by) is nothing more than the
map * : End(Z") — End((Z*)") = End(Z"). The proposition holds since for any
element (f;;);; of End(Z") (written in matrix form), we have (fi;);; = (f7i)ij-
(This is a general fact about additive contravariant functors.) (]
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Let V;, be an n-dimensional right D-vector space. Then Endp(V,,) = M, (D) =
W,. By Theorem m, the involution f,, correspond to a regular bilinear form
bn 1V, xV, = K,,, where K,, is some double D-module. Furthermore, by the dis-
cussion of section [3.I] there is an involution x,, of K,, such that b, is k,-symmetric.

To get an explicit realization of (V,,, by, K,,) and k,,, we invoke Proposition
(with e = eq1; here {e;;} are the standard matrix units in M,,(D)). This proposition
implies that once identifying V;, with W,e1; = M,, (D)ey; and letting D act on V,,
from the right in the standard way, we can take K, = eff' M,,(D)ey1, with ®¢, ®1
defined by

(e’ffaceu) Gopa= (euaeu)ﬁn(effxen), (efi‘xeu) ®1a= (elﬁfxeu)a,

for all x € W,,, a € D and k,, = Ba|x,. The form h,, : V,, x V,, — K, is then given
by

ho(z,9) = 2Py YV a,y €V, =M,(D)e .
By Proposition 4.13.1 eff = ej11, hence K,, = ey;1Deq; and there is a set iso-
morphism K, — D given by ejjae;; — a. Pulling ©®g and ®; to D along this
isomorphism, we get a double D-module structure on D given by

d@oazaﬂld7 dora=da.

Thus, identifying K,, with D, we get that h,, is nothing but a (51, 1)-hermitian form
over D. We henceforth consider h,, as a hermitian form taking values in D. It is
given by h,(z,y) = d where d is the unique element of D satisfying 2%y = ej1dey;.
Even more explicitly, taking {ej1,...,e,1} as the standard basis of V,,, one has

hn(z e“di,Ze“d;) = deld; .

We now apply the following argument: Isometry classes of bilinear forms b
over R with b ~k; n - by correspond to congruence classes of invertible elements in
Sym(W,,, B(n - b)) (Proposition , which correspond to congruence classes of
invertible elements in Sym(M,, (D), 8,) (Theorem which in turn correspond
to isometry classes of bilinear forms h over D with h ~k, h, (again by Proposi-
tion . As bilinear forms h with h ~g; h, are just (f1,1)-hermitian forms
defined over n-dimensional D-vector spaces (straightforward), it follows that the
isometry classes of bilinear forms b over R with b ~k, n-by are in one-to-one corre-
spondence with isometry classes of n-dimensional (81, 1)-hermitian forms over D.
This is phrased more formally in the theorem below.

To handle extremal cases, we define both W, and W to be the zero ring (or,
if one insists, Mo(W7) and My(D)). We also let Vj be the zero right module over
D and hy : Vy x Vy = D be the zero (81, 1)-hermitian form.

THEOREM 4.13.2. Keeping the previous notation, let (M, b, K) be a -isotype.
Then there exists unique n € NU {0} such that b ~x, n-by. Let (o,7°P) : Z(b) —
Z(n-by) =Z"™ be any isomorphism. Define b:V,, x V,, = D by

b(z,y) = 2P"Tay  Va,y eV, =Wnen
and let (M', V', K) be another (-isotype. Then:
(i) b is well-defined up to isometry. Moreover, b = v =
(ii) The map [b] — [b] is additive in sense thatb LY = b L V.

PROOF. (i) Since b is a (-isotype and ¢ = {[Z]}, we have Z(b) = Z" = Z(n-by)

for some n € NU {0}, which is unique by the Krull-Schmidt Theorem. Tracking

along the proofs of Proposition [4.8.12f (and also Theorem [4.9.20)), one sees that the
(81, 1)-hermitian form corresponding to b in the preceding discussion is precisely b,

hence [b] determines [b] and vice versa.

=N

\@\
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(i) Let (o,7°P) : Z(b) — Z™ and (o/,7/°P) : Z(b) — Z" be isomorphisms
of Kronecker modules. Then (o @ o/, (7 & 7/)°P) : Z(b L V') — Z"™ is an iso-
morphism and considering all terms involved as matrices over D, we have 7o ®

!

o’ = (t1®7')(0c @0o’). It is now straightforward to check that by identifying
Vn @ Vn/ with Vn—i—n’ via (Zz €;1Q4, Zj ejlbi) — Z?:l €i1a; + Z?Zl 6n+jbi we have
bLb =bLV. O

Theorem implies that, under mild assumptions, the isometry problem of
bilinear forms can be reduced to isomorphism of Kronecker modules and isometry
of hermitian forms over division rings. We have noted this at the end of section
but now we have presented an explicit way to see this. However, the categorical
approach taken in sectionhas the advantage that the reduction is functorial (i.e.,
rather than an additive correspondence between isometry classes, there is a functor
from the category of bilinear forms over R to the product of certain categories of
hermitian forms over certain division rings). This can be shown explicitly as well,
but as it requires additional notation that does not benefit the text, we have omitted
the details. We finish this section by proving Witt’s Cancellation Theorem.

COROLLARY 4.13.3 (Witt’s Cancellation Theorem). Let b1,bo,bs be bilinear
forms over R such that by L by = by L bs (no assumption or regularity or symmetry
is needed). If Wy, 14, is semiperfect pro-semiprimary and 2 € beLba’ then by =2 bs.

PrROOF. By Theorem and the preceding discussion, (b1)¢ L (b2)¢ &
(b1)¢ L (b3)¢ for every ¢ € Xz(p, 14,). Therefore, we may assume b; = (b;)¢ for every
i €{1,2,3}. Write ¢ = {[Z],[Z*]}. If Z is not of bilinear type, then all {-blocks
are hyperbolic and isomorphic to each other (Theorem [4.11.6]), hence by, by, by are
determined up to isometry by their Kronecker module. As Z(b1)® Z(by) = Z(b1) ®
Z(bs), the Krull-Schmidt Theorem implies Z(b2) = Z(b3), and hence by = b3. If
Z is of bilinear type, then by Theorem it is enough to prove by = bs. As
by L by = by L b3, we are through by Witt’s Cancelation Theorem for hermitian
forms over division rings of characteristic not 2, e.g. see [86, Ch. 7, §9] or [73]. O

REMARK 4.13.4. Witt’s Cancelation Theorem was proved in various scenarios
including hermitian categories satisfying (C2) (see section [4.4)), systems of classical
reqular symmetric bilinear forms over a field ([86] Ch. 7, Ex. 11.8]) and also for
classical non-symmetric reqular bilinear forms over a field ([76] and related papers).
Non-regular symmetric bilinear forms were treated in [16]. Corollary gener-
alizes all of these results. Even in the classical symmetric case, it seems to be the
only result that applies to systems of non-regular bilinear forms (this is “almost”
obtained in [86, Ch. 7, Ex. 11.8]; the assumptions require at least one of the forms
to be regular).

4.14. Structure of the Isometry Group

Throughout, F' is an algebraically closed field of characteristic not 2 and R is a
f.d. F-algebra. In this last section, we will use the results of the previous sections
to deduce some strong structural results about isometry groups of F'-linear bilinear
of forms over R. (The case when F is not algebraically closed is briefly discussed at
the end.) Note that all the results of this section apply to systems of bilinear forms
and no regularity or symmetry assumption is needed. The results of this section
extend [14] and related works.

DEFINITION 4.14.1. A double R-module K is F-linear if Oolrkxr = O1|lkxr
or, more explicitly, k ©ga = k©®1a for allk € K and a € F. A bilinear form taking
values in an F-linear double R-module is called F-linear.
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Let (M, b, K) be an F-linear bilinear space over R. Then Endg (M) is naturally
an F-algebra. In addition, the F-linearity of K implies that b(xza,y) = b(x, ya) for
all @ € F, hence F embeds in W}, via a — (a,a®P), which makes W} into an F-
algebra as well (and W, is a sub-F-algebra of Endr(M) x Endg(M)°P). Also note
that B(b) is clearly F-linear. These facts will be used freely below.

We begin by showing that F-linear bilinear forms (M, b, K) over R with M
f.g. are determined up to isometry by Z(b) (this was already noted at the end
of section [.3). Observe that condition (A4) of section is satisfied (i.e. M
is of finite length), hence W} is semiprimary (and in particular, semiperfect and
pro-semiprimary).

PROPOSITION 4.14.2. Let (M,b,K) be an F-linear bilinear form over R with
M finitely generated. Then b is determined up to isometry by [Z(D)].

PRrROOF. By Theorem [4.12.2] we may restrict to isotypes. Let Z = (A, fo, f1, B)
be an indecomposable Kronecker module such that dimp A 4+ dimp B < co and let
¢ ={[Z],[Z*]}. We need to prove that for every (-isotype, b, the isometry class
[b] is determined by [Z(b)]. This follows from Theorem in case Z is not of
bilinear type. If Z is of bilinear type, say Z = Z(bp), then by Theorem
the problem reduces to showing that, up to isometry, there exists exactly one n-
dimensional (87, 1)-hermitian form over D, where D = End(Z)/ Jac(End(Z)) and
(1 is the involution induced by by. However, the previous discussion implies that
D is a f.d. F-algebra and (; is F-linear (D is f.d. since End(Z) is f.d. and f is
F-linear since by is F-linear). As F is algebraically closed, necessarily D = F' and
B1 = idp, implying that there exists exactly one n-dimensional (81, 1)-hermitian
form over D, as required. O

We now turn our attention to isometry groups of F-linear bilinear forms. Let
(M,b, K) be such a form with M finitely generated. Then the isometry group of b,
denoted O(b), is an affine algebraic group over F' (since it is a closed algebraic set
in Endp(M)* =2 GL,(F) for some n € N).

EXAMPLE 4.14.3. Assume R = F and b is regular. Write n = dimp M. If
b is symmetric, then O(b) is O, (F'), namely the standard orthogonal group (type
B/D). However, when b is alternating (n is necessarily even), O(b) is Sp,,(F'), the
symplectic group (type C).

We will show that for general R and b the situation is not very different from
the last example; roughly speaking, after removing the unipotent radical, O(b) is a
product of copies of O, (F), Sp,,(F) and GLn(F)E

To simplify phrasing, we will say that a (-isotype is of type-I (-II, -III) if
¢ ={[Z],[Z*]} and Z is of bilinear type (non-self-dual, self-dual but not bilinear).
Clearly the type-I (-II, -III) isotypes are precisely those which are sums of type-I
(-IT, -III) blocks. In addition, for every (-isotype b, we let dim¢ b be the unique
integer n with Z(b) & Z™ in case Z is bilinear and Z(b) = (Z @ Z*)™ in case Z is
not bilinear.

THEOREM 4.14.4. Let (M, b, K) be an F-linear bilinear form over R with M
finitely generated. Then there exists an exact sequence of affine algebraic groups
(over F):

1-U—-0(0b)—-G—1

28 These families correspond to the three “typical” kinds of isometry groups: of symmetric
forms (a form of Oy, (F)), of alternating forms (a form of Sp,, (F)) and of (a, A)-hermitian forms
with a # id (a form of GL, (F)).
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such that U is unipotent and G is a product of copies of On(F), GLy(F), Spy(F)
(n,m,k may vary between the copies). If b :J‘Cefz@) be is the decomposition
of b into isotypes, then the O,(F) (resp.: GL,(F), Spy,(F)) components in G
correspond to the type-I (resp.: type-II, type-III) (-isotypes with dim by = n.

PrOOF. Recall that by Remark the group O(b) is isomorphic to the
unitary group of (Wp, B(b)), i.e. {w € W, |w’®w = 1}, via o — (o, (c~1)°P). As
Wy is a f.d. F-algebra and B(b) is F-linear, this is easily seen to be an isomorphism
of algebraic groups. We may thus identify O(b) with its copy in Wj,.

Observe that 1+ Jac(W}) is a closed unipotent subgroup of W, (that Jac(W;)
is nilpotent follows from Proposition [£.10.1(A4)). Let U = (1 + Jac(W;)) N O(b)
and G = {w € W, |w’®w = 1}. By Theorem |{4.9.20(ii), the map w ~ @ from
O(b) to G is onto (take e = ¢/ = 1 and choose the rest of the parameters as in
the proof of Corollary . Therefore, there is an exact sequence of algebraic
groups 1 - U — O(b) — G — 1 and U is unipotent. It is thus left to determine
the structure of G.

Let b :J_Ceiz(b

Theorem implies that W, = I, Wi, with 5(b) acting as S5(b¢c) on W,
This isomorphism is easily seen to be an isomorphism of F' algebras, hence G =
[[{me W, |©’u = 1} as algebraic groups. We will now determine the structure
of G¢ :={u e W, |v’u=1}.

Write ¢ = {[Z],[Z*]} and n = dim¢ bc. Let by be a (-block. Then Z(b;) =
Z(bp)™, hence by Proposition be = n - by, so w.lo.g. we may assume by =
n-by. Let Wi = Wy,. Then Wy = M, (W;) and the proof of Proposition
implies that under this isomorphism 5(b¢) acts by transposing and applying /5(bo)
component-wise. That is, (Wy,, 5(b¢)) = (M, (F), T) @ (W1, B(bo)) as F-algebras
with involution (here T' denotes the transpose involution). This implies

(W, B(be)) = (M (F),T) @ (W1, 8(bo)) -

As by is a block, the structure of (W1, 3(bg)) is determined in Theorem

If by is of type-I, then (W, B(bg)) is a division ring with involution, implying
W1 = F and B(by) = idp. Thus, (Ws, B(b¢)) = (M (F),T) and G¢ = O, (F).

If by is of type-II, then W, =2 Dx D°P and 3(by) exchanges D and D°P. We must
have D = F and hence, W1 & F x F with 3(by) exchanging the components. Thus,
(M, (F), T) @ (W1, B(bo)) = (Mo(F) x Mu(F), ) where  is given by (4, B)? =
(BT, AT). Tt is easy to check that the group {z € M, (F) x M,,(F)|2"x = 1} is
isomorphic to GL,(F’), hence G¢ = GL, (F') in this case.

If by is of type-III, then W; = My(K) for some field K containing F and 3(bg)
is a symplectic involution. Again, we must have K = F and hence (M, (F),T) ®Fp
(W1, B(bg)) = (May(F),S) with S a symplectic involution. Thus, G¢ = Sp,,, (F).

O

) be be the decomposition of b into isotypes. The proof of

REMARK 4.14.5. If F' is not assumed to be algebraically closed, then there is
still an exact sequence of algebraic groups as in Theorem (which induces an
exact sequence on the group of rational points). However, the group G is not a
product of O,,(F), GL,,(F) and Sp;(F'), but merely a form of such a product (i.e.
G becomes isomorphic to such a product over the algebraic closure of F').
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