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Introduction

From a chronological point of view, this work is written from its
end to its beginning. So let us start at the end, which is the

beginning.

Background and Motivation. Quadratic and hermitian forms have been
investigated since the nineteenth century and have found their way into many areas
of mathematics, in particular into algebra, algebraic and differential geometry and
algebraic topology. The diversity of their applications eventually made them into
an object of research in their own right, and many authors (e.g. Witt, Milnor,
Pfister, to name just a few) have published works dedicated solely to study them.
The basic problems in this area include the isometry problem (determining whether
two quadratic forms are isometric), the isotropy problem (determining whether a
quadratic form is isotropic) and the structure of the isometry group. All of these
problems are solved to some extent over special base fields (e.g. global, local, finite,
real-closed, algebraically closed, etc.; see [65], [86], [69] and related texts).

While classical scenarios required quadratic and hermitian forms over fields
and number rings, beginning from the sixties, quadratic forms over general rings
(non-commutative, with involution) were defined and investigated. This includes
the works of Bak ([6]), Knebusch ([55]), Bass ([10]), Quebbemann, Scharlau and
Schulte ([71]), Knus ([56]), Balmer ([7]) and others. Their combined work even-
tually led to the modern theory of hermitian categories, also called categories with
duality, which are a purely categorical framework to work with quadratic and bilin-
ear forms. One of the strongest results about hermitian categories roughly states
that, under mild assumptions, the theory of quadratic forms over a given hermit-
ian category can be reduced to the theory of quadratic forms over division rings
with involution (e.g. see [71] or [86, Chp. 7]). The applications are numerous and
include Witt’s Cancelation Theorem and various structural results.

Independently, beginning also from the sixties, various authors have considered
(non-symmetric) bilinear and sesquilinear forms over fields.1 The isometry prob-
lem of such forms (which is equivalent to the congruence problem in GLn), was
studied by Wall ([98]), and his work was later used by Riemh ([76]) to rigorously
solve the isometry problem of nondegenerate bilinear forms (over fields), where a
solution means reduction to isometry of hermitian forms. Riehm’s solution was
extended almost immediately by Gabriel to degenerate forms in [44], and further
generalizations to sesquilinear forms (e.g. [75], [84]) and to simultaneous isometry
of two or more bilinear forms (e.g. [88]) have followed later. These works have many
applications as well; most concern canonical representatives of isometry classes and
other results about matrix theory (e.g. see [46], [31], [101], [49], [51], [28], [93]).

In contrast to the theory of quadratic forms, very little seems to be known about
(non-symmetric) bilinear forms over rings (which are not fields). The purpose of
this work is to fill some of this void.

1 I do not assume bilinear forms to be symmetric unless this is explicitly stated.

i



ii INTRODUCTION

Bilinear Forms over Fields; A Guiding Example. My M.Sc. thesis was
concerned with bilinear spaces over fields. In the year after its submission, I noticed
that some of its results, which seemed to need extensive usage of linear algebra,
could actually be proved in a purely ring theoretic context. This observation sug-
gested that some of the theory of bilinear forms over fields could be generalized
to bilinear forms over rings, and thus my the research for my Ph.D. thesis has
initiated.

Let me first demonstrate how the theory of bilinear forms over fields (which
are the “easiest rings”) can be treated with ring theoretic tools. Let F be a field
and let (V, b) be a regular bilinear space.2 Then b induces an anti-automorphism of
EndF (V ) given by σ 7→ σ∗, where σ∗ is the unique endomorphism of V satisfying

b(σx, y) = b(x, σ∗y) ∀x, y ∈ V .

(If b were symmetric or alternating, then ∗ would have been an involution). Let Wb

denote the ring {σ ∈ EndF (V ) |σ∗∗ = σ}. Then (Wb, ∗|Wb
) is a ring with involution

which turns out to hold a lot of information about b. For instance:
(1) There is one-to-one correspondence between representations b = b1 ⊥
· · · ⊥ bn and families of pairwise orthogonal idempotents e1, . . . , en such
that

∑
i ei = 1 and e∗i = ei. In particular, b is indecomposable (i.e. not an

orthogonal sum of two non-zero bilinear forms) ⇐⇒ Wb does not contain
non-trivial ∗-invariant idempotents.

(2) The form b is hyperbolic (i.e. there are totally isotropic subspaces V1, V2
with V = V1⊕V2) ⇐⇒ the involution ∗|Wb

is hyperbolic (i.e. there exists
an idempotent e ∈Wb such that e+ e∗ = 1).

(3) σ is an isometry of b ⇐⇒ σ ∈ {τ ∈Wb | τ∗τ = 1}.
In fact, one can construct a “dictionary” translating various properties of b to
properties of the ring with involution (Wb, ∗|Wb

) (hence the title of this dissertation).
Let us now show how one can translate the isometry problem of bilinear forms

into a congruence problem in (Wb, ∗|Wb
): The asymmetry of b is defined to be the

unique endomorphism λ of V satisfying
b(x, y) = b(y, λx) ∀x, y ∈ V .

The conjugacy class3 of λ is invariant under isometry. Recall that two elements
a, b ∈ Wb are called (∗|Wb

–)congruent, denoted a ∼ b, if there exists s ∈ W×b such
that a = s∗bs. It turns out that

(4) There is a one-to-one correspondence (depending on b) between isometry
classes of regular bilinear forms whose asymmetry is conjugate to λ and the
set {σ ∈ W×b |σ∗ = σ}/ ∼ (i.e. conjugacy classes of ∗-invariant invertible
elements in Wb).

This means that the isometry problem can be reduced to (1) deciding whether two
bilinear forms have conjugate asymmetries (easy) and (2) the conjugacy problem
in (Wb, ∗|Wb

).
The structure of the ring Wb is understood to some extent,4 but not in a

manner that allows easy work with involutions. In contrast to that, the ring

2 The bilinear space (V, b) is called regular if the map x 7→ b(x, ) from V to V ∗ is bijective.
3 Two linear transformations, f ∈ EndF (V ) and g ∈ EndF (U), are said to be conjugate if

there exists an isomorphism h : V → U such that h ◦ f = g ◦ h. This is an equivalence relation.
It is well known from linear algebra that f and g are conjugate if and only if they have the same
Jordan form (or, equivalently, canonical rational form).

4 Indeed, if λ is the asymmetry of b, then Wb = EndF [x](V ) where V is considered as an
F [x]-module by letting x act as λ. As modules over F [x] are well-behaved, we can determine Wb

from the Jordan form of λ. However, dropping the assumption that F is a field leads to some
unexpected behavior (e.g. Wb might not be artinian when F is artinian).
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W b := Wb/ Jac(Wb) is guaranteed to be semisimple. Furthermore, it can be shown
that if charF 6= 2, then all the properties/statements about (Wb, ∗|Wb

) specified
above can be lifted from W b to Wb, hence we can study b by studying semi-
semisimple F -algebras with involution.

Let us exploit this to reduce isometry of bilinear forms to isometry of her-
mitian forms: Let β denote the involution induced by ∗ on W b. By (4) and the
previous paragraph, it is enough to solve the conjugacy problem in (W b, β). The
ring with involution (W b, β) is easily seen to be a product of rings with involution∏k
i=1(Wi, βi) with each Wi being either simple artinian or of the form W ′i ×W

′op
i

with Wi simple artinian and βi exchanging W ′i and W ′i . We may thus restrict our
attention to the components (Wi, βi). We now split into two cases. If Wi is of the
form W ′i × W ′op

i , then any two βi-invariant invertible elements are βi-congruent
(straightforward), so the congruence problem is trivial. However, if Wi is simple
artinian, then by Wedderburn’s Theorem, we can write Wi

∼= Mni(Di) for some
division ring Di (actually, Di is a field in our case). We now invoke the following
well-known theorem.

Theorem 0.1. Let D be a f.d. division algebra over F . If Mn(D) admits an
involution β, then D has an involution α and there exists a 1 or −1 hermitian form
h : Dn×Dn → D over (D,α) whose corresponding involution is β. That is, for all
x, y ∈ Dn and σ ∈ EndD(Dn) ∼= Mn(D), we have:

h(σx, y) = b(x, σβy) .

Proof. For the existence of α, see [2, Chp. X]. For the existence of h see [57,
Th. 4.2]. If D is a field (as in our case), then α is just the restriction of β to
D = Cent(Mn(D)). �

Let αi, hi be the involution and hermitian form obtained from βi as in the
theorem and let S denote the set of i-s for which Wi is simple. We now have a
one-to-one correspondence between the following sets:

(i) Isometry classes of bilinear form whose asymmetry is conjugate to λ;
(ii) {σ ∈W×b |σ∗ = σ}/ ∼;
(iii) {σ ∈W×b |σβ = σ}/ ∼;
(iv)

∏
i∈S{σ ∈W

×
i |σβi = σ}/ ∼;

(v) Families {bi}i∈S such that each bi is an ni-dimensional 1-hermitian or
−1-hermitian form over Di, considered up to isometry.

Indeed, the correspondences (i)↔(ii) and (iv)↔(v) are just (4) above, (ii)↔(iii) and
(iii)↔(iv) were explained (but not proved) in the two paragraphs before Theorem
0.1. As a corollary of the correspondence we get:

Corollary 0.2. Isometry of regular bilinear forms over a field F of charac-
teristic not two can be reduced to isometry of hermitian forms over f.d. division
algebras over F (which are in fact fields).

This corollary is precisely Riehm’s solution ([76]), although he did not phrase
or prove it in this manner. The advantage of the approach taken here is that it
is purely ring theoretic and hence it might be effectively applied to bilinear forms
over rings. Moreover, it turns out that various works which solve similar isometry
problems of non-symmetric forms (e.g. [75], [84], [88] and also [44]) can be obtained
as special cases of this general strategy.

Main Results. In this work I have generalized the previous ideas to bilinear
form over rings. The effort was fruitful and the results obtained has exceeded my
expectations; by a slight alternation of the definition of Wb, I was able to handle
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non-regular (e.g. degenerate) bilinear forms and, more importantly, arbitrarily
large systems of bilinear forms (which is new even in the symmetric case). Among
the results I have obtained for systems of bilinear forms over certain good rings (see
below) in which 2 is a unit are:

(a) Witt’s Cancelation Theorem (for non-symmetric non-regular systems of
bilinear forms).

(b) The isometry problem can be reduced to isometry of hermitian forms over
division rings (generalizing [76], [75], [84], [88] for regular non-symmetric
forms, [44] for non-regular non-symmetric forms and [6], [55], [71] and
related papers for regular symmetric forms).

(c) There exists a decomposition into isotypes (see [84] for definition in the
non-symmetric case; see [86, Th. 10.8] for the symmetric case; see section
4.12 for the general case; this generalizes the references mentioned in (b)).

(d) Characterization of the indecomposable (systems of) bilinear spaces (gen-
eralizing [93]).

(e) If the base ring is a f.d. algebra over an algebraically closed F field and O
is its isometry group, then there exists an exact sequence of F -algebraic
groups 1 → U → O → G → 1 such that U is the unipotent radical of
O and G is a product of copies of On(F ), GLm(F ) and Sp2k(F ). (The
sequence 1→ U → O → G→ 1 remains exact after taking rational points
over F ; this result resembles [14].)

There are other applications, which could not be included in this thesis due to space
and time limitations, and will be given elsewhere.

Among the good rings are the semiprimary ring (e.g. right or left artinian
rings) and, more generally, the semiperfect rings which are pro-semiprimary, namely
isomorphic to an inverse limit of semiprimary rings. For example, any semilocal ring
R for which R = lim←−R/ Jac(R)n is semiperfect and pro-semiprimary (such rings
are called complete semilocal). In all of the results, the base module is assumed to
be finitely presented, and additional mild assumptions are needed if the base ring
is not semiprimary (these assumptions are satisfied by f.g. projective modules).

To put the previous results into their right context, observe that the idea of
studying bilinear forms by transferring to rings with involution also appears in the
literature about symmetric bilinear forms over rings (e.g. see [71], [86, Chp. 7],
[16, §5]). This approach has led to the proof of most of the previous results over
hermitian categories satisfying certain conditions. In particular, (a)–(d) are known
to hold for regular (single) bilinear forms over complete discrete valuation rings.
In addition, in [16], E. Bayer-Fluckiger and L. Fainsilber have presented a way to
derive statements about non-regular bilinear forms from the regular case and have
applied it to Witt’s Cancelation Theorem and other results. (We will discuss [16] in
more detail below.) Nevertheless, in contrast to the symmetric theory, the approach
just described does not seem to appear in the literature about non-symmetric forms,
perhaps because it is hard to say something about the structure of Wb if the base
ring is not a field. (This is one of the main goals of Chapter 1.) Furthermore, all
the results just mentioned assume that the module over which the form is defined
is reflexive (see section 2.5), which is not needed in my results. To conclude, the
results (a)–(e) are new mainly for non-regular or non-symmetric forms, for forms
defined over non-reflexive modules and also for systems of bilinear forms.

Bilinear Forms over Rings. We have spoken about bilinear forms over rings
without properly defining them, so let us take care of this gap. Various definitions
can be found in the literature (e.g. the sesquilinear forms defined below; see the
references at the opening of the introduction for more definitions), but all of them



INTRODUCTION v

require the base ring to have an involution. (This even applies to hermitian cate-
gories in a certain sense.) Among the innovations of this work is a new definition
of bilinear forms over arbitrary (non-commutative) rings (no involution is needed).

Definition 0.3. Let R be a ring. A double R-module is an additive group K
endowed with two actions �0,�1 : K × R → K such that K is a right R-module
w.r.t. each of �0,�1 and (k �0 a)�1 b = (k �1 b)�0 a for all k ∈ K and a, b ∈ R.
(Double R-modules are categorically equivalent to (Rop, R)-bimodules).

An anti-isomorphism of a double R-module K is a map κ : K → K (written
exponentially) such that (k �i r)κ = kκ �1−i r for all k ∈ K, r ∈ K and i ∈ {0, 1}.
If in addition κ2 = idK , then κ is called an involution.

A bilinear space over a ring R is a triplet (M, b,K) such that M is a right
R-module, K is a double R-module and b : M × M → K is a biadditive map
satisfying

b(xr, y) = b(x, y)�0 r and b(x, yr) = b(x, y)�1 r

for all x, y ∈M and r ∈ R. If κ is an involution of K, then b is called κ-symmetric
if b(x, y) = b(y, x)κ for all x, y ∈M .5

This definition, which serves as the basis of this dissertation, includes the def-
initions of the references mentioned earlier and the results (a)-(e) above applied
to bilinear forms in this new sense (the double R-module K can be chosen almost
arbitrarily). Furthermore, in the same manner that hermitian categories are cat-
egorical frameworks for quadratic forms, one can define categories with a double
duality which are categorical frameworks for our new bilinear forms. We also note
that, in some sense, the new definition cannot be trivially viewed as a special case
of a hermitian category (see the end of section 2.7 for details).

Example 0.4. Let (R, ∗) be a ring with involution and let λ ∈ Cent(R) such
that λ∗λ = 1. Recall that a sesquilinear space over (R, ∗) is a pair (M, b) such
that M is a right R-module and b : M ×M → R is a biadditive map such that
b(xr, y) = r∗b(x, y) and b(x, yr) = b(x, y)r for all x, y ∈ M and r ∈ R. If moreover
b(y, x) = λb(x, y)∗, then b is λ-hermitian.

Make R into a double R-module by defining r�0a = a∗r and r�1a = ra for all
a, r ∈ R. In addition let κ : R→ R be defined by rκ = λr∗. Then κ is an involution
of R, once considered as a double R-module. In addition, (M, b) is a sesquilinear
space ⇐⇒ (M, b,R) is a bilinear form in our new sense and b is λ-hermitian ⇐⇒
b is κ-symmetric.

Henceforth, in order to avoid ambiguity, we will refer to sesquilinear forms as
“classical bilinear forms”.

Example 0.5. The new definition allows us to work with single bilinear forms
and systems of bilinear forms using the same notation. Indeed, let R be a ring and
let {(M, bi,Ki)}i∈I be a system of bilinear forms over the right R-moduleM . Define
K =

∏
i∈I Ki and b : M ×M → K by b(x, y) = (bi(x, y))i∈I . Then (M, b,K) is a

bilinear form and we can treat (M, b,K) rather than the system {(M, bi,Ki)}i∈I .

5 This definition has evolved from the (somewhat known) more primitive version, which
is a combination of the definition of sesquilinear forms with some other definitions from the
literature: A bilinear form over a ring with involution (R, ∗) is a triplet (M, b,K) such that M is
a right R-module, K is an (R,R)-bimodule and b : M ×M → K is a biadditive map satisfying
b(xr, y) = r∗b(x, y) and b(x, yr) = b(x, y)r. The bimodule K is also required to admit a map
κ : K → K such that (a ·k)κ = kκ ·a∗ and κ2 = idK . It was not until proving Theorem 0.8 below
that I understood that K can be replaced with an (Rop, R)-bimodule and ∗ and κ can be dropped
from the notation. The reason I have moved to double R-modules is because many arguments
required the left Rop-module structure to be twisted to the right, causing ambiguity as to which
right R-module structure is used.
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To define regular bilinear forms we set the following notation: If K is a double
R-module and i ∈ {0, 1}, then Ki denotes K, considered a right R-module via
�i. Now, any bilinear space (M, b,K) over R gives rise to two maps called the left
adjoint and right adjoint of b. They are defined by

Ad`b : M → HomR(M,K1), (Ad`bx)(y) = b(x, y) ,
Adrb : M → HomR(M,K0), (Adrbx)(y) = b(y, x) .

The form b is called right regular (right injective) if Adrb is bijective (injective). Left
regular and left injective forms are defined in the same manner. Right injective
forms are also called right nondegenerate. Regularity and injectivity are not left-
right symmetric properties, but if b is κ-symmetric for some involution κ of K, then
the right and left versions coincide.

Observe that if a (M, b,K) is right regular, then every σ ∈ EndR(M) admits a
unique σ∗ ∈ EndR(M) such that

b(σx, y) = b(x, σ∗y) ∀x, y ∈M .

The map ∗ is easily seen to be an anti-endomorphism6 of EndR(M) which is called
the corresponding (right) anti-endomorphism of b.

Bilinear Forms and Anti-Endomorphisms. Let F be a field and let V be a
f.d. F -vector space. A well-known theorem asserts that the map sending a classical
regular bilinear form on V to its corresponding anti-endomorphism induces a one-
to-one correspondence between classical regular bilinear forms on V , considered up
to scalar multiplication, and anti-endomorphisms of EndF (V ) fixing F . Under this
correspondence, symmetric and alternating forms correspond to orthogonal and
symplectic involutions, respectively (see [57, Chp. 1] for proof). This result, which
is related to Theorem 0.1, admits various generalizations to classical bilinear forms
over simple F -algebras, which play an important role in the connection between
quadratic forms and involutions of central simple algebras.

The importance of this result and the necessity of a generalization of The-
orem 0.1 to arbitrary division rings and involutions have raised the question of
whether this correspondence generalizes to our newly defined bilinear forms. In-
deed, as noted above, any right regular bilinear form admits a corresponding anti-
endomorphism, so one would expect to have a correspondence between right regular
bilinear forms defined on a right R-module M , considered up to a suitable equiva-
lence relation, and anti-endomorphisms ofW := EndR(M). This problem is studied
extensively in Chapter 3 and has raised some unexpected results of a mixed nature.

Firstly, it turns out that there is a canonical way to assign to every anti-endo-
morphism α of W = EndR(M) a corresponding bilinear form bα : M ×M → Kα

satisfying
bα(σx, y) = bα(x, σαy) ∀x, y ∈M ,

and bα is κα-symmetric for some involution κα of Kα if α is an involution. This
is remarkable since, to the best of my knowledge, there is no canonical way to
construct the inverse map of the correspondence for classical bilinear forms (and
moreover, the construction involves “heavy tools” as the Skolem-Noether Theo-
rem, which are not always available). What allows this unexpected shortcut is
the freedom in choosing the double R-module Kα; we do not have to identify it
with a prescribed double R-module. There is also an obvious candidate for the
required equivalence relation on bilinear forms: Two bilinear forms (M, b,K) and
(M, b′,K ′) are called similar (denoted b ∼ b′) if there exists an isomorphism of
double R-modules f : K → K ′ such that b′ = f ◦ b.

6 An anti-endomorphism is an additive map which preserves the unity and reverses the order
of multiplication. A bijective anti-endomorphism is call an anti-automorphism.
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Example 0.6. Let F be a field. Then two classical bilinear forms defined over
an F -vector space V are similar ⇐⇒ they are the same up to scalar multiplication.

Example 0.7. Let F be a field, let V be a f.d. dimensional F -vector space
and let α be an anti-endomorphism of EndF (V ). Since F ∼= CentF (V ) as F -
algebras, α induces an (anti-)endomorphism on F , which we keep denoting by α.
It turns out that the double F -module Kα is isomorphic to the double obtained
from F by defining k �0 a = aαk and k �1 a = ka for all k, a ∈ F . In particular,
if α|F = idF , then bα is just a classical bilinear form. Furthermore, if α is an
orthogonal involution, then κα = idF , i.e. b is symmetric, and if α is a symplectic
involution, then κα = − idF , i.e. b is anti-symmetric. Similarly, if α is an involution
of the second kind, then bα would turn out to be a λ-hermitian form over (F, α|F ).

In general, there is a one-to-one correspondence between all anti-endomorphisms
of EndF (V ) and the right regular bilinear forms on V , considered up to similarity.
However, not all anti-endomorphisms correspond to classical forms.

Unfortunately, the last example does not reflect the general case. First, in
general, the form bα need not be right regular (and might even be the zero form), so
the correspondence might fail! Furthermore, similarity is not a suitable equivalence
relation in general. Indeed, there exists an example of a regular bilinear form b
with corresponding anti-endomorphism α such that bα is not similar to b. The
latter problem can be resolved by restricting our attention to bilinear forms that
are obtained from anti-endomorphisms (i.e. forms which are similar to bα for some
α). Such forms are called generic (and any right regular form can be swapped with
its generization). However, the first problem is inherent and can only be solved by
restricting to special cases. Among the positive results obtained are the following:

Theorem 0.8. Let M be a right R-module and let W = EndR(M). Then:
(i) When M is finite projective, there is a one-to-one correspondence between

anti-endomorphisms of W and generic right regular forms on M .
(ii) When M is a generator (of Mod-R), there is a one-to-one correspondence

between anti-automorphisms of W and generic ( right and left) regular
forms on M .

While the previous theorem is very nice, it is quite rare that M is projective
or a generator. This has led me to wonder whether I have been too eager in the
sense that I have required too much of the form bα. Indeed, the right regularity
assumption is in fact superfluous. What is really needed from a bilinear form
b : M ×M → K in order to have a corresponding anti-endomorphism is that for
all σ ∈W := EndR(M), there would exist unique σ∗ ∈W satisfying

bα(σx, y) = bα(x, σ∗y) ∀x, y ∈M .

Such forms are call right stable.

Example 0.9. Let b1, b2 : Z2 × Z2 → Z be the classical bilinear forms over
Z defined by b1(x, y) = xT [ 2 0

0 2 ] y and b2(x, y) = xT [ 1 0
0 2 ] y. Then b1 and b2 are

injective (i.e. nondegenerate), but not regular. The form b1 is right (and left) stable
and its corresponding anti-endomorphism is the transpose involution on M2(Z) ∼=
EndZ(Z2). However, b2 is not right stable since there is no σ′ ∈ M2(Z) such that
b2([ 0 1

0 0 ]x, y) = b2(x, σ′y).

My doubts were eventually justified when I found an example of a module M
over a ring R such that all anti-automorphisms of EndR(M) correspond to non-
regular, yet stable, bilinear forms. Moreover, there exists an example of R,M,α
such that bα is degenerate and stable. These discoveries were followed by a series
of positive results sharing a common flavor: If R and M can be localized such
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that after the localization M becomes projective or a generator, then under mild
assumptions, bα is guaranteed to be injective, provided α is an anti-automorphism.
The word “localization” can mean both commutative and non-commutative local-
ization. Some of these results are summarized in the following theorem, which is
derived from Theorem 3.7.19 below.

Theorem 0.10. Let R be a ring and let M be a faithful right R-module which
is dense in a f.g. R-module (e.g. if M is f.g.). If at least one of the following holds,
then there is a one-to-one correspondence between anti-automorphisms of EndR(M)
and generic stable forms on M , considered up to similarity.

(1) M is torsion-free and R is a semiprime Goldie ring (e.g. a noetherian or
PI domain).

(2) Generalizing (1): There is a two-sided denominator set of regular elements
S ⊆ R such that RS−1 is right pseudo-Frobenius7 and M is S-torsion-
free.

The proof involves finding sufficient conditions on a module M to ensure that
the endomorphism ring of Ẽ(M), the rational hull of M , is the maximal symmetric
general ring of quotients of End(M). The byproducts include the following deep
result about rings of quotients.

Theorem 0.11. Let R be a ring such that Qsmax(R), the maximal symmet-
ric general ring of quotients of R, coincides with R. Then for every torsionless8

generator M ∈ Mod-R, there is a torsionless generator G ∈ Mod-R such that
M ⊆d G, every endomorphism of M extends to G and End(G) = Qsmax(End(M)).
In particular, if RR is a cogenerator, then any generator M ∈ Mod-R satisfies
End(M) = Qsmax(End(M)) and if R is right pseudo-Frobenius, then any faithful
module M ∈ Mod-R satisfies End(M) = Qsmax(End(M)).

There are still many open questions regarding when bα is regular or stable. For
instance, I could not find an example of R being a noetherian domain, M being
f.g. and α being bijective, such that bα is not regular. In addition, the following
conjecture is open:

Conjecture 0.12. If M is nonsingular, then there is a one-to-one correspon-
dence between the generic stable bilinear forms on M , considered up to similarity,
and the anti-automorphisms of EndR(M).

Two Applications. Part (i) of Theorem 0.8 has two nice applications. The
first is an easy proof of the following result of Osborn ([66]).

Theorem 0.13. Let (W,α) be a semisimple ring with involution admitting no
non-trivial α-invariant idempotents. Then (exactly) one of the following holds:

(i) W is a division ring.
(ii) W ∼= D × Dop for some division ring D and under that isomorphism α

exchanges D and Dop.
(iii) W ∼= M2(F ) for some field F and under that isomorphism α is a sym-

plectic involution.

Osborn’s original result assumed additional conditions on (W,α) (e.g. that 2 ∈
W×) and its proof consisted of studying the Jordan algebra induced by α. An

7 A ring R is called right pseudo-Frobenius when all faithful right R-modules are generators.
This is equivalent to R being a right cogenerator right self-injective ring, e.g. a quasi-Frobenius
ring.

8 A right R-module M is torsionless if it embeds in a product
∏
i∈I RR for some set I. The

module RR is a cogenerator ⇐⇒ all right R-modules are torsionless.
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alternative easier proof goes as follows: One can quickly reduce to the case where
W is simple artinian, hence there is a division ring D and a f.d. right D-vector
space V such that W ∼= EndD(V ). Thus, by Theorem 0.8, bα : V × V → Kα is
a regular bilinear form over D. Furthermore, it is κα-symmetric. The assumption
that W does not have non-trivial α-invariant idempotents now is equivalent (by
the “dictionary” above) to b being indecomposable. This is easily seen to force
either dimD V = 1 or dimD V = 2, where in the latter case D is a field and bα is
alternating. But this implies the theorem.9

The second application is a partial answer to a problem suggested to me by
David Saltman: Under what assumptions all or some of the following conditions
are equivalent for a ring R.

(1) R is Morita equivalent to a ring with involution.
(2) R is Morita equivalent to a ring with an anti-endomorphism.
(3) R is Morita equivalent to Rop.

The implications (1)=⇒(2)=⇒(3) are obvious. However, a well-known theorem
asserts that for central simple algebras we have (3)=⇒(1), and Saltman has gen-
eralized this result to Azumaya algebras in [82].10 Using Theorem 0.8 (and the
new definition of bilinear forms in particular), I was able to show the following
proposition (compare with [82, Th. 4.2]). Before formulating it, observe that ev-
ery (Rop, R)-module, and in particular (Rop, R)-prgenerators, can be twisted into
a double R-modules by considering the left Rop-module structure as an additional
right R-module structure.

Proposition 0.14. Let R be a ring and let M be an R-progenerator. Then
EndR(M) admits an anti-automorphism (resp. involution) if and only if there exists
a regular (resp. regular and asymmetric) bilinear form (M, b,K) such that K is
obtained from an (Rop, R)-progenerator.

The proof consists of showing that if α is an anti-automorphism of EndR(M),
then Kα, once considered as an (Rop, R)-bimodule, is a progenerator.

Proposition 0.14 means that in order to prove (3)=⇒(2), it is enough to show
that for every (Rop, R)-progenerator, K, there is a regular bilinear space (M, b,K)
for some R-progenerator M . This latter statement is false in general, but it is true
under some finiteness assumptions on the category of f.g. projective R-modules.
Such finiteness assumptions are satisfied when R is semiperfect, hence we get:

Theorem 0.15. If R is semiperfect, then (3)=⇒(2).

I conjecture that (3) 6=⇒(2) in general, but I could not find any counterexample.
Nevertheless, (2) 6=⇒(1) can be demonstrated (Example 2.9.7 below).

Basic Properties of Bilinear Forms. Another interesting consequence of
the research about the connection between bilinear forms an anti-endomorphism
was the realization that, over rings, being stable does not imply being injective (i.e.
nondegenerate) and vice versa. This phenomenon does not happen for classical
bilinear forms division rings, and that led me to reconsider the basics of the theory
of bilinear forms over rings. This is the topic of Chapter 2. To formulate this

9 The form bα is in fact classical, i.e. it is a ±1-hermitian form over D w.r.t. some involution.
This follows from Theorem 0.1 if D is f.d. over its center. I could not find the general case in the
literature, but it follows as a consequence of my work.

10 Some mild assumption is needed for this to be true: The (Rop, R)-progenerator P in-
ducing the equivalence also induces an isomorphism Cent(R) → Cent(Rop) ∼= Cent(R). That
isomorphism must be the identity. Equivalently, R and Rop need to be Morita equivalent as
Cent(R)-algebras.
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more formally, let (M, b,K) be a bilinear space over R. Then one can consider the
following properties:

(R1) b is right injective (i.e. Adrb is injective).
(R2) b is right surjective (i.e. Adrb is surjective).
(R3) b is right stable.

The left analogues of these properties are denoted by (L1)–(L3). It turns out that
none of (R1)–(R3),(L1)–(L3) implies any of the others. Moreover, the logical impli-
cations between subsets of these properties can be explained by (R1)∧(R2)=⇒(R3)
and its left analogue. (Here ∧ denotes logical “and”; the previous logical statement
means that right regular implies right stable, a fact we have noted above.)

Things become more complicated when K is assumed to have an anti-isomor-
phism or an involution κ. For instance, we suddenly get extra relations between
(R1)–(R3) and (L1)–(L3) such as (R1)∧(R2)=⇒(L1). In addition, in this case we
can add another member to our list of properties:

(R4) b has a unique right κ-asymmetry.
As might be expected, a right κ-asymmetry of b is a map λ ∈ EndR(M) such that
b(x, y)κ = b(y, λx). The left analogue of (R4) is denoted by (L4).

Again, while (R1)–(R4),(L1)–(L4) are equivalent for classical bilinear forms
over division rings, none of these conditions implies any of others in general. As
done above, I have tried to determine the logical implications between subsets of
(R1)–(R4) and (L1)–(L4), but this time I did not manage to finish the project; I
have proved a list of implications, which I conjecture to explain all other implica-
tions. What stops me from declaring the list as complete is the absence of several
counterexamples (e.g. showing that (R4)∧(R2) 6=⇒(R3)). Among the remarkable
(and very hard) counterexamples that were found is an example of a right regular
bilinear form b admitting a unique right κ-asymmetry but not a left κ-asymmetry.
(In this case b cannot be left regular and the asymmetry is not bijective).

One also notes that by forcing various assumptions on the ring R and the
bimodule K, more logical implications can be obtained. For example, if b is a clas-
sical bilinear form over a quasi-Frobenius11 ring with involution, then the conditions
(R1)–(R4),(L1)–(L4) are equivalent, provided M is faithful.

Semi-Invariant Subrings. Recall the ring Wb defined above. For a right
stable bilinear space (M, b,K), it was defined to be {σ ∈ EndR(M) |σ∗∗ = σ},
where ∗ is the corresponding anti-endomorphism of b. Studying the structure of
Wb was essential to get effective results about b and has thus occupied almost half
of the last year of my research. This work eventually led to the development of a
new concept called semi-invariant subrings, which is the topic of Chapter 1.12

A subring R0 of a ring R is semi-invariant if there exists a ring S ⊇ R and a set
of ring endomorphisms Σ ⊆ End(S) such that R0 = RΣ := {r ∈ R : σ(r) = r, ∀σ ∈
Σ}. A T-semi-invariant subring is defined in the same way, but when R and S are
Hausdorff linearly topologized rings. If we can choose S to be R, then we get the
usual notion of an invariant subring. (For example,Wb above is an invariant subring
w.r.t. Σ = {∗∗}.) While it is not obvious from the definition, semi-invariant subrings
are quite common. For instance, the centralizer of any subset of R is a (T-)semi-
invariant subring of R and if M is a finitely presented (abbrev.: f.p.) R-module,

11 A ring is quasi-Frobenius (abbrev.: QF) if it is noetherian and self-injective. For example,
if F is a field and G is a finite group, then FG is QF. In addition, any local artinian ring with
simple socle is QF; see [58].

12 It had recently came to my attention that there is already a notion of semi-invariance in the
theory of invariants. The semi-invariant subrings of this dissertation, while being generalizations
of rings of invariants, has nothing to do with semi-invariance in invariant theory.
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then End(M) is a quotient of a (T-)semi-invariant subring of Mn(R)×Mm(R) for
some n,m.

It turns out that various properties pass from a ring to its (T-)semi-invariant
subrings. Some of these properties are summarized in the following theorems.

Theorem 0.16. Let R be a ring. If R is semiprimary (resp. right perfect13),
then so is any semi-invariant subring of R.

Theorem 0.17. Let R be a Hausdorff linearly topologized ring. If R is semiper-
fect and pro-semiprimary (resp. semiperfect and pro-right-perfect), then so is any
T-semi-invariant subring of R.

Regarding the notions pro-semiprimary and pro-right-prefect, a linearly topol-
ogized ring is called pro-P if it is isomorphic as a topological ring to the inverse
limit of discrete topological rings satisfying P.

Beside the above application to bilinear forms, Theorems 0.16 and 0.17 also
have numerous applications to semiperfect rings and Krull-Shmidt decompositions
(see section 1.1), such as:

(1) Let R be a semiperfect pro-semiprimary ring,14 then all f.p. R-modules
admit a Krull-Schmidt decomposition (this generalizes [92, §6], [19], [78],
[79]). If moreover R is right noetherian, then the endomorphism ring of
any f.p. R-module is semiperfect and pro-semiprimary.

(2) Let S be a commutative semiperfect pro-semiprimary ring. Then any S-
algebra R that is f.p. as an S-module is semiperfect. If moreover S is
noetherian, then R is pro-semiprimary.

(3) Any representation of a monoid over a module with a semiperfect pro-
semiprimary endomorphism ring has a Krull-Schmidt decomposition.

This work is described in detail in the accepted paper [41].

Categories With A Double Duality. Before concluding the introduction,
let us return to hermitian categories, also called categories with duality. A hermitian
category is a triplet (H , ∗, ω) such that H is a (usually additive) category, ∗ : H →
H is a contravariant functor and ω : idH → ∗∗ is a natural isomorphism satisfying
a certain equation (see [71], [86, Chp. 7] or section 4.2 below). A bilinear form over
H would consist of a pair (M, b) with M ∈H and b ∈ HomH (M,M∗). Classical
bilinear forms over rings with involution can be considered as bilinear forms over
an appropriate hermitian category, but the same construction cannot be adapted
for our new notion of bilinear forms (see the end of section 2.7). Instead, the new
bilinear forms can be understood as a bilinear forms over some category with a
double duality. The latter is defined to be quintet (A , [0], [1],Φ,Ψ) such that A is
a category, [0], [1] : A → A are contravariant functors (written exponentially) and
Φ : idA → [1][0], Ψ : idA → [0][1] are natural transformations satisfying certain
relations.15 Bilinear forms over A would consist of pairs (M, b) such that M ∈ A
and b ∈ HomA (M,M [1]). The asymmetry in the definition is ostensible as the
relations between Φ and Ψ induce a natural isomorphism between HomA (M,M [0])
and HomA (M,M [1]).

Example 0.18. (i) Let R be a ring and let K be a double R-module. For
every M ∈ Mod-R and i ∈ {0, 1}, define M [i] := HomR(M,K1−i) (recall that K1−i
stands for K considered as right R-module w.r.t. �1−i). We make M [i] into a right

13 A ring R is right perfect if it is semilocal and Jac(R) is right T-nilpotent. See [9] or section
1.2 for more equivalent definitions.

14 and even more generally, a quasi-π∞-regular ring, e.g. an inverse limit of π∞-regular rings.
15 Caution: since [0] and [1] are written exponentially, [1][0] actually means [0] ◦ [1] (since

M [1][0] = (M [1])[0] for M ∈ A ).
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R-module by letting (f · r)m = (fm) �i r for all f ∈ M [i], m ∈ M and r ∈ R.
Now define ΦM : M → M [1][0] and ΨM : M → M [0][1] by (ΦMx)f = f(x) and
(ΨMx)g = g(x) for all x ∈M , f ∈M [1] and g ∈M [0]. Then (Mod-R, [0], [1],Φ,Ψ)
is a category with a double duality. A bilinear form (M, b,K) over R corresponds
to the bilinear form (M,Adrb) over Mod-R.

(ii) (H , ∗, ω) is a hermitian category ⇐⇒ (H , ∗, ∗, ω, ω) is a category with a
double duality and ω is a natural isomorphism.

One of the deepest (and most difficult) results of this work is the following.

Theorem 0.19. Let (A , [0], [1],Φ,Ψ) be a category with a double duality. Then
there exists a hermitian category (H , ∗, ω) such that the category of arbitrary bilin-
ear forms over A is equivalent to the category of regular symmetric bilinear forms
over H . The category H is the category of Kronecker modules over A .

Roughly speaking, Theorem 0.19 asserts that the theory of bilinear forms over a
given category with duality is equivalent to the theory of regular symmetric bilinear
forms over another category with duality (see sections 4.3–4.5 for an extensive
discussion). Moreover, it explains why it is even possible at all to reduce the theory
of non-symmetric forms to the theory of regular symmetric forms. In fact, the
results (a)–(e) stated above, and also work of Riehm and his predecessors, can be
shown to “factor” via the equivalence of Theorem 0.19.

I should note that a result having a similar flavor was obtained by E. Bayer-
Fluckiger and L. Fainsilber in [16]. They have used a different construction to show
that the category of arbitrary symmetric bilinear forms over a given hermitian
category is equivalent to the category of regular symmetric bilinear forms over
another hermitian category. In addition, very recently, I was introduced with the
current (and still unpublished) work of D. Moldovan. In his Ph.D. dissertation ([64];
submitted in 2012; done under the supervision of E. Bayer-Fluckiger), Moldovan
proved a version of Theorem 0.19 for hermitian categories and has used it to deduce
various results, including special cases of (a), (b) and (c) above. (For example, he
obtained Witt’s Cancelation Theorem for classical bilinear forms over algebras of
finite type over discrete valuation rings.) Both [16] and [64] require that all objects
in the given hermitian category are reflexive (i.e. that ω : idH → ∗∗ is a natural
isomorphism, rather than just a natural transformation). This is not needed in
Theorem 0.19, though. (Note: E. Bayer-Fluckiger, D. Moldovan and I eventually
combined our results and submitted them as a joint work; see [11].)

One should also point out that Theorem 0.19 can be effectively applied to
systems of bilinear forms; see section 4.5.



Notes to the Reader

The Chapters

This work consists of five chapters. Chapter 0, entitled “Preliminaries”, surveys
some known results and definitions from ring theory and category theory that are
used throughout this work. It is meant to make this text more negotiable to non-
experts. (Nevertheless, some familiarity with elementary non-commutative ring
theory, category theory and topology are still assumed.) Experts (and also non-
experts) may skip this chapter and consult it upon need. The basic knowledge
needed to read Chapter 0 can be mostly found in the first chapters of Ring Theory
by L. Rowen ([80]).

Chapter 1, entitled “Semi-Invariant Subrings”, discusses the (new) theory of
semi-invariant subrings and its various applications (except its applications to bi-
linear forms). It serves as the ring theoretic infrastructure of the work. Chapter
2, entitled “Bilinear Forms Over Rings”, defines and studies the basic properties of
bilinear forms over rings. Categories with a double duality, which are a categorical
framework for bilinear forms, are also defined and discussed. Chapter 3, entitled
“Bilinear Forms and Anti-Endomorphisms”, studies the connection between bilinear
forms and anti-endomorphisms. Finally, Chapter 4, entitled “Isometry and Decom-
position”, is devoted to proving strong results about isometry of bilinear forms and
the structure of their isometry group (e.g. results (a)–(e) of the Introduction).

The dependency between Chapters 1–4 is illustrated in the following diagram:

1

��

2

�� ��
4 3oo

An arrow means strong dependency (i.e. do not attempt to read the destination
of the arrow before reading most of its source) and a dotted arrow means weak
dependency (it is enough to read a small part of the source before reading the
destination).

Notation and Conventions

Rings: Unless specified otherwise, all rings are assumed to have a unity and ring
homomorphisms are required to preserve it. Subrings are assumed to have the
same unity as the ring containing them. Given a ring R, denote its set of invertible
elements by R×, its Jacobson radical by Jac(R), its set of idempotents by E(R) and
its center by Cent(R). The n × n matrices over R are denoted by Mn(R). We let
End(R) (resp. Aut(R)) denote the set of ring homomorphisms (resp. isomorphisms)
from R to itself. If X ⊆ R is any set, then its right (left) annihilator in R is denoted
by annrRX (ann`RX). The subscript R will be dropped when understood from the
context. Throughout, a semisimple ring means a semisimple artinian ring.

Whenever referring to a ring property admitting right and left versions (e.g.
being noetherian) without specifying whether it is left or right, we mean both
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versions. (For example, a “noetherian ring” means “right and left noetherian ring”).
This rule applies to non-ring-theoretic properties as well.
Modules: The category of right (left) R-modules is denoted by Mod-R (R-Mod).
ForM ∈ Mod-R, we let E(M) (Ẽ(M)) denote the injective envelope (rational hull)
of M . We write N ≤ M to denote that N is a submodule of M . We also write
N ⊆e M if N is essential in M and N ⊆d M if N is dense in M .

In case M can be considered as a module over more than one ring, we use
MR (resp. RM) to denote “M , considered as a right (resp. left) R-module”. In
particular, RR (resp. RR) means “R, considered as a right (resp. left) R-module”.
Inverse Limits of Rings: By saying that {Ri, fij} is an inverse system of rings
indexed by I, we mean that: (1) I is a directed set (i.e. a partially ordered set
such that for all i, j ∈ I there is k ∈ I with i, j ≤ k), (2) Ri (i ∈ I) are rings and
fij : Rj → Ri (i ≤ j) are ring homomorphisms and (3) fii = idRi and fijfjk = fik
for all i ≤ j ≤ k in I. When the maps {fij} are obvious or of little interest, we
will drop them from the notation, writing {Ri}i∈I instead. The inverse limit of
{Ri, fij} will be denoted by lim←−{Ri}i∈I . It can be understood as the set of I-tuples
(ai)i∈I ∈

∏
i∈I Ri such that fij(aj) = ai for all i ≤ j in I.

Miscellaneous: The natural numbers N are not assumed to include 0. For a
prime number p, Zp (resp. Qp) denotes the p-adic integers (resp. numbers) and
Z〈p〉 denotes S−1Z with S = Z \ pZ.
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CHAPTER 0

Preliminaries

This chapter presents some definitions and well-known facts from ring theory,
category theory and the theory of topological rings that are used throughout the
text. Its purpose is to make this dissertation more negotiable to non-expects and
hence it is not mandatory. In fact, the reader can skip this chapter entirely and
return to it upon need. Note that sections 0.7–0.10 are needed only for section 3.7,
so the reader can postpone reading them.

For the benefit of the reader, below is a list of the definitions and topics dis-
cussed in this chapter.

Section 0.1: Topological Groups and Rings. Topological Groups, Topo-
logical Rings, Local Bases.

Section 0.2: Natural Transformations. Natural Transformations, Natural
Isomorphisms.

Section 0.3: Additive Categories. Preadditive Categories, Additive Cate-
gories, Additive Functors.

Section 0.4: More Category Theory. Faithful and Full Functors, Subcat-
egories, Full Subcategories, Generators, Cogenerators, Equivalence of Categories.

Section 0.5: Morita Equivalence. Morita Equivalence, Progenerators, Full
Idempotents, Morita Context, Morita’s Theorems.

Section 0.6: Quasi-Frobenius Rings and Related Notions. Self-Injective
Rings, Quasi-Frobenius Rings, Frobenius Algebras, Kasch Rings, Cogenerator Rings,
Pseudo-Frobenius Rings.

Section 0.7: Uniform Dimension. Essential Submodules and Essential
Extensions, Injective Hulls, Uniform Dimension.

Section 0.8: Classical Rings of Fractions. Non-Commutative Localiza-
tion, Right Denominator Sets, Ore Rings and Ore Domains, Classical Rings of
Fractions, Goldie Rings, Goldie’s Theorem.

Section 0.9: Rational Extensions. Dense Submodules and Rational Ex-
tensions, Rational Hulls, Singular Radical, Nonsingular Submodules, Nonsingular
Rings.

Section 0.10: General Rings of Quotients. General Rings of Quotients,
Maximal Rings of Quotients, Theorems of Johnson and Gabriel.

0.1. Topological Groups and Rings

In this subsection we give the basics of topological groups, rings and modules.
For a detailed discussion and proofs see [99].

A topological group consists of a group G endowed with a topology such that
the maps

m : G×G → G i : G → G
(x, y) 7→ xy x 7→ x−1

1
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are continuous. We also say that the topology on G, denoted τG, is a group topology.
If we let Nx stand for the set of neighborhoods1 of x, then these conditions are
equivalent to

(1) For all U ∈ Nxy there exists V ∈ Nx, W ∈ Ny such that VW ⊆ U ;
(2) for all U ∈ Nx there exists V ∈ Nx−1 such that V −1 ⊆ U

where x, y ∈ G. The sets Nx and Ny can be replaced with bases of neighbor-
hoods2 at x and y, respectively. Morphisms of topological groups are defined to be
continuous group homomorphisms.

Example 0.1.1. (i) Any group can be made into a topological group by en-
dowing it with the discrete topology.

(ii) (R,+), (R×, · ), (Qp,+), (Zp,+) are topological groups.
(iii) GLn(R) is a topological group w.r.t. the topology induced from Mn(R) (an

n2-dimensional Euclidean space).
(iv) If G is a topological group and H is a normal subgroup, then G/H is a

topological group w.r.t. the quotient topology. The latter is defined as follows: a
subset U ⊆ G/H is open if and only if its preimage in G is is open. This makes the
standard epimorphism G→ G/H in a continuous group homomorphism.

(v) Let G be an infinite group. Then G is not a topological group w.r.t. the
cofinite topology (despite the fact that x 7→ x−1 is a homeomorphism).

Proposition 0.1.2. Let G be a topological group with unity e. Then:
(i) For all x ∈ G, Nx = xNe. Here, xNe stands for {xU |U ∈ Nx}.
(ii) For any subsect X ⊆ G, the closure of X, X, is given by

⋂
U∈Ne XU .

In (ii), Ne can be replaced with any basis of neighborhoods of e.

The previous proposition implies that the topology on G can be recovered from
Ne, or any basis of neighborhoods of e. Such a basis is called a local basis of G. (In
general, a local basis basis at x means a basis of neighborhoods of x.) The following
theorem provides necessary and sufficient conditions on a set B ⊆ P (G) to be a
local basis of G w.r.t. some (uniquely determined) group topology. This theorem
is extremely useful in constructing examples, since one can specify the local basis
rather then describing τG.

Theorem 0.1.3. Let G be a group with unity e and let B be a nonempty col-
lection of subsets of G containing e. Then B is a local basis of some group topology
(which is then uniquely determined) if and only if the following conditions are sat-
isfied:

(0) For all U, V ∈ B, there exists W ∈ B with W ⊆ U ∩ V .3
(1) For all U ∈ B, there exists V ∈ B such that V 2 ⊆ U .
(2) For all U ∈ B, there exists V ∈ B such that V −1 ⊆ U .
(3) For all U ∈ B and x ∈ G, there exists V ∈ B such that xV x−1 ⊆ U .

Proof (sketch). Take τG to be the collection of sets X ⊆ G such that for
all x ∈ X, there exists U ∈ B with xU ⊆ X. The rest is routine. �

Example 0.1.4. (i) The set B = {Zp, pZp, p2Zp, . . . } is a local basis for (Qp,+).
(ii) G is a discrete topological group if and only if {{e}} is a local basis.

1 A neighborhood of x is defined to be a set U containing an open set U0 such that x ∈ U0.
Neighborhoods are not assumed to be open unless this is stated explicitly.

2 A basis of neighborhoods of x is a set B consisting of neighborhoods of x such that every
neighborhood of x contains an element of B. Equivalently, this means B is a basis for the filter of
neighborhoods of x.

3 This is equivalent to saying that B is a filter base, as it must be.
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(iii) Let G be a group and let K be a family of normal subgroups of G which
is closed to finite intersection (e.g. the set B of (i)). Then K is a local basis for a
group topology on G. Indeed, conditions (0)–(3) of the previous theorem are easily
seen to hold (take V = U in (1)–(3)). In this case K also turns out to consist of
open sets and the cosets of elements of K form a basis for the topology on G.

Continuity of group homomorphism can also be characterized using local bases.

Proposition 0.1.5. Let G, G′ be topological groups with local bases B, B′ and
let f : G → G′ be a group homomorphism. Then f is continuous ⇐⇒ for all
U ′ ∈ B′, there exists U ∈ B with f(U) ⊆ U ′ ⇐⇒ for all U ′ ∈ B′, f−1(U ′) ∈ Ne.

Before we move to topological rings, we note the following remarkable result,
due to Pontryagin, which asserts that the separation axioms T0 and T3 1

2
coincide

for topological groups.4 Observe that by Proposition 0.1.2, a topological group G
satisfies T0 if and only if

⋂
U∈B U = {e} for some (and hence any) local basis B. In

particular, such groups are Hausdorff.

Theorem 0.1.6 (Pontryagin). For topological groups, T0 =⇒ T3 1
2
.

A topological ring consists of a ring R endowed with a topology such that the
maps

a : R×R → R m : R×R → R
(x, y) 7→ x+ y (x, y) 7→ xy

are continuous. We also say that the topology on R, denoted τR, is a ring topology.
These assumptions imply that the map x 7→ (−x) : R → R is continuous since
−x = (−1) · x (but this requirement should be added if R is not assumed to have
a unity). Therefore, (R,+) is a topological group, hence all the terminology and
most of the previous results apply to R. In particular, the topology on R can be
determined by specifying a local basis B and the closure of any subset X ⊆ R is
given by

X =
⋂
U∈B

(X + U) .

Example 0.1.7. (i) Any ring can be made into a topological ring by endowing
it with the discrete topology.

(ii) R, Qp and Zp are topological rings w.r.t. their standard topologies.
(iii) If R is a ring and I is an ideal of R, then R/I is a topological ring once

endowed with the quotient topology. The standard map R→ R/I is then a homo-
morphism of topological rings.

The following theorem is an analogue of Theorem 0.1.3 for rings.

Theorem 0.1.8. Let R be a ring and let B be a nonempty collection of subsets
of R containing 0. Then B is a local basis of some ring topology (which is then
uniquely determined) if and only if the following conditions are satisfied:

(0) For all U, V ∈ B, there exists W ∈ B with W ⊆ U ∩ V .
(1) For all U ∈ B, there exists V ∈ B such that V + V ⊆ U .
(2) For all U ∈ B, there exists V ∈ B such that V · V ⊆ U .
(3) For all U ∈ B and x ∈ R, there exists V ∈ B such that V x, xV ⊆ U .

4 A topological space (X, τ) satisfies T0 if for all distinct x, y ∈ X there is U ∈ τ such that
|{x, y} ∩ U | = 1. The space (X, τ) satisfies T3 1

2
if it is Hausdorff (i.e., T2) and for any closed set

A ⊆ X and a ∈ X with a /∈ A, there exists a continuous function f : X → [0, 1] with f(A) = 0
and f(a) = 1.
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Example 0.1.9. Let R be a ring and let B be a nonempty set of ideals that
is closed under intersection. Then conditions (0)–(3) of the previous theorem are
satisfied (take V = U in (1)–(3)), hence R admits a unique ring topology with local
basis B. This topology turns out to be spanned by the cosets of the ideals in B.

Given a topological ring R, a topological right R-module is a right R-module
M endowed with a topology, τM , such that (M,+) is a topological group and the
map

M ×R → M
(m, r) 7→ mr

is continuous. In this case we say that the topology on M is an R-module topology.

Proposition 0.1.10. Let R be a topological ring and let M be a right R-module
endowed with some group topology. Let BR be a local basis for R and let BM be a
local basis for M . Then M is a topological R-module if and only if

(1) For all U ∈ BM , there are J ∈ BR and V ∈ BM such that V J ⊆ U .
(2) For all U ∈ BM and r ∈ R, there is V ∈ BM such that V r ⊆ U .
(3) For all U ∈ BM and m ∈M , there is J ∈ BR such that mJ ⊆ U .

Theorem 0.1.11. Let R be a topological ring with local basis BR and let M
be a right R-module. Let B be a nonempty collection of subsets of M containing
0M . Then B is a local basis of some R-module topology (which is then uniquely
determined) if and only if the following conditions are satisfied:

(0) For all U, V ∈ B, there exists W ∈ B with W ⊆ U ∩ V .
(1) For all U ∈ B, there exists V ∈ B such that V + V ⊆ U .
(3) For all U ∈ B, there exists V ∈ B and J ∈ BR such that V J ⊆ U .
(3) For all U ∈ B and r ∈ R, there exists V ∈ B such that rV ⊆ U .
(4) For all U ∈ B and m ∈M , there exists J ∈ BR such that mJ ⊆ U .

0.2. Natural Transformations

In the following three sections we present some definitions from category the-
ory. For an extensive discussion, see [42]. The reader should be familiar with the
definition of a category and a functor before proceeding.

Let A ,B be categories and let F,G : A → B be two (covariant) functors.
A natural transformation from F to G is a collection of maps {tA}A∈A such that
tA ∈ HomB(FA,GA) and for every A,B ∈ A and f ∈ HomA (A,B) we have

tB ◦ Ff = Gf ◦ tA .

That is, the following diagram commutes:

FA
Ff //

tA
��

FB

tB
��

GA
Gf // GB

We then write
t : F → G .

In case F,G are contravariant functors, a natural transformation is a collection
of maps {tA}A∈A with tA ∈ HomB(FA,GA) such that for every A,B ∈ A and
f ∈ HomA (A,B) we have

tA ◦ Ff = Gf ◦ tB .
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That is, the following diagram commutes:

FA

tA
��

FB

tB
��

Ffoo

GA GB
Gfoo

Natural transformations t for which tA is an isomorphism for all A ∈ A are called
natural isomorphisms. In this case, t−1 (i.e. {t−1

A }A∈A ) is a natural isomorphism
from G to F (check!).

Note: Natural transformations (isomorphisms) are also called morphisms (iso-
morphisms) of functors.

Example 0.2.1. Let A ,B be categories and let F : A → B be any functor.
For every A ∈ A , define tA ∈ HomB(FA,FA) to be idFA. Then t is a natural
isomorphism from F to itself. Indeed, for all A,B ∈ A and f ∈ HomA (A,B), we
have tFB ◦ Ff = Ff ◦ tFA and tFA = idFA is an isomorphism.

Example 0.2.2. Let F be a field and let Mod-F be the category of F -vector
spaces. Then the map V 7→ V ∗ := HomF (V, F ) induces a contravariant functor
from Mod-F to itself. Thus, ∗∗ : Mod-F → Mod-F is a covariant functor. For
every V ∈ Mod-F , let ωV : V → V ∗∗ be the standard embedding of V in V ∗∗ given
by (ωV x)f = f(x) (where x ∈ V and f ∈ V ∗). Then

ω : idMod-F → ∗∗
i.e., ω is a natural transformation from the identity functor idMod-F on Mod-F to
∗∗. Indeed, for all U, V ∈ Mod-F and f ∈ HomF (U, V ), we have

ωV ◦ f = f∗∗ ◦ ωU .

However, ω is not a natural isomorphism since ωV is not bijective for inifinite
dimensional V . Nevertheless, if we replace Mod-F with the category of f.d. F -
vector spaces, then ω becomes a natural isomorphism.

Example 0.2.3. Let F be a field admitting an automorphism σ 6= idF . For
every V ∈ Mod-F , let V σ denote the F -vector space obtained from V by replacing
the operation of F on V by �σ : V × F → V , defined by v �σ a = v · σ(a). Define a
functor G : Mod-F → Mod-F by GV = V σ and Gf = f for all V ∈ Mod-F and any
morphism f in Mod-F . Then G is a covariant functor and GV ∼= idMod-F V = V
for every V ∈ Mod-F . Nevertheless, there is no natural isomorphism from G to
idMod-F .

Indeed, assume by contradiction that t : G→ idMod-F is a natural isomorphism.
Let V be a 1-dimensional vector space and let 0 6= v ∈ V . Then tV : V σ → V is an
isomorphism, hence tV (v) = v · a for some a ∈ F×. Now, let b ∈ F be such that
σ(b) 6= b and let f : V → V be defined by f(x) = x · b. By the naturalness of t, we
must have

tV ◦ f = tV ◦Gf = idMod-F f ◦ tV = f ◦ tV .

But this means that
v · (aσ−1(b)) = tV (v) · σ−1(b) = tV (v �σ σ−1(b)) = tV (vb)

= tV (fv) = f(tV v) = f(v · a) = v · (ab)
which in turn implies aσ−1(b) = ab, hence σ(b) = b, a contradiction.

Natural transformations can also be defined for bifunctors, and more generally,
multi-functors. The latter are, roughly, functors taking several variables (such as
Hom( , )). Rather than spelling out all the definitions, let us exhibit an explicit
example.
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Example 0.2.4. Let K be a field. Consider the bifunctors F and G from
Mod-K ×Mod-K → Mod-K defined by

F (U, V ) = HomF (U, V ∗)
G(V,U) = HomF (V,U∗) .

If U,U ′, V, V ′ ∈ Mod-K and f ∈ HomK(U ′, U), g ∈ HomK(V ′, V ), then F (f, g)
and G(f, g) are defined by

F (f, g) = g∗ ◦ ◦ f ∈ HomK(HomK(U, V ∗),HomK(U ′, V ′∗))
G(f, g) = f∗ ◦ ◦ g ∈ HomK(HomK(V,U∗),HomK(V ′, U ′∗)) .

In particular, F and G are contravariant in both variables. For every U, V ∈
Mod-K, define IU,V : F (U, V )→ G(U, V ) by

IU,V (h) = h∗ ◦ ωV ∈ Hom(V,U∗) = G(U, V ) ∀ h ∈ F (U, V ) = HomK(U, V ∗)

where ωV is as in Example 0.2.2. Then

I : F → G .

This holds since for all f, g, U, U ′, V, V ′ as above, we have

IU ′,V ′ ◦ F (f, g) = G(f, g) ◦ IU,V .

Moreover, I is actually a natural isomorphism. The details are left as an exercise
to the reader.

At certain times, we will say that a given homomorphism between two objects
is natural. This is merely an abbreviation for the following two claims:

(1) The way to obtain the objects in question is functorial (i.e. it also sends
morphisms to morphisms in a way that respects composition).

(2) The map defined is a natural transformation between the two functors of
(1).

For example, let R be a ring. By saying that a right R-module M is naturally iso-
morphic to HomR(RR,M) as abelian groups we mean that (1) both maps M 7→M
and M 7→ HomR(RR,M) give rise to (covariant) functors from Mod-R to the
category of abelian groups and (2) there is a natural isomorphism between these
functors. In contrast to that, using the notation of Example 0.2.3, there is no nat-
ural isomorphism between V and V σ, despite the fact that V is always isomorphic
to V σ.

0.3. Additive Categories

A category A is called preadditive if for all A,A′ ∈ A , the set HomA (A,A′)
is endowed with an (additive) abelian group structure such that the composition
action is biadditive. That is, for all A,A′, A′′ ∈ A , f, g ∈ HomA (A,A′) and
f ′, g′ ∈ HomA (A′, A′′) we have

(f ′ + g′) ◦ f = f ′ ◦ f + g′ ◦ f
f ′ ◦ (f + g) = f ′ ◦ f + f ′ ◦ g .

In this case, for all A ∈ A , EndA (A) is a ring. In addition, we can speak about
the zero morphism between two objects.

A category A is additive if it satisfies the following conditions:
(1) A has a zero object.
(2) A is preadditive.
(3) Finite biproducts exist in A .
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The definition of a zero object appears below, but I prefer not to give here the def-
inition of a biproduct and rather refer the reader to any good book about category
theory (e.g. [42]). The flavor of what a zero object and a biproduct are can be seen
by looking at the category of right R-modules. In this category, the zero module 0
is the zero object and the biproduct of modules A1, . . . , At is just the direct sum
A1 ⊕ · · · ⊕ At. The symbols 0 and A1 ⊕ · · · ⊕ At will be used to denote the zero
object and the biproduct in any additive category.

Definition 0.3.1. Let C be a category. A zero object in C is an object 0 ∈ C
such that for all C ∈ C

|HomC (C, 0)| = |HomC (0, C)| = 1 .

In this case, 0 is uniquely determined up to isomorphism, so up to that rank freedom,
we can speak about the zero object of C .

Example 0.3.2. (i) The categories of R-modules and f.g. R-modules are addi-
tive categories.

(ii) Let n ∈ N. The category C of vector spaces over a field F of dimension n
or less is preadditive (since HomF (U, V ) is an abelian group for all U, V ∈ C and
the composition is biadditive), but it is not additive. Indeed, C has a zero object,
but not all finite biproducts exist (since the biproduct of two n-dimensional vector
spaces would be a 2n-dimensional vector space).

(iii) The category of (non-abelian) groups G is not preadditive.

If A is an additive category, then the abelian group structure on HomA (A,A′)
can be recovered from A by purely categorical means. In particular, the Hom-sets
in A admit only one abelian group structure making A into an additive category.
(This is false for preadditive categories, though). In addition, the object 0 and the
operation ⊕ satisfy many expected properties such as

(i) A⊕ 0 is naturally isomorphic to A.
(ii) HomA (A,B⊕B′) is naturally isomorphic to HomA (A,B)⊕HomA (A,B′)

as abelian groups.
(iii) HomA (A⊕A′, B) is naturally isomorphic to HomA (A,B)⊕HomA (A′, B)

as abelian groups.

In particular, the latter two statements imply

HomA (⊕ti=1Ai,⊕sj=1Bj) ∼=
t∏
i=1

s∏
j=1

HomA (Ai, Bj) .

It is customary to write the r.h.s. of this isomorphism in matrix form, namely

HomA (⊕ti=1Ai,⊕sj=1Bj) ∼=

 HomA (A1, B1) . . . HomA (At, B1)
...

. . .
...

HomA (A1, Bs) . . . HomA (At, Bs)

 .

In particular, any morphism f ∈ HomA (⊕ti=1Ai,⊕sj=1Bj) can be represented by an
s× t matrix (fji) with fji ∈ HomA (Ai, Bj). In this representation, composition of
morphisms becomes matrix multiplication. Formally speaking, fji can be extracted
from f by the formula fji = pj ◦f ◦ei where pj is the projection ⊕sk=1Bk → Bj and
ei is the embedding Ai → ⊕tk=1Ak. The matrix representation is commonly used to
describe morphisms between biproducts and it will be used repeatedly in this text.
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Example 0.3.3. Keeping the above notation, the matrix representation of the
zero morphism from ⊕ti=1A to ⊕sj=1B is 0 . . . 0

...
. . .

...
0 . . . 0


where the 0 in the (j, i) place is the zero morphisms from Ai to Bj . In case
t = s and Ai = Bi for all i, the matrix representation of the identity morphism
id : ⊕ti=1Ai → ⊕sj=1Bj = ⊕ti=1Ai is idA1

. . .

idAt


(there are zero morphisms outside the diagonal).

A functor F (covariant or contravariant) between preadditive categories A and
B is called additive if it respects the additive group structure on the Hom-sets.
That is, for all A,A′ ∈ A , the map

F : HomA (A,A′)→ HomB(FA,FA′)
is an abelian group homomorphism.

An additive (covariant or contravariant) functor F between additive categories
A and B is a functor sending biproducts to biproducts. That is, for all A,A′ ∈ A ,
F (A⊕A′) is the biproduct of FA and FA′ or, equivalently, F (A⊕A′) is naturally
isomorphic to FA⊕ FA′. In this case, it is customary to identify F (A⊕ A′) with
FA ⊕ FA′. Additive functors between additive categories are also additive when
considered as functors between preadditive categories.

Example 0.3.4. Let R be a ring and let M be any R-module. Let F be the
functor from Mod-R to itself sending every object to M and any morphism to idM .
Then F is not additive if M 6= 0 (since, roughly, F (A ⊕ B) = M is not naturally
isomorphic to FA⊕ FB = M ⊕M). However, if M = 0, then F is additive.

Example 0.3.5. Let F be a field and let ∗ : Mod-F → Mod-F be the con-
travariant functor defined by V ∗ = HomF (V, F ). Then ∗ is an additive (con-
travariant) functor. The identification between (U ⊕ V )∗ and U∗ ⊕ V ∗ is given by
f 7→ (f |U , f |V ). The reader should try to verify that this isomorphism is natural.

0.4. More Category Theory

0.4.1. Faithful and Full Functors. Throughout, A and B are categories.
A functor F : A → B is called faithful (resp. full) if for all A,A′ ∈ A , the map:

F : HomA (A,A′)→ HomB(FA,FA′)
is injective (resp. surjective). Contravariant faithful and full functors are defined in
the same manner with HomB(FA,FA′) replaced by HomB(FA′, FA).

Example 0.4.1. Assume B consists of a single object and a single morphism.
Then there is precisely one functor from A to B and it is full. It is faithful if and
only if HomA (A,A′) contains exactly one element for all A,A′ ∈ A .

Example 0.4.2. Let F be a field and let ∗ : Mod-F → Mod-F be the con-
travariant functor defined by V ∗ = HomF (V, F ). Then ∗ is faithful since the map
∗ : HomF (U, V )→ HomF (V ∗, U∗) is injective for all U, V ∈ Mod-F . However, ∗ is
not full since the previous map is not bijective for U = F and V =

⊕
α0
F .
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Example 0.4.3. If F : A → B is an additive functor between preadditive
categories, then F is faithful if and only if for any morphism f in A , Ff = 0
implies f = 0.

A subcategory of A is a category A0 such that:
(1) A ∈ A0 implies A ∈ A .
(2) A,A′ ∈ A0 and f ∈ HomA0(A,A′) implies f ∈ HomA (A,A′).
(3) If A ∈ A , then the identity morphism of A in A0 is the identity morphism

of A in A .5

In this case, the functor idA0 can be considered as a functor from A0 to A . The
subcategory A0 is called full if the functor idA0 : A0 → A is full. This is equivalent
to

HomA0(A,A′) = HomA (A,A′)
for all A,A′ ∈ A0.

Example 0.4.4. (i) Let R be a ring. The category of f.g. right R-modules is a
full subcategory of Mod-R, the category of all right R-modules.

(ii) Let C be the category whose objects are the objects of Mod-R and whose
morphisms are the isomorphisms of Mod-R, i.e. HomC (M,N) is the set of R-module
isomorphisms from M to N . Then C is a subcategory of Mod-R and it is not full
despite the fact that its objects are the objects of Mod-R.

0.4.2. Generators and Cogenerators. Let A be category. An object G is
called a generator (of A ) if for all A,A′ ∈ A and distinct f, g ∈ HomA (A,A′),
there exists h ∈ Hom(G,A) such that

f ◦ h 6= g ◦ h .
This is equivalent to saying that the functor HomA (G, ) (from A to the category
of sets) is faithful (check!). A cogenerator (of A ) is the dual notion of a generator
(i.e. a generator in the opposite category). Explicitly, U ∈ A is a cogenerator if for
all A,A′ ∈ A and distinct f, g ∈ HomA (A,A′), there exists h ∈ Hom(A′, U) such
that

h ◦ f 6= h ◦ g .
Alternatively, U is a cogenerator if the (contravariant) functor HomA ( , U) is
faithful.

Example 0.4.5. Let A be the category of abelian groups (or Z-modules).
(i) Z is a generator of A . Indeed, let A,A′, f, g be as above. Then there exists

x ∈ A such that f(x) 6= g(x). Define h : Z → A by h(n) = x · n and observe that
f ◦ h 6= g ◦ h since (f ◦ h)(1) 6= (g ◦ h)(1).

(ii) For all A ∈ A , Z ⊕ A is a generator of A . This is shown by a slight
adjustment of the argument of (i).

(iii) Q is not a generator of A . Indeed, consider idZ/2, 0Z/2 ∈ HomA (Z/2,Z/2).
Then there is no h : Q→ Z/2 such that idZ/2 ◦h 6= 0Z/2 ◦ h.

(iv) Q/Z is a cogenerator of A ; see [58, Ex. 19.11].
(v) Z is not a generator of A . For instance, consider idQ, 0Q ∈ HomA (Q,Q).

Then there is no h : Q→ Z such that h ◦ idQ 6= h ◦ 0Q.
The following proposition generalizes part (ii) of the previous example.
Proposition 0.4.6. Let G ∈ A be a generator. Then any object G′ admitting

an epic morphism G′ → G is also a generator. Dually, let U ∈ A be a cogenerator.
Then any object U ′ admitting a monic morphism U → U ′ is also a cogenerator.6

5 This condition is sometimes dropped from the definition.
6 Recall that a morphism f : A → A′ is monic if for all g1, g2 : B → A, f ◦ g1 = f ◦ g2 =⇒

g1 = g2 and epic if for all h1, h2 : A′ → B, h1 ◦ f = h2 ◦ f =⇒ h1 = h2.
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Generators and cogenerators of Mod-R (also called R-generators and R-cogene-
rators) admit several equivalent definitions which are summarized in the following
propositions. Some of the equivalent conditions apply to any Grothenieck category
(e.g. Mod-R). We also note that condition (b) in both propositions characterizes
generators and cogenerators in all preadditive categories.

Proposition 0.4.7. Let R be a ring and G ∈ Mod-R. The following are
equivalent:

(a) G is a generator.
(b) For all A,B ∈ Mod-R and 0 6= f ∈ HomR(A,B), there exists g ∈

HomR(G,A) such that f ◦ g 6= 0.
(c) Any right R-module is an epimorphic image of

⊕
i∈I G for some set I.

(d) RR is an epimorphic image of
⊕

i∈I G for some set I.
(e) RR is a summand of Gn for some n ∈ N.

Proposition 0.4.8. Let R be a ring and U ∈ Mod-R. The following are
equivalent:

(a) U is a cogenerator.
(b) For all A,B ∈ Mod-R and 0 6= f ∈ HomR(A,B), there exists g ∈

HomR(B,U) such that g ◦ f 6= 0.
(c) For any A ∈ Mod-R and 0 6= x ∈ A, there exists f ∈ HomR(A,U) with

f(x) 6= 0.
(d) Any right R-module embeds in

∏
i∈I U for some set I.

(e) U contains a copy of the injective hull of any simple right R-module.

0.4.3. Equivalence of Categories. Two categories A and B are called
equivalent if there exist two functors F : A → B, G : B → A and two natu-
ral isomorphisms δ : GF → idA and ε : FG → idB. In this case, (F,G, δ, ε) is
called an equivalence from A to B. We also say that F induces an equivalence of
categories from A to B (however, F does not determine G, ε, δ).

An equivalence between A and B roughly means that, modulo isomorphism of
objects, the two categories are the same. In particular, categorical statements about
objects can be transferred from A to B and back. More explicitly, if F : A → B
induces an equivalence and P is a property of objects that is phrased in a purely
categorical manner, then an object A ∈ A has P if and only if FA has P. For
example, A is projective (resp.: injective, a generator, a cogenerator, a zero object,
etc.) if and only if FA is. Furthermore, categorical properties of categories hold
for A if and only if they hold for B. For instance, A is additive (resp. abelian) if
and only if B is and in this case the the functors that induce the equivalence are
additive (resp. exact).7

We should also note that if F induces a duality from A to B, then so is
any functor F ′ that is isomorphic to F (i.e. a functor for which there is a natural
isomorphism t : F → F ′).

Example 0.4.9. Let A be a category with one object and one morphism and
let B be a nonempty category such that there is precisely one morphism between
any two objects in B. Then A is equivalent to B. Indeed, let A ∈ A be the only
object of A and let B ∈ B. Define F : A → B by FA = B and F idA = idB
and let G be the only functor from B to A . Then GF = idA and in particular,
id : GF → idA is a natural isomorphism. Now define ε : FG → idB by letting
εB′ to be the unique element in HomB(FGB′, idB B′) = HomB(B,B′). Then ε is
a natural isomorphism (check!), hence A is equivalent to B. However, A is not
isomorphic to B unless B also contains one object.

7 Caution: Being preadditive is not a categorical property.
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Example 0.4.10. Morita equivalence, described below, is an example of an
equivalence between categories.

If F induces an equivalence from A to B then F is faithful, full and for any
B ∈ B, there exists A ∈ A with FA ∼= B (take A = GB). The converse is also
true, provided one accepts a strong enough version of the axiom of choice (which
applies to classes rather than sets). The conditions just specified make it easy to
check whether a functor induces an equivalence. However, for most applications,
the full description of the equivalence is required.

0.5. Morita Equivalence

This section briefly presents the basis of Morita theory, which classifies equiva-
lences between module categories. Throughout, Mod-(R,S) denotes the category of
(R,S)-bimodules. For a detailed discussion and proofs, see [58, §18] or [80, §4.1].

Definition 0.5.1. Two rings R and S are said to be Morita equivalent if the
categories Mod-R and Mod-S are equivalent.

Many ring theoretic properties of the ring R can be phrased as categorical
statements on Mod-R and are thus guaranteed to pass to any ring which is Morita
equivalent to R. For example, the properties right noetherian, right artinian,
semisimple, right (semi)hereditary (and also: right nonsingular, u.dimRR < ∞,
right self-injective, quasi-Frobenius, which are defined in the following sections) are
categorical properties and are thus preserved under Morita equivalence. In general,
ring theoretic properties that are preserved under Morita equivalence (even if not
categorical) are called Morita invariant. By the end of this section we shall have
exhibited several more Morita invariant properties.

It turns out that there is a very explicit way to decide whether two rings R
and S are Morita equivalent and, moreover, one can characterize (up to functor
isomorphism) all the equivalences between Mod-R and Mod-S. We shall now give
the details.

Definition 0.5.2. Let R be a ring. A right R-module P is called a progenerator
(or R-progenerator) if P is f.g., projective and a generator (of Mod-R).

Note that by Proposition 0.4.7, a right R-module P is a progenerator if and
only if there is n ∈ N such that P is a summand of Rn and RR is a summand of
Pn.

Example 0.5.3. (i) A f.g. projective module over a commutative ring R is a
progenerator if and only if it is faithful. This is due to Azumaya.

(ii) If P is a finite projective right R-module, then RR ⊕ P is a progenerator.
(iii) For any P ∈ Mod-R and n ∈ N, Pn is a progenerator if and only if P is a

progenerator.
(iv) Let R be a semisimple ring. Then an R-module is a progenerator if and

only if it is faithful.
(v) Let F be a field and let Tn be the ring of n× n upper-triangular matrices

over F . Let P be the right ideal of Tn consisting of matrices with all rows being
zero except possibly the top one. Then P is projective and faithful, but it is not a
generator.

The following proposition characterizes the summands of RR which are R-
progenerators.

Proposition 0.5.4. Call an idempotent e of a ring R full if ReR = R. Then
an idempotent e ∈ E(R) is full ⇐⇒ eRR is an R-progenerator ⇐⇒ RRe is an
R-progenerator.
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Definition 0.5.5. A Morita context consists of a sextet (R,P, S,Q;α, β) such
that R and S are rings,

P ∈ Mod-(S,R),
Q ∈ Mod-(R,S),
α ∈ HomMod-(R,R)(Q⊗S P,R),
β ∈ HomMod-(S,S)(P ⊗R Q,S),

and
α(q ⊗ p) · q′ = q · β(p⊗ q′), β(p⊗ q) · p′ = p⊗ α(q ⊗ p′)

for all p, p′ ∈ P and q, q′ ∈ Q.

Example 0.5.6. Let P be any right R-module and let S = End(PR). Then P
be be considered as an (S,R)-bimodule. Furthermore, Q := P ∗ = HomR(P,RR)
can be considered as an (R,S)-bimodule by letting

(r · q · s)(p) = r · q(s(p)) ∀ r ∈ R, q ∈ Q, s ∈ S, p ∈ P .

Now define α : Q⊗S P → R and β : P ⊗R Q→ S by
α(q ⊗ p) = q(p) and β(p⊗ q) = [p′ 7→ p · q(p′)] .

Then (R,P, S,Q;α, β) is a Morita context (check!) called the Morita context asso-
ciated with P .

Proposition 0.5.7. Let (R,P, S,Q;α, β) be a Morita context. The following
are equivalent:

(a) α and β are onto.
(b) α and β are bijective.
(c) PR is a progenerator.

In this case, Q ∼= HomR(PR, RR) ∼= HomS(SP, SS) as (R,S)-bimodules, P ∼=
HomR(RQ,RR) ∼= HomS(QS , SS) as (S,R)-bimodules, R ∼= EndS(SP ) ∼= EndS(QS)
as rings and S ∼= EndR(RQ) ∼= EndR(PR) as rings. In particular, under suitable
identifications, (R,P, S,Q;α, β) is the Morita context associated with P .

We can now formulate Morita’s three theorems about equivalence of module
categories.

Theorem 0.5.8 (Morita I). Let R be a ring, let P be an R-progenerator and
let (R,P,Q, S;α, β) be the Morita context associated with P . Then:

(i) The functors ⊗R Q : Mod-R→ Mod-S and ⊗S P : Mod-S → Mod-R
induce an equivalence of categories.

(ii) The functors P⊗R : R-Mod→ S-Mod and Q⊗S P : S-Mod→ Q-Mod
induce an equivalence of categories.

Proof (sketch). Let M ∈ Mod-R and N ∈ Mod-S. We only define the
natural isomorphisms δ : M ⊗RQ⊗S P →M and ε : N ⊗S P ⊗RQ→ N which are
needed to show (i). They are given by M ⊗R (Q ⊗S P ) idM ⊗α−−−−−→ M ⊗R RRR ∼= M

and N ⊗S (P ⊗R Q) idN ⊗β−−−−→ N ⊗S SSS ∼= N . �

Theorem 0.5.9 (Morita II). Let R and S be rings and let (F,G, δ, ε) be an
equivalence of categories from Mod-R to Mod-S. Let Q = F (RR) and P = G(SS).
Then:

(i) There is an (S,R)-bimodule structure on P and an (R,S)-bimodule struc-
ture on Q.

(ii) PR, RQ, QS, SP are progenerators.
(iii) There are isomorphism of functors F ∼= ⊗R Q and G ∼= ⊗S P .
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(iv) Using the previous isomorphisms, consider δR : GF (RR)→ RR and
εS : FG(SS)→ SS as maps Q⊗R P (⊗RR)→ R and P ⊗S Q(⊗SS)→ S.
Then (R,P, S,Q; δR, εS) is the Morita context associated with PR.

In particular, up to suitable natural identifications, the equivalence (F,G, ε, δ) is
the equivalence obtained from P as in Theorem 0.5.8.

To state Morita’s Third Theorem, we define an (S,R)-progenerator to be an
(S,R)-bimodule P such that PR is a progenerator and S = EndR(P ). (This is
equivalent to SP being a progenerator and R = EndS(P ).)

Theorem 0.5.10 (Morita III). Let R and S be rings. There is a one-to-one
correspondence between isomorphism classes of equivalences Mod-R→ Mod-S and
isomorphism classes of (S,R)-progenerators. Furthermore, composition of such
equivalences corresponds to the tensor product of the corresponding progenerators.

When phrased explicitly, the last part of the previous theorem means that if
R1, R2, R3 are rings and there are equivalences of categories Mod-R1 → Mod-R2
and Mod-R2 → Mod-R3 corresponding to an (R1, R2)-progenerator P1 and an
(R2, R3)-progenerator P2 respectively, then the composition of the equivalences
corresponds to the (R1, R3)-progenerator P1 ⊗R2 P2. In particular, the bimodule
P1 ⊗R2 P2 is an (R1, R3)-progenerator.

As an immediate consequence of Morita’s theorems, we get:

Corollary 0.5.11. Let R and S be a rings. Then Mod-R is equivalent to
Mod-S ⇐⇒ there exists a right R-progenerator P such that S ∼= EndR(P ) ⇐⇒
there exists a left R-progenerator Q such that S ∼= EndR(Q) ⇐⇒ R-Mod is
equivalent to S-Mod.

In particular, we see that Morita equivalence is a left-right symmetric property.
Combining this with Proposition 0.5.4, yields:

Corollary 0.5.12. Let R and S be rings. Then R is Morita equivalent to S if
and only if there is n ∈ N and a full idempotent e ∈ Mn(R) such that S ∼= eMn(R)e.

Proof (sketch). If S ∼= eMn(R)e, then S is Morita equivalent to Mn(R) (by
Proposition 0.5.4 and Morita’s First Theorem). As Mn(R) is clearly equivalent to R
(since Mn(R) ∼= EndR(Rn)), R is Morita equivalent to S. Conversely, if R is Morita
equivalent to S, then there is a right R-progenerator P such that S ∼= EndR(P ).
Let P ′ be an R-module such that P ⊕ P ′ ∼= Rn and let e denote the projection
from Rn to P with kernel P ′. Then EndR(P ) ∼= eEndR(Rn)e = eMn(R)e. One
can show that e is full and this finishes the proof. �

The last corollary means that if we want to check that a ring theoretic property
P is Morita invariant it is enough to verify that:

(1) R has P =⇒ Mn(R) has P for all n ∈ N.
(2) R has P =⇒ eRe has P for any full idempotent e ∈ E(R).

(We should note that many ring theoretic properties pass to eRe even without as-
suming e is full.) In particular, the properties prime, semiprime, simple, seimlocal,
semiperfect and semiprimary can be shown to be Morita invariant in this way.

0.6. Quasi-Frobenius Rings and Related Notions

This section presents a short survey about quasi-Frobenius and pseudo-Frobenius
rings. Its purpose is mainly to present the various equivalent definitions and some
examples. For more details and proofs see [58, Chs. 6–7] and also [54].
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Recall that a ring R is called right self-injective if the right R-module RR is
injective. Combining this assumption with the ascending chain condition (ACC)
yields the definition of a quasi-Frobenius ring.

Definition 0.6.1. A ring R is called quasi-Frobenius (abbrev.: QF) if R is
right self-injective and right noetherian.

The following (very hard) theorem, which is the combined work of several au-
thors, presents some alternative definitions of QF rings. In particular, it shows that
QF is a left-right symmetric property which is preserved under Morita equivalence
(by conditions (e) and (f) below).

Theorem 0.6.2. Let R be a ring. The following conditions are equivalent:
(a) R is QF (i.e. right noetherian and right self-injective).
(b) R is left noetherian and right self-injective.
(c) R is artinian and self-injective.
(d) R is right noetherian and satisfies annr ann`A = A for any right ideal

A ≤ RR and ann` annr B = B for any left ideal B ≤ RR. In particular,
the maps annr and ann` define an anti-isomorphism of lattices between
the right ideals and the left ideals of R.

(e) Every injective right R-module is projective.
(f) Every projective right R-module is injective.

Example 0.6.3. (i) Every artinian ring with a simple socle is QF (this follows
from Theorem 0.6.10 below). For example, if F is a field, then F [x]/ 〈xn〉 is QF.

(ii) Any semisimple ring is QF.
(iii) R1 × · · · ×Rt is QF ⇐⇒ each Ri is QF.
(iv) If R is a Dedekind domain, then R/I is QF for all 0 6= I ER.
(v) If G is a finite group and R is QF, then the group ring RG is QF as well.

Among the important examples of QF rings are Frobenius algebras, which are
defined as follows.

Definition 0.6.4. Let F be a field. A Frobenius algebra over F is a f.d. algebra
A admitting an F -linear map t : A→ F such that the bilinear form b : A×A→ F
defined by b(x, y) = t(xy) is nondegenerate.

Proposition 0.6.5. Any Frobenius algebra over a field F is QF.

Proof (sketch). The set HomF (A,F ) has an (A,A)-bimodule structure (see
part (ii) of the next example) and the map x 7→ t(x · ) induces an isomorphism of
right A-modules A→ HomF (A,F ). Since the r.h.s. is well-known to be an injective
A-module, AA is injective. �

Example 0.6.6. Let K be a field.
(i) Let G be a finite group. ThenKG is a Frobenius algebra; define t : KG→ K

by t(
∑
g agg) = a1G .

(ii) Let A be a f.d. K-algebra and let A′ = HomK(A,K). Then A′ can be made
into an (A,A)-bimodule by letting (a · f)(b) = f(ba) and (f · a)(b) = f(ab) for all
f ∈ A′ and a, b ∈ A. Let B = {

[
a f
0 a
]
| a ∈ A, f ∈ A′}. Then B is a Frobenius

algebra. Indeed, let t : B → K be defined by t(
[
a f
0 a
]
) = f(a). This example

demonstrates that any f.d. algebra is an epimorphic image of a Frobenius algebra.

In order to proceed, recall that a ring R is called right Kasch if RR contains a
copy of every simple right R-module. In addition, for all M ∈ Mod-R, let M∗ :=
HomR(M,R) and observe that M∗ can be considered as a left R-module by setting

(r · f)(m) = r · f(m) ∀f ∈M∗, m ∈M, r ∈ R
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The map ∗ : Mod-R → R-Mod is a contravariant functor and similarly, abusing
the notation, we get a contravariant functor ∗ : R-Mod → Mod-R which is given
by M∗ := HomR(M,R) but with M being a left R-module. For every left or
right module M , there is a natural homomorphism ωM : M → M∗∗ given by
(ωMx)f = f(x). The module M is called reflexive if ωM is a bijection.

Proposition 0.6.7. Assume R is QF. Then:
(i) Any right R-module embeds in a free module.
(ii) Any f.g. R-module is reflexive (i.e. the map ωM : M → M∗∗ is an iso-

morphism).
(iii) An R-module M is f.g. if and only if M∗ is f.g.

Corollary 0.6.8. If R is QF, then RR is a cogenerator and R is right (and
also left) Kasch.

Proof. That RR is a cogenerator follows from Proposition 0.4.8(d) and part
(i) of the previous proposition. In addition, Proposition 0.4.8(e) implies that any
cogenerator contains a copy of any simple right R-module, hence RR is right Kasch.

�

The following theorems provide additional characterizations of QF rings.

Theorem 0.6.9 (Dieudonne). An artinian ring R is QF if and only if for any
(left or right) simple R-module M , M∗ is simple or the zero module. In this case
M∗ is actually a simple R-module.

Theorem 0.6.10. An artinian ring R is QF if and only if it is Kasch and for
every primitive idempotent e ∈ E(R), the socle of eR and Re is simple.

Remark 0.6.11. Some of the results just stated follow from the fact that if R
is QF, then ∗ induces a duality between the categories of f.g. right R-modules and
f.g. left R-modules. See [58] for more details.

The previous results imply that a QF ring R is a right cogenerator ring, i.e. RR
is a right cogenerator of Mod-R. This leads to the following definition.

Definition 0.6.12. A right pseudo-Frobenius (abbrev.: PF) ring is a right
self-injective right cogenerator ring.

The following theorem, again due to several authors, provides equivalent defi-
nitions. In contrast to being QF, being PF is not a right-left symmetric property
(this was open for some while, though). We also note that it is also common to
define right PF using condition (e) below.

Theorem 0.6.13. Let R be a ring. Then the following are equivalent:
(a) R is right PF (i.e. R is right self-injective and right cogenerator).
(b) R is right self-injective and right Kasch.
(c) R is right self-injective and annr ann`A = A for any right ideal A ≤ RR.
(d) R is right self-injective, semiperfect (or semilocal) and soc(RR) ⊆e RR.
(e) Any faithful right R-module is a generator.
(f) RR is a cogenerator and R is left Kasch.

0.7. Uniform Dimension

In this section, we recall the definition and basic properties of uniform dimen-
sion. This theory, due to A. Goldie, is discussed in detail in [58, §6].

We begin by recalling the basics of essential extensions and injective hulls.
Throughout, R is a ring.
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Let M be a right R-module. A submodule N ≤ M is said to be essential in
M if N ∩ N ′ 6= 0 for any 0 6= N ′ ≤ M . This is equivalent to saying that for any
0 6= m ∈ M , there is r ∈ R such that 0 6= mr ∈ N . In this case, we also say that
M is an essential extension of N .

The following facts are easy to prove. They will be used freely henceforth.

Proposition 0.7.1. Let M,N,K be right R-module.
(i) If M ≤ N ≤ K, then M ⊆e K ⇐⇒ M ⊆e N and N ⊆e K.
(ii) If M,N ⊆e K, then M ∩N ⊆e K.
(iii) Let f ∈ HomR(M,N) and assume K ⊆e N . Then f−1(K) ⊆e M .

Every right module M admits a maximal essential extension, denoted E(M);
the maximality means that E(M) does not have non-trivial essential extensions.
The extension M ↪→ E(M) is unique up to isomorphism in the sense that if
M ↪→M ′ is another maximal essential extension, then there is a module isomor-
phism f : M ′ → E(M) such that f |M = idM (i.e. E(M) ∼= M ′ as extensions of
M). It turns out that E(M) is injective and can also be characterized as

• the smallest injective module containing M , or
• the only injective essential extension of M .

Thus, E(M) is usually called the injective hull or injective envelope of M . Note
that while E(M) is uniquely determined to isomorphism, the map sending M to
E(M) is not functorial. This is despite the fact that any homomorphism between
two right R-modulesM →M ′ extends to a (not necessarily unique) homomorphism
E(M)→ E(M ′) (this follows from the injectivity of E(M ′)).

The fact that homomorphisms between modules extend to their injective hulls
has the following useful consequence.

Proposition 0.7.2. If M and M ′ are two R-modules and f : M → M ′ is a
monomorphism, then any homomorphism f̂ : E(M) → E(M ′) extending f is also
a monomorphism. Furthermore, if f(M) ⊆e M ′, then f̂ is an isomorphism. In
particular, if M ⊆M ′, then E(M) can be understood as a submodule of E(M ′) and
if M ⊆e M ′, then E(M) = E(M ′).

Proof. The assumptions imply ker f̂ ∩M = 0. SinceM ⊆e E(M), this means
ker f̂ = 0, hence f̂ is a monomorphism. If f(M) ⊆e M ′, then f(M) ⊆e E(M ′)
(because M ′ ⊆e E(M ′)). Thus, f̂(E(M)) ⊆e E(M ′) (since the l.h.s. contains
f(M)). As E(M) is injective, the embedding f̂ must split, so there is N ≤ E(M ′)
with E(M ′) = N ⊕ f̂(E(M)). But then N ∩ f̂(E(M)) = 0, so we must have N = 0
(since f̂(E(M)) ⊆e E(M ′)) and this means f̂ is surjective. �

Definition 0.7.3. Let M be a right R-module. The uniform dimension of M ,
denoted u.dimM , is defined to be the maximal n ∈ N ∪ {0} (or ∞) such that M
contains a direct sum of n nonzero right R-modules.

Example 0.7.4. (i) u.dimM = 0 if and only if M = 0.
(ii) Assume M 6= 0. Then u.dimM = 1 if and only if for any two submodules

0 6= N,N ′ ≤M , we have N∩N ′ 6= 0 (otherwise, N⊕N ′ ≤M , implying u.dimM ≥
2). Such modules are called uniform. Uniform modules have the property that any
nonzero submodule is essential. For example, Z, Q and Z[ 1

p ]/Z are uniform Z-
modules.

(iii) The uniform dimension of the Z-module Z/6 is 2. This holds since Z/6 ∼=
Z/2⊕ Z/3.

(iv) If R is a field, then the unform dimension of a f.g. R-module is its dimension
(so uniform dimension can be considered as a generalization of the dimension).
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(v) Generalizing (iv): If M is a f.g. semisimple module, then u.dimM =
length(M). (However, this fails for non-semisimple modules).

(vi) Also generalizing (iv): Assume R is an integral domain and let F be
its fraction field. The uniform dimension of a torsion-free R-module M is just
dimF (M ⊗R F ).

(vii) Let F be a field and let R = F 〈x, y〉 (R is the free F -algebra generated
by two non-commuting indeterminates {x, y}). Then u.dimRR = ∞. Indeed,
RR ⊇

⊕∞
n=0 x

nyR.

Remark 0.7.5. Caution: u.dimRR might be different from u.dimRR

The following proposition is very useful for determining what is the uniform
dimension.

Proposition 0.7.6. Let M be a right R-module and let n ∈ N. Then:
(i) u.dimM = n ⇐⇒ there are uniform submodules A1, . . . , An ≤ M such

that A1 ⊕ · · · ⊕An ⊆e M .
(ii) u.dimM = ∞ ⇐⇒ there are nonzero submodules A1, A2, . . . ≤ M such

that A1 ⊕A2 ⊕ . . . ⊆M .

We finish this section by stating several more facts.

Proposition 0.7.7. Let M,N be R-modules and let M ′ ≤M . Then:
(i) u.dimM ′ ≤ u.dimM . Equality holds when M ′ ⊆e M . In particular,

dimM = u.dimE(M).
(ii) If u.dimM ′ = u.dimM <∞, then M ′ ⊆e M .
(iii) u.dimM ≤ u.dimM ′ + u.dim(M/M ′) (with the standard conventions

about adding ∞).
(iv) u.dim(M ⊕ N) = u.dimM + u.dimN (with the standard conventions

about adding ∞).

0.8. Classical Rings of Fractions

This section briefly surveys the theory of classical non-commutative localiza-
tion, which is due to O. Ore, A. Goldie and others. For an extensive discussion and
proofs see [58, §10–11] or [80, §3.1].

Let R be a ring and let S be a submonoid of (R, · ). A classical right ring of
fractions of R w.r.t. S is a ring R′ together with a ring homomorphism ϕ : R→ R′

such that the following properties are satisfied:
(1) ϕ(s) is invertible in R′ for all s ∈ S.
(2) Every element of R′ can be written as ϕ(r)ϕ(s)−1 for some r ∈ R and

s ∈ S.
(3) kerϕ = {r ∈ R | ∃s ∈ S : rs = 0}

In this case, the ring extension ϕ : R→ R′ is uniquely determined to isomorphism
(of extension of R) and we write R′ = RS−1. (For classical left rings of fractions,
the notation is S−1R). The map ϕ is often omitted from the notation and rs−1

is used to denote ϕ(r)ϕ(s)−1. Observe that if R is commutative, then RS−1 is
precisely the usual localization of R at S. However, in contrary to the commutative
case, the ring RS−1 need not exist. Sufficient and necessary conditions for its
existence are provided in the following theorem.

Theorem 0.8.1. Let R be a ring and let S be a multiplicative submonoid of R.
The ring RS−1 exists if and only if the following conditions are satisfied:

(1) For all s ∈ S and r ∈ R, sR ∩ rS 6= φ.
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(2) For all s ∈ S and r ∈ R such that sr = 0, there exists s′ ∈ S such that
rs′ = 0.

Proof (sketch). We will briefly describe an explicit construction of RS−1.
The elements of RS−1 will be the set of pairs (r, s) ∈ R×S considered modulo the
following equivalence relation: (r, s) ∼ (r′, s′) if there exists u, u′ ∈ R such that

su = s′u′ ∈ S and ru = r′u′ .

The equivalence class of (r, s) will be denoted by rs−1. (Using this notation, the
equivalence relation just means rs−1 = (ru)(su)−1 = (r′u′)(s′u′)−1 = r′s′−1).

To define addition, note that every two fractions r1s
−1
1 , r2s

−1
2 ∈ RS−1 can be

changed to have the same denominator. Indeed, by condition (1), s1S ∩ s2R 6= φ,
so there are s ∈ S and r ∈ R such that s1s = s2r (this implies that s2r ∈ S). We
now have

r1s
−1
1 = (r1s)(s1s)−1

r2s
−1
2 = (r2r)(s2r)−1 = (r2r)(s1s)−1 .

The sum of r1s
−1
1 and r2s

−1
2 is thus defined to be (r1s+ r2r)(s1s)−1.

The definition of product of r1s
−1
1 , r2s

−1
2 uses a similar idea. By (1), there are

r ∈ R and s ∈ S such that s1r = r2s (this implies s1r ∈ S). We now define
(r1s

−1
1 )(r2s

−1
2 ) = (r1r)(s2s)−1 .

The reason for this is that s1r = r2s means that rs−1 = s−1
1 r2 (if the r.h.s.

was defined) and then (r1s
−1
1 )(r2s

−1
2 ) should be r1(s−1

1 r2)s−1
2 = r1rs

−1s−1
2 =

(r1r)(s2s)−1.
We leave it to the reader to check that the addition and multiplication are

well-defined and make RS−1 into a ring whose unity and zero elemnts are 1R1−1
R

and 0R1−1
R , respectively.

We now define ϕ : R → RS−1 by ϕ(r) = r1−1
R . Then r ∈ kerϕ if and only

if r1−1
R = 0R1−1

R . That is, there are u, u′ ∈ R such that 1Ru = 1Ru′ ∈ S and
ru = 0u′. These conditions are equivalent to u = u′ ∈ S and ru = 0, hence
kerϕ = {r ∈ R | ∃s ∈ S : rs = 0}. �

Definition 0.8.2. A multiplicative submonoid of a ring R which satisfies con-
ditions (1) and (2) of Theorem 0.8.1 is called a right denominator set. (Left de-
nominator sets are defined in a similar manner.)

Proposition 0.8.3. If S is a right and left denominator set in R, then the
rings RS−1 and S−1R are isomorphic as extension of R.

Example 0.8.4. Any multiplicative submonoid of R which is contained in
Cent(R) is a right and left denominator set (check!).

Recall that an element r ∈ R is called regular if annr r = 0 and ann` r = 0. It
is easy to check that if S is a right denominator set in R, then the map R→ RS−1

is injective if and only if S consists of regular elements. If the set of all regular
elements is a right denominator set, then R is called right Ore. In this case, we let
Qrcl(R) denote the ring obtained by localizing at this set. The ring Qrcl(R), when it
exists, is called the classical right ring of fractions of R. Its left analogue is denoted
by Q`cl(R). When both Qrcl(R) and Q`cl(R) exist, they coincide.

Example 0.8.5. (i) If all regular elements in R are invertible, then Qrcl(R) and
Q`cl(R) exist and coincide with R. Such rings are called classical. For example, any
right or left artinian ring R is classical. It also turns out that the rings Qrcl(R) and
Q`cl(R) are classical (when they exist), so Qrcl(Qrcl(R)) = Q`cl(Qrcl(R)) = Qrcl(R) and
a similar statement holds for Q`cl(R).
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(ii) Any commutative ring R is right and left Ore. In this case, the ring
Qrcl(R) = Q`cl(R) is sometimes called the total ring of fractions of R. In partic-
ular, if R an integral domain, then Qrcl(R) is the faction field of R.

(iii) By definition, a domain R is right Ore when R\{0} is a right denominator
set. A straightforward argument shows that this is equivalent to aR∩ bR 6= {0} for
all 0 6= a, b ∈ R.

(iv) Let F be a field. The ring R = F 〈x, y〉 is a domain, but it is not right nor
left Ore since xR ∩ yR = 0 and Rx ∩Ry = 0. In particular, Qrcl(R) and Q`cl(R) do
not exist.

The following two theorems, which are due to Goldie, ensure that certain rings
are right Ore and have fairly nice classical ring of fractions.

Theorem 0.8.6 (Goldie). Let R be a domain. Then R is right Ore ⇐⇒
u.dimRR <∞ ⇐⇒ u.dimRR = 1 ⇐⇒ aR∩ bR 6= 0 for any 0 6= a, b ∈ R ⇐⇒
Qrcl(R) exists and it is a division ring.

Example 0.8.7. (i) It turns out that any right noetherian domain and any PI
domain8 is right Ore. (Indeed, a right noetherian ring R must have u.dimRR <∞.
The PI case follows from a result of Jategaonkar asserting that if R is a domain
and 0 6= a, b ∈ R satisfy aR∩ bR = 0, then the ring spanned by a, b and Cent(R) is
a free Cent(R)-algebra with two (non-commuting) generators and hence R cannot
be PI.)

(ii) Let R be a right Ore domain, let σ : R→ R be an injective ring automor-
phism an let δ : R → R be a derivation. Then the twisted polynomial ring R[x;σ]
and the differential polynomial ring R[x; δ] are also right Ore domains.9

Definition 0.8.8. A ring R is called right Goldie if R has ACC on right
annihilators and u.dimRR <∞.

Example 0.8.9. Any right noetherian ring is right Goldie.

Theorem 0.8.10 (Goldie). Let R be a ring. Then the following conditions are
equivalent.

(a) R is a semiprime right Goldie ring.
(b) Qrcl(R) exists and it is a semisimple ring.

Remark 0.8.11. Although right noetherian rings are right Goldie, there are
right noetherian rings which are not right Ore.

Let us go back to the general case of a ring R and right denominator set S.
We finish this section by noting that right R-modules can also be localized at S.
Indeed, for any right R-module M , one can construct an RS−1-module MS−1 by
mimicking the construction in the proof of Theorem 0.8.1. That is, the elements of
MS−1 are pairs (m, s) ∈M×S, considered up to the following equivalence relation:
(m, s) ∼ (m′, s′) if there are u, u′ ∈ R such that su = su′ ∈ S and mu = mu′. We
let ms−1 stand for the equivalence class of (m, s). The rest of the details are left
to the reader. The following theorem summarizes some of the properties of MS−1.

Theorem 0.8.12. Let R be a ring, let S be a right denominator set and let M
be a right R-module. Then:

8 A ring R is called a PI ring (which stands for polynomial identity ring) if there exists a
nonzero polynomial f(x1, . . . , xr) ∈ Z 〈x1, x2, . . .〉 whose (nonzero) coefficients are either 1 or −1
such that f(r1, . . . , rt) = 0 for all r1, . . . , rt ∈ R.

9 The ring R[x;σ] is defined to be the ring of formal finite sums
∑

i
rix

i with ri ∈ R subject
to the relation xr = σ(r)x for all r ∈ R. The ring R[x; δ] is defined in the same manner except
the relation which is xr = rx+ δ(r).
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(i) MS−1 is a right RS−1-module.
(ii) The map M → MS−1 defined by m 7→ m1−1

R is an R-module homomor-
phism with kernel {m ∈M | ∃s ∈ S : ms = 0}.

(iii) The map M 7→ MS−1 from Mod-R to Mod-RS−1 is functorial; for f ∈
HomR(M,N), define fS−1 ∈ HomRS−1(MS−1, NS−1) by

(fS−1)(ms−1) = (fm)s−1 ∀ ms−1 ∈MS−1 .

(iv) The functor M 7→MS−1 is exact.
(v) There is a natural isomorphism between M ⊗R RS−1 and MS−1. It is

given by m⊗R (rs−1) 7→ (mr)s−1.
(vi) The ring RS−1 is flat as a right R-module.
(vii) If the map M →MS−1 of (ii) is injective, then

u.dimMR = u.dimMS−1
R = u.dimMS−1

RS−1 .

0.9. Rational Extensions

This section is devoted to rational extensions and merely serves as preparation
for the next section about general rings of quotients. As this is somewhat related,
we also consider nonsingular modules at the end of the section. For more details
and proofs, see [58, §7–8].

Throughout, R is a ring. Let M be a right R-module. A submodule N ≤M is
dense in M , denoted N ⊆d M , if for all x, y ∈ M with x 6= 0, there is r ∈ R such
that xr 6= 0 and yr ∈ N . In this case, we also say that M is a rational extension
of N . Observe that if we take x = y in the definition, we get the definition of an
essential submodule. Thus

N ⊆d M =⇒ N ⊆e M .

The converse is not true, though.
The definition of density can be also be phrased using the following notation:

For all y ∈M , let
y−1N = {r ∈ R : yr ∈ N} .

Then y−1N is a right ideal and N ⊆d M if and only if x ·y−1N 6= 0 for all x, y ∈M
with x 6= 0.

Example 0.9.1. (i) When considered as Z-modules, Z ⊆d Q (straightforward).
(ii) More generally, if R is a domain and M is a torsion-free right R-module,

then N ⊆d M if and only if N ⊆e M . Indeed, assume that N ⊆e M and x, y ∈M
with x 6= 0. If y = 0, then x1R 6= 0 and y1R ∈ N . Otherwise, there is r ∈ R such
that 0 6= yr ∈ N . This implies r 6= 0, so xr 6= 0 since M is torsion-free.

(iii) Let p be a prime number and consider the Z-modules M = Z/p2Z and
N = pZ/p2Z. Then N ⊆e M , but N *d M . To see the latter, take x = p + p2Z
and y = 1 + p2Z. It is easy to see that if yn ∈ N for some n ∈ Z, then xn = 0,
hence N *d M .

(iv) Let J be a two-sided ideal of R. Consider J as a submodule of RR and
observe that for all y ∈ R, y−1J ⊇ J . Thus, x · y−1J = 0 implies xJ = 0, i.e.
x ∈ ann` J . Thus, if ann` J = 0, then JR ⊆d RR. The converse is also true, for
if xJ = 0, then x · 1−1

R J = xJ = 0. We thus conclude that ann` J = 0 ⇐⇒
JR ⊆d RR.

(v) As a consequence of (iv) we get: If a ∈ Cent(R) and ann a = 0, then
aRR ⊆d RR.

(vi) Let 0 6= z ∈ R. Then annr z *d RR. Indeed, z ·1−1
R (annr z) = z ·annr z = 0.

The following proposition presents equivalent definitions for density.
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Proposition 0.9.2. LetM be a right R-module admitting a submodule N ≤M .
The following are equivalent:

(a) N ⊆d M .
(b) Hom(M/N,E(M)) = 0.
(c) For any submodule N ≤ N ′ ≤M , Hom(N ′/N,M) = 0.

Proposition 0.9.3. Let M,N,K be right R-modules.
(i) If M ≤ N ≤ K, then M ⊆d K ⇐⇒ M ⊆d N and N ⊆d K.
(ii) If M,N ⊆d K, then M ∩N ⊆d K.
(iii) Let f ∈ HomR(M,N) and assume K ⊆d M , then f−1(K) ⊆d M .
(iv) If N ⊆d M and y ∈M , then y−1N ⊆d RR (this is a special case of (iii)).

Proof. Parts (i)–(iii) are routine. To see (iv), define f ∈ HomR(RR,M) by
f(r) = yr. Then y−1N = f−1(N), hence y−1N ⊆d RR by (iii). �

Let M be a right R-module. The module M is called rationally closed if it
has no proper rational extension. It turns out that every module M is dense in
some rationally closed module, denoted Ẽ(M). The module Ẽ(M) is called the
rational hull of M and it is unique in sense that if M ′ is another rationally closed
rational extension of M , then there is an isomorphism f : Ẽ(M) → M ′ such
that f |M = idM . Moreover, in contrast to to injective hulls, the isomorphism f

is uniquely determined. The module Ẽ(M) can be identified with the following
submodule of E(M):

(1) Ẽ(M) = {x ∈ E(M) | ∀h ∈ EndR(E(M)) : h(M) = 0 =⇒ h(x) = 0} .

In fact, this is the only way to embed Ẽ(M) in E(M) such that M is fixed.
We should point out that homomorphisms between modules need not extend

to their rational hulls.

Example 0.9.4. (i) If M is injective or rationally closed, then Ẽ(M) = M .
(ii) Ẽ(ZZ) = QZ. This can be checked by showing that E(ZZ) = QZ and then

using the fact that Z ⊆d Q.
(iii) Consider the Z-module Z/p (p is a prime number). Then Ẽ(Z/p) = Z/p,

but E(Z/p) ∼= Z[ 1
p ]/Z. In particular, Ẽ(Z/p) � E(Z/p). This can be shown using

(1). Also note that the homomorphism Z → Z/p give by n 7→ n + pZ cannot be
extended to a homomorphism from Ẽ(Z) = Q to Ẽ(Z/p) = Z/p.

(iv) Let M be a f.g. right R-module that contains a copy of any simple right
R-module. Then Ẽ(M) = M . Indeed, assume by contradiction thatM ⊆d M ′ with
M ′ strictly bigger thanM . Without loss of generality,M ′ is also finitely generated.
Thus, M is contained in a maximal submodule M ′′ of M ′. Since M ′/M ′′ is simple,
it embeds in M . Thus, HomR(M ′/M,M) 6= 0, implying Hom(M ′/M,M ′) 6= 0,
which contradicts Proposition 0.9.2(b).

(v) As a special case of (iv), we get: If R is right Kasch (see section 0.6), then
Ẽ(RR) = RR.

There is an important family of modules for which essential and rational ex-
tensions are the same thing. These are the nonsingular modules, which are defined
as follows.

Definition 0.9.5. For any right R-module M , define the singular radical of
M by

Z(M) = {m ∈M : annRm ⊆e RR} .
Then Z(M) is a submodule of M and M is called nonsingular if Z(M) = 0. The
ring R is called right nonsingular if the module RR is nonsingular.
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Example 0.9.6. (i) A right Z-module is nonsingular if and only if it is torsion-
free. (More generally, this holds for any right Ore domain.)

(ii) Any simple ring is right and left nonsingular. This follows from the fact
that Z(RR) is always a proper ideal of R.

Proposition 0.9.7. Let N ≤M be right R-modules. Then:
(i) M is nonsingular =⇒ N is nonsingular. The converse holds when N ⊆e

M .
(ii) If M is nonsingular, then Ẽ(M) = E(M).
(iii) If at least one of M , N is nonsingular, then N ⊆d M ⇐⇒ N ⊆e M .

0.10. General Rings of Quotients

In this last section we recall the basics of general rings of quotients. The results
stated in this section are the combined work of several authors, including Utumi,
Osofsky, Johnson, Gabriel and others. For an extensive discussion see [58, §13] and
also [80, §3.4].

Let R be a ring. A general right ring of quotients (or just a right quotient ring)
of R is a ring Q containing R such that RR ⊆d QR. As with rational extensions,
it turns out that any ring R admits a unique maximal right quotient ring, denoted
Qrmax(R). This is stated in the following (highly non-trivial) theorem.

Theorem 0.10.1. Let R be a ring. Then there exists a right quotient ring of
R, denoted Qrmax(R), such that:

(i) For any right quotient ring of R, Q, there exists a unique ring homomor-
phism Q→ Qrmax(R) that fixes R.

(ii) Any proper ring extension of Qrmax(R) is not a right quotient ring of R.
(iii) Qrmax(R)R ∼= Ẽ(RR).

Proof (sketch). There are two common ways to construct Qrmax(R). We
will briefly present both of them, but not prove that they satisfy (i)–(iii).

The first way is very short but less explicit. Let I := E(RR) and H = End(IR).
Then I is a left H-module. Define Qrmax(R) = End(HI) and observe that R embeds
in Qrmax(R) by r 7→ [i 7→ ir] ∈ End(HI) (here i is an element of I). It can be shown
that Qrmax(R) satisfies the conditions (i)–(iii).

The second way is more explicit, but more tedious. Consider pairs (A, f) such
that A is a dense right ideal of R and f ∈ HomR(A,RR). We define an equivalence
relation on the set of such pairs by (A, f) ∼ (B, g) ⇐⇒ f |A∩B = g|A∩B . Let
[A, f ] stand for the equivalence class of (A, f). We define Qrmax(R) to be the
set of equivalence classes [A, f ] and embed R in Qrmax(R) by sending r ∈ R to
[R, x 7→ rx] ∈ Qrmax(R). Addition and multiplication in Qrmax(R) are defined as
follows: Let [A, f ], [B, g] ∈ Qrmax(R). Then by Proposition 0.9.3(ii)–(iii), A∩B and
g−1(A) ∩B are dense in RR. Using this, we define

[A, f ] + [B, g] = [A ∩B, f |A∩B + g|A∩B ] ,
[A, f ] · [B, g] = [g−1(A) ∩B, f ◦ g] .

We can now explain why (iii) holds. Let m ∈ Ẽ(M) and consider the map
fm : RR → Ẽ(M) given by fm(r) = mr. Then by Proposition 0.9.3(iii), f−1

m (M) ⊆d
RR. Thus, [f−1

m (M), f |f−1
m (M)] ∈ Qrmax(R). It is not hard to see that the map

sending m ∈ Ẽ(M) to [f−1
m (M), f |f−1

m (M)] is an injective homomorphism of right
R-modules, which also turns out to be surjective, thus implying (iii). �

The ring Qrmax(R) can also be characterized (up to isomorphism of extensions
of R) as:
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(1) the only ring Q ⊇ R such that QR ∼= Ẽ(R)R;
(2) the only right quotient ring of R, Q, satisfying Qrmax(Q) = Q.

If Q satisfies any of these conditions then there exists a unique isomorphism
Q → Qrmax(R) fixing R pointwise. Note that both conditions allow an “easy”
verification that a given ring extension of R is Qrmax(R). Condition (2) also implies
the following nice corollary.

Corollary 0.10.2. Any ring automorphism of R admits a unique extension
into an automorphism of Qrmax(R).

Proof (sketch). Let σ be an automorphism of R. ThenQrmax(R) can be con-
sidered a ring extension of R via σ : R → Qrmax(R) (rather than via
idR : R→ Qrmax(R)). To avoid ambiguity, let us denote the extension of R obtained
in this manner by Qrmax(R)σ (so Qrmax(R)σ = Qrmax(R) as rings, but R embeds in
Qrmax(R)σ via σ). It is routine to verify that RR ⊆d Qrmax(R)σR, hence Qrmax(R)σ
is a right quotient ring of R. In addition, since Qrmax(R)σ ∼= Qrmax(R) as rings,
Qrmax(Qrmax(R)σ) = Qrmax(R)σ. Thus, by (2) above, Qrmax(R)σ is also a maximal
right quotient ring of R, so there is a unique isomorphism of extensions of R, from
Qrmax(R) to Qrmax(R)σ. When understood as a map from Qrmax(R) to itself, this
isomorphism is an automorphism of Qrmax(R) extending σ. �

One can also define left quotient rings and discuss the maximal left quotient
ring of R, denoted Q`max(R). Note that in contrast to classical rings of factions, the
left and right maximal rings of quotients might be non-isomorphic as extensions of
R.

Example 0.10.3. Let F be a field and let Tn be the ring of n × n upper-
triangular matrices. Then Q`max(Tn) = Qrmax(Tn) = Mn(F ) (with Tn identified as
a subring of Mn(F ) in the standard way). To see this, it is enough to check that
Mn(F ) is a right and left quotient ring of Tn (which we leave to the reader) and
that Qrmax(Mn(F )) = Q`max(Mn(F )) = Mn(F ), which follows from the fact that
Mn(F ) is left and right self injective and thus cannot have essential (not to say
rational) extensions.

See [58, §13] for more explicit computations of maximal rings of quotients.

Remark 0.10.4. If Qrcl(R) exists, then it is a right quotient ring of R and hence
admits a unique embedding intoQrmax(R). However, the latter can be strictly larger;
for instance, in the previous example we have Qrcl(Tn) = Tn (since Tn is artinian),
but Qrmax(Tn) = Mn(F ). Nevertheless, if Qrmax(Qrcl(R)) = Qrcl(R), then by (2)
above Qrcl(R) = Qrmax(R). In particular, if R is a semiprime right Goldie ring, then
Qrcl(R) = Qrmax(R) (by Theorem 0.8.10).

We finish with two strong structural results about Qrmax(R), which are due to
Johnson and Gabriel.

Theorem 0.10.5 (Johnson). Qrmax(R) is von-Neumann regular10 ⇐⇒ R is
right nonsingular. In this case Qrmax(R) is right self-injective.

Theorem 0.10.6 (Gabriel). Qrmax(R) is semisimple ⇐⇒ R is right nonsin-
gular and u.dimR <∞.

Remark 0.10.7. The assumption that R is nonsingular and u.dimR < ∞
implies that R is right Goldie. The converse holds when R is semiprime.

10 A ring R is von-Neumann regular if for all x ∈ R there is y ∈ R such that xyx = x. For
example, the endomorphism ring of an arbitrary vector space is von-Neumann regular.





CHAPTER 1

Semi-Invariant Subrings

Call a subring R0 of a ring R semi-invariant if R0 is the ring of invariants in R
under some set of ring endomorphisms of some ring containing R. In this chapter,
we study semi-invariant subrings of semiperfect rings and present applications to
various areas such as Krull-Schmidt decompositions and representations of rings and
monoids. The results of this chapter will form the the ring-theoretic infrastructure
to Chapter 4.

Parts of this chapter can also be found in [41].

1.1. Preface

Let R be a ring and let J = Jac(R). The ring R is semilocal if R/J is semisim-
ple. If in addition J is idempotent lifting, then R is called semiperfect. For a
detailed discussion on semiperfect rings, see [80, §2.7] and [9]. Semiperfect rings
play an important role in representation theory and module theory because of the
Krull-Schmidt Theorem. Recall that an object A in an additive category A is said
to have a Krull-Schmidt decomposition if it is a sum of (non-zero) indecomposable
objects and any two such decompositions are the same up to isomorphism and
reordering.

Theorem 1.1.1 (Krull-Schmidt, for Categories). Let A be an additive category
in which all idempotents split (e.g. an abelian category) and let A ∈ A . If EndA (A)
is semiperfect, then A has a Krull-Schmidt decomposition and the endomorphism
ring of any indecomposable summand of A is local.

Generalizations of this theorem and counterexamples of some natural variations
have been widely studied (e.g. [35],[8],[3],[33] and also [32]) and there has been
considerable interest in finding rings over which all finitely presented modules have
a Krull-Schmidt decomposition (e.g. [92, §6],[19],[78],[79],[96]; Theorem 1.8.3(iii)
below generalizes all these references except the last).

Example 1.1.2. Semiperfect rings naturally occur upon taking completions:
(1) Let R be a semilocal ring and let J = Jac(R). Then the J-adic completion

of R, lim←−{R/J
n}n∈N, is well known to be semiperfect. If the natural

map R → lim←−{R/J
n}n∈N is an isomorphism, then R is called complete

semilocal. Such rings (especially noetherian or with Jacobson radical f.g.
as a right ideal) appear in various areas (e.g. [63], [48], [92, §6], [79]).

(2) Let R be a noetherian integral domain, let A be an R-algebra that is
finitely generated as an R-module and let P ∈ Spec(R). Then the com-
pletion of A at P is semiperfect (and noetherian). (See [72, §6]; This
assertion can also be shown using the results of this chapter).

Let R be any ring and let R0 ⊆ R be a subring.
(a) Call R0 a semi-invariant subring if there is a ring S ⊇ R and a set Σ ⊆

End(S) such that R0 = RΣ := {r ∈ R : σ(r) = r ∀σ ∈ Σ} (elements of Σ
are not required to be injective nor surjective). The invariant subrings of
R are the subrings for which we can choose S = R.

25
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(b) Call R0 a semi-centralizer subring if there is a ring S ⊇ R and a set
X ⊆ S such that R0 = CentR(X) := {r ∈ R : rx = xr ∀x ∈ X}. If we
can choose S = R, then R0 is a centralizer subring.

(c) Recall that R0 is rationally closed in R if R×∩R0 = R×0 . That is, elements
of R0 that are invertible in R are also invertible in R0.

Semi-centralizer and semi-invariant subrings are clearly rationally closed. The latter
were studied (for semilocal R) in [23] and invariant subrings (w.r.t. an arbitrary
set) were considered in [19]. However, the notion of semi-invariant subrings appears
to be new.

The purpose of this chapter is to study semi-invariant subrings of semiperfect
rings where our motivation comes from the Krull-Schmidt theorem and the following
observations, verified in sections 1.3:

(1) For any ring R, a subring of R is semi-invariant if and only if it is semi-
centralizer. In particular, all centralizers of subsets of R are semi-invariant
subrings.

(2) If R ⊆ S are rings and M is a right S-module, then End(MS) is a semi-
invariant subring of End(MR).

(3) If M is a finitely presented right R-module, then End(MR) is a quotient
of a semi-invariant subring of Mn(R) for some n.

While in general semi-invariant subrings of semiperfect rings need not be semiper-
fect (see Examples 1.6.1-1.6.3 below), we show that this is true for special families of
semiperfect rings, e.g. for semiprimary and right perfect rings (Theorem 1.4.6; see
section 1.2 for definitions). In addition, if the ring in question is pro-semiprimary,
i.e. an inverse limit of semiprimary rings (e.g. the rings of Example 1.1.2), then its
T-semi-invariant subrings (e.g. centralizer subrings; see section 1.5 for definition)
are semiperfect. This actually holds under milder assumptions regarding whether
the ring can be endowed with a “good” topology; see Theorems 1.5.10 and 1.5.15.

Our results together with the previous observations and the Krull-Schmidt
Theorem lead to numerous applications including:

(1) The center and any maximal commutative subring of a semiprimary (resp.
right perfect, semiperfect and pro-semiprimary) ring is semiprimary (resp.
right perfect, etc.).

(2) If R is a semiperfect pro-semiprimary ring, then all f.p. modules over R
have a semiperfect endomorphism ring and hence admit a Krull-Schmidt
decomposition. If moreover R is right noetherian, then the endomorphism
ring of a f.g. right R-modules is pro-semiprimary. (This generalizes Swan
([92, §6]), Bjork ([19]) and Rowen ([78], [79]) and also relates to works
of Vámos ([96]), Facchini and Herbera ([34]); see Remark 1.8.4 for more
details.)

(3) If S is a commutative semiperfect pro-semiprimary ring and R is an S-
algebra that is Hausdorff (see Section 1.8) and f.p. as an S-module, then
R is semiperfect. If moreover S is noetherian, then the Hausdorff assump-
tion is superfluous and R is pro-semiprimary, hence the assertions of (2)
apply. (The first statement is known to hold under mild assumptions for
Henselian rings; see [96, Lm. 12].)

(4) If ρ is a representation of a ring or a monoid over a module with a semiper-
fect pro-semiprimary endomorphism ring, then ρ has a Krull-Schmidt de-
composition.

(5) Let R ⊆ S be rings and let M be a right S-module. If End(MR) is
semiprimary (resp. right perfect), then so is End(MS). In particular, M
has a Krull-Schmidt decomposition over S. (Compare with [34, Pr. 2.7].)
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Additional applications concern bilinear forms (Chapter 4 below) and getting a
“Jordan Decomposition” for endomorphisms of modules with semiperfect pro-semi-
primary endomorphism ring. We also conjecture that (3) holds for non-commutative
S under mild assumptions (see section 1.10).

Other interesting byproducts of our work are the fact that a pro-semiprimary
ring is an inverse limit of some of its semiprimary quotients and Theorem 1.9.6
below. (The former assertion fails when replacing semiprimary with right artinian;
see Example 1.9.11 and the comment before it).

Remark 1.1.3. It is still open whether all semiperfect pro-semiprimary rings
are complete semilocal. However, this is true for noetherian rings; see section 1.9.

Section 1.2 contains definitions and well-known facts required for the expo-
sition. Section 1.3 presents the basics of semi-invariant subrings; we present five
equivalent characterizations of them and show that they naturally appear in various
situations. As all our characterizations use the existence of some ambient ring, we
ask whether there is a definition avoiding this. In section 1.4, we prove that various
ring properties pass to semi-invariant subrings, e.g. being semiprimary and being
right perfect. Section 1.5 develops the theory of T-semi-invariant subrings. The
discussion leads to a proof that several properties, such as being pro-semiprimary
and semiperfect, are inherited by T-semi-invariant subrings. Section 1.6 presents
counterexamples; we show that semi-invariant subrings of semiperefect rings need
not be semiperfect, even when the ambient ring is pro-semiprimary. In addition, we
show that in general none of the properties discussed in sections 1.4 and 1.5 pass
to rationally closed subrings. The latter implies that there are non-semi-invariant
rationally closed subrings. In sections 1.7 and 1.8 we present applications of our
results (most applications were briefly described above) and in section 1.9 we spe-
cialize them to strictly pro-right-artinian rings (e.g. noetherian pro-semiprimary
rings), which are better behaved. Section 1.10 describes some issues that are still
open. The addendum is concerned with providing conditions implying that the
topologies {τMn }∞n=1 defined in section 1.8 coincide.

1.2. Preliminaries

This section recalls some definitions and known facts that will be used through-
out this chapter. Some of the less known facts include proofs for the sake of com-
pletion. If no reference is specified, proofs can be found in [80], [9] or [58].

Let R be a semilocal ring. The ring R is called semiprimary (right perfect) if
Jac(R) is nilpotent (right T-nilpotent1). Since any nil ideal is idempotent lifting,
right perfect rings are clearly semiperfect.

Proposition 1.2.1 (Bass’ Theorem P, partial). Let R be a ring. Then R is
left (right) perfect ⇐⇒ every left (right) R-module has a projective cover ⇐⇒ R
has DCC on principal right ( left) ideals.

Proposition 1.2.2. Let R be a ring. Then R is semiperfect ⇐⇒ every right
(left) f.g. R-module has a projective cover ⇐⇒ there are orthogonal idempotents
e1, . . . , er ∈ R such that

∑r
i=1 ei = 1 and eiRei is local for all i.

Proposition 1.2.3. (i) Being semiprimary (resp.: right perfect, semiperfect,
semilocal, pro-semiprimary) is preserved under Morita equivalence.

(ii) Let R be a ring and e ∈ End(R). Then R is semiprimary (resp.: right
perfect, semiperfect, semilocal) if and only if eRe and (1− e)R(1− e) are.

1 An ideal I E R is left T-nilpotent if for any sequence x1, x2, x3, · · · ∈ I, the sequence
x1, x2x1, x3x2x1, . . . eventually vanishes.
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Proof. All statements regarding semiprimary, right perfect, semiperfect and
semilocal rings are well known. The other statements follow from the next lemma.

�

Lemma 1.2.4. Let {Ri, fij} be an inverse system of rings and let R = lim←−{Ri}.
Denote by fi the natural map from R to Ri. Then:

(i) For all n ∈ N, lim←−{Mn(Ri)}i∈I ∼= Mn(lim←−{Ri}) = Mn(R).
(ii) For all e ∈ E(R), lim←−{eiRiei}i∈I

∼= eRe where ei = fi(e).

Proof. This is straightforward. �

Part (ii) of Proposition 1.2.3 does not hold for pro-semiprimary rings. For in-
stance, take R = {[ a v0 b ] | a, b ∈ Zp, v ∈

⊕∞
i=1 Zp} (where Zp are the p-adic integers)

and let e be the matrix unit e11.
Theorem 1.2.5 (Levitski). Let R be a right noethrian ring. Then any nil

subring of R is nilpotent.
Let R be a ring. An element a ∈ R is called right π-regular (in R) if the right

ideal chain aR ⊇ a2R ⊇ a3R ⊇ . . . stabilizes.2 If a is both left and right π-regular
we will say it is π-regular. A ring all of whose elements are right π-regular is called
π-regular. It was shown by Dischinger in [27] that the latter property is actually
left-right symmetric.

Since π-regularity is not preserved under Morita equivalence (see [81]), it is
convenient to introduce the following notion: A ring R is called π∞-regular3 if
Mn(R) is π-regular for all n.

Proposition 1.2.6. (i) Let R be a π-regular (π∞-regular) ring and e ∈ E(R).
Then eRe is π-regular (π∞-regular).

(ii) π∞-regularity is preserved under Morita equivalence.
Proof. (i) Assume R is π-regular, let e ∈ R and let a = eae ∈ eRe. By

definition, there is b ∈ R and n ∈ N such that an = an+1b. Multiplying by e on the
right, we get an = an+1ebe, hence an(eRe) = an+1(eRe).

Assume R is π∞-regular and let e ∈ R. Let I denote identity matrix in Mn(R).
Then (eI)Mn(R)(eI) = Mn(eRe). By the previous argument, the left hand side is
π-regular; hence we are through.

(ii) We only need to check that Mn(R) is π∞-regular for all n ∈ N, which is
obvious from the definition, and that eRe is π∞-regular, which follows from (i). �

Proposition 1.2.7. Let R be a ring and let N denote its prime radical (i.e.
the intersection of all prime ideals). Then R is π-regular (π∞-regular) if and only
if R/N is.

Proof. See [80, §2.7]. (The argument is easily generalized to π∞-regular
rings.) �

Remark 1.2.8. Any PI semilocal ring with nil Jacobson radical is π∞-regular
(see [78, Apx.]). However, there are semilocal rings with nil Jacobson radical that
are not π-regular, see [81].

Remark 1.2.9. We have the following implications:

right artinian =⇒ semiprimary =⇒ left/right perfect (1.2.1)=⇒ π∞-regular =⇒ π-regular
However, all these notions coincide for right noetherian rings. Indeed, assume
R is π-regular and right noetherian and let J = Jac(R). Then J is nil (see

2 This notion of π-regularity is sometimes called strong π-regularity.
3 This property is sometimes called completely π-regular.
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Lemma 1.4.4(i)), hence Theorem 1.2.5 implies Jn = 0 for some n ∈ N. By Lemma
1.4.4(ii) below, R is semiperfect and in particular R/J is semisimple. As R is right
noetherian, the right R/J-modules {J i−1/J i}ni=1 are f.g., hence their length as right
R-modules is finite. It follows that RR has a finite length, so R is right artinian.

Throughout, we will implicitly use the next lemma. Notice that it implies that
being semiprimary (resp.: right perfect, semiperfect, semilocal) passes to quotients.

Lemma 1.2.10. Let R be a semilocal ring. Then any epimorphism of rings
ϕ : R→ S satisfies ϕ(Jac(R)) = Jac(S).

Proof. ϕ(Jac(R)) is an ideal of ϕ(R) = S and 1+ϕ(Jac(R)) = ϕ(1+Jac(R)) ⊆
ϕ(R×) ⊆ S×, hence ϕ(Jac(R)) ⊆ Jac(S). On the other hand, S/ϕ(Jac(R)) is a
quotient of R/ Jac(R) which is semisimple. Therefore, S/ϕ(Jac(R)) is semisimple,
implying ϕ(Jac(R)) ⊇ Jac(S). �

1.3. Semi-Invariant Subrings

This section presents the basic properties of semi-invariant subrings. We begin
by showing that for any ring, the semi-invariant subrings are precisely the semi-
centralizer subrings.

Proposition 1.3.1. Let R0 ⊆ R be rings. The following are equivalent:
(a) There is a ring S ⊇ R and a set Σ ⊆ End(S) such that R0 = RΣ.
(b) There is a ring S ⊇ R and a subset X ⊆ S such that R0 = CentR(X).
(c) There is a ring S ⊇ R and σ ∈ Aut(S) such that σ2 = id and R0 = R{σ}.
(d) There is a ring S ⊇ R and an inner automorphism σ ∈ Aut(S) such that

σ2 = id and R0 = R{σ}.
(e) There are rings {Si}i∈I and ring homomorphisms ψ(1)

i , ψ
(2)
i : R→ Si such

that R0 = {r ∈ R : ψ(1)
i (r) = ψ

(2)
i (r), ∀i ∈ I}.

Note that condition (e) implies that the family of semi-invariant subrings is
closed under intersection.

Proof. We prove (a)=⇒(e)=⇒(c)=⇒(d)=⇒(b)=⇒(a).
(a)=⇒(e): Take I = Σ and define Sσ = S, ψ(1)

σ = σ and ψ(2)
σ = idR.

(e)=⇒(c): Let {Si, ψ(1)
i , ψ

(2)
i }i∈I be given. Without loss of generality, we may

assume there is i0 ∈ I such that Si0 = R and ψ
(1)
i0

= ψ
(2)
i0

= idR. Define S =∏
(i,j)∈I×{1,2} Sij where Sij = Si and let Ψ : R→ S be given by

Ψ(r) =
(
ψ

(j)
i (r)

)
(i,j)∈I×{1,2}

∈ S .

The existence of i0 above implies Ψ is injective. Let σ ∈ Aut(S) be the automor-
phism exchanging the (i, 1) and (i, 2) components of S for all i ∈ I. Then one easily
checks that σ2 = id and Ψ(R){σ} = Ψ(R0). We finish by identifying R with Ψ(R).

(c)=⇒(d): Let S, σ be given and let S′ = S[x;σ] denote the ring of σ-twisted
polynomials with (left) coefficients in S. Observe that (x2 − 1) ∈ Cent(S′) (since
σ2 = id), hence S′′ := S′/

〈
x2 − 1

〉
is a free left S-module with basis {1, x} (where

a is the image of a ∈ S′ in S′′). Let τ ∈ Aut(S′′) be conjugation by x. Then τ2 = id
and R{τ} = {r ∈ R : xr = rx} = {r ∈ R : σ(r) = r} = R{σ} = R0.

(d)=⇒(b): This is a clear.
(b)=⇒(a): Let S,X be given. Let S′ = S((t)) be the ring of formal Laurent

series
∑∞
n=k ant

n (k ∈ Z) with coefficients in S. The elements of S′ commuting with
X are precisely the elements that commute with t−1 +X (as t−1 is central in S′).
However, it is easily seen that all elements in t−1 +X are invertible. For all x ∈ X,
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let σx ∈ End(S′) be the inner automorphism of S′ given by conjugation with t−1+x
and let Σ = {σx | x ∈ X}. Then RΣ = CentR(t−1 +X) = CentR(X) = R0. �

Corollary 1.3.2. Let R,W be rings and let ϕ : R→ W be a ring homomor-
phism. Assume W0 ⊆ W is a semi-invariant subring of W . Then ϕ−1(W0) is a
semi-invariant subring of R.

Proof. By Proposition 1.3.1(e), there are rings {Si}i∈I and ring homomor-
phisms ψ(1)

i , ψ
(2)
i : W → Si such that W0 = {r ∈ R : ψ(1)

i (r) = ψ
(2)
i (r) ∀i ∈ I}.

Define ϕ(n)
i = ψ

(n)
i ◦ ϕ and note that ϕ−1(W0) = {r ∈ R : ϕ(r) ∈ W0} = {r ∈ R :

ψ
(1)
i ϕ(r) = ψ

(2)
i ϕ(r) ∀i ∈ I} = {r ∈ R : ϕ(1)

i (r) = ϕ
(2)
i (r) ∀i ∈ I}. �

The equivalent conditions of Proposition 1.3.1 require the existence of some
ambient ring. This leads to the following question:

Question 1. Is there an intrinsic definition of semi-invariant subrings?

Informally, we ask for a definition that would make it easy to show that a given
(rationally closed) subring is not semi-invariant.

The next proposition is useful for producing examples of semi-invariant sub-
rings.

Proposition 1.3.3. Let R ⊆ S be rings and let K be a central subfield of S.
Then R ∩K is a semi-invariant subring of R.

Proof. Let S′ = S ⊗K S and define ϕ1, ϕ2 : S → S′ by ϕ1(s) = s ⊗ 1 and
ϕ2(s) = 1 ⊗ s. As K is a central subfield, it is easy to check that {s ∈ S :
ϕ1(s) = ϕ2(s)} = K, hence {s ∈ R : ϕ1(s) = ϕ2(s)} = R ∩ K. We are done by
Proposition 1.3.1(e). �

Corollary 1.3.4. Let K be a field. Then the semi-invariant subrings of K
are precisely its subfields.

Proof. Any semi-invariant subring R ⊆ K satisfies R× = R ∩K× = R \ {0},
hence it is a field. The converse follows from Proposition 1.3.3. �

Remark 1.3.5. If K/L is an algebraic field extension, then L is an invariant
subring of K if and only if K/L is Galois.

We finish this section by introducing two cases where semi-invariant subrings
naturally appear.

Proposition 1.3.6. Let R ⊆ S be rings and let M be a right S-module. Then
End(MS) is a semi-invariant subring of End(MR).

Proof. There is a homomorphism ϕ : Sop → End(MZ) given by ϕ(sop)(m) =
ms for allm ∈M . It is straightforward to check that End(MS) = CentEnd(MZ)(imϕ).
As End(MS) ⊆ End(MR), it follows that End(MS) = CentEnd(MR)(imϕ), hence
End(MS) is a semi-centralizer subring of End(MR). �

Proposition 1.3.7. Let A be an abelian category and let A f−→ B
g−→ C → 0

be an exact sequence in A such that for any c ∈ End(C) there are b ∈ End(B) and
a ∈ End(A) with cg = gb and bf = fa (e.g.: if both A and B are projective, or if
B is projective and f is injective). Then End(C) is isomorphic to a quotient of:

(i) a semi-invariant subring of End(A)× End(B);
(ii) an invariant and a centralizer subring of End(A ⊕ B), provided f is in-

jective.
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Proof. Let B0 = im f = ker g. Define R to be the subring of End(B) con-
sisting of maps b ∈ End(B) for which there is a ∈ End(A) with bf = fa. Then
for all b ∈ R, b(B0) = b(im f) = im(fa) ⊆ im f = B0. Therefore, there is unique
c ∈ End(C) such that cg = gb. The map sending b to c is easily seen to be a ring
homomorphism from R to End(C) and the assumptions imply it is onto. Therefore,
End(C) is a quotient of R.

Let S = End(A ⊕ B). We represent elements of S as matrices [ x y
z w ] with

x ∈ End(A), y ∈ Hom(B,A), z ∈ Hom(A,B), w ∈ End(B). Let D denote the
diagonal matrices in S (i.e. End(A) × End(B)) and let W = CentS(

[ 0 f
0 0
]
). Then

for a ∈ End(A) and b ∈ End(B), fa = bf if and only if [ a 0
0 b ] ∈ W . Define a

ring homomorphism ϕ : D → End(B) by ϕ(
[
x 0
0 y
]
) = y. Then ϕ(CentD(

[ 0 f
0 0
]
)) =

ϕ(D ∩W ) = R. It follows that End(C) is a quotient of R, which is a quotient of
D ∩W , which is a semi-centralizer subring of D = End(A)× End(B). This settles
(i). To see (ii), notice that if f is injective, then W consists of upper-triangular
matrices, hence ϕ can be extended to W , which is a centralizer and an invariant
subring of S since W = CentS(

[ 1 f
0 1
]
) and

[ 1 f
0 1
]
∈ S×. �

1.4. Properties Inherited by Semi-Invariant Subrings

In this section, we prove that being semiprimary (right perfect, semiperfect-
and-π∞-regular, semiperfect-and-π-regular) passes to semi-invariant subrings. We
also present a supplementary result for algebras over fields.

Our first step is introducing an equivalent condition for π-regularity of elements
of a ring.

Lemma 1.4.1. Let R be a ring and let a ∈ R be a π-regular element. Define:
A =

⋂∞
k=1 a

kR , B =
⋃∞
k=1 annr ak,

A′ =
⋂∞
k=1Ra

k, B′ =
⋃∞
k=1 ann` ak.

Then there is e ∈ E(R) such that A = eR, B = fR, A′ = Re and B′ = Rf where
f := 1− e. In particular, RR = A⊕B and RR = A′ ⊕B′.

Proof. Let n ∈ N be such that anR = akR and Ran = Rak for all k ≥ n.
Notice that this implies annr an = annr ak and ann` an = annr ak for all k ≥ n.

We begin by showing RR = A⊕ B. That RR = A′ ⊕ B′ follows by symmetry.
The argument is similar to the proof of Fitting’s Lemma (see [80, §2.9]): Let r ∈ R.
Then anr ∈ anR = a2nR, hence there is s ∈ R with anr = a2ns. Observe that
an(r − ans) = 0 and ans ∈ anR, so r = ans + (r − ans) ∈ A + B. Now suppose
r ∈ A ∩ B. Then r = ans for some s ∈ R. However, r ∈ B = annr an implies
s ∈ annr a2n = annr an, so r = ans = 0.

Since RR = A ⊕ B, there is e ∈ R such that e ∈ A and f := 1 − e ∈ B.
It is well known that in this case e2 = e, A = eR and B = fR. This implies
B′ = ann` an = ann` anR = ann` eR = Rf and A′ = Ran ⊆ ann` annr Ran =
ann` annr an = ann` fR = Re. As W = A′ ⊕ B′ = Re ⊕ Rf we must have
A′ = Re. �

Proposition 1.4.2. Let R be ring and a ∈ R. Then a is π-regular ⇐⇒ there
is e ∈ E(R) such that

(A) a = eae+ faf where f := 1− e.
(B) eae is invertible in eRe.
(C) faf is nilpotent.

In this case, the idempotent e is uniquely determined by a.

Proof. Assume a is π-regular and let e, f, A,B,A′, B′, n be as in Lemma 1.4.1.
Then ae ∈ aeR = aA = a(anR) = an+1R = A = eR and af ∈ aB = a annr an ⊆
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annr an = B = fR. Therefore, ae = eae and af = faf , hence a = ae + af =
eae+ faf . This implies ak = (eae)k + (faf)k for all k ∈ N. As an ∈ eR, we have
an = ean, hence (eae)n+ (faf)n = an = e(eae)n+ e(faf)n = (eae)n which implies
(faf)n = 0. In particular, for all k ≥ n, ak = (eae)k + (faf)k = (eae)k. Since
e ∈ anR there is x ∈ R such that e = anx = (eae)nx. Multiplying by e on the right
yields e = (eae)((eae)n−1xe), hence eae is right invertible in eRe. By symmetry,
eae is left also left invertible in eRe, hence we conclude that e satisfies (A)–(C).

Now assume there is e ∈ E(R) satisfying (A)–(C) and let b be the inverse of
a in eRe. Then ak = (eae)k + (faf)k for all k ∈ N. Condition (C) now implies
there is n ∈ N such that ak = (eae)k for all k ≥ n. Therefore, for all k ≥ n,
an = (eae)n = (eae)kbk−n = akbk−n ∈ akR impying anR = akR. By symmetry,
Ran = Rak for all k ≥ n, so a is π-regular.

Finally, assume both e, e′ ∈ E(R) satisfy conditions (A)–(C) and let f = 1− e,
f ′ = 1− e′. By the previous paragraph a is π-regular, hence Lemma 1.4.1 implies
R = A⊕B where A =

⋂∞
k=1 a

kR and B =
⋃∞
k=1 annr akR. Let b be the inverse of

eae in eRe and let n ∈ N be such that (faf)n = 0. Then e = (eae)kbk = akbk ∈ akR
for all k ≥ n, hence e ∈ A, and anf = (eae)nf = 0, hence f ∈ B. Similarly, e′ ∈ A
and f ′ ∈ B. It follows that e, e′ ∈ A and f, f ′ ∈ B. Since 1 = e + f = e′ + f ′ and
R = A⊕B, we must have e = e′. �

Let R, a be as in Proposition 1.4.2. Henceforth, we call the unique idempotent
e satisfying conditions (A)–(C) the associated idempotent of a (in R).

Corollary 1.4.3. (i) Let R be a ring, R0 ⊆ R a semi-invariant subring and
let a ∈ R0 be π-regular in R. Then a is π-reuglar in R0.

(ii) A semi-invariant subring of a π-regular (π∞-regular) ring is π-regular (π∞-
regular).

Proof. (i) Let S ⊇ R and Σ ⊆ End(S) be such that R0 = RΣ, and let a ∈ R0
be π-regular in R. Let e be the associated idempotent of a in R. Then e is clearly
the associated idempotent of a in S (hence a is π-regular in S). However, it is
straightforward to check that σ(e) satisfies conditions (A)–(C) (in S) for all σ ∈ Σ
(since σ(a) = a), so the uniqueness of e forces e ∈ SΣ ∩ R = RΣ = R0. Therefore,
a is π-regular in R0.

(ii) The π-regular case is clear from (i). The π∞-regular case follows when one
notes that if R0 is a semi-invariant subring of R, then Mn(R0) is a semi-invariant
subring of Mn(R) for all n ∈ N. �

Lemma 1.4.4. Let R be a π-regular ring. Then:
(i) Jac(R) is nil.
(ii) R is semiperfect ⇐⇒ R does not contain an infinite set of orthogonal

idempotents.

Proof. For a ∈ R, let ea denote the associated idempotent of a and let fa =
1− ea.

(i) Let a ∈ Jac(R) and let b be the inverse of eaaea in eaRea. Then ea =
b(eaaea) ∈ Jac(R), hence ea = 0, implying a = faafa is nilpotent.

(ii) That R is semiperfect clearly implies R does not contain an infinite set of
orthogonal idempotents, so assume the converse. Let a ∈ R. Observe that if ea = 0
then a is nilpotent and if ea = 1 then a is invertible. Therefore, if ea ∈ {0, 1} for
all a ∈ R, then R is local and in particular, semiperfect.

Assume there is a ∈ R with e := ea /∈ {0, 1}. We now apply an inductive
argument to deduce that eRe and (1 − e)R(1 − e) are semiperfect, thus proving
R is semiperfect (by Proposition 1.2.3). The induction process must stop because
otherwise there is a sequence of idempotents {ek}∞k=0 ⊆ R such that ek ∈ ek−1Rek−1
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and ek /∈ {0, ek−1}. This implies {ek−1 − ek}∞k=1 is an infinite set of non-zero
orthogonal idempotents, which cannot exist by our assumptions. �

Lemma 1.4.5. Let R0 ⊆ R be rings. If R is semiperfect and both R0 and R are
π-regular, then R0 is semiperfect and Jac(R0)n ⊆ Jac(R) for some n ∈ N. If in
addition R is semiprimary (right perfect), then so is R0.

Proof. By Lemma 1.4.4(ii), R does not contain an infinite set of orthogonal
idempotents. Therefore, this also applies to R0, so the same lemma implies R0
is semiperfect. Let ϕ denote the natural projection from R to R/ Jac(R). By
Lemma 1.4.4(i), ϕ(Jac(R0)) is nil. Therefore, by Theorem 1.2.5 (applied to ϕ(R),
which is semisimple), ϕ(Jac(R0)) is nilpotent, hence there is n ∈ N such that
Jac(R0)n ⊆ Jac(R). If moreover R is semiprimary (right perfect), then Jac(R)
is nilpotent (right T-nilpotent). The inclusion Jac(R0)n ⊆ Jac(R) then implies
Jac(R0) is nilpotent (right T-nilpotent), so R0 is semiprimary (right perfect). �

Theorem 1.4.6. Let R be a ring and let R0 be a semi-invariant subring of R. If
R is semiprimary (resp.: right perfect, semiperfect and π∞-regular, semiperfect and
π-regular), then so is R0. In addition, there is n ∈ N such that Jac(R0)n ⊆ Jac(R).

Proof. Recall that being right perfect implies being π-regular by Proposition
1.2.1. Given that, the theorem follows from Corollary 1.4.3 and Lemma 1.4.5. �

Corollary 1.4.7. Let R ⊆ S be rings and let M be a right S-module. If
End(MR) is semiprimary (resp.: right perfect, semiperfect and π∞-regular, semiper-
fect and π-regular), then so is End(MS) and there exists n ∈ N s.t. Jac(End(MS))n ⊆
Jac(End(MR)).

Proof. This follows from Theorem 1.4.6 and Proposition 1.3.6. �

Remark 1.4.8. Camps and Dicks proved in [23] that a rationally closed sub-
ring of a semilocal ring is semilocal, thus implying the semilocal analogues of The-
orem 1.4.6 and Corollary 1.4.7, excluding the part regarding the Jacobson radical
(which indeed fails in this case; see Example 1.6.7). In fact, the semilocal analogue
of Corollary 1.4.7 was noticed in [34, Pr. 2.7]. However, we cannot use this ana-
logue with the Krull-Schmidt Theorem (as we do in section 1.7 with our results)
because modules with semilocal endomorphism ring need not have a Krull-Schmidt
decomposition, as shown in [35] and [8].

Nevertheless, as there are plenty of weaker Krull-Schmidt theorems for modules
that do not require End(MR) to be semiperfect (mainly due to Facchini et al.; e.g.
[8], [33]), it might be that if M,R, S are as in Corollary 1.4.7 and End(MR) is
merely semiperfect, thenM has a Krull-Schmidt decomposition over S (despite the
fact End(MS) need not be semiperfect). To the best knowledge of our knowledge,
this topic is still open.

We finish this section with a supplementary result for algebras.

Proposition 1.4.9. Let R ⊆ S be rings and Σ ⊆ End(S). Assume there is a
division ring D ⊆ R such that σ(D) ⊆ D for all σ ∈ Σ. Then dimDΣRΣ ≤ dimDR.

Proof. Consider the left D-vector space V = DRΣ. Let {vi}i∈I ⊆ RΣ be a
left D-basis for V . We claim {vi}i∈I is a left DΣ-basis for RΣ. Indeed, let v ∈ RΣ.
Then there are unique {di}i∈I ⊆ D (where almost all are 0) such that v =

∑
i divi.

However, for all σ ∈ Σ, v = σ(v) =
∑
i σ(di)vi so σ(di) = di for all i ∈ I. It follows

that v ∈
∑
i∈I D

Σvi. Therefore, dimDΣRΣ = dimDV ≤ dimDR. �
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Remark 1.4.10. An invariant subring of a f.d. algebra need not be left nor
right artinian, even when invariants are taken w.r.t. to the action of a finite cyclic
group. This was demonstrated by Bjork in [19, §2]. In particular, the assumption
σ(D) ⊆ D for all σ ∈ Σ in Proposition 1.4.9 is essential. However, Bjork also
proved that if Σ is a finite group acting on a f.d. algebra over a perfect field, then
the invariant subring (w.r.t. Σ) is artinian; See [19, Th. 2.4]. For a detailed
discussion on when a subring of an artinian ring is artinian, see [19] and [20].

1.5. T-Semi-Invariant Subrings

In this section, we specialize the notions of semi-invariance and and π-regularity
to certain topological rings. As a result we obtain a topological analogue of Theo-
rem 1.4.6 (Theorem 1.5.10), which is used to prove that T-semi-invariant subrings
of semiperfect pro-semiprimary rings are semiperfect and pro-semiprimary (Theo-
rem 1.5.15). Note that once restricted to discrete topological rings, some of the
results of this section reduce to results from the previous sections. However, the
latter are not superfluous since we will rely on them. For a general reference about
topological rings, see [99].

Definition 1.5.1. A topological ring R is called linearly topologized (abbrevi-
ated: LT) if it admits a local basis (i.e. a basis of neighborhoods of 0) consisting of
two-sided ideals. In this case the topology on R is called linear.

Let us set some general notation: For a topological ring R, we let IR denote
its set of open ideals. Then R is LT if and only if IR is a local basis. We use
Homc (Endc) to denote continuous homomorphisms (endomorphisms). The cat-
egory of Hausdorff linearly topologized rings will be denoted by LTR2, where
HomLTR2(A,B) = Homc(A,B) for all A,B ∈ LTR2.4 A subring of a topological
ring is assumed to have the induced topology. In particular, if R ∈ LTR2 then so
is any subring of R. The following facts will be used freely throughout the paper.
For proofs, see [99, §3].

(1) Let (G,+) be an abelian topological group and let B be a local basis of
G. Then for any subset X ⊆ G, X =

⋂
U∈B(X + U).

(2) Under the previous assumptions, G is Hausdorff ⇐⇒ {0} =
⋂
U∈B U =

{0}.
(3) Given a ring R and a filter base of ideals B, there exists a unique ring

topology on R with local basis B. This topology makes R into an LT ring.

Example 1.5.2. (i) Any ring assigned with the discrete topology is LT.
(ii) Zp (with the p-adic topology) is LT but Qp is not.
(iii) Let R be an LT ring and let n ∈ N. We make Mn(R) into an LT ring by

assigning it the unique ring topology with local basis {Mn(I) | I ∈ IR}.
(iv) If R is LT and e ∈ E(R), then eRe is LT w.r.t. the induced topology.
(v) Let {Ri}i∈I be LT rings. Then

∏
i∈I Ri is LT w.r.t. the product topology.

(vi) Let R be an inverse limit of LT rings {Ri}i∈I . Embed R in
∏
i∈I Ri and

give it the topology induced from the product topology on
∏
i∈I Ri. Then by (v)

R is LT.5
(vii) If R is LT and J ER, then R/J with the quotient topology is LT. Indeed,

{I/J | J ⊆ I ∈ IR} is a local basis for that topology. The ring R/J is Hausdorff if
and only if J is closed, and discrete if and only if J is open.

4 The subscript “2” in LTR2 stands for the second separation axiom T2 (i.e. being Hausdorff).
5 With this topology R is the inverse limit of {Ri}i∈I in category of topological rings, i.e. it

admits the required universal property.
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The last example implies that LTR2 is closed to products, inverse limits and
forming matrix rings (with the appropriate topologies). We will say that a property
Q of LT rings is preserved under Morita equivalence if whenever R ∈ LTR2 has Q,
then so does Mn(R) and eRe for e ∈ E(R) s.t. eR is a progenerator.6

Definition 1.5.3. Let R ∈ LTR2. A subring R0 ⊆ R is called a T-semi-
invariant subring if there is R ⊆ S ∈ LTR2 and a set Σ ⊆ Endc(S) such that
R0 = RΣ. The subring R0 is called a T-semi-centralizer subring if there is R ⊆
S ∈ LTR2 and a set X ⊆ S such that R0 = CentR(X).

A T-semi-invariant subring is always closed. In addition, there is an analogue
of Proposition 1.3.1 for T-semi-invariant rings.

Proposition 1.5.4. Let R0 be a subring of R ∈ LTR2. The following are
equivalent:

(a) There is R ⊆ S ∈ LTR2 and a set Σ ⊆ Endc(S) such that R0 = RΣ.
(b) There is R ⊆ S ∈ LTR2 and a subset X ⊆ S such that R0 = CentR(X).
(c) There is R ⊆ S ∈ LTR2 and σ ∈ Autc(S) with σ2 = id and R0 = R{σ}.
(d) There is R ⊆ S ∈ LTR2 and an inner automorphism σ ∈ Autc(S) such

that σ2 = id and R0 = R{σ}.
(e) There are LT Hausdorff rings {Si}i∈I and continuous homomorphisms

ψ
(1)
i , ψ

(2)
i : R→ Si such that R0 = {r ∈ R : ψ(1)

i (r) = ψ
(2)
i (r) ∀i ∈ I}.

Proof. This is essentially the proof of Proposition 1.3.1, but we need to endow
the rings constructed throughout the proof with topologies making them into LT
Hasudorff rings that contain R as a topological ring. This is briefly done below;
the details are left for the reader.

(b)=⇒(a): Give S((t)) the unique ring topology with local basis {I((t)) | I ∈ IS},
where I((t)) denotes the set of polynomials with coefficients in I.

(e)=⇒(c): Assign to S =
∏

(i,j)∈I×{1,2} Sij the product topology.
(c)=⇒(d): Observe that B = {I ∩ σ(I) | I ∈ IS} is a local basis of S and

σ(J) = J for all J ∈ B. Assign S′ = S[x;σ] the unique ring topology with local
basis {J [x;σ] | J ∈ B}, where J [x;σ] denotes the set of polynomials with (left)
coefficients in J , and give S′′ = S′/

〈
x2 − 1

〉
the quotient topology. �

We now generalize the notion of π-regularity for topological rings. Our defini-
tion is inspired by Proposition 1.4.2.

Definition 1.5.5. Let R ∈ LTR2 and a ∈ R. The element a is called quasi-
π-regular in R if there is an idempotent e ∈ E(R) such that:

(A) a = eae+ faf where f := 1− e.
(B) eae is invertible in eRe.
(C′) (faf)n n→∞−−−−→ 0 (w.r.t. the topology on R).

Call R quasi-π-regular if all its elements are quasi-π-regular.

Since we only consider LT rings, condition (C′) means that for any I ∈ IR
there is n ∈ N such that (faf)n ∈ I. This implies that quasi-π-regularity coincide
with π-regularity for discrete topological rings (take I = {0}) and that if a is quasi-
π-regular in R then a + I is π-regular in R/I for all I ∈ IR. In particular, if R
is quasi-π-regular then R/I is π-regular. We will call the idempotent e satisfying
conditions (A),(B) and (C′) the associated idempotent of a. The following lemma
shows that it is unique.

6 Caution: There is a notion of Morita equivalence for (right) LT rings, but we will not use
it in this dissertation; see [47] and related articles. (The ring-theoretic Morita equivalence implies
the topological Morita equivalence, but not vice versa).
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Lemma 1.5.6. Let R ∈ LTR2 and a ∈ R a quasi-π-regular element. Then the
idempotent e satisfying conditions (A),(B) and (C ′) is uniquely determined by a.

Proof. Assume both e and e′ satisfy conditions (A), (B), (C′) and let I ∈ IR.
Then e+I and e′+I are associated idempotents of a+I in R/I, hence e+I = e′+I,
or equivalently e − e′ ∈ I. It follows that e − e′ ∈

⋂
I∈IR I = {0} (since R is

Hausdorff), so e = e′. �

Remark 1.5.7. (i) In the assumptions of the previous lemma, it is also possible
to show that eR =

⋂∞
n=1 a

nR and (1− e)R = {r ∈ R : anr n→∞−−−−→ 0}.
(ii) If we do not restrict to LT Hausdorff rings, the associated idempotent need

not be unique. For example, in Qp both 0 and 1 are associated idempotents of p.
(It is not known if Lemma 1.5.6 holds under the assumption that R is right LT, i.e.
has a local basis of right ideals.)

(iii) If one assigns a semiperfect ring R with
⋂∞
n=1 Jac(R)n = {0} the Jac(R)-

adic topology, then R becomes a Hausdorff LT ring, and for any a ∈ R, there is an
idempotent e satisfying conditions (B) and (C′) (but such e need not be unique even
when R is simple). However, condition (A) might be impossible to satisfy for some
a-s. Indeed, the ring R constructed in Example 1.6.1 below, which is isomorphic
to M4(Z〈3〉), is a semiperfect ring having no ring topology making it into a quasi-
π-regular Hausdorff LT ring. As Z〈3〉 is quasi-π-regular w.r.t. the 3-adic topology
(since it is local), it follows that quasi-π-regularity is not preserved under Morita
equivalence. (This also follows from the comment before Proposition 1.2.6.)

It light of the last remark, it is convenient to call an LT Hausdorff ring R quasi-
π∞-regular if Mn(R) is quasi-π-regular for all n. This property is preserved under
Morita equivalence and turns out to be related with Henselianity (see Section 1.8).
However, to avoid cumbersome notation, we will not mention it in this section. All
statements henceforth can be easily seen to hold when replacing (quasi-)π-regular
with (quasi-)π∞-regular.

Corollary 1.5.8. (i) Let R ∈ LTR2, let R0 be a T-semi-invariant subring of
R and let a ∈ R0 be quasi-π-regular in R. Then a is quasi-π-reuglar in R0.

(ii) A T-semi-invariant subring of a quasi-π-regular ring is quasi-π-regular.

Proof. This is similar to the proof of Corollary 1.4.3. �

Lemma 1.5.9. Let R ∈ LTR2 be quasi-π-regular. Then:
(i) For all a ∈ Jac(R), an n→∞−−−−→ 0. (That is, Jac(R) is “topologically nil”).
(ii) R is semiperfect ⇐⇒ R does not contain an infinite set of orthogonal

idempotents.

Proof. (i) Let I ∈ IR. Then a + I ∈ (Jac(R) + I)/I ⊆ Jac(R/I), so by
Lemma 1.4.4(i) applied to R/I (which is π-regular), there is n ∈ N such that
an ∈ I.

(ii) We only show the non-trivial implication. For a ∈ R, let ea denote as-
sociated idempotent of a. Note that ea = 1 implies a ∈ R× and ea = 0 implies
an

n→∞−−−−→ 0.
Assume ea ∈ {0, 1} for all a ∈ R. We claim R is local. This is clear if R = {0}.

Otherwise, let a ∈ R and assume by contradiction that ea = e1−a = 0. Let R 6= I ∈
IR (here we need R 6= {0}). Then there is n ∈ N such that an, (1−a)n ∈ I, implying
(1−an)n = (1−a)n(1 +a+ · · ·+an−1)n ∈ I. We can write 1 = (1−an)n +anh(a)
for some h(x) ∈ Z[x], thus getting 1 ∈ I, in contradiction to the assumption I 6= R.
Therefore, one of ea, e1−a is 1, hence one of a, 1− a is invertible.

Now assume there is a ∈ R with e := ea /∈ {0, 1}. Then we can induct on
eRe and (1 − e)R(1 − e) as in the proof of Lemma 1.4.4(ii). However, we need
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to verify that eRe is quasi-π-regular (w.r.t. the induced topology). Let b ∈ eRe.
It enough to show eb ∈ eRe, i.e. eb = eebe. As R ∈ LTR2, this is equivalent to
eb + I = eebe + I for all I ∈ IR. Indeed, since R/I is π-regular, so is e(R/I)e
(by Proposition 1.2.6(i)), hence b + I has an associated idempotent ε ∈ e(R/I)e.
However, it easy to see that ε is also the associated idempotent of b+ I in R/I, so
necessarily ε = eb + I. As ε = (e+ I)ε(e+ I), it follows that eb + I = eebe+ I. �

We can now state and prove a T-semi-invariant analogue of Theorem 1.4.6.

Theorem 1.5.10. Let R0 be a T-semi-invariant subring of a semiperfect and
quasi-π-regular ring R ∈ LTR2. Then R0 is semiperfect and quasi-π-regular and
there is n ∈ N such that Jac(R0)n ⊆ Jac(R).

Proof. ThatR0 is quasi-π-regular and semiperfect follows form Corollary 1.5.8
and Lemma 1.5.9(ii). Now let I ∈ IR. Then both R/I and (R0 + I)/I are semiper-
fect and π-regular (since (R0+I)/I ∼= R0/(R0∩I) and R0∩I is open in R0). There-
fore, by Lemma 1.4.5, there is nI ∈ N such that Jac((R0 + I)/I)nI ⊆ Jac(R/I)nI .
As Jac(R/I) = (Jac(R) + I)/I, this implies Jac(R0)nI ⊆ Jac(R) + I. However,
(R/I)/(Jac(R/I)) ∼= R/(Jac(R) + I) is a quotient of R/ Jac(R) which is semisim-
ple, hence the index of nilpotence of any of is subsets is bounded (when finite)
by length(R/ Jac(R)).7 Therefore, there is n ∈ N such that for all I ∈ IR,
Jac(R0)n ⊆ Jac(R) + I or equivalently, Jac(R0)n ⊆

⋂
I∈IR(Jac(R) + I) = Jac(R).

Thus, we are done by the following lemma. �

Lemma 1.5.11. Let R ∈ LTR2 be quasi-π-regular. Then R× and Jac(R) are
closed.

Proof. Let a ∈ R× and let e be its associated idempotent. Then for any
I ∈ IR there is aI ∈ R× such that a − aI ∈ I. Clearly e + I is the associated
idempotent of a+ I = aI + I in R/I. However, aI + I ∈ (R/I)× and thus 1 + I is
its associated idempotent. It follows that e+ I = 1 + I for all I ∈ IR, hence e = 1
and a ∈ R×.

Now assume a ∈ Jac(R). It is enough to show that for all b ∈ R, 1 + ab ∈ R×.
Let I ∈ IR and let aI ∈ Jac(R) be such that a − aI ∈ I. Then 1 + aIb ∈ R× and
(1 + ab)− (1 + aIb) ∈ I. Therefore, 1 + ab ∈

⋂
I∈IR(R× + I) = R× = R×. �

Remark 1.5.12. (i) The assumption that R is quasi-π-regular in the last lemma
is essential; see Example 1.9.2 (take n = 0). In addition, Jac(R)2 need not be closed
even when R is quasi-π-regular; see Example 1.9.11.

(ii) If R is quasi-π-regular and semiperfect, then R× and Jac(R) are also open.
Indeed, by the last lemma Jac(R) = Jac(R) =

⋂
I∈IR(Jac(R) + I), hence Jac(R) is

an intersection of open ideals. Since R/ Jac(R) is artinian, Jac(R) is the intersection
of finitely many such ideals, thus open. The set R× is open since it is a union of
cosets of Jac(R).

In order to apply Theorem 1.5.10 to pro-semiprimary rings, we need to recall
some facts about complete topological rings. While the exact definition (see [99,
§7-8]) is of little use to us, we will need the following results. Let R ∈ LTR2, then:

(1) R is complete if and only if R is isomorphic to an inverse limit of an
inverse system of discrete topological rings {Ri}i∈I . In this case, if ϕi is
the natural map from R to Ri, then {kerϕi | i ∈ I} is a local basis of R.

7 Actually, the index of nilpotence is bounded in any right noetherian ring R. Indeed, the
prime radical of R, denoted N , is nilpotent and R/N is a semiprime Goldie ring. Therefore,
by Goldie’s Theorem, R/N embeds in a in a semisimple ring and thus has a bounded index of
nilpotence.
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(2) If R is complete and B is a local basis consisting of ideals, then R ∼=
lim←−{R/I}I∈B. (Note that R/I is discrete for all I ∈ B.)

We will also use the fact that a closed subring of a complete ring is complete. (This
can be verified directly for rings in LTR2 using the previous facts.)

We now specialize the definition of pro-semiprimary rings given in section 1.1
to topological rings. For a ring property P, a topological ring R will be called
pro-P if R is isomorphic as a topological ring to the inverse limit of an inverse
system of discrete rings satisfying P. If in addition the natural map from R to
each of these rings is onto8, then R will be called strictly pro-P. Clearly any pro-P
ring is complete and lies in LTR2. An LT ring R is strictly pro-P if and only
if it is complete and admits a local basis of ideals B such that R/I has P for all
I ∈ B. Notice that if P is preserved under Morita equivalence, then so does being
pro-P and being strictly pro-P (because the isomorphisms in Lemma 1.2.4 are also
topological isomorphisms).

Remark 1.5.13. Any inverse limit of (non-topological) rings satisfying P can
be endowed with a linear ring topology making it into a pro-P ring, but this topol-
ogy usually depends on the inverse system used to construct the ring. However,
when P = semiprimary and the ring is right noetherian, the topology is uniquely
determined and always coincide with the Jacobson topology! See section 1.9.

Recalling Remark 1.2.9, the following lemma implies that pro-semiprimary rings
are quasi-π-regular.

Lemma 1.5.14. Let {Ri, fij} be an I-indexed inverse system of π-regular rings
and let R = lim←−{Ri}i∈I . Then R is quasi-π-regular.

Proof. We identify R with the set of compatible I-tuples in
∏
i∈I Ri (i.e.

tuples (xi)i∈I satisfying fij(xj) = xi for all i ≤ j in I). Let a = (ai)i∈I ∈ R and let
ei ∈ E(Ri) be the associated idempotent of ai in Ri. The uniqueness of ei implies
that e = (ei)i∈I is compatible and hence lie in R. We claim that e is the associated
idempotent of a in R. Conditions (A) and (C′) are straightforward, so we only
check (B): Let bi be the inverse of eiaiei in eiRei. Then for all i ≤ j in I, fij(bj)
is also an inverse of eiaiei in eiRei, hence fij(bj) = bi. Therefore, b := (bi)i∈I
is compatible and lies in R. Clearly b = ebe and b(eae) = (eae)b = e (since this
holds in each coordinate), so condition (B) is satisfied. We thus conclude that R is
quasi-π-regular. �

The converse of Lemma 1.5.9 is almost true; if R ∈ LTR2 is quasi-π-regular,
then R is dense in a pro-π-regular ring, namely lim←−{R/I}I∈IR . The following the-
orem implies that T-semi-invariant subrings of semiperfect pro-semiprimary rings
are semiperfect and pro-semiprimary (w.r.t. the induced topology).

Theorem 1.5.15. Assume R = lim←−{Ri}i∈I where each Ri is π-regular. Denote
by Ji the kernel of the natural map R→ Ri and let R0 be a T-semi-invariant subring
of R. Then:

(i) R0 is quasi-π-regular and R0 = lim←−{R0/(Ji ∩R0)}i∈I .
(ii) If R does not contain an infinite set of orthogonal idempotents, then R0

is semiperfect and there is n ∈ N such that Jac(R0)n ⊆ Jac(R).
(iii) For all i ∈ I, R0/(Ji ∩ R0) is π-regular. If moreover Ri is semiprimary

(right perfect, semiperfect), then so is R0/(Ji ∩R0). In particular, if R is
pro-semiprimary (pro-right-perfect, pro-π-regular-and-semiperfect), then
so is R0.

8 This is not trivial since the maps in the inverse system are not assumed to be onto.
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Proof. By Lemma 1.5.14, R is quasi-π-regular, so the first assertion of (i) is
Corollary 1.5.8(ii). As for the second assertion, R is complete and R0 is closed
in R, hence R0 is complete. Since {R0 ∩ Ji | i ∈ I} is a local basis of R0, R0 =
lim←−{R0/(Ji ∩ R0)}i∈I . (ii) follows from Lemma 1.5.9(ii) and Theorem 1.5.10. As
for (iii), R0/(Ji ∩ R0) is π-regular as a quotient of a quasi-π-regular ring with an
open ideal. The rest follows from Lemma 1.4.5 (applied to R0/(Ji ∩R0) identified
as a subring of Ri). �

Let P ∈ {semiprimary, right-perfect, π-regular-and-semiperfect, π-regular}.
Then Theorem 1.5.15 implies that pro-P rings are strictly pro-P (take R0 = R). In
fact, we can prove an even stronger result:

Corollary 1.5.16. In the previous notation, the inverse limit of a small cat-
egory of pro-P rings is strictly pro-P.

Proof. Let C be a small category of pro-P rings and let {Ri}i∈I be the objects
of C . Then R = lim←−C can be identified with the set of I-tuples (xi)i∈I ∈

∏
i∈I Ri

such that f(xj) = xi for all i, j ∈ I and f ∈ HomC (Rj , Ri). Clearly S :=
∏
i∈I Ri is

pro-P. If we can prove that R is a T-semivariant subring of S, then we are through
by Theorem 1.5.15. Indeed, let πi denote the projection from S to Ri. For all i, j ∈ I
and f ∈ HomC (Rj , Ri) define ϕ(1)

f , ϕ
(2)
f : S → Ri by ϕ(1)

f = πi, ϕ(2)
f = f ◦ πj . Then

R = {x ∈ S : ϕ(1)
f (x) = ϕ

(2)
f (x)∀f}, hence R is a T-semi-invariant subring of S by

Proposition 1.5.4(e). �

In some sense, Corollary 1.5.16 includes Theorem 1.4.6 and part of Theo-
rem 1.5.15 because a T-semi-invariant subring can be understood as the inverse limit
of a category with two objects. (Indeed, if R ⊆ S ∈ LTR2 and Σ is a submonoid
of Endc(S), then take Ob(C ) = {R,S} with EndC (S) = Σ, EndC (R) = {idR},
HomC (S,R) = φ and HomC (R,S) = {i} where i : R→ S is the inclusion map.)

Corollary 1.5.17. If R is pro-semiprimary, then for any J ∈ IR there is
n ∈ N such that Jac(R)n ⊆ J . In particular,

⋂∞
n=1 Jac(R)n = {0}.

Proof. Assume R = lim←−{Ri}i∈I with each Ri semiprimary and let Ji be
as in Theorem 1.5.15. Since {Ji | i ∈ I} is a local basis, there is i ∈ I such that
Ji ⊆ J . By Theorem 1.5.15(iii), R/Ji is semiprimary, hence there is n ∈ N such that
Jac(R/Ji)n = 0. As Jac(R/Ji) ⊇ (Jac(R) + Ji)/Ji, we get Jac(R)n ⊆ Ji ⊆ J . �

Remark 1.5.18. We will show in Proposition 1.8.7 that Henselian rank-1 val-
uation rings are quasi-π∞-regular. In particular, non-complete such rings (e.g. the
Q-algebraic elements in Zp) are examples of non-complete quasi-π∞-regular rings.

In addition, we suspect that the following are also explicit examples of non-
complete quasi-π∞-regular rings: (1) the ring of power series

∑∞
i=0 ait

i ∈ Zp[[t]]
with ai → 0 endowed with the t-adic topology (such rings are common in rigid
geometry); (2) the ring in the comment after Lemma 1.2.4 w.r.t. its Jacobson
topology.

1.6. Counterexamples

This section consists of counterexamples. In particular, we show that:
(1) If R is a semiperfect ring and Σ ⊆ End(R), then RΣ need not be semiper-

fect even when Σ is a finite group and even when Σ consists of a single
automorphism. Similarly, if X ⊆ R is a set, then CentR(X) need not be
semiperfect even when X consists of a single element.

(2) The semiperfect analogue of Corollary 1.4.7 is not true in general.



40 1. SEMI-INVARIANT SUBRINGS

(3) A semi-invariant subring of a semiperfect pro-semiprimary ring need not
be semiperfect even when closed (in contrast to T-semi-invariant sub-
rings).

(4) Rationally closed subrings of a f.d. algebra need not be semiperfect. In
particular, Theorem 1.4.6 does not generalize to rationally closed subrings.

(5) No two of the families of semi-invariant, invariant, centralizer and ratio-
nally closed subrings coincide in general.

We note that (1) is also true if we replace semiperfect with artinian. This was
treated at the end of section 1.4.

We begin with demonstrating (1). Our examples use Azumaya algebras and
we refer the reader to [83] for definition and details.

Example 1.6.1. Let S be a discrete valuation ring with maximal ideal πS,
residue field k = S/πS and fraction field F , and let A be an Azumaya algebra over
S. Recall that this implies A/πA is a central simple k-algebra and Jac(A) = πA.
Assume the following holds:

(a) D = F ⊗S A is a division ring.
(b) A/πA has zero divisors.

In addition, assume there is a set X ⊆ A× generating A as an S-algebra (such X
always exists). Note that conditions (a) and (b) imply that A is not semiperfect be-
cause A contains no non-trivial idempotents while A/πA = A/ Jac(A) does contain
such idempotents, hence Jac(A) is not idempotent lifting.

Define R = A⊗S Aop and let Σ = {σx}x∈X where σx is conjugation by 1⊗xop.
Then R is an S-Azumaya algebra which is an S-order inside D ⊗F Dop ∼= Mr(F ).
It is well-known that this implies R ∼= End(PS) for some faithful finite projective
S-module P (in fact, P is free since S is local). Therefore, R is Morita equivalent
to S, hence semiperfect. On the other hand, RΣ = CentR({1 ⊗ xop |x ∈ X}) =
CentR(S ⊗Aop) = A⊗ S ∼= A, so RΣ is not semiperfect.

An explicit choice for S,A, F,D is S = Z〈3〉 (π = 3), F = Q, D = (−1,−1)Q =
Q[ i, j | ij = −ji, i2 = j2 = −1] and A = S[i, j]. If we take X = {i, j}, then
Σ will consist of two inner automorphisms which are easily seen to generate an
automorphism group isomorphic to (Z/2)× (Z/2).

Example 1.6.2. Let S, π,A, F,D satisfy conditions (a),(b) of Example 1.6.1.
In addition, assume there is a cyclic Galois extension K/F such that:

(c) K/F is totally ramified at π.
(d) K ⊗F D splits (i.e. K ⊗F D ∼= Mt(K)).

Write Gal(K/F ) = 〈σ〉.
Let T denote the integral closure of S in K. Then σ(T ) = T . We claim that

T ⊗S A is semiperfect, but (T ⊗S A){σ⊗1} is not. Indeed, T {σ} = T ∩ F = S, so
(T ⊗ A){σ⊗1} = S ⊗ A ∼= A which is not semiperfect as explained in the previous
example. On the other hand, T ⊗ A is a T -Azumaya algebra and a T -order in
K ⊗ D ∼= Mt(K). Again, this implies T ⊗ A is Morita equivalent to T . But T is
local because K/F is totally ramified at π, therefore T ⊗A is semiperfect.

If we take S,A, F,D as in the previous example, then T = S[
√
−3], K =

Q[
√
−3] will satisfy (c) and (d). Indeed, dimension constraints imply K ⊗ D is

either a division ring or M2(K), but
√
−3 + i+ j + ij ∈ K ⊗D has reduced norm

zero so the latter option must hold.

Example 1.6.3. Start with a semiperfect ring R and σ ∈ End(R) such that
R{σ} is not semiperfect (e.g. those of Example 1.6.2). Let R′ = R[[t;σ]] be the ring
of σ-twisted formal power series with left coefficients in R (i.e. σ(r)t = tr for all
r ∈ R) and let x = 1 + t ∈ (R′)×. We claim R′ is semiperfect, but CentR′(x) is
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not. Indeed, CentR′(x) = CentR′(t) = R{σ}[[t]]. We are finished by applying the
following proposition for R[[t;σ]] and R{σ}[[t]].

Proposition 1.6.4. For any ring W and τ ∈ End(W ), W is semiperfect if
and only if W [[t; τ ]] is.

Proof. Let V = W [[t; τ ]] and let J = Jac(W ) + V t E V . Then V/J ∼=
W/ Jac(W ). Since the latter ring has zero Jacobson radical, J ⊇ Jac(V ). However,
1 + J ⊆ V × implies J ⊆ Jac(V ), thus we get Jac(V ) = J . The isomorphism
V/J ∼= W/ Jac(W ) now implies that V is semilocal ⇐⇒ W is semilocal. We finish
by observing that V t is idempotent lifting (this immediate as V = W ⊕ V t), hence
J is idempotent lifting in V ⇐⇒ J/V t is idempotent lifting in V/V t ⇐⇒ Jac(W )
is idempotent lifting in W . �

We now show (2), relying on the previous examples.

Example 1.6.5. Let R be a semiperfect ring and let X ⊆ R be such that
CentR(X) is not semiperfect (the existence of such R and X was shown in previous
examples). Let Y = {ya | a ∈ X} be a set of formal variables and let S = R 〈Y 〉
be the ring of non-commutative polynomials in Y over R (Y commutes with R).
We can make R into a right S-module by considering the standard right action of
R onto itself and extending it to S by defining r · ya = ar for all a ∈ X. Let M
denote the right S-module obtained thusly. Identify R with End(MR) = End(RR)
via r 7→ (m 7→ rm) ∈ End(RR). It is straightforward to check that End(MS) now
corresponds to CentR(X). Therefore, End(MR) ∼= R is semiperfect but End(MS) ∼=
CentR(X) is not semiperfect.

The next example demonstrates (3).

Example 1.6.6. Let p, q be distinct primes. Endow R = Zp × Zq × Q with
the product topology (the topology on Q is the discrete topology). Then R is
clearly semiperfect and pro-semiprimary. Define K = {(a, a, a) | a ∈ Q} and let
R0 = R∩K. ThenR0 is a semi-invariant subring ofR by Proposition 1.3.3 (take S =
Qp×Qq×Q) and it is routine to check R0 is closed. However, R0 is not semiperfect.
Indeed, it is isomorphic to T = M−1Z where M = Z \ (pZ ∪ qZ). The ring T is not
semiperfect because it has no non-trivial idempotents while T/ Jac(T ) ∼= T/pqT ∼=
T/pT × T/qT has such. As a result, Jac(T ) cannot be idempotent lifting.

The following example shows that rationally closed subrings of a f.d. algebra
need not be semiperfect. As f.d. algebras are semiprimary, this shows that Theo-
rem 1.4.6 fails for rationally closed subrings.

Example 1.6.7. Let K = Q(x) and let R = K ×K ×K. Define
S′ = {f/g | f, g ∈ Q[x], g(0) 6= 0, g(1) 6= 0}

and observe that S′ is not semiperfect since it is a domain but S′/ Jac(S′) has non-
trivial idempotents. (Indeed, S′/ Jac(S′) = S′/ 〈x(x− 1)〉 ∼= S′/ 〈x〉×S′/ 〈x− 1〉 ∼=
Q×Q.) Define ϕ : S′ → R to be the Q-algebra homomorphism obtained by sending
x to a := (0, 1, x) ∈ R and let S = imϕ. It is easy to verify that ϕ is well-defined
and injective, hence S is not semiperfect. However, S is rationally closed in R. To
see this, let q(x) ∈ S′ and assume q(a) ∈ R×. Then q(0), q(1) 6= 0. This implies
q(x) ∈ (S′)×, hence q(a) = ϕ(q(x)) ∈ S×.

We finish by demonstrating (5). The subring S of the last example cannot
be semi-invariant, for otherwise we would get a contradiction to Theorem 1.4.6.
In particular, S is not an invariant subring nor a centralizer subring. Next, let
R = Q[ 3

√
2,
√

3]. Then the only centralizer subring of R is R itself, the invariant
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subrings of R are R and Q[ 3
√

2] (Remark 1.3.5) and the semi-invariant subrings of
R are the four subfields of R (Corollary 1.3.4). In particular, R admits a semi-
invariant non-invariant subring and an invariant non-centralizer subring.

1.7. Applications

This section presents applications of the previous results. In order to avoid
cumbersome phrasing, we introduce the following families of ring-theoretic proper-
ties:

Pdisc =
{

semiprimary, right perfect, left perfect, π∞-regular and semiperfect,
π∞-regular, π-regular and semiperfect, π-regular

}
Ptop =

{
pro-P, pro-P and semiperfect,

quasi-Q, quasi-Q and semiperfect

∣∣∣∣∣ P ∈Pdisc
Q ∈ {π∞-regular, π-regular}

}
(For example, “quasi-π∞-regular and semiperfect” lies in Ptop.) Note that the
properties in Pdisc apply to rings while the properties in Ptop apply to LT rings.
Nevertheless, we will sometimes address non-topological rings as satisfying one of
the properties of Ptop, meaning that they satisfy it w.r.t. some linear ring topology.
We also define Pmor (resp. Psp) to be the set of properties in Pdisc ∪Ptop which
are preserved under Morita equivalence (resp. imply that the ring is semiperfect).
Recall that a property in Ptop is preserved under Morita equivalence if this holds in
the sense of Section 1.5 (and not in the sense of [47]). For example, “π-regular” and
“quasi-π-regular” do not lie in Pmor nor in Psp, “pro-semiprimary and semiperfect”
lies in both Psp and Pmor, and “pro-semiprimary” lies in Pmor, but not in Psp.

Theorem 1.7.1. Let R be a ring and R0 a subring.
(i) If R has P ∈Pdisc and R0 is semi-invariant, then R0 has P.
(ii) If R ∈ LTR2 has P ∈ Ptop and R0 is T-semi-invariant, then R0 has P

(w.r.t. the induced topology).
(iii) In both (i) and (ii), if P ∈Psp, then Jac(R0)n ⊆ Jac(R) for some n ∈ N.

Our first application follows from the fact that a centralizer subring is always
(T-)semi-invariant:

Corollary 1.7.2. Let P ∈ Pdisc ∪Ptop and let R be a ring satisfying P.
Then Cent(R) and any maximal commutative subring of R satisfy P.

Proof. Cent(R) is the centralizer of R and a maximal commutative subring
of R is itself’s centralizer. Now apply Theorem 1.7.1. �

Surprisingly, the author could not find in the literature results that are similar
to the previous corollary, except the fact that the center of a right artinian ring
is semiprimary. (This follows from a classical result of Jacobson, stating that the
endomorphism ring of any module of finite length is semiprimary, together with the
fact that the center of a ring R is isomorphic to End(RRR).)

The next applications concern endomorphism rings of finitely presented mod-
ules. We will only treat here the non-topological properties (i.e. Pdisc). The
topological analogues of the results to follow require additional notation and are
thus postponed to the next section.

Theorem 1.7.3. Let R be a ring satisfying P ∈Pdisc ∩Pmor and let M be a
finitely presented right R-module. Then End(MR) satisfies P.

Proof. There is an exact sequence Rn → Rm →M → 0 with n,m ∈ N. Since
Rn, Rm are projective, we may apply Proposition 1.3.7 to deduce that End(M) is a
quotient of a semi-invariant subring of End(Rn)×End(Rm) ∼= Mn(R)×Mm(R). The
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latter has P because any P ∈Pdisc ∩Pmor is preserved under Morita equivalence
and under taking finite products. Since all ring properties in Pdisc pass to quotients,
we are done by Theorem 1.7.1. �

Corollary 1.7.4. Let ϕ : S → R be a ring homomorphism. Consider R
as a right S-module via ϕ and assume it is finitely presented. Then if S satisfies
P ∈Pdisc ∩Pmor, so does R.

Proof. By Theorem 1.7.3, End(RS) has P. Therefore, by Corollary 1.4.7,
R ∼= End(RR) has P. �

Remark 1.7.5. Theorem 1.7.3 actually follows from results of Bjork, who
proved the semiprimary case and part of the left/right perfect cases ([19, Thms.
4.1-4.2]), and Rowen, who proved the left/right perfect and the semiperfect-and-
π∞-regular cases ([78, Cr. 11 and Th. 8(iii)]). Our approach suggests a single
simplified proof to all the cases. Note that we cannot replace “finitely presented”
with “finitely generated” in Theorem 1.7.3; in [20, Ex. 2.1], Bjork presents a right
artinian ring with a cyclic left module having a non-semilocal endomorphism ring.

By arguing as in the proof of Theorem 1.7.3, one can also obtain:

Theorem 1.7.6. Let 0→ A→ B → C → 0 be an exact sequence in an abelian
category A and assume B is projective.

(i) If End(A) and End(B) has P ∈Pdisc, then End(C) has P.
(ii) If End(A⊕B) has P ∈Psp, then End(C) is semiperfect.

Next, we turn to representations over modules with “good” endomorphism
rings. By a representation of a monoid (ring) G over a right R-moduleM , we mean
a mononid (ring) homomorphism ρ : G→ End(M) (so G acts on M via ρ).

Corollary 1.7.7. Let R be a ring and let ρ be a representation of a monoid
(or a ring) G over a right R-module M . Assume that one of the following holds:

(i) End(M) has P ∈Pdisc ∪Ptop.
(ii) There is a sub-monoid (subring) H ⊆ G such that End(ρ|H) has P ∈

Pdisc.
(iii) End(M) is LT and Hausdorff and there is a sub-monoid (or a subring)

H ⊆ G such that End(ρ|H) has P ∈Ptop w.r.t. the induced topology.
Then End(ρ) has P. Moreover, if P ∈Psp, then ρ has a Krull-Schmidt decompo-
sition ρ ∼= ρ1 ⊕ · · · ⊕ ρt and End(ρi) is local and has P for all 1 ≤ i ≤ t.

Proof. (i) follows from (ii) and (iii) if we take H to be the trivial monoid
(or the prime subring of G, if G is a ring). To see (ii) (resp. (iii)), notice that
End(ρ) = CentEnd(ρ|H)(ρ(G)). Therefore, End(ρ) is a semi-invariant (resp. T-semi-
invariant) subring of End(ρ|H), hence by Theorem 1.7.1, End(ρ) has P.

Now, if P ∈ Psp, then End(ρ) is semiperfect. The Krull-Schmidt Theorem
then implies ρ has a Krull-Schmidt decomposition ρ ∼= ρ1 ⊕ · · · ⊕ ρt and End(ρi) is
local for all i. We finish by noting that End(ρi) ∼= eEnd(ρ)e for some e ∈ E(End(ρ))
and hence End(ρi) has P (since for any ring R and e ∈ E(R), R has P implies eRe
has P). �

Assume R is a ring and M is a right R-module such that End(MR) is semiper-
fect and quasi-π-regular (see Theorem 1.8.3 below for cases when this happens).
Then the endomorphisms of M have a “Jordan decomposition” in the following
sense: If f ∈ End(MR), then we can consider M as a right R[x]-module by let-
ting x act as f . Clearly End(MR[x]) = CentEnd(MR)(f), so by Theorem 1.5.10,
End(MR[x]) is semiperfect. Therefore, MR[x] has a Krull-Schmidt decomposition
M = M1 ⊕ · · · ⊕Mt. (Notice that eachMi is an f -invariant submodule ofM). This
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decomposition plays the role of a Jordan decomposition for f , since the isomorphism
classes of M1, . . . ,Mt (as R[x]-modules) determine the conjugation class of f . In
particular, studying endomorphisms of M can be done by classifying LE-modules
over R[x].

Finally, the results of this chapter can be applied in a rather different manner
to bilinear forms. This will be done in detail in Chapter 4, but we are in a good
position to describe the general idea: Let ∗ be an anti-endomorphism of a ring R
(i.e. an additive, unity-preserving map that reverses order of multiplication). Then
σ = ∗2 is an endomorphism of R and ∗ becomes an involution on the invariant
subring R{σ}. As some claims on (R, ∗) can be reduced to claims on (R{σ}, ∗|R{σ}),
our results become a useful tool for studying the former. Recalling that bilinear
(resp. sesquilinear) forms correspond to certain anti-endomorphisms and quadratic
(resp. hermitian) forms correspond to involutions (see [57, Ch. I]), these ideas, taken
much further, can be used to reduce the isomorphism problem of bilinear forms to
the isomorphism problem of hermitian forms. This was actually done (using other
methods) for bilinear forms over fields by Riehm ([76]), who later generalized this
with Shrader-Frechette to sesquilinear forms over semisimple algebras ([75]). We
can improve these results for bilinear (sesquilinear) forms over various semiperfect
pro-semiprimary rings (e.g. f.g. algebras over Zp). This approach is described in
Chapter 4.

1.8. Modules over Linearly Topologized Rings

In this section we extend Theorem 1.7.3 and other applications to LT rings.
This is done by properly topologizing modules and endomorphisms rings of modules
over LT rings.

Let R be an LT ring and letM be a right R-module. ThenM can be made into
a topological R-module by taking {x+MJ | J ∈ IR} as a basis of neighborhoods of
x ∈M . (ThatM is indeed a topological module follows from [99, Th. 3.6].) Notice
that any homomorphism of modules is continuous w.r.t. this topology. Furthermore,
End(M) can be linearly topologized by taking {HomR(M,MJ) | J ∈ IR} as a
local basis.9 We will refer to the topologies just defined on M and End(M) as
their natural topologies. In general, that R is Hausdorff does not imply M or
End(M) are Hausdorff. (E.g., for any distinct primes p, q ∈ Z, the Z-module
Z/q is not Hausdorff w.r.t. the p-adic topology on Z.) Observe that {0End(M)} =⋂
J∈IR Hom(M,MJ) = Hom(M,

⋂
J∈IRMJ) = Hom(M, {0M}), soM is Hausdorff

implies End(M) is Hausdorff.
Now let E• be a finite resolution of M , i.e. E• consists of an exact sequence

En−1 → · · · → E0 → E−1 = M → 0.10 The maps Ei → Ei−1 will be denoted by di.
We say that E• has the lifting property if any f−1 ∈ End(M) can be extended to a
chain complex homomorphism f• : E• → E•. (Recall that f• consists of a sequence
{fi}n−1

i=−1 such that fi ∈ End(Ei) and difi = fi−1di for all i.) In other words, E•
has the lifting property if and only if the following commutative diagram can be
completed for every f−1 ∈ End(M).

En−1 //

fn−1

��

. . . // E1 //

f1

��

E0 //

f0

��

M

f−1

��
En−1 // . . . // E1 // E0 // M

9 This topology is the uniform convergence topology (w.r.t. the natural uniform structure of
M). If M is f.g. then this topology coincides with the pointwise convergence topology (i.e. the
topology induced from the the product topology on MM ).

10 We do not require the map En−1 → En−2 to be injective.
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For example, any projective resolution has the lifting property. We define a linear
ring topology τE on End(M) as follows: For all J ∈ IR, define B(J,E) to be the
set of maps f−1 ∈ End(M,MJ) that extend to a chain complex homomorphism
f• : E• → E• such that im fi ⊆ EiJ for all −1 ≤ i < n. The lifting property
implies B(J,E) E End(M) and it is clear that BE := {B(J,E) | J ∈ IR} is a filter
base. Therefore, there is a unique ring topology on End(M), denoted τE , having
BE as a local basis.

It turns out that if E• is a projective resolution, then τE only depends on the
length of E, i.e. the number n. Indeed, if P•, P ′• are two projective resolutions of
length n of M , then the map idM : M →M gives rise to chain complex homomor-
phisms α• : P• → P ′• and β• : P ′• → P• with α−1 = β−1 = idM . Now, if J ∈ IR and
f−1 ∈ B(J, P ), then there is f• : P• → P• such that im fi ⊆ PiJ for all i. Define
f ′• = α•f•β•. Then im f ′i ⊆ αi(PiJ) ⊆ P ′iJ for all i and f ′−1 = idM f−1 idM = f−1,
so f−1 ∈ B(J, P ′). By symmetry, we get B(J, P ) = B(J, P ′) for all J ∈ IR, hence
τP = τP ′ .

The topology of End(M) obtained from a projective resolution of length n
will be denoted by τMn and the closure of the zero ideal in that topology will be
denoted by IMn . Note that τM1 ⊆ τM2 ⊆ . . . and that τM1 is the natural topology on
End(M) (i.e. the topology induced from the local basis {Hom(M,MJ) | J ∈ IR}).
(Indeed, if P• : P0 → M → 0 is a projective resolution of length 1, then any
f ∈ Hom(M,MJ) can be lifted to f0 : P0 → P0J because the map P0J → MJ is
onto, hence B(P, J) = Hom(M,MJ).) More generally, for any resolution E• of M ,
τE contains the natural topology on End(M). Therefore, if M is Hausdorff, then
τE is Hausdorff. In the addendum, we provide sufficient conditions for τM1 , τM2 , . . .
to coincide.

With this terminology, we can generalize Proposition 1.3.7:

Proposition 1.8.1. Let R be an LT ring and let E : A → B → C → 0 be
an exact sequence of right R-modules satisfying the lifting property (w.r.t. C) and
such that A and B are Hausdorff. Assign End(A) and End(B) the natural topology
and endow End(C) with τE. Then End(C) is isomorphic as a topological ring to a
quotient of a T-semi-invariant subring of End(A)× End(B).

Proof. We use the notation of the proof of Proposition 1.3.7. By that proof,
End(C) is isomorphic to a quotient of CentD(

[ 0 f
0 0
]
). It is easy to check that the

embedding D ↪→ S is a topological embedding, hence End(C) is isomorphic to a
quotient of a T-semi-invariant subring of D. That the quotient topology on End(C)
is indeed τE is routine. �

We are now in position to generalize previous results.

Lemma 1.8.2. Let R ∈ LTR2 and P ∈Pdisc. Then R is pro-P if any only if
R is complete and R/I has P for all I ∈ IR.

Proof. IfR is complete andR/I has P for all I ∈ IR, thenR ∼= lim←−{R/I}I∈IR ,
so R is pro-P. On the other hand, if R is pro-P, then it is complete. In addition,
it is strictly pro-P (Corollary 1.5.16), hence there is a local basis of ideals B such
that R/I has P for all I ∈ B. Now, let I ∈ IR. Then there is I0 ∈ B contained in
I. Therefore, R/I is a quotient of R/I0. As the latter has P, so does R/I. �

Recall that a topological ring is first countable if it admits a countable local
basis. If R is pro-P, then this is equivalent to saying that R is the inverse limit of
countably many discrete rings satisfying P.

Theorem 1.8.3. Let R ∈ LTR2 be a ring and let M be a f.p. right R-module.
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(i) If R is first countable and satisfies P ∈ Ptop ∩Pmor, then End(M)/IM2
satisfies P when End(M) is endowed with τM2 . In particular, if M is
Hausdorff, then End(M) has P.

(ii) Assume R is quasi-π∞-regular and let i ∈ {1, 2}. Then End(M)/IMi is
quasi-π∞-regular when End(M) is endowed with τMi . In particular, if M
is Hausdorff, then End(M) is quasi-π∞-regular w.r.t. τM1 .

(iii) If R is semiperfect and quasi-π∞-regular, then End(M) is semiperfect.

Proof. (i) The argument in the proof of Theorem 1.7.3 shows that End(M)
is a quotient of an LT Hausdorff ring satisfying P, which we denote by W (use
Proposition 1.8.1 instead of Proposition 1.3.7). IM2 is a closed ideal of End(M) and
therefore End(M)/IM2 is a quotient of W by a closed ideal. We finish by claiming
that for any closed ideal I E W , W/I satisfies P. We will only check the case
P = pro-Q for Q ∈ Pdisc. The other cases are straightforward or follow from the
pro-Q case. Indeed, any open ideal of W/I is of the form J/I for some J ∈ IW ,
hence by Lemma 1.8.2, (W/I)/(J/I) ∼= W/J satisfies Q. In addition, that R is first
countable implies W is first countable, hence by the Birkhoff-Kakutani Theorem,
W is metrizable. By [22, p. 163], a Hausdorff quotient of a complete metric ring
is complete, hence W/I is complete. Therefore, by Lemma 1.8.2 (applied to W/I),
W/I is pro-Q.

(ii) The case i = 2 follows from the argument of (i) since being π-regular passes
to quotients by closed ideals (the first countable assumption is not needed). As for
i = 1, since IM1 is closed in τM1 , it is also closed in τM2 . Therefore, End(M)/IM1 is
quasi-π∞-regular when M is equipped with τM2 . We are done by observing that if
a ring is quasi-π∞-regular w.r.t. a given topology, then it is quasi-π∞-regular w.r.t.
any linear Hausdorff sub-topology.

(iii) By (i) End(M) is a quotient of a semiperfect ring, namely W . �

Remark 1.8.4. Part (iii) of Theorem 1.8.3 was proved in [79] for complete
semilocal rings with Jacobson radical f.g. as a right ideal and in [78] for semiperfect
π∞-regular rings. Both conditions are included in being semiperfect and quasi-π∞-
regular. In addition, Vámos proved in [96, Lms. 13-14] that all finitely generated
or torsion-free of finite rank modules rank over a Henselian integral domain11 have
semiperfect endomorphism ring. Results of similar flavor were also obtained in [34],
where it is shown that the endomorphism ring of a f.p. (resp. f.g.) module over a
semilocal (resp. commutative semilocal) ring is semilocal.

Rowen proved in [79] that the endomorphism ring of every f.p. right module
M over a complete semilocal ring R with a Jacobson radical f.g. as a right ideal is
complete w.r.t. its Jacobson topology ([79, Prp. A]), but he proves that End(M)
is complete semilocal only when R is right noetherian ([79, Th. B]). Using the
previous theorem, we can weaken the right noetherian assumption, thus obtaining
the following corollary.

Corollary 1.8.5. Let R be a complete semilocal ring with Jacobson radical
f.g. as a right ideal. Then the endomorphism ring of every f.p. right R-module is
complete semilocal.

Proof. By [79, Prp. A], the endomorphism ring is complete w.r.t. to its
Jacobson topology and by Theorem 1.8.3(iii) it is semiperfect. �

Corollary 1.8.6. Let S be a commutative LT ring and let R be an S-algebra
s.t. R is f.p. and Hausdorff as an S-module. Then:

11 A commutative ring R is called Henselian if R is local and Hensel’s Lemma applies to R.



1.8. MODULES OVER LINEARLY TOPOLOGIZED RINGS 47

(i) If S is quasi-π∞-regular, then R is quasi-π∞-regular (w.r.t. to some linear
ring topology). If moreover S is semiperfect, then so is R.

(ii) If S satisfies P ∈ Ptop ∩Pmor w.r.t. a given topology which is also first
countable, then R satisfies P.

Proof. We only prove (ii); (i) is similar. By Theorem 1.7.3, End(RS) sat-
isfies P. For all r ∈ R, define r̂ ∈ End(RS) by r̂(x) = xr and observe that
CentEnd(RS)({r̂ | r ∈ R}) ∼= End(RR) = R, hence R has P by Theorem 1.7.1. �

Let C be a commutative local ring. Azumaya proved in [5, Th. 22] that C is
Henselian if and only if every commutative C-algebra R with RC f.g. is semiperfect.
This was improved by Vámos to non-commutative C-algebras in which all non-units
are integral over C; see [96, Lm. 12]. Given the previous corollary, Azumaya and
Vámos’ results suggest that the notions of Henselian and quasi-π∞-regular might
sometimes coincide. This is verified in the following proposition.

Proposition 1.8.7. Let R be a rank-1 valuation ring. Then R is Henselian if
and only if R is quasi-π∞-regular w.r.t. the topology induced by the valuation.

Proof. Assume R is quasi-π∞-regular. Observe that any free R-module is
Hausdorff w.r.t. the standard topology, hence Corollary 1.8.6(i) implies that any
R-algebra A such that AR is free of finite rank is semiperfect. Thus, by [5, Th. 19],
R is Henselian.

Conversely, assume R is Henselian. Denote by ν the (additive) valuation of R.
Since ν is of rank 1, we may assume ν take values in (R,+). For every δ ∈ R, let
Iδ = {x ∈ R | ν(x) > δ}. Then {Mn(Iδ) | δ ∈ [0,∞)} is a local basis for Mn(R).
Let a ∈ Mn(R). By the Cayley-Hamilton theorem, a is integral over R, hence R[a]
is a f.g. R-module. Let J = Jac(R) · R[a]. Then J E R[a] and it is well known
that J ⊆ Jac(R[a]). The ring R[a]/J is artinian, hence a + J has an associated
idemptent ε ∈ E(R[a]/J) (i.e. ε satisfies conditions (A)–(C) of Lemma 1.4.2). By
[5, Th. 22], J is idempotent lifting, hence there is e ∈ E(R[a]) such that e+ J = ε.
Let f = 1 − e. Then a = eae + faf (since R[a] is commutative). Furthermore,
eae+J is invertible in ε(R[a]/J)ε, hence eae is invertible in eR[a]e and in particular
in eMn(R)e. Next, (faf)k ∈ J ⊆ Mn(Jac(R)) = Mn(I0) for some k ∈ N. This
means (faf)k ∈ Mn(Iδ) for some 0 < δ ∈ R, which implies (faf)m m→∞−−−−→ 0. Thus,
e satisfies conditions (A),(B) and (C′) w.r.t. a and we may conclude that Mn(R) is
quasi-π-regular for all n ∈ N. �

Using the ideas in the proof of Theorem 1.8.3, we can also obtain:

Theorem 1.8.8. Let R be an LT ring and let E : 0 → A → B → C → 0 be
an exact sequence of right R-modules such that B is projective and A and B are
Hasudorff. Endow End(A) and End(B) with the natural topology and End(C) with
τE and let IE denote the closure of the zero ideal in End(C). Then:

(i) If End(A) and End(B) are first countable and satisfy P ∈ Ptop, then so
is End(C)/IE.

(ii) If End(A) and End(B) are quasi-π-regular, then so is End(C)/IE.
(iii) If End(A) and End(B) are quasi-π-regular and semiperfect, then End(C)

is semiperfect.

In light of the previous results, one might wonder under what conditions all
right f.p. modules over an LT ring are Hausdorff. This is treated in the next section
and holds, in particular, for right noetherian pro-semiprimary rings.
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We finish this section by noting that we can take a different approach for
complete Hausdorff modules. For the following discussion, a right R-moduleM will
be called complete if the natural mapM → lim←−{M/MJ}J∈IR is an isomorphism.12

Proposition 1.8.9. (i) Let R be a complete first countable Hausdorff LT ring.
Then any Hausdorff f.g. right R-module is complete.

(ii) Let P ∈Pdisc and let R be an LT ring such that R/I has P for all I ∈ IR.
Let M be a complete right R-module such that M/JM is f.p. as a right R/J-module
for all J ∈ IR (e.g. if M is f.p., or if M is f.g. and R is strictly pro-right-artinian).
Then End(M) is pro-P w.r.t. τM1 . If moreover R is semiperfect and M is f.g., then
End(M) is semiperfect.

Proof. (i) This is a well-known argument: Let B be a countable local basis
of R consisting of ideals. Without loss of generality, we may assume B = {Jn}∞n=1
with J1 ⊇ J2 ⊇ . . . . Let M be a f.g. Hausdorff R module and let {x1, . . . , xn} be
a set of generators of M . Since M is Hausdorff, it is enough to show that any sum∑∞
i=1mi with mi ∈ MJi converges in M . Indeed, write mi =

∑n
j=1 xjrij with

ri1, . . . , rin ∈ Ji. Then
∑∞
i=1 rij converges in R for all j, hence

∑∞
i=1mi converges

to
∑n
j=1 xjrj where rj =

∑∞
i=1 rij .

(ii) Throughout, J denotes an open ideal of R. We first note that if M is f.p.,
then there is an exact sequence Rn → Rm →M → 0 for some n,m ∈ N. Tensoring
it with R/J , we get (R/J)n → (R/J)m → M/MJ → 0, implying M/J is a f.p.
R/J-module. Next, if M is f.g. and R is strictly pro-right-artinian, then M/MJ is
a f.g. module over R/J which is right artinian, hence M/J is f.p. over R/J .

Now, sinceM/MJ is f.p. over R/J , End(M/MJ) satisfies P by Theorem 1.7.3.
There is a natural map End(M) → End(M/MJ) whose kernel is Hom(M,MJ).
Assign End(M) the natural topology. Then since M is complete, Hom(M,M) ∼=
lim←−{End(M/MJ)}J∈I as topological rings and therefore, End(M) is pro-P.

Finally, assume M is f.g. and R is semiperfect. Then by Proposition 1.2.2, M
admits a projective cover P which is easily seen to be finitely generated. Assume
M = M1 ⊕ · · · ⊕ Mt. Then each Mi is f.g. and thus has a projective cover Pi.
Necessarily P ∼= P1⊕· · ·⊕Pt. By Proposition 1.2.3, End(PR) is semiperfect, hence
there is a finite upper bound on the cardinality of sets of orthogonal idempotents.
This means t is bounded and hence, End(M) cannot contain an infinite set of
orthogonal idempotents. By Lemma 1.5.9(ii), this implies End(M) is semiperfect.

�

1.9. LT Rings with Hausdorff Finitely Presented Modules

In this section, we present sufficient conditions on an LT ring guaranteeing all
right f.p. modules are Hausdorff (w.r.t. the natural topology). The discussion leads
to an interesting consequence about noetherian pro-semiprimary rings.

We begin by noting a famous result that solves the problem for many noetherian
rings with the Jacobson topology. For proof and details, see [80, Th. 3.5.28].

Theorem 1.9.1 (Jategaonkar-Schelter-Cauchon). Let R be an almost fully
bounded noetherian ring13 whose primitive images are artinian (e.g. a noetheorian
PI ring). Assign R the Jac(R)-topology or any stronger linear ring topology. Then
any f.g. right R-module is Hausdorff.

12 Completeness can also be defined for non-Hausdorff topological abelian groups; see [99].
13 A ring R is almost bounded if essential submodules of faithful f.g. right R-modules are

also faithful. A ring R is almost fully bounded if any prime homeomorphic image of R is fully
bounded. See [80, §3.5] for details.
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Example 1.9.2. The assumption that all powers of Jac(R) are open in Theo-
rem 1.9.1 cannot be dropped: Let R be a Dedekind domain with exactly two prime
ideals P and Q. Then R is noetherian, almost fully bounded, and any primite
image of R is artinian. Let n ∈ N ∪ {0} and let B = {PmQn |m ∈ N}. Assign R
the unique topology with local basis B. Clearly Jac(R)k = P kQk is open for all
1 ≤ k ≤ n. However, Jac(R)n+1 = Pn+1Qn+1 =

⋂∞
m=1(Pn+1Qn+1 + PmQn) =⋂∞

m=1(Pmin{n+1,m}Qn) = Pn+1Qn, so Jac(R)n+1 is not closed. In particular, by
(∗) below, R/ Jac(R)n+1 is a f.g. non-Hausdorff R-module.

When considering quasi-π-regular rings, there is actually no point in taking a
topology stronger than the Jacobson topology in Theorem 1.9.1, because for right
noetherian rings the latter is the largest topology making the ring quasi-π-regular.

Proposition 1.9.3. Let R be an LT semilocal ring and let τ be the topology on
R. Assume R is quasi-π-regular w.r.t. τ and R/I is semiprimary for all I ∈ IR (e.g.
if R is right noetherian or pro-semiprimary w.r.t. τ). Then R is quasi-π-regular
w.r.t. the Jacobson topology and the latter contains τ .

Proof. We first note that if R is right noetherian, then for all I ∈ IR, R/I is
right noetherian and π-regular, hence by Remark 1.2.9, R/I is semiprimary. If R
is pro-semiprimary, then R/I is semiprimary for all I ∈ IR by Lemma 1.8.2.

Let τJac denote the Jacobson topology and let a ∈ R. Then a has an associated
idempotent e w.r.t. τ . Let f = 1 − e and observe that Jac(R) is open by Remark
1.5.12(ii). Then there is n ∈ N such that (faf)n ∈ Jac(R) and it follows that
(faf)n n→∞−−−−→ 0 w.r.t. τJac. Therefore, e is the associated idempotent of a w.r.t.
τJac, hence R is quasi-π-regular provided we can verify τJac is Hausdorff. This holds
since τJac ⊇ τ , by the proof of Corollary 1.5.17 (which still works under our weaker
assumptions). �

Stronger linear topologies are “better” since they have more Hausdorff modules.
Note that the topology of an arbitrary qausi-π∞-regular ring can be stronger than
the Jacobson topology. For example, take any non-semiprimary perfect ring R with⋂
n∈N Jac(R) = {0} (e.g. R = Q[x1, x2, x3, . . . |x2

m = xnxm = 0 ∀n > 2m]) and give
it the discrete topology.

The next result will rely on the following observation:
(∗) Let R be an LT ring. If M is a right R-module and N is a submodule,

then N/N = N/N . In particular, M/N is Hausdorff if and only if N is
closed.

Indeed, N/N =
⋂
J∈IR(M/N)J =

⋂
J∈IR(MJ+M)/N = (

⋂
J∈IR(MJ+M))/N =

N/N . We will also need the following theorem. For proof, see [21, §7.4].

Theorem 1.9.4. Let {Xi, fij} be an I-indexed inverse system of non-empty
sets. Assume that for each i ∈ I we are given a family of subsets Ti ⊆ P (Xi) such
that for all i ≤ j in I we have:

(a) Xi ∈ Ti and Ti is closed under (arbitrary large) intersection.
(b) Finite Intersection Property: If L ⊆ Ti is such that the intersection of

finitely many of the elements of L is non-empty, then
⋂
A∈LA 6= φ.

(c) For all A ∈ Tj, fij(A) ∈ Ti.
(d) For all x ∈ Xi, f−1

ij (x) ∈ Tj.
Then lim←−{Xi}i∈I is non-empty.14

14 This can be compared to the following topological fact: An inverse limit of an inverse
system of non-empty Hausdorff compact topological spaces is non-empty and compact.
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Lemma 1.9.5. Let R be a ring and let M be a right R-module. Let {Mi}i∈I be
a family of submodules of M and let {xi}i∈I be elements of M . Then

⋂
i∈I(xi+Mi)

is either empty or a coset of
⋂
i∈IMi.

Proof. This is straightforward. �

Theorem 1.9.6. Let R be strictly pro-right-artinian. Then any f.g. submodule
of a Hausdorff right R-module is closed.

Proof. Let B be a local basis of ideals such that R/J is right artinian for
all J ∈ B. Assume M is a Hausdorff right R-module, let m1, . . . ,mk ∈ M and
N =

∑k
i=1miR. We will show that m ∈ N implies m ∈ N .

Let m ∈ N . For every J ∈ B define

XJ =
{

(a1, . . . , ak) ∈ (R/J)k :
∑
i

(mi +MJ)ai = m+MJ

}
.

Observe thatm ∈ N =
⋂
J∈B(N+MJ), hence for all J ∈ B there are b1, . . . , bk ∈ R

and z ∈ MJ such that
∑
mibi = m+ z, implying XJ 6= φ. For all J ⊆ I in B, let

fIJ denote the map from (R/J)k to (R/I)k given by sending (b1 +J, . . . , bk +J) to
(b1 + I, . . . , bk + I). Then fIJ(XJ) ⊆ XI . It easy to check that {XI , fIJ |XJ} is an
inverse system of sets.

For all J ∈ B, define TJ to be the set consisting of the empty set together
with all cosets of (right) R-submodules of (R/J)k contained in XJ . We claim that
conditions (a)-(d) of Theorem 1.9.4 hold. Indeed, XJ is easily seen to be a coset of
a submodule of (R/J)k, thus XJ ∈ TJ . In addition, by Lemma 1.9.5, TJ is closed
under intersection, so (a) holds. Since R/J is right artinian, so is the (R/J)k
(as a right R-module). Lemma 1.9.5 then implies that cosets of submodules of
(R/J)k satisfy DCC, hence (b) holds. Conditions (c) and (d) are straightforward.
Therefore, we may apply Theorem 1.9.4 to deduce that lim←−XJ is non-empty.

Let x ∈ lim←−{XJ}J∈B. Then x consists of tuples {(a(J)
1 , . . . , a

(J)
k ) ∈ (R/J)k}J∈B

that are compatible with the maps {fIJ}. As R is complete, there are b1, . . . , bk ∈ R
such that a(J)

i = bi + J for all 1 ≤ i ≤ k and J ∈ B. It follows that m−
∑
imibi ∈⋂

J∈BMJ . AsM is Hausdorff, the right hand side is {0}, so m =
∑
imibi ∈ N . �

Remark 1.9.7. Theorem 1.9.6 and its consequences actually hold for the larger
class of strictly pro-right-finitely-cogenerated rings. A module M over a ring R is
called finitely cogenerated15 (abbrev.: f.cog.) if its submodules satisfy the Finite In-
tersection Property (condition (b) in Theorem 1.9.4). This is equivalent to soc(M)
being f.g. and essential in M (see [58, Pr. 19.1]). A ring R called right f.cog. if
RR is finitely cogenerated. (For example, any right pseudo-Frobeniuos ring is right
f.cog.) Among the examples of strictly pro-right-finitely-cogenerated rings are com-
plete rank-1 valuation rings. Indeed, if ν : R → R is an (additive) valuation, and
R is complete w.r.t. ν, then R = lim←−{R/{x ∈ R | ν(x) > n}}n∈N. For a detailed
discussion about f.cog. modules and rings, see [95] and [58, §19].

Notice that a complete semilocal ring is strictly pro-right-artinian if and only
if its Jacobson radical is f.g. as a right module. The latter condition is commonly
used when studying complete semilocal rings (e.g. [79]). In particular, Hinohara
proved Theorem 1.9.6 for complete semilocal rings satisfying it ([48, Lm. 3]). (Other
authors usually assume the ring is right noetherian.) By (∗) we now get:

15 Other names used in the literature are “co-finitely generated”, “finitely embedded” or
“essentially artinian”.
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Corollary 1.9.8. Let R be a strictly pro-right-artinian ring. Then any f.p.
right R-module is Hausdorff.

We can now prove that under mild assumptions, strictly pro-right-artinian rings
are complete semilocal.

Corollary 1.9.9. Let R be a strictly pro-right-artinian ring. If J ⊆ Jac(R)
is an ideal that is f.g. as a right ideal, then R is complete in the J-adic topology
(i.e. R ∼= lim←−{R/J

n}n∈N). If moreover R/J is right artinian, then the topology on
R is the Jacobson topology! In particular, if Jac(R) is f.g. as a right ideal, then the
topology on R is the Jacobson topology and R is complete semilocal.

Proof. Let B be a local basis of ideals of R such that R/I is right artinian
for all I ∈ B. We identify R with its natural copy in

∏
I∈B R/I. Since J is f.g. as

a right ideal, then so are its powers. Therefore, by Theorem 1.9.6, Jn is closed for
all n ∈ N.

Let ϕ denote the standard map from R to lim←−{R/J
n}n∈N. Define a map

ψ : lim←−{R/J
n}n∈N → R as follows: Let r ∈ lim←−{R/J

n}n∈N and let rn denote the
image of r in R/Jn. By Corollary 1.5.17, for all I ∈ B, there is n ∈ N (depending
on I) such that Jn ⊆ I. Let rI denote the image of rn in R/I. It is easy to check
that rI is independent of n and that r̂ := (rI)I∈B ∈ R. Define ψ(r) = r̂.

It is straightforward to check that ψ ◦ ϕ = id. Therefore, we are done if we
show that ψ is injective. Let y ∈ kerψ and let yn + Jn be the image of y in R/Jn.
Then for all I ∈ B, Jn ⊆ I implies yn ∈ I. This means yn ∈

⋂
Jn⊆I∈B I = Jn = Jn,

so yn + Jn = 0 + Jn for all n ∈ N, hence y = 0.
Now assume R/J is right artinian. Then Jac(R)k ⊆ J ⊆ Jac(R) for some

k ∈ N, hence the Jacobson topology and the J-adic topology coincide. By Propo-
sition 1.9.3, the topology on R is contained in the Jacobson topology, so we only
need to show the converse. Let n ∈ N. It is enough to show that Jn is open.
Indeed, since JR is f.g., then so is (J i/J i+1)R (i ≥ 0). As (R/J)R has finite length,
(J i/J i+1)R has finite length. Thus, (R/Jn)R have finite length as well. Since Jn
is closed, Jn is an intersection of open ideals. As (R/Jn)R is of finite length, Jn is
the intersection of finitely many of those ideals, hence open. �

Corollary 1.9.10. Let R be a right noetherian pro-π-regular ring. Then the
topology on R is the Jacobson topology, R is strictly pro-right-artinian w.r.t. it and
any right ideal of R is closed. In particular, R is semilocal complete.

Proof. By Lemma 1.8.2, R/I is π-regular for all I ∈ IR, hence Remark 1.2.9
implies R/I is right artinian for all I ∈ IR (since R/I is right noetherian). There-
fore, R is pro-right-artinian, with Jac(R)R finitely generated. Now apply the pre-
vious corollary. �

The next example demonstrates that Theorem 1.9.6 fails for pro-artinian rings
(and in particular for pro-semiprimary rings). It also implies that there are pro-
artinian rings that are not strictly pro-right-artinian.

Example 1.9.11. Let S = Q(x)[t | t3 = 0]. For all n ∈ N define Rn = Q(x2n) +
Q(x)t + Q(x)t2 ⊆ S and In = Q(x2n)t2 ⊆ S. Then Rn is an artinian ring and
In ERn. For n ≤ m define a map fnm : Rm/Im → Rn/In by fn(x+ Im) = x+ In.
Then {Rn/In, fnm} is an inverse system of artinian rings. Let R = lim←−{Rn/In}n∈N.
Then R can be identified with Q + Q(x)t + V t2 where V is the Q-vector space
lim←−{Q(x)/Q(x2n)}n∈N (R does not embed in S). Observe that Q(x) is dense in
V , but Q(x) 6= V since V is not countable (it contains a copy of all power series∑
anx

2n ∈ Q[[x]]). Therefore, the ideal tR = Qt + Q(x)t2 is not closed in R and
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by (∗), R/tR is a non-Hausdorff f.p. module. We also note that Jac(R)2 = Q(x)t2
is not closed (but Jac(R) must be closed by Proposition 1.5.11).

We conclude by specializing the results of the previous section to first count-
able strictly pro-right artinian rings. (We are guaranteed that all f.p. modules
are Hausdorff in this case). By Corollary 1.9.10, this family include all noether-
ian pro-semiprimary rings. More general statements can be obtained by applying
Remark 1.9.7.

Corollary 1.9.12. (i) Let R be a first countable pro-right-artinian ring and let
M be a f.p. right R-module. Then End(MR) is pro-semiprimary and first countable
(w.r.t. τM2 ). If R is semiperfect (e.g. if R is right noetherian), then End(MR) is
semiperfect.

(ii) Let S be commutative first countable pro-right-artinian ring and let R be
an S-algebra s.t. R is f.p. as an S-module. Then R is pro-semiprimary (w.r.t. some
topology). If S is semiperfect (e.g. if S is right noetherian), then R is semiperfect.

1.10. Further Remarks

It is likely that the theory of semi-invariant subrings developed in section 1.5
can be extended to right linearly topologized rings, i.e. topological rings having a
local basis consisting of right ideals. This actually has the following remarkable
implication (compare with Corollary 1.7.4 and Corollary 1.8.6):

Conjecture 1.10.1. Let S ∈ LTR2 be a semiperfect quasi-π∞-regular ring
and let ϕ : S → R be a ring homomorphism. Assume that:

(a) When considered as a right S-module via ϕ, R is f.p. and Hausdorff.
(b) For all r ∈ R and I ∈ IS, there is J ∈ IS such that Rϕ(J)r ⊆ Rϕ(I).16

Then R is semiperfect and quasi-π∞-regular (w.r.t. some topology).

The proof should be along the following lines: For any right S-module M , let
W denote the ring of continuous Z-homomorphisms from M to itself. Then W
can be made into a right LT ring by taking {B(J) | J ∈ IS} as a local basis where
B(J) = {f ∈ W : im f ⊆ MJ} (this is the topology of uniform convergence).17

Clearly W contains End(MS) as a topological ring (endow End(MS) with τM1 ).
Now take M = R (where R is viewed as a right S-module via ϕ). Then condition
(a) implies End(RS) is semiperfect and quasi-π∞-regular w.r.t. τR1 (Theorem 1.8.3).
Condition (b) implies that for all r ∈ R, the map r̂ : x 7→ xr from R to itself is
continuous and hence lie in W . Since we assume the results of section 1.5 extend
to right LT rings, R ∼= End(RR) = CentEnd(RS)({r̂ | r ∈ R}) is a T-semi-invariant
subring of End(RS), so R is semiperfect and quasi-π∞-regular.

Examples of rings satisfying conditions (a) and (b) can be produced by tak-
ing R to be: (1) a twisted group algebra SαG where G is a finite group and
α : G → AutcG is a group homomorphism or (2) a “crossed product”, i.e. R =
CrossProd(S, ψ,G) where S is commutative, G is finite and acts on S via contin-
uous automorphisms and ψ ∈ H2(G,S×). (Further examples can be produced by
taking quotients.) However, we can show directly that the conjecture holds in these
special cases. Indeed, that G is finite implies B = {

⋂
g∈G g(I) | I ∈ IR} is a local

basis of S and we have RJ ⊆ JR for all J ∈ B. For any right R-module M , let
W ′ = {f ∈ W : f(MJ) ⊆ MJ ∀J ∈ B} (with W as in the previous paragraph).

16 This is equivalent to saying that the topology on R spanned by cosets of the left ideals
{Rϕ(I) | I ∈ IS} is a ring topology; see [99, §3].

17 Caution: Not every filter base of right ideals gives rise to a ring topology. By [99, §3], we
need to check that for all f ∈W and I ∈ IS there is J ∈ IS such that f B(J) ⊆ B(I). Indeed, we
can take any J with f(MJ) ⊆MI and such J exists since f is continuous.
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Then W ′ is a linearly topologized ring w.r.t. the topology induced from W (as seen
by taking the local basis {W ′ ∩ B(J) | J ∈ B}). In addition, when M = RS , r̂
of the previous paragraph lies in W ′ (since RJ ⊆ JR for all J ∈ B). Therefore,
repeating the argument of the last paragraph with W ′ instead of W , we get that
R is semiperfect and quasi-π∞-regular.

We could neither find examples nor contradict the existence of the following:
(1) a pro-semiprimary ring that is not complete semilocal (i.e. complete w.r.t.

its Jacobson topology);
(2) a complete semilocal ring, endowed with the Jacobson topology, with a

non-Hausdorff f.p. module.

1.11. Addendum: When Do τM1 , τM2 , . . . Coincide?

This addendum is dedicated to the question of when the topology obtained
from a resolution is the natural topology. For that purpose, we briefly recall the
Artin-Rees property for ideals. For details and proofs of the statements to follow,
see [80, §3.5D].

Let R be a right noetherian ring. An ideal IER is said to satisfy the Artin-Rees
property (abbreviated: AR-property) if for any right ideal A ≤ R there is n ∈ N
such that In∩A ⊆ AI. This is well known to imply that for any f.g. right R-module
M and a submodule N , there is n ∈ N such that MIn ∩ N ⊆ NI. For example,
by [80, p. 462, Ex. 19], every polycentral ideal (e.g. an ideal generated by central
elements) satisfies the AR-property. In addition, if R is almost bounded (e.g. a PI
ring), then all ideals of R are satisfy the AR-property.

Now let R be any LT ring. A right R-moduleM is said to satisfy the topological
Artin-Rees property (abbreviated: TAR-property) if for any submodule N ⊆M and
any I ∈ IR there is J ∈ IR such that MJ ∩ N ⊆ NI. (Equivalently, the induced
topology and the natural topology coincide for any submodule ofM). For example,
if R is right noetherian, JER and R is given the J-adic topology, then all f.g. right
R-modules satisfy the TAR-property if and only if J satisfies the AR-property.

Proposition 1.11.1. Let R be an LT ring, let M be a right R-module and
let P : Pn−1 → · · · → P0 → P−1 = M → 0 be a projective resolution of M .
Assume that P0, . . . , Pn−1 have the TAR-property. Then τP is the natural topology
on End(M).

Proof. Denote by di the map Pi → Pi−1 and let Bi = ker di. We will prove
that for all I ∈ IR there is J ∈ IR such that Hom(M,MJ) ⊆ B(I, P ). Given
I ∈ IR, we define a sequence of open ideals In−1, In−2, . . . , I−1 as follows: Let
In−1 = I. Given Ii, take Ii−1 to be an open ideal such that Pi−1Ii−1 ∩ Bi−1 ⊆
Bi−1Ii and Ii−1 ⊆ Ii (the existence of Ii−1 follows from the TAR-property). We
claim that Hom(M,MI−1) ⊆ B(I, P ). To see this, let f−1 ∈ Hom(M,MI−1) and
assume we have constructed maps fi ∈ Hom(Pi, PiIi) for all −1 ≤ i < k such that
difi = fi−1di. Then it is enough to show there is fk ∈ Hom(Pk, PkIk) such that
dkfk = fk−1dk. The argument to follow is illustrated in the following diagram:

Pk
dk // //

fk

��

Bk−1
� � //

fk−1

��

Pk−1

fk−1

��

dk−1 // . . .

Pk−1Ik−1 ∩Bk−1� _

��

� � // Pk−1Ik−1
dk−1 // . . .

PkIk
dk // // Bk−1Ik
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That dk−1fk−1 = fk−2dk−1 implies fk−1(Bk−1) ⊆ Bk−1. As im fk−1 ⊆ Pk−1Ik−1,
we get that fk−1(Bk−1) ⊆ Pk−1Ik−1 ∩ Bk−1 ⊆ Bk−1Ik (by the definition of Ik−1).
Since the map PkIk → Bk−1Ik is onto (because im(dk) = Bk−1), we can lift
fk−1dk : Pk → Bk−1Ik to a homomorphism fk : Pk → PkIk, as required. �

Remark 1.11.2. The proof still works if we replace the assumption that Pn−1
is projective with dn−1 is injective.

Corollary 1.11.3. Let R be an LT right noetherian ring admitting local basis
of ideals B such that: (1) All ideals in B have the AR-property (e.g. if all ideals in
B are generated by central elements or if R is PI) and (2) all powers of ideals in B
are open. Then τM1 = τM2 = . . . for any f.g. right R-module M .

Proof. Let n ∈ N. Since R is right noetherian, any f.g. R-module admits a
resolution of length n consisting of f.g. projective modules. The assumptions (1)
and (2) are easily seen to imply that any f.g. R-module satisfies the TAR-property.
Therefore, by Proposition 1.11.1, τMn is the natural topology on End(M). �

Example 1.11.4. Condition (2) in Corollary 1.11.3 is essential even when all
ideals of R have the AR-property: Assign Z the unique topology with local basis
B = {2 · 3nZ |n ≥ 0} and let M = Z/4 × Z/2. Since MI = 2M for all I ∈ B, the
natural topology on End(M) is obtained from the local basis {Hom(M, 2M)}. (M
is not Hausdorff). Let I = 2Z ∈ B and consider the projective resolution

P : 4Z× 2Z ↪→ Z× Z→M → 0 .
Define f−1 : M →MI = 2M by f(x+ 4Z, y+ 2Z) = (2y+ 4Z, 0). Then any lifting
f0 ∈ End(Z × Z) of f−1 must satisfy f0(0, 1) = (4x + 2, 2y) for some x, y ∈ Z.
This means that any lifting f1 ∈ End(4Z × 2Z) of f0 (there is only one such
lifting) satisfies f1(0, 2) = (8x + 4, 4y) /∈ 8Z × 4Z = (4Z × 2Z)I. Therefore, f1 /∈
Hom(4Z× 2Z, (4Z× 2Z)I), implying f−1 /∈ B(P, I). But this means that B(P, I) (
Hom(M, 2M), hence τM2 6= τM1 .



CHAPTER 2

Bilinear Forms over Rings

Bilinear forms over (non-commutative) rings were considered by various au-
thors (e.g. [6], [55], [10], [56]), but the base ring was always assumed to have an
involution. In this chapter, we present a new notion of bilinear forms over arbi-
trary rings (no involution is needed) and show that it generalizes all the definition
mentioned. (In particular, our definition includes sesquilinear forms over rings with
involution.)

We then consider four basic properties of bilinear forms: the adjoint map is
injective (i.e.: being nondegenerate), the adjoint map is surjective, having a cor-
responding anti-endomorphism and having a unique asymmetry map. All these
properties have left and right versions. While all eight properties are equivalent for
sesquilinear forms over division rings, this is not the case for our general setting.
We therefore set to determine the logical implications between (subsets of) these
conditions and demonstrate the non-implications. (Some parts of this project are
still open.) In addition, we examine whether these properties are preserved under
orthogonal sums.

Next, we present categories with a double duality which generalize hermitian
categories (or categories with duality). The latter are the categorical analogues of
bilinear or quadratic forms (see [71], [7] or [86, Ch. 7]) and likewise, categories
with a double duality are a categorical analogue of our notion. We explain how
our definition is connected to the classical one and show that our notion of bilinear
forms cannot be naturally understood as a special case of a hermitian category.

We finish the chapter with applying our new definition to solve a problem
suggested to the author by D. Saltman: For a ring R, what are the implications
between the following three properties: (1) there is S, Morita equivalent to R, with
an involution, (2) there is S, Morita equivalent to R, with an anti-automorphism
and (3) R is Morita equivalent to Rop. Clearly (1) =⇒ (2) =⇒ (3) and in [82], Salt-
man proved (2)=⇒(1) for Azumaya algebras. We show that (2) 6=⇒(1) in general,
and for a large class of rings (e.g. semiperfect rings), (3)=⇒(2).

The results of this chapter will also be used in Chapters 3 and 4. Some of these
results are described in [39] and [40].

Section 2.1 presents our new notion of bilinear forms, and in section 2.2 we study
their basic properties. Sections 2.3, 2.4 and 2.5 are concerned with determining the
implications and non-implications between the left and right versions of the four
properties mentioned above; section 2.3 determines the implications, section 2.4
presents counterexamples, and section 2.5 demonstrates that in special cases one
can strengthen the results of section 2.3. Section 2.6 defines and studies orthogonal
sums. At the end of this section several constructions of Witt and Witt-Grothendick
groups are considered. In section 2.7 we introduce categories with a double duality
and relate them to hermitian categories. Section 2.9 presents the application briefly
described before.

We note that sections 2.3-2.5 and section 2.7 are not mandatory and the reader
can skip either of them without loss of continuity.
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2.1. Definitions

In this section we present our new definition of bilinear forms over rings and all
notions derived from it. However, before doing so, let us briefly recall the definition
that is common in the literature nowadays. Throughout, bilinear forms are not
assumed to be symmetric.

Let R be a ring with involution ∗. Recall that a sesquilinear space over R is a
pair (M, b) such that M is a right R-module and b : M ×M → R is a biadditive
map satisfying

b(xr, y) = r∗b(x, y), b(x, yr) = b(x, y)r, ∀x, y ∈M, r ∈ R .

In this case, b is called a sesquilinear form. If there is λ ∈ Cent(R) such that
λλ∗ = 1 and b satisfies the additional condition b(x, y) = λb(y, x)∗, then b is
called a λ-hermitian form. The ring R is usually taken to be a division ring or
a commutative ring. If R is a field and ∗ is the identity, then sesquilinear (1-
hermitian, (−1)-hermitian) forms become classical bilinear (symmetric bilinear,
anti-symmetric bilinear) forms.

Hermitian categories or categories with duality generalize sesquilinear forms
and they will be briefly described in section 2.7.

To present our new notion of bilinear forms, we will need the following defini-
tion:

Definition 2.1.1. Let R be a ring. A (right) double R-module is an additive
group M together with two operations �0,�1 : M ×R→M such that M is a right
R-module with respect to each of �0, �1 and

(m�0 a)�1 b = (m�1 b)�0 a ∀ m ∈M, a, b ∈ R .

We let Mi denote the R-module obtained by letting R act on M via �i.
The category of (right) double R-modules will be denoted by DMod-R. For

M,N ∈ DMod-R, we define Hom(M,N) = HomR(M0, N0)∩HomR(M1, N1). This
makes DMod-R into an abelian category. (The category DMod-R is isomorphic to
Mod-(R⊗Z R) and also to the category of (Rop, R)-bimodules.)1

Let R be any ring (R need not be commutative; no involution on R is required).
A bilinear space over R is a triplet (M, b,K) such that M ∈ Mod-R, K ∈ DMod-R
and b : M ×M → K is a biadditive map satisfying:

b(xr, y) = b(x, y)�0 r, b(x, yr) = b(x, y)�1 r ∀x, y ∈M, r ∈ R .

In this case, b is called a bilinear form.
An anti-isomorphism of K is a bijective map κ : K → K satisfying:

(k �i a)κ = kκ �1−i a ∀a ∈ R, k ∈ K, i ∈ {0, 1} .
If additionally κ◦κ = idK , then κ is called an involution. Given such an involution,
b is called κ-symmetric if

b(x, y) = b(y, x)κ ∀x, y ∈M .

Example 2.1.2. Let (R, ∗) be a ring with involution. We can make any
sesquilinear form b : M × M → R fit into our definition; simply turn R into a
double R-module by defining r �0 a = a∗r and r �1 a = ra for all a, r ∈ R. More-
over, if b is λ-hermitian, then b is κλ-symmetric where κλ : R → R is defined by
rκλ = λr∗.

1 The reader might think that it would be simpler if we were to use (Rop, R)-bimodules
instead of double R-modules. However, the latter saves notation, prevents ambiguity and makes
the proofs in the following sections more comprehensible.
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After presenting our definitions, it remains to generalize common properties of
bilinear forms to our general setting. Henceforth, R is a ring and K is some fixed
double R-module.

We begin by introducing the adjoint maps. Given M ∈ Mod-R and i ∈ {0, 1},
the i-K-dual (or just i-dual) of M is defined to be M [i] := HomR(M,K1−i).2 Note
M [i] is naturally a right R-module w.r.t. the operation (fr)(m) = (fm) �i r (for
all f ∈M [i], r ∈ R and m ∈M). Moreover, M 7→M [i] is a left-exact contravariant
functor from Mod-R to itself, which we denote by [i]. In section 2.2, we will show
that if [0] is considered as a (covariant) functor from (Mod-R)op to Mod-R and [1]
is considered as a functor form Mod-R to (Mod-R)op, then [0] is left adjoint to [1].

Let b : M ×M → K be a bilinear form. The left adjoint and right adjoint of b
are defined as following:

Ad`b : M →M [0], (Ad`bm)(n) = b(m,n) ,
Adrb : M →M [1], (Adrbm)(n) = b(n,m) ,

for all m,n ∈M . It can be easily checked that Ad`b and Adrb are right R-linear. We
say that:

(R0) b is right regular if Adrb is bijective;
(R1) b is right injective if Adrb is injective;
(R2) b is right surjective if Adrb is surjective.

Denote the left analogues of (R0),(R1),(R2) by (L0),(L1),(L2). Note that being
right injective means that b(M,m) = 0 implies m = 0, namely b is right nondegen-
erate. Therefore, forms not satisfying (R1) will be called right degenerate. Being
right surjective implies that any f ∈ M [1] is of the form x 7→ b(x,m) for some
m ∈M .

By addressing a bilinear form as satisfying a property without indicating whether
it is the left or right version of that property, we mean that the form satisfies both
versions. For example, “b is regular” means “b is left and right regular” and likewise
for all properties defined in this section.

We now turn to define the corresponding anti-endomorphism of a bilinear form
(see [57, Ch. 1] to compare with the classical definition). With notation as above:

(R3) b is called right stable if for every σ ∈ End(MR) there exists a unique
σ′ ∈ End(MR) satisfying b(σx, y) = b(x, σ′y) for all x, y ∈M .

Denote the left analogue of (R3) by (L3). If b is right stable, then the map ∗ sending
σ to σ′ is an anti-endomorphism of End(MR), called the (right) corresponding anti-
endomorphism of b. Example 2.1.4 below shows that even when b is right regular, ∗
need not be injective nor surjective, hence we use anti-endomorphisms rather than
anti-automorphism. (Moreover, this example shows that any anti-endomorphism
can be understood as a corresponding anti-endomorphism of some right regular
bilinear form.) It is easy to verify that if b is κ-symmetric, where κ is an involution
ofK, then its corresponding anti-endomorphism is in an involution. The connection
between bilinear forms and anti-endomorphisms will be discussed extensively in the
next chapter.

Next, we define asymmetry maps, which are important tools in studying non-
symmetric forms (see [76] and [75] for classical applications). Let κ be an anti-
isomorphism of K. A right κ-asymmetry (resp. left κ-asymmetry) of b is a map λ ∈
End(MR) such that b(x, y)κ = b(y, λx) (resp. b(x, y)κ = b(λy, x)) for all x, y ∈ M .
It is natural to consider the following property:

(R4) b has a unique right κ-asymmetry.

2 The reason that we do not define M [i] to be HomR(M,Ki) is because we want R[i] to
isomorphic to Ki via f ↔ f(1).
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Again, denote the left analogue by (L4). We will sometimes need to distinguish be-
tween two anti-isomorphisms and then we will write (R4)-κ, (L4)-κ instead of (R4),
(L4). The inverse of an invertible κ-asymmetry is always a left κ−1-asymmetry.
(However, the asymmetry need not be invertible even when it is unique! See Ex-
ample 2.4.12.)

Remark 2.1.3. It might seem odd to consider κ-asymmetries for κ that is not
an involution. However, we will see below that this is natural in some situations.
Moreover, some double R-modules admit an anti-isomorphism but no involution
(see Example 2.4.14).

Finally, the following property will also be useful:
(R5) b is called right semi-stable if for all σ ∈ End(MR), b(x, σy) = 0 for all

x, y ∈M implies σ = 0.
Being semi-stable can be considered as a weaker version of nondegeneracy. It implies
the uniqueness of σ′ and λ from (R3) and (R4), provided they exist.

Example 2.1.4. Let R be a ring and let ∗ be an anti-endomorphism of R. Let
K be the double R-module obtained from R by defining

r �0 s = s∗r, r �1 s = rs ∀ r, s ∈ R .

Define b : R × R → K by b(x, y) = x∗y. Then b is a bilinear form. As b(R, x) = 0
implies x = 0 (since x = b(1, x) = 0), b is right injective. In addition, it is
straightforward to check for all f ∈ R[1] = HomR(RR,K0), Adrb(f(1)) = f , hence
b is also surjective. Therefore, b is right regular and we will later show that this
implies b is right stable.

Now observe that for all r, x, y ∈ R, b(rx, y) = (rx)∗y = x∗r∗y = b(x, r∗y).
Thus, identifying End(RR) with R via f ↔ f(1), the corresponding anti-endomor-
phism of b is ∗. It is also straightforward to check that ker(Ad`b) = ker(∗) and
im(Ad`b) = im(∗) (once identifying R[0] = Hom(RR,K1) = End(RR) with R as
before). Hence, b is left injective (surjective) if and only if ∗ is. In particular, if ∗ is
not injective nor surjective, then b is not left injective nor left surjective (and also
not left semi-stable by Proposition 2.3.4 below), despite the fact b is right regular.

The following proposition is easy to prove:

Proposition 2.1.5. Let (D, ∗) be a division ring with involution and let (M, b)
be a sesquilinear space over (D, ∗) with dimMD <∞. Then all ten conditions (R1)-
(R5),(L1)-(L5) are equivalent (where (R4), (L4) are considered w.r.t. the involution
κ = ∗ : D → D).

Proof (sketch). We will see below that (R0) implies (R1)-(R4) and any of
(R1)-(R4) imply (R5), so it is enough to verify (R5) =⇒ (R0) and (L0). Indeed,
identify M with Dn, where n = dimMD. Then b is necessarily given by b(x, y) =
(x∗)TAy for some A ∈ Mn(D) (the elements of Dn are considered as column vectors
and ∗ acts on Dn component-wise). It is now easy to see that (R5) is equivalent
to annr A = 0 and (R0) (resp. (L0)) is equivalent to A being invertible. The
proposition follows immediately since A is invertible ⇐⇒ annr A = 0. �

Moreover, we shall prove in section 2.5 that Proposition 2.1.5 remains true
upon replacing D with a quasi-Frobenius ring, provided M is faithful. Despite this,
without special assumptions on the base ring, no analogue of the last proposition
holds. For example, it turns out that none of the conditions (R1)-(R4),(L1)-(L4)
implies any of the others. (Part of this already follows from Example 2.1.4.)

In section 2.3 we prove a list of logical implications between subsets of the con-
ditions (R1)-(R4),(L1)-(L4), and we conjecture the this list explains all implications
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between subsets of these conditions. What prevents us from declaring all implica-
tions as determined from our list is the absence of several counterexamples. The
counterexamples that we do have and (hopefully all) the missing ones are described
in section 2.4.

We note that when determining the implications, it is important to distinguish
between three cases: (I) K is a not assumed to have an anti-isomorphism (so (R4)
and (L4) are irrelevant); (II) K is assumed to have an anti-isomorphism; and (III)
K is assumed to have an augmentable anti-isomorphism (e.g. an involution; see
section 2.3 for the definition). Case I is completely solved in the sense that we
are able to show that all implications are derived from (R0)=⇒(R3) and its left
analogue. The other cases are more complicated and they admit different lists of
implications. (For example, (R0)=⇒(L1) in cases II and III but not in Case I, and
(L3) ∧ (R4)-κ =⇒ (L4)-κ−1 in Case III, but not in Case II.)

2.2. Basic Properties

Let R be a ring and let K be a fixed double R-module. In this section, we
prove some categorical results regarding bilinear forms and the functors [0] and [1].
These will serve as an infrastructure for the rest of the chapter and will also provide
the intuition and justification for the categorical definition of bilinear forms given
in section 2.7.

To avoid extra parentheses in the proofs, we adopt the following notation until
the end of the section. The value of a function f at x will be denoted by fx,
rather than f(x). To distinguish application of a function from multiplication by
a scalar, the latter will be written explicitly, i.e. we will write m · r rather than
mr whenever m ∈ M ∈ Mod-R and r ∈ R. Composition of functions will also be
written explicitly.

Proposition 2.2.1. Let M ∈ Mod-R. There are natural R-module homomor-
phisms Ψ = ΨM : M 7→M [0][1] and Φ = ΦM : M 7→M [1][0] given by:

(Ψx)(f) = f(x) ∀x ∈M, f ∈M [0],

(Φx)(f) = f(x) ∀x ∈M, f ∈M [1].

In addition, the maps Φ,Ψ satisfy:

idM [0] = Ψ[0]
M ◦ ΦM [0] ,

idM [1] = Φ[1]
M ◦ΨM [1] ,

i.e. the following diagrams commute

M [0]
Φ
M[0]//

id

M [0][1][0]

Ψ[0]
M��

M [0]

M [1]
Ψ
M[1]//

id

M [1][0][1]

Φ[1]
M��

M [1]

Proof. That Φ and Ψ are R-module homomorphisms is straightforward. We
will only check that Ψ is natural (in the categorical sense) and that idM [0] = Ψ[0]

M ◦
ΦM [0] . The rest follows by symmetry. Let A,B ∈ Mod-R, ϕ ∈ HomR(A,B), x ∈ B
and f ∈ B[0]. Then:

((ϕ[0][1] ◦ΨA)x)f = (ϕ[0][1](ΨAx))f = ((ΨAx) ◦ ϕ[0])f = (ΨAx)(ϕ[0]f) =

= (ΨAx)(f ◦ ϕ) = f(ϕx) = (ΨB(ϕx))f = ((ΨB ◦ ϕ)x)f,
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hence ϕ[0][1] ◦ ΨA = ΨB ◦ ϕ, implying Ψ is natural. Next, for all f ∈ M [0] and
m ∈M :

(Ψ[0]
M (ΦM [0]f))m = (ΦM [0]f)(ΨMm) = (ΨMm)(f) = f(m) ,

hence Ψ[0]
M ◦ ΦM [0] = idM [0] , as desired. �

Remark 2.2.2. At this point, the reader is advised to keep in mind that [0]
corresponds to left and [1] corresponds to right, in the sense that the left (resp.
right) adjoint always take values in the 0-dual (resp. 1-dual). The reader is also
advised to remember that Ψ is a morphism of functors from idMod-R to [0][1] and
Φ is a morphism of functors from idMod-R to [1][0].

Corollary 2.2.3. Let A,B ∈ Mod-R, then there is an additive natural iso-
morphism

I = IA,B : Hom(B,A[1]) −→ Hom(A,B[0])
given by IA,B(f) = f [0] ◦ ΦA. The inverse of I is given by I−1

A,B(g) = g[1] ◦ΨB.

Proof. We leave it to the reader to check IA,B is indeed a natural additive
map from Hom(B,A[1]) to Hom(A,B[0]), and only check that g 7→ g[1] ◦ΨB is the
inverse of IA,B . Indeed, for f ∈ Hom(B,A[1])

(IA,Bf)[1] ◦ΨB = (f [0] ◦ ΦA)[1] ◦ΨB = Φ[1]
A ◦ f

[0][1] ◦ΨB = Φ[1]
A ◦ΨA[1] ◦ f = f .

(In the third equality we used the naturality of Φ.) That IA,B(g[1]◦ΨB) = g follows
by symmetry. �

Remark 2.2.4. Corollary 2.2.3 implies that if one considers [0] as a covariant
functor from Mod-R to (Mod-R)op and [1] as a covariant functor from (Mod-R)op

to Mod-R, then [0] is left adjoint to [1]. (See [42] for definition and details.)

Let A,B ∈ Mod-R. Call a biadditive map b : A×B → K a bilinear pairing if
b(xr, y) = b(x, y)�0 r and b(x, yr) = b(x, y)�1 r ∀x ∈ A, y ∈ B, r ∈ R .

As with bilinear forms, we can define left and right adjoint maps Ad`b : A → B[0]

and Adrb : B → A[1]. Since clearly any of Ad`b, Adrb determine b, it is expected
that each of Ad`b, Adrb would determine the other. This is verified in the following
corollary:

Corollary 2.2.5. Let b : A×B → K be a bilinear pairing. Then

Adrb = I−1
A,B(Ad`b) = (Ad`b)[1] ◦ΨB ,

Ad`b = IA,B(Adrb) = (Adrb)[0] ◦ ΦA ,

i.e. the following diagrams commute:

A

Ad`b
��

ΦA // A[1][0]

(Adrb)[0]{{
B[0]

B

Adrb
��

ΨA // A[0][1]

(Ad`b)
[1]{{

A[1]

Proof. We only check the first equality. The second follows by symmetry. Let
x ∈ A and y ∈ B. Then for all x ∈ A and y ∈ B:

(((Ad`b)[1] ◦ΨB)y)x = ((Ad`b)[1](ΨBy))x = (ΨBy)(Ad`bx) =

= (Ad`bx)y = b(x, y) = (Adrby)x
hence Adrb = (Ad`b)[1] ◦ΨB = I−1

A,B(Ad`b). �
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Proposition 2.2.6. Let b : A×B → K be a bilinear pairing and let σ ∈ End(A)
and τ ∈ End(B). Then b(σx, y) = b(x, τy) for all x ∈ A and y ∈ B ⇐⇒ the left
diagram commutes ⇐⇒ the right diagram commutes

A
σ //

Ad`b ��

A

Ad`b��
B[0]

τ [0]
// B[0]

B
τ //

Adrb
��

B

Adrb
��

A[1]
σ[1]
// A[1]

Proof. That each of the diagrams is equivalent to b(σx, y) = b(x, τy) for all
x ∈ A and y ∈ B is straightforward. However, the diagrams’ equivalence can also
be shown directly (this is important for section 2.7). Indeed, if Ad`b ◦ σ = τ [0] ◦Ad`b
(i.e. the left diagram commutes), then σ[1] ◦ (Ad`b)[1] = (Ad`b)[1] ◦ τ [0][1] and this
implies

σ[1]◦Adrb
(2.2.5)= σ[1]◦(Ad`b)[1]◦ΨB = (Ad`b)[1]◦τ [0][1]◦ΨB = (Ad`b)[1]◦ΨB◦τ

(2.2.5)= Adrb◦τ,
so the second diagram commutes. �

We now turn to explain what is the categorical meaning of an anti-isomorphism
(or an involution) κ : K → K. Recall that we let Ki denote the R module obtained
by letting R act on K via �i.

Proposition 2.2.7. There is a one-to-one correspondence between isomor-
phisms of functors u : [0]→ [1] and anti-isomorphisms of K.

Proof. Throughout, r, m, f stand for elements of R, M , M [0], respectively.
Let κ be an anti-isomorphism of K. For all M ∈ Mod-R, define uκ,M : M [0] →

M [1] by
uκ,M (f) = κ ◦ f .

Note that κ◦f ∈M [1] since (κ◦f)(m·r) = (f(m·r))κ = ((fm)�1r)κ = (fm)κ�0r =
((κ ◦ f)m)�0 r. In addition, u = uκ,M is an R-module homomorphism because
(u(f ·r))m = ((f ·r)m)κ = ((fm)�0r)κ = (fm)κ�1r = ((uf)m)�1r = ((uf)·r)m.

We leave it to the reader to check that uκ,M is a natural isomorphism and, therefore,
uκ : [0]→ [1] is a functor isomorphism.

Now assume we are given a functor isomorphism u : [0] → [1]. Observe that
R[i] ∼= Ki via f 7→ f(1R) where i ∈ {0, 1}. For all k ∈ K, denote by fk the unique
element of R[0] satisfying fk(1R) = k. Define κ : K → K by kκ = (ufk)1R.3 Let
r ∈ R. Since the map k 7→ fk is an R-module homomorphism (from K0 to R[0]),
(k �0 r)κ = (ufk�0r)1R = (u(fk · r))1R = ((ufk) · r)1R = ((ufk)1R)�1 r = kκ �1 r

for all k ∈ K. Now consider the homomorphism ψ : RR → RR given by ψ(x) = r ·x.
Since u is natural, uR ◦ ψ[0] = ψ[1] ◦ uR. In addition, for all k ∈ K, (ψ[0]fk)1R =
fk(ψ1R) = fk(1R · r) = k �1 r, hence ψ[0]fk = fk�1r. Therefore:

(k �1 r)κ = (ufk�1r)1R = (u(ψ[0]fk))1R = (ψ[1](ufk))1R
= (ufk)(ψ1R) = (ufk)(1R · r) = ((ufk)1R)�0 r = kκ �0 r .

It follows that (k �i r)κ = kκ �1−i r for all r ∈ R, k ∈ K and i ∈ {0, 1}, hence
κ = κ(u) is an anti-isomorphism of K.

Clearly κ(uκ) = κ. To see that uκ(u) = u, first observe that for all k ∈ K,
(κ ◦ fk)1R = (fk1R)κ = kκ = (ufk)1R, hence uf = κ(u) ◦ f for all f ∈ R[0]. Now,
let M ∈ Mod-R, f ∈ M [0] and m ∈ M . Define ϕ : RR → M by ϕ(r) = m · r.

3 It is easy to check that under the identification R[i] ∼= Ki, κ is in fact uR.
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Then ϕ gives rise to maps ϕ[0] : M [0] → R[0] and ϕ[1] : M [1] → R[1] satisfying
uR ◦ ϕ[0] = ϕ[1] ◦ uM . Since f ◦ ϕ ∈ R[0], uR(f ◦ ϕ) = κ(u) ◦ (f ◦ ϕ). Therefore:

(fm)κ(u) = (f(ϕ1R))κ(u) = (κ(u) ◦ f ◦ ϕ)1R = (uR(f ◦ ϕ))1R =

= ((uR ◦ϕ[0])f)1R = ((ϕ[1] ◦ uM )f)1R = ((uMf) ◦ϕ)1R = (uMf)(ϕ1R) = (uMf)m
and it follows that uMf = κ(u) ◦ f , as required. �

The map uκ,M defined in the last proof will be used throughout the chapter.
Involutions of K correspond to natural isomorphisms u : [0] → [1] satisfying an
additional condition that will be explained in Section 2.7.

Proposition 2.2.8. Let b : M ×M → K be a bilinear form, let κ be an anti-
isomorphism of K and let λ ∈ End(M). Then λ is a right κ-asymmetry of b if and
only if uκ,M ◦Ad`b = Adrb ◦ λ, i.e. the following diagram commute:

M
λ //

Ad`b ��

M

Adrb
��

M [0]
uκ,M

∼= // M [1]

In particular, b is κ-symmetric if and only if uκ,M ◦Ad`b = Adrb.

Proof. This is straightforward. �

Proposition 2.2.9. Let b : M ×M → K be a bilinear form. The following are
equivalent:

(a) b is right semi-stable.
(b) For all σ, τ ∈ End(MR), b(x, σy) = b(x, τy) for all x, y ∈ M implies

σ = τ .
(c) Hom(MR, ker Adrb) = 0.
(d) For all σ, τ ∈ End(MR), Adrb ◦ σ = Adrb ◦ τ implies σ = τ .

If b is right injective, right stable or has a unique right κ-asymmetry (for some
anti-isomorphism κ of K), then b is right semi-stable.

Proof. The equivalence of (a), (b) and (d) is straightforward. As for (c), σ ∈
HomR(M, ker Adrb) ⇐⇒ σ ∈ End(MR) and σ(M) ⊆ ker Adrb ⇐⇒ σ ∈ End(MR)
and b(x, σM) = 0 for all x ∈ M ⇐⇒ σ ∈ End(MR) and b(x, σy) = 0 for all
x, y ∈M . Therefore (b)⇐⇒ (c).

If b is right injective, then b is right semi-stable by (c). If b is right stable and
σ ∈ End(MR) is such that b(x, σy) = 0 for all x, y ∈M , then b(0x, y) = 0 = b(x, σy)
for all x, y ∈M . The stableness implies σ is the only endomorphism ofM satisfying
this, hence σ = 0, implying b is right semi-stable. If b has a unique right κ-
asymmetry λ and σ is as before, then λ + σ is also a right κ-asymmetry, so the
uniqueness implies σ = 0. �

Let M be a right R-module such that Hom(M,N) 6= 0 for any nonzero sub-
module N ≤ M . Then condition (c) of the previous proposition implies that a
bilinear form defined on M is right (resp. left) semi-reflexive if and only if it is
right (resp. left) injective. An important family of modules satisfying the previous
condition is the generators of Mod-R; a module M ∈ Mod-R is called a generator
(of Mod-R) if any right R-module is an epimorphic image of

⊕
i∈IM for some set

I. This turns out to be equivalent to RR being a summand of Mn for some n ∈ N.
(See [58, Th. 18.8] for additional equivalent conditions). We now get the following
corollary.
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Corollary 2.2.10. Let b : M ×M → K be a bilinear form such that M is a
generator. Then b is right semi-stable ⇐⇒ b is right injective.

2.3. Implications

In this section, we will determine what we conjecture to be all implications
between subsets of the conditions (R1)-(R4),(L1)-(L4) as well as other useful re-
sults. The conditions (R5) and (L5) will also be treated but they are of less interest
since they are implied by (R1),(R3),(R4) and (L1),(L3),(L4) respectively (Proposi-
tion 2.2.9).

Since the existence of an anti-isomorphism or an involution on K effects some
of the implications, we will distinguish between the following three cases:

(I) K is not assumed to have an anti-isomorphism.
(II) K has an anti-isomorphism κ.
(III) K has an augmentable anti-isomorphism κ (e.g. if K has an involution).

In Case I, the conditions (R4) and (L4) are irrelevant where in the other cases
we also have to treat (R4)-κ and (L4)-κ−1. We will define augmentable anti-
endomorphisms when we discuss Case III.

Remark 2.3.1. It is also reasonable to add (R4)-κ−1 and (L4)-κ to our list of
properties, and these conditions are actually mentioned when discussing Case II.
However, we suspect this will open a pandora box, as one could also add (R4)-κn
and (L4)-κn for any odd integer n. When κ is augmentable, this issue is irrelevant
since in this case having a (unique) right (left) κ-asymmetry is equivalent to having
a (unique) right (left) κn-asymmetry, where n is any odd integer.

Remark 2.3.2. For any double R-module K, define Kop to be the set of formal
symbols {kop | k ∈ K} endowed with the double R-module structure given by

kop �0 a = (k �1 a)op, kop �1 a = (k �0 a)op,

and kop + k′op = (k + k′)op (k, k′ ∈ K, a ∈ R). Then any anti-isomorphism of K
can be understood as a double R-module isomorphism from K to Kop. We can
now describe Case I as K � Kop and Case II as K ∼= Kop. Case III assumes a
stronger kind of isomorphism from K to Kop.

Throughout, R is a ring, K is a fixed double R-module and (M, b,K) is a
bilinear space. Unless specified explicitly, we do not assume K � Kop or K ∼= Kop.

2.3.1. Case I.

Proposition 2.3.3. If b is right regular, then b is right stable.

Proof. Since b is injective, it is semi-stable. Therefore, it is enough to show
that for all σ ∈ End(MR) there is σ′ ∈ End(MR) such that b(σx, y) = b(x, σ′y)
(the uniqueness of σ′ is guaranteed). By Proposition 2.2.6, this is equivalent to
σ[1] ◦Adrb = Adrb ◦ σ′, so take σ′ = (Adrb)−1 ◦ σ[1] ◦Adrb . �

Proposition 2.3.4. Assume b is right stable and let ∗ be its corresponding anti-
endomorphism. Then b is left stable if and only if ∗ is invertible and left semi-stable
if and only if ∗ is injective.

Proof. The form b is left semi-stable ⇐⇒ for all τ ∈ End(MR), b(τx, y) = 0
implies τ = 0 ⇐⇒ b(x, τ∗y) = 0 implies τ = 0 ⇐⇒ τ∗ = 0 implies τ = 0 (since b
is right semi-stable). Therefore, b is left semi-stable if and only if ∗ is injective.

If ∗ is bijective, then for all σ ∈ End(MR) and x, y ∈M , b(x, σy) = b(σ∗−1
x, y).

By the previous argument, b is left semi-stable, hence σ∗−1 is uniquely determined
by σ, thus b is left stable. On the other hand, if b is left stable, then there is an
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anti-homomorphism ] : End(MR) → End(MR) satisfying b(x, σy) = b(σ]x, y) for
all x, y ∈ M . This implies b(x, σy) = b(σ]x, y) = b(x, σ]∗y) and since b is right
semi-stable, σ = σ]∗ for all σ ∈ End(M). Therefore, ∗ ◦ ] = idEnd(M) and by
symmetry, ] ◦ ∗ = idEnd(M), hence ∗ is bijective. �

Surprisingly, all implications between subsets of (R1)-(R3),(L1)-(L3) in Case I
can be explained by (R1) ∧ (R2) =⇒ (R3) and its left analogue (the ∧ sign denotes
logical “and”). This will be verified (with counterexamples) in the next section.

2.3.2. Case II.

Lemma 2.3.5. Assume K has an anti-isomorphism κ. Then:
(i) If b has a unique right κ-asymmetry, then it is (left and right) semi-stable.
(ii) If b is right semi-stable and has a right κ-asymmetry, then it is unique.

Proof. (i) By Proposition 2.2.9, b is right semi-stable. Now assume b(σx, y) =
0 for all x, y ∈ M . Then b(x, σy)κ = b(σy, λx) = 0. Since b is right semi-stable,
this means σ = 0, implying b is left semi-stable.

(ii) This is clear from Proposition 2.2.9(b). �

Proposition 2.3.6. Assume K has an anti-isomorphism κ. Then:
(i) If b is right regular, then it has a unique right κ-asymmetry.
(ii) If b has a right κ-asymmetry and b is right injective, then b is injective.
(iii) If b has a right κ-asymmetry and b is left surjective, then b is surjective.

Proof. (i) Take λ = (Adrb)−1 ◦ uκ,M ◦ Ad`b. This is a right κ-asymmetry by
Proposition 2.2.8. The uniqueness follows from Lemma 2.3.5(ii), since b is right
semi-stable.

(ii) Let λ be a right κ-asymmetry and assume b(x,M) = 0. Then b(M,x) =
b(x, λM)κ−1 = 0 and since b is right injective x = 0.

(iii) By Proposition 2.2.8, Ad`b = u−1
κ,M ◦Adrb ◦λ. Since uκ,M is an isomorphism,

that Ad`b is surjective implies Adrb is surjective. �

Corollary 2.3.7. Assume K has an anti-isomorphism and b is right regular.
Then b is left injective.

In contrast to the last corollary, in Case I, (R0) does not imply (L1) and not
even (L5); see Example 2.4.3.

Proposition 2.3.8. Let κ be an anti-isomorphism of K and assume b has a
unique right κ-asymmetry λ. Then the following are equivalent:

(a) b has a left κ−1-asymmetry.
(b) b has a unique left κ−1-asymmetry.
(c) λ is right invertible.
(d) λ is invertible.

When these conditions hold, b is right regular (injective, surjective) if and only if b
is left regular (injective, surjective).

Proof. (a) ⇐⇒ (b): By Lemma 2.3.5(i), b is right an left semi-stable, so by
the left analogue of Lemma 2.3.5(ii), (a)=⇒(b). The opposite direction is obvious.

(b)=⇒(d): Let λ′ be the left κ−1-asymmetry of b. Then b(x, y)κ = b(y, λx) =
b(λ′λx, y)κ. Since b is left semi-stable (Lemma 2.3.5(i)), λ′λ = idM and by symme-
try λλ′ = idM .

(d)=⇒(c): This is clear.
(c)=⇒(a): If λ′ is a right inverse of λ, then b(λ′x, y) = b(y, λλ′x)κ−1 =

b(x, y)κ−1 for all x, y ∈M , hence λ′ is a left κ−1-asymmetry.
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To finish, if conditions (a)-(d) hold, then λ is invertible. By Proposition 2.2.8,
Ad`b = u−1

κ,M ◦ Adrb ◦ λ. Since uκ,M and λ are invertible, Ad`b is bijective (injective,
surjective) if and only if Adrb is. �

Proposition 2.3.9. Assume b is right stable with corresponding anti-endomor-
phism ∗ and let κ be an anti-isomorphism of K. Then:

(i) If λ is a right κ-asymmetry of b, then ∗ is injective and σ∗∗λ = λσ for all
σ ∈ End(MR).

(ii) If λ′ is a left κ-asymmetry of b, then (λ′)∗ is a right κ-asymmetry of b.
In this case b has unique right and left κ-asymmetries.4

Proof. (i) b is right semi-stable, hence λ is the unique κ-asymmetry of b
(Lemma 2.3.5(ii)). By Lemma 2.3.5(i), b is left semi-stable, so ∗ is injective by
Proposition 2.3.4. In addition, for all x, y ∈ M and σ ∈ End(MR), b(x, λσy) =
b(σy, x)κ = b(y, σ∗x)κ = b(σ∗x, λy) = b(x, σ∗∗λy), implying λσ = σ∗∗λ (since b is
right semi-stable).

(ii) For all x, y ∈ M , b(x, (λ′)∗y) = b(λx, y) = b(y, x)κ implying (λ′)∗ is a
right κ-asymmetry. The uniqueness follows from Lemma 2.3.5, since b is right
semi-stable. �

Corollary 2.3.10. Let κ be an anti-isomorphism of K and assume b has an
invertible right κ-asymmetry λ. Then b is right stable if and only if b is left stable.
In this case, if ∗ is the corresponding anti-isomorphism of b, then σ∗∗ = λσλ−1.

Proof. Assume b is right stable and let ∗ be its corresponding anti-isomor-
phism. Then by Proposition 2.3.9(i), σ∗∗ = λσλ−1 for all σ ∈ EndR(M), hence
is ∗2 := ∗ ◦ ∗ bijective. Therefore, ∗ is bijective and by Proposition 2.3.4, b is left
stable. The opposite direction follows by symmetry. �

Definition 2.3.11. Let (M, b,K) be a bilinear space and let κ be an anti-
isomorphism of K. An augmentation map for b (w.r.t. κ) is a map γ ∈ EndR(M)
such that b(x, γy) = b(x, y)κκ for all x, y ∈M .

Lemma 2.3.12. Assume K has an anti-isomorphism κ. Then:
(i) If b is right semi-stable, then it has at most one augmentation map.
(ii) If b has a left or right κ-asymmetry λ and b is right stable with corre-

sponding anti-endomorphism ∗, then γ = λ∗λ is an augmentation map
for b.

(iii) Assume b is right semi-stable. If γ is an augmentation map and b is left
surjective or left stable, then γ ∈ Cent(EndR(M)).

(iv) If b has a left κ-asymmetry λ and γ is an augmentation map, then b(γx, y) =
b(x, y)κκ for all x, y ∈M . If moreover b is right stable with corresponding
anti-endomorphism ∗, then γ∗ = γ (so by (ii), λ∗λ = λ∗λ∗∗).

(v) If b is right regular, then b has an augmentation map, and it is invertible.
(vi) If b is right injective and b has an augmentation map, then it is injective.
Proof. (i) This easily follows from Proposition 2.2.9(b).
(ii) Assume λ is a right κ-asymmetry. Then for all x, y ∈ M , b(x, y)κκ =

b(y, λx)κ = b(λx, λy) = b(x, λ∗λy). If λ is a left κ-asymmetry, then b(x, y)κκ =
b(λy, x)κ = b(λx, λy) = b(x, λ∗λy). In both cases λ∗λ is an augmentation map.

(iii) Let σ ∈ EndR(M) and assume b is left surjective. Fix some x ∈M . Then
y 7→ b(x, σy) lies in M [0], hence there is some x′ ∈ M such that b(x, σy) = b(x′, y)
for all y ∈M . Therefore

b(x, γσy) = b(x, σy)κκ = b(x′, y)κκ = b(x′, γy) = b(x, σγy) .

4 But κ−1-asymmetries do not exist in general; see Example 2.4.13.
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Since this holds for all x, y ∈ M and since b is right semi-stable, γσ = σγ. Now
assume b is left stable. Then there exists σ′ ∈ EndR(M) such that b(σ′x, y) =
b(x, σy) for all x, y ∈M . Thus

b(x, γσy) = b(x, σy)κκ = b(σ′x, y)κκ = b(σ′x, γy) = b(x, σγy)

and as before we get γσ = σγ.
(iv) For all x, y ∈ M , b(γx, y) = b(λy, γx)κ−1 = b(λy, x)κ = b(x, y)κκ. The

second assertion follows since b(x, γy) = b(x, y)κκ = b(γx, y) = b(x, γ∗y) for all
x, y ∈M .

(v) By Proposition 2.3.6(i), b has a right asymmetry λ and by Proposition 2.3.3,
b is right stable. Let ∗ be the corresponding anti-isomorphism of b. Then by
(ii), γ = λ∗λ is an augmentation map for b w.r.t. κ. We can now apply the
same argument to κ−1 and get an augmentation map w.r.t. κ−1, γ′. Then for all
x, y ∈ M , b(x, y) = b(x, γ′y)κκ = b(x, γγ′y) and it follows that γγ′ = idM . By
symmetry, γ′γ = idM , hence γ is invertible.

(vi) Let γ be an augmentation map of b and assume γy = 0 for some y ∈ M .
Then b(x, y) = b(x, γy)κ−2 = 0 and since b is right injective, y = 0. �

Proposition 2.3.13. Assume K has an anti-isomorphism κ, and b is right
regular with corresponding anti-isomorphism ∗. If ∗ is surjective, then b is left
regular.

Proof. By Proposition 2.3.6(i), b has a right κ-asymmetry λ and by
Lemma 2.3.12, λ∗λ is an augmentation map for κ and it is invertible, hence λ
is left invertible. Assume ∗ is surjective. Then there exists µ ∈ EndR(M) such that
µ∗ = λ. Taking σ = µ in Proposition 2.3.9(i), we get λ∗λ = µ∗∗λ = λµ, so λ is also
right invertible (and necessarily µ = λ∗, implying λ∗∗ = λ). We are now through
by Proposition 2.3.8. �

Before proceeding to Case III, let us summarize the implications proved so far.
We conjecture that in Case II, all implications between subsets of (R1)-(R3),(R4)-κ
and their left analogues can be explained by the following list and its left analogue:

(1) (R0) =⇒ (R3) ∧ (R4) (Prp. 2.3.3, Prp. 2.3.6(i));
(2) (R1) ∧ (R4) =⇒ (L1) (Prp. 2.3.6(ii));
(3) (L2) ∧ (R4) =⇒ (R2) (Prp. 2.3.6(iii));
(4) (R4)-κ ∧ (L4)-κ−1 ∧ (R1) =⇒ (L1) (Prp. 2.3.8);
(5) (R4)-κ ∧ (L4)-κ−1 ∧ (R2) =⇒ (L2) (Prp. 2.3.8);
(6) (R4)-κ ∧ (L4)-κ−1 ∧ (R3) =⇒ (L3) (Prp. 2.3.8);
(7) (R0) ∧ (L3) =⇒ (L0) (Prp. 2.3.13).

Note that (R0) is equivalent to (R1) ∧ (R2) and the same holds for (L0). We also
have shown that:

(8) (L4)-κ ∧ (R3) =⇒ (R4)-κ (Prp. 2.3.9(ii));
(9) (R4) =⇒ (R5) ∧ (L5) (Lm. 2.3.5(i)).

2.3.3. Case III. The definition of augmentable anti-endomorphisms of K is
inspired by the map γ of Lemma 2.3.12.

Definition 2.3.14. Call an anti-endomorphism κ of K weakly augmentable
if there exist a natural transformation γ : idMod-R → idMod-R such that for all
A,B ∈ Mod-R and any bilinear pairing b : A×B → K

(2) b(x, γBy) = b(x, y)κκ ∀x ∈ A, y ∈ B .

If γ can be chosen to be a natural isomorphism (i.e. γB ∈ End(B) is an isomorphism
for all B ∈ Mod-R), call κ an augmentable anti-isomorphism. The transformation



2.3. IMPLICATIONS 67

γ is called an augmentation transformation of κ (or just an augmentation, for
brevity).

Observe that since γ is natural, γA is central in EndR(A) for all A ∈ Mod-R.
The augmentation γ is not uniquely determined by κ, as demonstrated in Exam-
ple 2.3.15(ii) below, but if K1 is faithful (which is equivalent to K0 being faithful,
since K has an anti-isomorphism), then γ is uniquely determined. This will be veri-
fied later in Proposition 2.7.6 below (takeX = RR). Moreover, we shall prove below
that for any anti-isomorphism κ there is a unique “augmentation transformation” γ
which is defined on the subcategory of right reflexive R-modules (Proposition 2.7.7).

The reason that in the definition γ depends only on B and not on A and b is
that if γ is an augmentation of b : A× B → K, then it is also an augmentation of
(x, y) 7→ b(σx, y) : A′ × B → K for any σ ∈ HomR(A′, A). A deeper justification
for this will appear later in section 2.7.3, where we shall see that there is a unique
natural transformation γ̂ : [0] → [0] such that γ̂B ◦ Ad`b = Ad`κ2◦b for any bilinear
pairing b : A×B → K.

Example 2.3.15. (i) Any involution of K is augmentable (take γ = idMod-R).
(ii) Consider Q as a double Z-module by letting �0 and �1 be the standard

action on Q. Then the map x 7→ 2x is an anti-isomorphism of Q (as a double Z-
module) and it is weakly augmentable but not augmentable. Indeed, γ = 4 idMod-Z
in this case, and 4 idMod-Z is not invertible for all Z-modules. (The augmentation
γ is uniquely determined since Q is faithful.)

(iii) Let K be a 2-torsion Z-module. Then K can be considered as a double
Z-module by letting �0 and �1 be the standard action of Z on K. Then κ := idK is
an involution of K. However, n idMod-R is an augmentation of κ for any odd n ∈ Z.
In particular, idMod-R and (−1) idMod-R are two different invertible augmentations
of κ.

(iv) Let R be a ring and let ∗ be an anti-endomorphism of R. Assume that
there is λ ∈ R such that λ∗λ ∈ Cent(R) ∩R× and x∗∗λ = λx for all x ∈ R. Let K
be the double R-module obtained from R and ∗ in Example 2.1.4. Then the map
κ : K → K defined by kκ = k∗λ satisfies

(k �1 r)κ = (kr)∗λ = r∗k∗λ = kκ �0 r ,

(k �0 r)κ = (r∗k)∗λ = k∗r∗∗λ = k∗λr = kκ �1 r ,

for all k ∈ K and r ∈ R. In addition, for all k ∈ K, we have

kκκ = (k∗λ)∗λ = λ∗k∗∗λ = λ∗λk ,

hence κ2 is invertible (since λ∗λ ∈ R×) and it follows that κ is an anti-isomorphism
of K. Since λ∗λ is also central, κ is augmentable because we can take γ =
λ∗λ idMod-R. In Proposition 2.4.1, we show that all augmentable anti-isomorphisms
of K are obtained in this manner.

Part (i) of the following proposition shows that there is no need for a “left
analogue” for the augmentation transformation.

Proposition 2.3.16. Let κ be a weakly augmentable anti-isomorphism of K
with augmentation γ. Then:

(i) For any bilinear pairing b : A×B → K we have

b(γAx, y) = b(x, y)κκ ∀x ∈ A, y ∈ B .

(ii) Assume κ is augmentable. If (M, b,K) is a bilinear space and n ∈ Z is
odd, then b has a (unique) right (left) κ-asymmetry if and only if b has a
(unique) right (left) κn-asymmetry.
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(iii) If (M, b,K) is a bilinear space and b is right stable with corresponding
anti-endomorphism ∗, then γ∗M = γM .

Proof. (i) Let b : A × B → K be a bilinear pairing. Then b′ : B × A → K
defined by b′(y, x) = b(x, y)κ is also a bilinear pairing. Therefore, b′(y, γAx) =
b′(y, x)κκ. But this implies

b(γAx, y) = (b′(y, γAx))κ
−1

= (b′(y, x)κκ)κ
−1

= b(x, y)κκ

for all x ∈ A and y ∈ B, as required.
(ii) It is straightforward to check that λ ∈ EndR(M) is a right (left) κ-

asymmetry of b if and only if γmMλ is a right (left) κ2m+1-asymmetry of b, where
m can be any integer. (The left version follows from (i).) The claim then follows
immediately.

(iii) For all x, y ∈ M we have b(x, γMy) = b(x, y)κκ = b(γMx, y) = b(x, γ∗My)
(the second equality follows from (i)), hence γ∗M = γM . �

We now have the following improvement of Proposition 2.3.9.

Proposition 2.3.17. Let (M, b,K) be a bilinear space where κ is augmentable
with augmentation γ. Assume b is right stable with corresponding anti-isomorphism
∗, and b has a left κ−1-asymmetry λ′. Then b has a (unique) right κ-asymmetry
given by λ = (λ′)∗γM and σ∗∗ = λσλ−1 for all σ ∈ End(M). In particular, ∗ is
bijective, ∗2 is an inner automorphism of EndR(M) and b is left stable.

Proof. By Proposition 2.3.9(ii), (λ′)∗ is a right κ−1-asymmetry and by Propo-
sition 2.3.16(ii), λ := γM (λ′)∗ a right κ-asymmetry. Let µ = γMλ

′ and observe that
µ∗ = λ. Then by arguing as in the proof of Proposition 2.3.13, we get that λ is
invertible and σ∗∗ = λσλ−1 for all σ ∈ EndR(M). All other assertions follow
immediately (b is left stable by Proposition 2.3.4). �

Corollary 2.3.18. Let (M, b,K) be a right stable bilinear space with κ aug-
mentable. Then the following are equivalent:

(a) b is left stable and has unique left and right κ- and κ−1-asymmetries.
(b) b has a left κ−1-asymmetry.
(c) b has a right κ-asymmetry which is right invertible.
(d) b has a right κ-asymmetry λ satisfying λ∗∗ = λ.

If moreover M does not contain an infinite direct sum of its non-zero summands
(e.g. if M is noetherian or has finite uniform dimension), then these conditions are
also equivalent to:

(e) b has a right κ-asymmetry.

Proof. (b)=⇒(a) and (a)=⇒(d) easily follow from Propositions 2.3.17 (note
λ∗∗ = λ(λ)λ−1 = λ in this case) and 2.3.16(ii).

(d)=⇒(c): By taking σ = λ∗ in Proposition 2.3.9(i) we get λ∗λ = (λ∗)∗∗λ =
λλ∗. By Lemma 2.3.12(ii), λ∗λ = γM , which is invertible. Thus, λ is invertible.

(c)=⇒(b): Let λ be a right asymmetry of b which is right-invertible. By
Lemma 2.3.12(ii), λ∗λ = γM , so λ is also left-invertible, hence invertible. Therefore,
λ−1 is a left κ−1-asymmetry.

We now assume M does not contain an infinite sum of its non-zero summands
and prove (c) ⇐⇒ (e). Indeed, (c)=⇒(e) is a tautology. To see the converse, note
that λ is left invertible by the argument in (c)=⇒(b). The assumption onM implies
that EndR(M) does not contain an infinite set of non-zero orthogonal idempotents.
By [58, p. 231], this means M is Dedekind finite5, thus λ is right invertible. �

5 A ring R is called Dedekind finite if xy = 1 implies yx = 1.
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The last corollary shows that (R3) and (L4)-κ−1 imply (R4)-κ, which is false
in Case II. We believe that in Case III, all implications between subsets of (R1)-
(R3),(R4)-κ and their left analogues can be obtained from the following list and its
left analogue:

(1) (R0) =⇒ (R4) (Prp. 2.3.6(i));
(2) (R1) ∧ (R4) =⇒ (L1) (Prp. 2.3.6(ii));
(3) (L2) ∧ (R4) =⇒ (R2) (Prp. 2.3.6(iii));
(4) (R4)-κ ∧ (L4)-κ−1 ∧ (R1) =⇒ (L1) (Prp. 2.3.8);
(5) (R4)-κ ∧ (L4)-κ−1 ∧ (R2) =⇒ (L2) (Prp. 2.3.8);
(6) (L4)-κ−1 ∧ (R3) =⇒ (R4)-κ ∧ (L3) (Prp. 2.3.17).

In addition, if we assume that the base module M does not contain an infinite
direct sum of its non-zero summands, then:

(7) (R4)-κ ∧ (R3) =⇒ (L4)-κ−1 (Cr. 2.3.18).

2.4. Counterexamples

In this section, we demonstrate the non-implications between the properties
(R1)-(R5) and (L1)-(L5). The examples will be divided according to their relevance
to Cases I, II and III of the previous section. Since examples for Case III are also
relevant to Case II, but not necessarily vice versa, the examples of Case II appear
after the examples of Case III.

We begin with a propositions that will help us to generate examples.

Proposition 2.4.1. Let R be a ring and let ∗ be an anti-endomorphism of R.
Make R into a double R-module by defining:

r �0 s = s∗r, r �1 s = rs ∀ r, s ∈ R ,

and let K denote the R-module thus obtained. Define b : R × R → K by b(x, y) =
x∗y. Then:

(i) b is a right regular bilinear form and under the natural identification
End(RR) ∼= R (via f ↔ f(1)), the corresponding anti-endomorphism of
b is ∗. In addition, ker(Ad`b) = ker(∗) and im(Ad`b) = im(∗) under the
identification R[0] = Hom(RR,K1) = End(RR) ∼= R.

(ii) Assume there is λ ∈ R such that λ∗λ ∈ R× and x∗∗λ = λx for all x ∈ R.
Define κ : K → K by rκ = r∗λ. Then κ is an anti-isomorphism and
under the identification End(RR) ∼= R, λ is a right κ-asymmetry of b.

(iii) In the assumptions of (ii), if λ∗λ ∈ Cent(R), then κ is augmentable and
its augmentation transformation is γ = λ∗λ idMod-R.

(iv) In the assumptions of (ii), if λ∗λ = 1, then κ is an involution of K.
(v) Any anti-isomorphism (resp.: augmentable anti-isomorphism, involution)

κ of K is obtained from some λ ∈ R as in (ii) (resp.: (iii), (iv)).

Proof. Recall that under the natural identification End(RR) ∼= R, an element
r ∈ R corresponds to the homomorphism x 7→ rx.

(i) This was verified in Example 2.1.4.
(ii) That κ is an anti-isomorphism follows from Example 2.3.15(iv). (The as-

sumption λ∗λ ∈ Cent(R) was not used to show this.) Next, b(x, y)κ = (x∗y)∗λ =
y∗x∗∗λ = y∗λx = b(y, λx), hence λ is the right κ-asymmetry of b.

(iii) This was shown in Example 2.3.15(iv).
(iv) For all k ∈ K, kκκ = (k∗λ)∗λ = λ∗k∗∗λ = λ∗λk = k, hence κ is an

involution.
(v) Let ∗ : R → R denote the corresponding anti-endomorphism of b and

assume κ is an anti-isomorphism of K. Then by Proposition 2.3.6(i), b has a
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right κ-asymmetry λ ∈ R. Then for all k ∈ K, kκ = b(1, k)κ = b(k, λ) = k∗λ.
In addition, by Proposition 2.3.9(i), x∗∗λ = λx for all x ∈ R. Therefore, for
all k ∈ K, kκκ = λ∗λk (see the computation in (iv)) and since κ2 is invertible,
λ∗λ ∈ R×. Thus, κ is obtained from λ as in (ii). Now assume κ is augmentable
with augmentation transformation γ. Then by Lemma 2.3.12, γR = λ∗λ and the
naturalness of γ implies λ∗λ = γR ∈ Cent(R), as required. If moreover κ is an
involution, then γ = id, hence λ∗λ = 1, as in (iv). �

Remark 2.4.2. Assume the notation of part (ii) of the last proposition. That
λ∗λ ∈ R× does not imply λ is invertible, even when λ∗λ = 1; see Example 2.4.12.
In addition, λ∗λ commutes with im(∗). Indeed, for all x ∈ R:

λ∗λx∗ = λ∗x∗∗∗λ = (x∗ ∗ λ)∗λ = (λx)∗λ = x∗λ∗λ .

Therefore, if ∗ is surjective, then κ is augmentable, and further arguing would show
b is regular. This agrees with Proposition 2.3.13.

2.4.1. Case I.

Example 2.4.3. Let R be a ring, let ∗ be an anti-endomorphism of R and
define b as in Proposition 2.4.1. Then b is right regular (and hence right injective,
surjective and stable). It is left injective (resp. surjective) if and only if ∗ is, and by
Proposition 2.3.4, it is left stable (semi-stable) if and only ∗ is bijective (injective).
Therefore, we see that:

(1) (R0) 6=⇒ (L5) ∨ (L2)6 by taking R = F [x |x2 = 0] with F a field and
defining ∗ : R→ R by f(x)∗ = f(0).

(2) (R0) ∧ (L2) 6=⇒ (L5) (and in particular (R0) ∧ (L2) 6=⇒ (R1) ∨ (R3))
by taking R = FN = F × F × · · · with F a field and defining ∗ : R → R
by (x1, x2, . . . )∗ = (x2, x3, . . . ).

(3) (R0) ∧ (L1) 6=⇒ (L2) ∨ (L3) by taking R = Q(x) and defining ∗ : R→ R
by f(x)∗ = f(x2).

We set some general notation for the next examples: Let F be a field and let
T denote the ring of 2 × 2 upper triangular matrices over F . Define M and J to
be the ideals of T consisting of matrices of the forms [ ∗ ∗0 0 ] and [ 0 ∗

0 0 ], respectively.
Then it is easy to verify that:

EndT (M) ∼= EndT (J) ∼= EndT (M/J) ∼= F,

HomT (M,J) ∼= Hom(M/J,M) ∼= HomT (M/J, J) ∼= Hom(J,M/J) ∼= 0,
HomT (M,M/J) ∼= HomT (J,M) ∼= F,

where all isomorphisms are F -vector spaces isomorphisms or F -algebras isomor-
phisms (whichever appropriate). In particular, M , J , M/J are LE-modules (i.e.
modules with local endomorphism ring), henceMk⊕Jm⊕(M/J)n ∼=T M

k′⊕Jm′⊕
(M/J)n′ implies k = k′, m = m′ and n = n′. (This follows from the Krull-Schmidt
Theorem; see [80, §2.9]. Moreover, any f.g. right T -module is a sum of copies of
M , J and M/J .)

Example 2.4.4. (R2)∧(R3)∧(R4)∧(L2)∧(L3)∧(L4) 6=⇒ (R1)∨(L1): MakeK =
M/J into a double R-module by taking both �0 and �1 to be the standard right
action of T on K (this works since T/ annrK is commutative). Note that κ := idK
is an involution of K. Define b : M × M → M/J by b(m1,m2) = m1m2 + J .
Then b is a κ-symmetric bilinear form and it is easy to check that b is degen-
erate (i.e. neither right nor left injective) with ker Adrb = ker Ad`b = J . Since
HomT (M,J) = 0, b is semi-stable. It is now routine to verify that idM is a left

6 The sign “∨” denotes logical “or”.
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and right κ-asymmetry and that b is stable (use the fact End(MT ) ∼= F ; the corre-
sponding anti-endomorphism is idF ). The form b is surjective since for all i ∈ {0, 1},
dimF M

[i] = dimF HomT (M,M/J) = 1 and Ad`b, Adrb are non-zero F -linear maps.
Example 2.4.5. (R0) ∧ (L2) ∧ (L3) 6=⇒ (L1): Make K := M into a double

T -module by defining
m�0 t = tm and m�1 t = mt ∀m ∈M,x ∈ T ,

(this works since T/ ann`M ∼= F ), and let b : M×M → K be given by b(x, y) = xy.
It is easy to check that b is right but not left injective. In addition, K0 ∼= M/J ⊕
M/J and therefore, dimF M

[1] = dimF Hom(MT ,K0) = 2 dimF HomT (M,M/J) =
2. Dimension considerations now imply Adrb is bijective, hence b is right reg-
ular. Therefore, b is right stable and since EndT (M) ∼= F as F -algebras and
the corresponding anti-isomorphism ∗ is F -linear, ∗ must be idF . Thus, ∗ is bi-
jective, implying b is left stable (by Proposition 2.3.4). To finish, dimF M

[0] =
dimF HomT (M,M) = dimFF = 1, so since Ad`b 6= 0, b is left surjective. (Note that
K cannot have an anti-isomorphism for otherwise we would get a contradiction to
Corollary 2.3.7.)

Example 2.4.6. (R0) ∧ (L1) ∧ (L3) 6=⇒ (L2): Make K = M2(F ) × F into a
double T -module by defining:

(U, x)�0 A = (ATU, cx) and (U, x)�1 A = (UA, ax)
for all U ∈ M2(F ), x ∈ F and A = [ a b0 c ] ∈ T . Define b : M × M → K by
b(x, y) = (xTy, 0). It is straightforward to check that b is injective. Note that
K0 ∼= M⊕M⊕J , hence dimF M

[1] = dimF HomT (M,M⊕M⊕J) = 2, so dimension
constraints imply Adrb is bijective. The argument of the last example shows that
in this case b is also left stable. On the other hand, K1 ∼= M ⊕M ⊕M/J , hence
dimF M

[0] = dimF HomT (M,M ⊕M ⊕M/J) = 3, so Ad`b cannot be surjective,
implying b is not left surjective. (In this case K does not have an anti-isomorphism
κ since M [0] � M [1]; see Proposition 2.2.7. Alternatively, K cannot have an anti-
isomorphism since this would contradict Proposition 2.3.13.)

Example 2.4.7. (R1)∧(R3)∧(L2)∧(L3) 6=⇒ (R2)∨(L1): Make K = M × F
into a double T -module by defining:

(m,x)�0 t = (tm, ax) and (m,x)�1 t = (mt, cx)
for all m ∈ M , x ∈ F and t = [ a b0 c ] ∈ T . Define b : M ×M → K by b(x, y) =
(xy, 0). By restricting the range of b to be M × {0} ⊆ K, we get the bilinear
form of Example 2.4.5. Therefore, b is right injective, stable and left degenerate.
However,K0 ∼= M/J⊕M/J⊕M/J , hence dimF M

[0] = dimF HomT (M, (M/J)3) =
3, implying b is not right surjective. On the other hand, K1 ∼= M ⊕ J , hence
dimF M

[1] = dimF HomT (M,M ⊕ J) = 1, so b is left surjective (since Ad`b 6= 0).
It is possible (but tedious) to check that the previous examples, together

with Example 2.4.9 below, imply that in case K is not assumed to have an anti-
isomorphism (i.e. Case I), all the implications between subsets of the properties
(R1)-(R3) and (L1)-(L3) are explained by “(R1) and (R2) =⇒ (R3)” and its left
analogue.

2.4.2. Case III. (We preceded Case III to Case II since examples relevant to
the former are relevant to the latter but not vice versa.)

Example 2.4.8. (R1) ∧ (R3) ∧ (R4)-κ ∧ (L1) ∧ (L3) ∧ (L4)-κ−1 6=⇒ (R2) ∨
(L2): Make Z into a double Z-module by letting both �0 and �1 be the standard
action of Z on itself. Define b : Z×Z→ Z by b(x, y) = 2xy and let κ = idZ. Then b
is a κ-symmetric bilinear form over Z. The rest of the details are left to the reader.
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Example 2.4.9. (R1) ∧ (R4)-κ ∧ (L1) ∧ (L4)-κ−1 6=⇒ (R2) ∨ (R3) ∨ (L2)
∨ (L3): Consider Z as a double Z-module like in the previous example and define
b : Z2×Z2 → Z by b(x, y) = xT [ 1 0

0 2 ] y (the elements of Z2 are considered as column
vectors). Then b is injective and it has a unique right and left idZ-asymmetries
(given by idZ2). It is also easy to see b is not right nor left surjective.

We claim b is not right stable. To see this, identify EndZ(Z2) with M2(Z)
and let σ, σ′ ∈ M2(Z). Then b(σx, y) = b(x, σ′y) for all x, y ∈ Z2 if and only
if [ 1 0

0 2 ]σ′ = σT [ 1 0
0 2 ]. By letting σ =

[
a b
c d

]
and working in M2(Q), we see that

necessarily

σ′ =
[

1 0
0 2

]−1 [
a b
c d

]T[ 1 0
0 2

]
=
[

a 2c
b/2 d

]
.

Therefore, for σ = [ 0 1
0 0 ] there is no σ′ ∈ M2(Z) as above and thus b is not right

stable. The form b is also not left stable by Corollary 2.3.10.

Example 2.4.10. (R1) ∧ (R3) ∧ (L1) ∧ (L3) 6=⇒ (R2) ∨ (R4) ∨ (L2) ∨ (L4):
Let F be a field and let ±1 6= α ∈ F×. Make F 2 into a double F -module by letting
both �0 and �1 be the standard action of F on F 2. Then b : F × F → F 2 defined
by b(x, y) = (xy, αxy) is a bilinear form. It is easy to check that b is injective and
stable (the corresponding anti-isomorphism is idEnd(FF )). Dimension constraints
also imply b neither left nor right surjective. Define κ : F 2 → F 2 by (a, b)κ = (b, a).
Then κ is an involution of F 2 and we claim b has neither left nor right κ-involution.
Indeed, assume λ is a right κ-asymmetry and identify End(FF ) with F . Then
(α, 1) = b(1, 1)κ = b(1, λ) = (λ, λα) which is impossible if α 6= ±1. Similarly, b
has no left κ-asymmetry. Despite the former, b has right and left idF 2-asymmetries
(given by idF ).

Example 2.4.11. (R3) ∧ (R4)-κ ∧ (L3) ∧ (L4)-κ−1 6=⇒ (R1) ∨ (R2) ∨ (L1)
∨ (L2): With the notation of Example 2.4.4, K × K is a double T -module and
κ = idK×K is an an involution of K. Define b′ : M ×M → K ×K by b′(x, y) =
(b(x, y), 0). Then b′ satisfies (R3), (R4)-κ, (L3) and (L4) but not (R1), (R2), (L1)
or (L2). The details are left to the reader.

Example 2.4.12. (R0) 6=⇒ (L2) ∨ (L3) ∨ (L4): Let M be the free monoid
over {x0, x1, x2, . . . } subject to the relations:

x2k+1x2k = 1 = x2k+1x2k+2,

xn+2+2kx2k = x2kxn+2k, x2k+1xn+2k+3 = xn+2k+1x2k+1,

for all n, k ≥ 0. The map ∗ : M →M defined by sending the word xi1xi2 . . . xir to
xir+1 . . . xi2+1xi1+1 is a well defined anti-endomorphism of M satisfying:

(3) w∗∗x0 = x0w

for all w ∈ M . In addition, x∗0x0 = x1x0 = 1. Let F be a field and let R = FM
be the monoid algebra of M over F . Then ∗ extends to an anti-endomorphism of
M , satisfying (3) for all w ∈ R. Define b and K as in Proposition 2.4.1. Then
b is right regular. By taking λ = x0 in part (iv) of that proposition, we see that
K admits an involution κ, and x0 is a right κ-asymmetry of b. We claim b does
not have a left κ-asymmetry. Indeed, by Proposition 2.3.18, it is enough to verify
x2 = x∗∗0 6= x0. Since showing this involves a long and technical argument, we
leave it for the addendum. b cannot be left stable since this would contradict
Proposition 2.3.13, and b cannot be left surjective since this would imply b is left
regular (because b is already injective by Proposition 2.3.6(ii)), and hence has a left
κ-asymmetry.
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In order to show that the list of implications for Case III given in subsec-
tion 2.3.3 is complete, one also has to demonstrate the following non-implications,
and possibly more:

• (R2) ∧ (R3) ∧ (L2) ∧ (L3) 6=⇒ (R4)-κ (even when K has an involution),
• (R2) ∧ (R4)-κ ∧ (L2) ∧ (L4)-κ−1 6=⇒ (R3),
• (R3) ∧ (R4)-κ ∧ (L2) 6=⇒ (L4)-κ−1.

The problem with all these non-implications is that b has to be right or left sur-
jective. In addition, we could not produce an example of a bilinear form having a
unique right asymmetry with non-trivial kernel.

2.4.3. Case II.

Example 2.4.13. (R1), (R3), (R4)-κ, (L1), (L3) 6=⇒ (R2), (L2) or (L4)-κ−1:
Make Q into a double Z-module by letting �0 and �1 be the standard action of Z
on Q. Define κ : Q → Q by κ(q) = 2q and b : Z × Z → Q by b(x, y) = xy. The
details are left to the reader. (Note that κ is not augmentable, for otherwise this
would contradict Corollary 2.3.18; see Example 2.3.15(ii) for a direct verification of
this fact.)

Provided that all the missing non-implications for Case III are shown, the
following non-implications (and possibly more) are needed in order to show that
the list of implications for Case II given in subsection 2.3.3 is complete.

• (R1), (R3), (L2) and (L4)-κ−1 6=⇒ (R2), (R4)-κ, (L1) or (L3),
• (R1), (R4)-κ, (L1), (L3) 6=⇒ (R3),
• (R2), (R3), (R4)-κ, (L2) and (L3) 6=⇒ (R1), (L1) and (L4)-κ−1.

Note that κ cannot be augmentable in such examples.

2.4.4. Further Examples. The following examples demonstrate that there
exist:

(1) regular bilinear spaces (M, b,K) s.t. K has no anti-isomorphism,
(2) regular bilinear spaces (M, b,K) s.t. K has an augmentable anti-isomor-

phism, but no involution.
We also construct an example of a right regular bilinear form taking values in a
double R-module with an an anti-isomorphism which we believe (but still cannot
prove) to have no augmentable anti-isomorphisms.

Example 2.4.14. Let R be a ring and let ∗ be an anti-automorphism such that
∗2 is not an inner automorphism (e.g. take R to be commutative and let ∗ be an
automorphism of R such that ∗2 6= id). Define b and K as in Proposition 2.4.1.
Then b is regular, but K does not have an anti-isomorphism. Indeed, if K had an
anti-isomorphism κ, then the proof of Proposition 2.3.13 would imply ∗2 is inner,
which contradicts our assumptions. (This implies that having an anti-isomorphism
is quite rare in general.)

Example 2.4.15. Keeping the notation of the previous example, if we choose ∗
such that r∗∗λ = λr for some λ ∈ R with λ∗λ ∈ R× but λ cannot be taken to satisfy
λ∗λ = 1, then K admits an anti-isomorphism but no involution (Proposition 2.4.1).
If we take λ to be invertible, then ∗ is bijective, hence by Remark 2.4.2(ii), λ∗λ ∈
Cent(R) and it follows that κ is augmentable (Proposition 2.4.1(iii)).

Such an example can be constructed as follows: Let M denote the free monoid
over {xn}n∈Z. The group F = FreeAb 〈y, z〉 acts on M by y(xn) = xn+2 and
z(xn) = xn−2 for all n ∈ Z. We can thus form the semi-direct product S = M oF .
Namely, S consists of pairs (m, f) ∈ M × F and (m, f) · (m′, f ′) = (mf(m′), ff ′).
Identify xn with (xn, 1F ) ∈ S and y, z ∈ F with (1M , y), (1M , z) ∈ S. Then
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yxn = xn+2y and zxn = xn−2z for all n ∈ N. Define an anti-isomorphism ∗ : S → S
by x∗n = xn+1, y∗ = z and z∗ = y. Then ∗ is easily seen to satisfy

x∗∗n y = yxn, y∗∗y = yy, z∗∗y = yz,

hence ∗2 is an inner isomorphism of S. Let F be a field and let R = FS be the
monoid algebra of S over F . Then ∗ extends to R and x∗∗y = yx for all x ∈ R.

We claim there is no y′ ∈ R× with (y′)∗y′ = 1 such that x∗∗y′ = y′x for all
x ∈ R. Assume by contradiction such y′ exists. Then leading-term considerations
easily imply y′ = αytzs for some t, s ∈ Z and α ∈ F . Since x2y

′ = y′x0, t− s must
be 1. But then (y′)∗y′ = α2yt+szt+s 6= 1, since t+ s is odd. Therefore, ∗2 is inner,
but there is no λ ∈ R with λ∗λ = 1 such that x∗∗λ = λx for all x ∈ R.

Remark 2.4.16. The reader might wonder why we had to construct such a
complicated ring in the last example. The reason lies in the fact that although
∗2 must be inner, ∗ cannot be a composition of an inner automorphism with an
involution. (Indeed, a direct computation would show that if r∗ = xr]x−1 for some
involution ], then ∗2 is inner, but we can take λ = x(x−1)∗ which clearly satisfies
λ∗λ = 1.)

Example 2.4.17. Keeping the notation of the previous examples, if we can we
choose ∗ such that r∗∗λ = λr for some λ ∈ R with λ∗λ ∈ R×\Cent(R) and λ cannot
be chosen to satisfy λ∗λ ∈ R× ∩Cent(R), then K has an anti-isomorphism, but no
augmentable anti-isomorphism (Proposition 2.4.1). Note that ∗ cannot be surjective
(since λ∗λ commutes with im(∗)), hence λ cannot be invertible. We believe the
following construction satisfies the previous requirements, we were unable to prove
that λ cannot be chosen to satisfy λ∗λ ∈ R× ∩ Cent(R).

The construction is similar to Example 2.4.12, with a major difference — the
relation x1x0 = 1 and all relations following from it by applying ∗ are dropped and
replaced with relations making x1x0 into an invertible element. DefineM to be the
free monoid on {x0, x1, x2, . . . } ∪ {y0, y1, y2, . . . } subject to the relations:

x2n+1x2ny2n = y2nx2n+1x2n = x2n+1x2n+2y2n+1 = y2n+1x2n+1x2n+2 = 1,
xn+2+2kx2k = x2kxn+2k, x2k+1xn+2k+3 = xn+2k+1x2k+1,

yn+2+2kx2k = x2kyn+2k, x2k+1yn+2k+3 = yn+2k+1x2k+1,

for all n, k ≥ 0. Let ∗ be the unique anti-endomorphism sending xn to xn+1 and
yn to yn+1. Then ∗ extends to the monoid algebra R = FM (F is a field) and
r∗∗x0 = x0r for all r ∈ R. In addition, x∗0x0 = x1x0 ∈ R× (its inverse is y0). (Note
that R maps onto the ring constructed in Example 2.4.12 by sending all the y-s
to 1.) It is left to check that x∗0x0 /∈ Cent(R) (which should be technical by not
impossible) and that there is no λ ∈ R such that r∗∗λ = λr for all r ∈ R and
λ∗λ ∈ R× ∩ Cent(R). (We have no clue how to show the latter.)

2.5. Special Cases

In this section, we demonstrate how the results of section 2.3 can be improved
by adding extra assumptions on [0], [1],Ψ and Φ, e.g.:

(1) One or both of [0], [1] is exact. (The functors [0], [1] are only left-exact.)
(2) One or both of Ψ,Φ is injective.
(3) One or both of Ψ,Φ is bijective.

We will also explain what K and M should satisfy for these assumptions to hold.
Explicit examples are also presented. (Recall that Ψ (resp. Φ) was defined to be a
the natural transformation from idMod-R to [0][1] (resp. [1][0]) given by (ΨMf)x =
fx for all M ∈ Mod-R, x ∈M , f ∈M [0] (resp. (ΦMf)x = fx for all M ∈ Mod-R,
x ∈M , f ∈M [1]).)
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For the discussion to follow, K is a fixed double R-module. Recall that Ki

denotes K considered as an R-module via �i. We will make repeated use of Corol-
lary 2.2.5, which states that for any bilinear space (M, b,K), the following diagrams
commute:

(4) M

Ad`b
��

ΦM // M [1][0]

(Adrb)[0]{{
M [0]

M

Adrb
��

ΨM // M [0][1]

(Ad`b)
[1]{{

M [1]

In addition, we will freely use the fact that if A,B ∈ Mod-R, f : A → B and
i ∈ {0, 1}, then f is surjective (bijective) implies f [i] : B[i] → A[i] is injective
(bijective). (This holds since by definition [i] is the functor Hom( ,K1−i), which
is well-known to be left-exact.)

We begin with the following definition regarding the natural transformations
Ψ and Φ.

Definition 2.5.1. A module M ∈ Mod-R is called right (left) semi-reflexive if
ΨM (ΦM ) is injective and right (left) reflexive if ΨM (ΦM ) is bijective.7 We will say
M is semi-reflexive (reflexive) if it is both left and right semi-reflexive (reflexive).

Reflexive and semi-reflexive modules appear when considering injective and
regular bilinear forms.

Proposition 2.5.2. Let (M, b,K) be a bilinear space. Then:
(i) If b is right injective, then M is right semi-reflexive (i.e. ΨM is injective).
(ii) In b is right regular and left surjective, then M is right reflexive. (In

particular, if b is regular, then M is reflexive.)

Proof. This follows from (4). (In (ii), (Ad`b)[1] is injective since Ad`b is surjec-
tive.) �

In light of this proposition, if one is interested only in regular bilinear forms,
then it makes sense to assume Φ and Ψ are isomorphisms. However, if one is inter-
ested in right (but not necessarily left) regular forms, then one can only assume Ψ
is injective; requiring Ψ to be bijective will result in the exclusion of some examples,
as demonstrated in the following example.

Example 2.5.3. Let R be a ring and let ∗ be an anti-endomorphism. Define
K and b : R × R → K as in Proposition 2.4.1. Then b is right regular. Let us
compute ΨR and ΦR explicitly.

First, R[i] ∼= Ki and the isomorphism is given by [r 7→ k �1−i r] 7→ k. In
particular, R[1] ∼= K1 = RR and hence R[1][0] ∼= R[0] ∼= K0 where the isomorphism
is given by [[r 7→ r∗k] 7→ sk] 7→ s ∈ K0 (r, s, k ∈ R = K). Since ΦR(x) = [[r 7→
r∗k] 7→ x∗k], ΦR is just ∗ once identifying R[1][0] with K0. On the other hand,
R[0][1] ∼= HomR(K0,K0) ∼= EndR(K0) and, identifying both modules, ΨR is easily
seen to be the map sending x to [k 7→ kx] ∈ EndR(K0).

It is now easy to see that ΨR is always injective (as it must be, since b is right
regular), but ΦR is injective (surjective) if and only if ∗ is. If we take (R, ∗) to
be as in Example 2.4.3(i), then ΨR is not surjective and ΦR is not injective nor
surjective. In particular, R is right semi-reflexive and not left semi-reflexive.

Proposition 2.5.4. Let (M, b,K) be a bilinear space. Then:

7 Compare this with torsionless and reflexive modules in [58]: Let M ∈ Mod-R and consider
M∗ := Hom(MR, RR) as a left R-module by (r · f)m := r · (fm). Then there is a standard map
i : M → M∗∗ := Hom(RM∗,RR) given by (ix)f = fx (note M∗∗ is a right R-module). The
module M is called reflexive (resp. torsionless) if i is a bijection (resp. injection).
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(i) If M is right semi-reflexive and b is left surjective then b is right injective.
(ii) If M is right reflexive and b is left regular, then b is right regular.
(iii) If [1] is exact, M is right reflexive and b is left injective, then b is right

surjective.
(iv) If K has an anti-isomorphism, then M is right semi-reflexive (reflexive)

⇐⇒ M is left semi-reflexive (reflexive), and [1] is exact ⇐⇒ [0] is exact.
Proof. (i), (ii) and (iii) easily follow (4) where in (iii), the fact [1] is exact

implies that if Ad`b is injective, then (Ad`b)[1] is surjective.
(iv) If κ is an involution, then by Proposition 2.2.7, [0] ∼= [1], hence [0] is exact

if and only if [1] is exact. The first equivalence follows from Proposition 2.7.5(iii)
below, which says that there is a natural isomorphism δM : M [1][0] → M [0][1] such
that δM ◦ ΦM = ΨM . �

Corollary 2.5.5. Let (M, b,K) be a bilinear space. If [0] and [1] are exact,
M is reflexive and b is injective, then b is regular.

Reflexive and semi-reflexive modules also have the following nice properties:
Proposition 2.5.6. Let A,B ∈ Mod-R.
(i) The map f 7→ f [0] from Hom(A[1], B[1]) to Hom(B[1][0], A[1][0]) is injective.
(ii) Assume B is left semi-reflexive, then the map f 7→ f [1] from Hom(A,B)

to Hom(B[1], A[1]) is injective.
(iii) Assume A and B are left reflexive, then the map f 7→ f [1] from Hom(A,B)

to Hom(B[1], A[1]) is bijective.

Proof. (i) Let f ∈ Hom(A[1], B[1]) and assume f [0] = 0. Then f [0][1] = 0 =⇒
0 = Φ[1]

B ◦ f [0][1] ◦ΨA[1] = Φ[1]
B ◦ΨB[1] ◦ f = idB[1] ◦f = f .

(ii) Let f ∈ Hom(A,B) be such that f [1] = 0. Then f [1][0] = 0 =⇒ 0 =
f [1][0] ◦ ΦA = ΦB ◦ f . Since ΦB is injective, it follows that f = 0.

(iii) In view of (ii), we only need to prove that for any g ∈ Hom(B[1], A[1])
there is f ∈ Hom(A,B) such that f [1] = g. Indeed, let f = Φ−1

B ◦ g[0] ◦ ΦA. Then
(f [1] − g)[0] ◦ ΦA = f [1][0] ◦ ΦA − g[0] ◦ ΦA = ΨB ◦ f − ΨB ◦ f = 0. Since A is left
reflexive, this implies (f [1] − g)[0] = 0, so by (i), f [1] = g. �

Note that [i] = Hom( ,K1−i) is exact if and only if K1−i is injective. A
sufficient and necessary condition for Ψ (resp. Φ) to be injective (for all modules)
is that K1 (resp. K0) would be is a cogenerator. Recall that module U ∈ Mod-R
is called a cogenerator if it satisfies any of the following equivalent conditions (see
[58, Prp. 19.6]):

(a) For allA,B ∈ Mod-R and 0 6= f ∈ Hom(A,B), there exists g ∈ Hom(B,U)
such that g ◦ f 6= 0.

(b) Any right R-module embeds in Uα for some cardinal α.
(c) For every M ∈ Mod-R and x ∈M , there exists f ∈ Hom(M,U) such that

f(x) 6= 0.
Indeed, ΨM (resp. ΦM ) is injective if and only if for all x ∈ M , there is f ∈
Hom(M,K1) (resp. f ∈ Hom(M,K0)) s.t. f(x) 6= 0 and by condition (c), this holds
for all M ∈ Mod-R if and only if K1 (resp. K0) is a cogenerator. It is unreasonable
to ask for ΨM or ΦM to be bijective for all M ∈ Mod-R since Hom( ,Ki) takes
direct sums to products. However, this might hold for all modules satisfying some
finiteness condition, as will be demonstrated below.

We shall now apply our previous observations to quasi-Frobenius and pseudo-
Frobenius rings (abbrev. QF and PF respectively); such rings admit a very rich
supply of cogenerators and generators. A ring R is called right PF if it satisfies one
of the following equivalent conditions (see [58, Th. 19.25] or [54, Ch. 12]):
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(a) All faithful right R-modules are generators.
(b) RR is an injective cogenerator.
(c) R is semilocal (or semiperfect), right self injective and soc(RR) ⊆e RR.

A QF ring is an artinian right PF ring. This turns out to be equivalent to being
one-sided noetherian and one-sided self-injective (see [58, §15]). Examples of QF
rings include local artinian rings with simple socle and finite group rings over other
QF rings.

Example 2.5.7. Assume R is right PF and K1 is faithful. Then K1 is a
generator and hence a cogenerator (since RR, which is a summand of Kn

1 , is a
cogenerator). Thus, all right R-modules are right semi-reflexive and in particular,
(L2)=⇒(R1) (Proposition 2.5.4(i)).

Specializing the previous example further yields even sharper results.
Proposition 2.5.8. Let R be a PF ring with an anti-automorphism ∗ and let

K be the double R-module defined in Proposition 2.4.1. Assume M is a f.g. right
R-module. Then:

(i) M is reflexive.
(ii) The conditions (R1) and (L2) (resp. (L1) and (R2)) are equivalent for

any bilinear form b : M ×M → K. If M is faithful, then they are also
equivalent to (R5) (resp. (L5)).

If moreover R is QF, then:
(iii) The conditions (R0)-(R2),(L0)-(L2) are equivalent for any bilinear form

b : M × M → K. If M is faithful, then they are also equivalent to
(R3)-(R5),(R3)-(L5) (where (R4) and (L4) can be taken w.r.t. any anti-
isomorphism of K). (Compare with Proposition 2.1.5.)

Proof. (i) Note that K1 ∼= K0 ∼= RR, hence K1 and K0 are injective, and thus
[0] and [1] are exact. Moreover, the previous example implies all right R-modules
are semi-reflexive, so we only have to show ΨM and ΦM are onto.

It easy to see from Example 2.5.3 that RR is reflexive. SinceM is f.g. there is a
surjection Rn →M for some n, and since [0] and [1] are exact, we get the following
exact commutative diagram:

Rn // //

ΨRn
��

M //

ΨM
��

0

(Rn)[0][1] f // // M [0][1] // 0

Now, ΨRn is bijective (since Rn is right reflexive), hence f ◦ ΨRn is onto which
implies ΨM is onto. By symmetry, ΦM is also onto, so we are through.

(ii) (L2)=⇒(R1) was shown in the previous example. The converse follows from
(i) and Proposition 2.5.4(iii). If M is also faithful, then M is a generator, hence
Corollary 2.2.10 implies (R1)⇐⇒ (R5).

(iii) The first assertion follows from (ii) if we show that (L1)⇐⇒ (L2). As M
is artinian (since R is), it enough to prove length(M) = length(M [0]) (since then
Ad`b : M →M [0] is injective if and only if it is surjective). Indeed, by [58, Cr. 15.13],
X ∈ Mod-R is simple if and only ifX∗ := Hom(XR,RRR) ∈ R-Mod is simple. Since
RR is injective, this is easily seen to imply that length(X) = length(X∗) for any
X ∈ Mod-R of finite length (i.e. a f.g. X). Using K0 ∼= K1 ∼= RR, it is easy
to see that length(RX∗) = length(X [0]

R ) for all X ∈ Mod-R, so our claim follows
immediately.

If M is also faithful, then by (ii), (R5)=⇒(R1). As (R0) =⇒ (R3)∧(R4) =⇒
(R3)∨(R4) =⇒ (R5) (see section 2.3), we are through. �
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2.6. Orthogonal Sums

In this section we define orthogonal sums of bilinear spaces and explore their
relationship with the properties (R0)-(R5) and (L0)-(L5). At the end of the section,
we discuss several possible constructions of Witt and Witt-Grothendick Groups.
Throughout, K is a fixed double R-module.

Let (M1, b1,K) and (M2, b2,K) be two bilinear spaces. The orthogonal sum
(M1, b1,K) ⊥ (M2, b2,K) is defined to be (M1 ⊕M2, b1 ⊥ b2,K) where:

(b1 ⊥ b2)((x1, x2), (y1, y2)) = b1(x1, y1) ⊥ b2(x2, y2) .
It is straightforward to check that Adrb1⊥b2 = Adrb1⊕Adrb2 and Ad`b1⊥b2 = Ad`b1⊕Ad`b2
(once identifying (M1 ⊕M2)[i] with M [i]

1 ⊕M
[i]
2 ).

Proposition 2.6.1. Let M1, M2 be right R-modules and let (b,M1 ⊕M2,K)
be a bilinear space. Let bi = b|Mi×Mi (i = 1, 2). Then (bi,Mi,K) is a bilinear space
and b = b1 ⊥ b2 ⇐⇒ b(M1,M2) = b(M2,M1) = 0.

Proof. This is easy and left to the reader. �

Proposition 2.6.2. Let (M1, b2,K) and (M2, b2,K) be two bilinear spaces.
Then:

(i) b1 ⊥ b2 is right regular (injective, surjective) ⇐⇒ b1 and b2 are right
regular (injective, surjective).

(ii) b1 ⊥ b2 is right stable (semi-stable) =⇒ b1 and b2 is right stable (semi-
stable).

If in addition K has an anti-isomorphism κ, then:
(iii) If b1 ⊥ b2 has a unique right κ-asymmetry λ, then b1 and b2 has unique

right κ-asymmetries, namely λ|M1 , λ|M2 and λ = λ|M1 ⊕ λ|M2 . Con-
versely, if b1, b2 has right κ-asymmetries λ1, λ2, then λ1 ⊕ λ2 is a right
κ-asymmetry of b1 ⊥ b2 (but it need not be unique).

(iv) b1 ⊥ b2 is κ-symmetric ⇐⇒ b1 and b2 are κ-symmetric.

Proof. Throughout, let b = b1 ⊥ b2.
(i) This is follows from Adrb1⊥b2 = Adrb1 ⊕Adrb2 .
(ii) Assume b is right semi-stable and let σ ∈ End(M1) be such that b1(x, σy) =

0. Define τ = σ ⊕ 0 ∈ End(M1 ⊕M2). Then b((x1, x2), τ(y1, y2)) = b1(x1, σy1) +
b2(x2, 0) = 0, hence τ = 0 (because b is right semi-stable). Thus, σ = 0 and b1 is
right semi-stable.

Now assume b is right stable with corresponding anti-endomorphism ∗ and let
e = idM1 ⊕ 0 ∈ End(M1⊕M2). Then b(e(x1, x2), (y1, y2)) = b1(x1, y1) + b2(0, y2) =
b1(x1, y1) + b2(x2, 0) = b((x1, x2), e(y1, y2)), hence e∗ = e. Let σ ∈ End(M1) and
define τ as before. Observe that τ∗ = (eτe)∗ = e∗τ∗e∗ = eτ∗e, thus there is σ′ ∈
End(M1) such that τ∗ = σ′ ⊕ 0. We now get b1(σx1, y1) = b(τ(x1, x2), (y1, y2)) =
b((x1, x2), τ∗(y1, y2)) = b1(x1, σ

′y1), so b1 is right stable.
(iii) The second assertion is straightforward. To see the first assertion, note

that b1 and b2 are semi-stable by (ii) and Lemma 2.3.5. Write λ(x1, x2) = (λ11x1 +
λ12x2, λ21x1 + λ22x2) with λij ∈ Hom(Mj ,Mi). Then it is straightforward to see
(5) b1(x1, y1)κ + b2(x2, y2)κ = b1(y1, λ11x1 + λ12x2) + b2(y2, λ21x1 + λ22x2) .
By taking x1 and y2 to be zero, one gets 0 = b1(y1, λ12x2) = b((y1, y2), (λ12x2, 0)),
hence λ12 = 0 (because b is right semi-stable). Similarly, λ21 = 0, so λ = λ11⊕λ22.
Taking x2 = y2 = 0 in (5), we get b1(x1, y1)κ = b1(y1, λ11x1), hence λ11 is a right
κ-asymmetry of b1 and it unique since b1 is right semi-stable. As the same argument
applies to λ22 and b2, we are through.

(iv) This is straightforward. �
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In general, the orthogonal sum of two stable forms need neither be right nor
left semi-stable, even when one form is regular and even when both forms have
right and left κ-asymmetries. (However, the orthogonal sum of two injective forms
is always semi-stable because it is injective.) This is demonstrated in the following
examples.

Example 2.6.3. Consider Z as a double Z-module by letting �0 and �1 be
the standard right action of Z on itself. Define b1, b2 : Z× Z→ Z by b1(x, y) = xy
and b2(x, y) = 2xy. Then b1 is regular, b2 is injective and stable, and both forms
have right and left idZ-asymmetries. However, b1 ⊥ b2 is the bilinear form b of
Example 2.4.9, which is not stable (but it is semi-stable because it is injective).

Example 2.6.4. We use the general notation presented before Example 2.4.4.
Make K = T/J into a double T -module by letting �0 and �1 be the standard
right action of T on K (this works because T/J is a commutative ring) and define
b : T × T → K by b(x, y) = xy + J . Observe that idK is an involution and b
is idK-symmetric. Now, T = M ⊕ N where N is the right T -ideal consisting of
matrices of the form [ 0 0

0 ∗ ]. It is easy to check that b(M,N) = b(N,M) = 0, hence
b = b1 ⊥ b2 where b1 = b|M×M and b2 = b|N×N (by Proposition 2.6.1). We claim
b is not right nor-left semi-stable but b1 is stable and b2 is regular. Since b1 and
b2 have (necessarily unique) left and right idK-asymmetries, namely idM and idN ,
this implies b has left and right idK-asymmetries, but they are not unique.

That b not left nor right semi-stable follows from b([ 0 1
0 0 ]x, y) = b(x, [ 0 1

0 0 ] y) =
0 (for all x, y ∈ T ). That b1 is right stable is shown in the same manner as
in Example 2.4.4. (Observe that K1 = K0 ∼= M/J ⊕ J and Hom(M,J) = 0,
hence Hom(M,Ki) = Hom(M,M/J).) To see b2 is regular, note that dimF N

[i] =
dimF HomT (N,Ki) = dimF (J,M/J ⊕ J) = 1 = dimF N , hence Adrb2 and Ad`b2
must be bijective (for they are non-zero).

A sequence of bilinear spaces {(bi,Mi,K)}ti=1 will be called right joinable (semi-
joinable) if b1 ⊥ · · · ⊥ bt is right stable (semi-stable). (Note that this implies
b1, . . . , bt are right stable (semi-stable) by Proposition 2.6.2.) For example, the
forms b1, b2 of Example 2.6.3 are semi-joinable, but neither left nor right joinable.
The following proposition presents necessary and sufficient conditions for a set of
forms to be joinable or semi-joinable.

Proposition 2.6.5. Let {(bi,Mi,K)}ti=1 be bilinear spaces. Then
(i) b1 ⊥ · · · ⊥ bt is right semi-stable ⇐⇒ Hom(Mi, ker Adrbj ) = 0 for

all 1 ≤ i, j ≤ t ⇐⇒ for all σ ∈ Hom(Mi,Mj), there is at most one
σ′ ∈ Hom(Mj ,Mi) such that σ[1] ◦Adrbj = Adrbi ◦ σ

′.
(ii) b1 ⊥ · · · ⊥ bt is right stable ⇐⇒ for all σ ∈ Hom(Mi,Mj), there exists

unique σ′ ∈ Hom(Mj ,Mi) such that σ[1] ◦Adrbj = Adrbi ◦ σ
′.

Proof. For brevity, let M =
⊕t

i=1Mi, b = b1 ⊥ · · · ⊥ bt and hi = Adrbi .
We will write elements of End(M) as t× t matrices where the (i, j) coordinate lies
in Hom(Mj ,Mi). Similar notation will be used for Hom(M,M [1]) and End(M [1]).
Note that the equation σ[1] ◦Adrb = Adrb ◦σ′ (where σ, σ′ ∈ End(M)) now becomes:

(6)


σ

[1]
11 . . . σ

[1]
t1

...
. . .

...

σ
[1]
1t . . . σ

[1]
tt


 h1

. . .

ht

 =

 h1
. . .

ht


 σ′11 . . . σ′1t

...
. . .

...
σ′t1 . . . σ′tt


where σ = (σij) and σ′ = (σ′ij).

(i) The equivalence of the last two conditions is straightforward (compare with
the proof of Proposition 2.2.9). The equivalence of the first two conditions follows
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from the fact that Hom(M, ker Adrb) can be understood as:

Hom
(

t⊕
i=1

Mi,

t⊕
i=1

kerhi

)
=

 Hom(M1, kerh1) . . . Hom(Mt, kerh1)
...

. . .
...

Hom(M1, kerht) . . . Hom(Mt, kerht)

 .

(ii) Assume b is right stable and let τ ∈ Hom(Mi0 , kerMj0). Define σ = (σij) by
σij = 0 for all (i, j) 6= (j0, i0) and σj0i0 = τ . Then there exists σ′ = (σ′ij) ∈ End(M)
satisfying (6). This implies τ [1] ◦ hj0 = (σ[1])i0j0 ◦ hj0 = hi0 ◦ σ′i0j0 , so for all
τ ∈ Hom(Mi,Mj) there exists τ ′ ∈ Hom(Mj ,Mi) such that τ [1] ◦ hj = hi ◦ τ ′ and
τ ′ is unique by (i).

To see the converse, let σ = (σij) ∈ End(M). Then for all i, j there is σ′ij ∈
Hom(Mj ,Mi) such that σ[1]

ji ◦ hj = hi ◦ σ′ij . Let σ′ = (σ′ij) ∈ End(M). Then (6)
implies σ[1] ◦ Adrb = Adrb ◦ σ′. Since b is right semi-stable (by (i)), σ′ is the only
element of End(M) satisfying σ[1] ◦Adrb = Adrb ◦ σ′. Hence b is right stable. �

Corollary 2.6.6. Let {(bi,Mi,K)}ti=1 be a sequence of bilinear spaces. Write
{bi | 1 ≤ i ≤ t} = {b′1, . . . , b′s} (so {b′j}si=1 does not have multiplicities). Then
{bi}ti=1 are right joinable (semi-joinable) ⇐⇒ {b′j}si=1 are right joinable (semi-
joinable). In particular, a bilinear form b is right stable (semi-stable) ⇐⇒ the
form b ⊥ · · · ⊥ b is right stable (semi-stable).

Corollary 2.6.7. Let {(bi,Mi,K)}ti=1 be right stable (semi-table) bilinear
spaces. Then {bi}ti=1 are right joinable (semi-joinable) ⇐⇒ {b1, . . . , bt} are pair-
wise right joinable (semi-joinable).

Let (M1, b1,K) and (M2, b2,K) be two bilinear spaces. An isometry from b1
to b2 is an R-module isomorphism σ : M1 → M2 such that b2(σx, σy) = b1(x, y).
If there exists such an isometry, then b1 and b2 are called isometric and we write
b1 ∼= b2. This an equivalence relation and its equivalence classes are called isometry
classes. It is easy to see that each of the properties (R0)-(R5) and (L0)-(L5) is
preserved under isometry of forms.

We finish this section with a short discussion about possible constructions of
Witt and Witt-Grothendick groups using our notion of bilinear forms. As Witt and
Witt-Grothendick groups are out of the scope of this paper, we are satisfied with
presenting them over rings with involutions in which 2 is unit, referring the reader
to [86], [71] and also [6], [7] for an extensive discussion.

Let (R, ∗) be a ring with involution, let λ ∈ Cent(R) be such that λ∗λ = 1 and
let M be an additive full subcategory of Mod-R such that the isomorphism classes
of M form a set (e.g. finite projective modules). The Witt-Grothendick group of
R, ∗, λ and M , denoted Ŵ (λ,M ) consists of formal differences of isometry classes
of regular λ-hermitian forms h : M × M → R with M ∈ M . The addition in
Ŵ (λ,M ) is given by orthogonal sum (which is easily checked to be well-defined on
isometry classes), i.e.:

([h1]− [h2]) ⊥ ([h3]− [h4]) = [h1 ⊥ h3]− [h2 ⊥ h4]

(here h1, . . . , h4 are λ-hermitian forms, [hi] denotes the isometry class of hi and
the negative signs are formal differences). The Witt Group of R, ∗, λ and M , de-
notedW (λ,M ) is obtained modding out metabolic hermitian forms from Ŵ (λ,M ).
These are the hermitian forms h : M ×M → R such that there is a summand of
M , N , satisfying N = N⊥ := {x ∈ M |h(x,N) = 0}. (When R is a field, the
metabolic forms are hyperbolic forms. For general rings, metabolic forms are stably
hyperbolic; see [86, §7, Lm. 3.7].) Several texts have considered “non-symmetric”



2.7. CATEGORIES WITH A DOUBLE DUALITY 81

Witt-Grothendick/Witt groups which are obtained by replacing hermitian forms
with arbitrary regular (not-necessarily-symmetric) bilinear forms, e.g. [38].

The constructions of Ŵ (λ,M ) and W (λ,M ) can be carried out as is into our
situation by replacing “λ-hermitian” with “κ-symmetric”, where κ is an involution
of K. (This turns out to result in a Witt-Grothendick/Witt group of a hermitian
category, as the next section would imply.) However, several variations can be ob-
tained by weakening the regularity assumption the forms, namely, one can construct
Ŵ and W using isometry classes of injective or surjective forms. Furthermore, in
case of non-symmetric Witt-Grothendick/Witt groups, one can construct the group
from isometry classes of right regular or left regular forms (rather than two-sided
regular forms), thus obtaining left and right versions of the non-symmetric Witt-
Grothendick/Witt group. However, Examples 2.6.3 and 2.6.4 imply that one cannot
construct a Witt-Grothendick group from the isometry classes of stable or semi-
stable forms.

2.7. Categories with a Double Duality

In this section, we present categories with double a duality which are a cate-
gorical generalization of our previous bilinear forms. We explain how our definition
is connected to hermitian categories (or categories with duality; see [71], [86, Ch.
7], [7]), which generalize classical bilinear forms, and show that our new notion of
bilinear forms cannot be understood as a special case of a hermitian category.

As in section 2.1, let us first recall what are hermitian categories. Our descrip-
tion follows [7], which calls hermitian categories categories with duality. We shall
stick to that name henceforth. A category with duality is a triplet (A , ∗, ω) such
that A is a category, ∗ : A → A is a contravariant functor and ω : idA → ∗2 is a
natural transformation (which is usually assumed to be an isomorphism) satisfying
ω∗M ◦ ωM∗ = idM∗ for all M ∈ A . If A is additive or exact, then ∗ is assumed to
be additive or exact respectively. A bilinear form in (A , ∗, ω) is a pair (M, b) such
that M ∈ A and b ∈ HomA (M,M∗). Define b̃ = b∗ ◦ ωM ∈ HomA (M,M∗). Then
b and b̃ play the role of the right and left adjoint maps. The map b 7→ b̃ is easily
seen to be of order 2, hence b can be recovered from b̃. A bilinear form (M, b) will
be called symmetric if b = b̃ and (right) regular if b is an isomorphism.

When ω is assumed to be an isomorphism (which is the case in all texts seen
by the author), it is common to identify M with M∗∗ via ω. In particular, b̃ is
identified with b∗ ∈ HomA (M∗∗,M∗) and only the latter is used.

2.7.1. Definitions. Inspired by section 2.2, we define a category with a double
duality to be a quintet (A , [0], [1],Φ,Ψ) consisting of a category A equipped with
two contravariant functors [0], [1] : A → A and natural transformations Φ : idA →
[1][0] and Ψ : idA → [0][1] satisfying

idM [0] = Ψ[0]
M ◦ ΦM [0] and idM [1] = Φ[1]

M ◦ΨM [1]

for all M ∈ A . If A is additive, then we will require [0] and [1] to be additive.
(This implies Φ and Ψ respect the additivity of A . It is a general fact about
natural transformations between additive functors.) We do not require Φ and Ψ to
be isomorphisms. The reason for this will be explained below.

By Corollary 2.2.5, there is a natural isomorphism IA,B : Hom(B,A[1]) →
Hom(A,B[0]) given by IA,B(f) = f [0] ◦ ΦA. Note that IA,B also determines Φ and
Ψ by ΦA = IA,A[1](idA[1]) and ΨA = I−1

A[0],A
(idA[0]), so a category with a double

duality can also be defined as a quadruple (A , [0], [1], I) with A , [0], [1] as before
and IA,B : Hom(B,A[1])→ Hom(A,B[0]) being a natural isomorphism.
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Example 2.7.1. By Proposition 2.2.1, any ring R and a double R-module K
give rise to a category with a double duality structure on Mod-R. However, as
shown in Example 2.5.3, Ψ and Φ need not be isomorphisms, which explains why
we did not assume that in the definition.

A bilinear pairing in (A , [0], [1],Ψ,Φ) (or A , for brevity) is a triplet (A,B, b)
where A,B ∈ A and b ∈ HomA (B,A[1]). In this case, let b̃ denote IA,B(b) ∈
HomA (A,B[0]). (The maps b and b̃ play the role of the right and left adjoint maps
respectively.) A bilinear form in A is a pair (M, b) such that (M,M, b) is a bilinear
pairing.

If (M, b) and (M ′, b′) are two bilinear forms, then an isometry from (M, b) to
(M ′, b′) is an isomorphism σ ∈ Hom(M,M ′) satisfying σ[1] ◦ b′ ◦ σ = b. In this case
(M, b) and (M ′, b′) are called isometric.

A bilinear form (M, b) will be called:
(R0) right regular if b is an isomorphism;
(R1) right monic if b is monic;
(R2) right epic if b is epic;
(R3) right stable if for all σ ∈ EndA (M) there exists unique τ ∈ EndA (M)

such that σ[1] ◦ b = b ◦ τ (or equivalently, b̃ ◦σ = τ [0] ◦ b̃ ; see the diagrams
in Proposition 2.2.6);

(R5) right semi-stable if for all σ, τ ∈ EndA (M), b ◦ σ = b ◦ τ implies σ = τ .

The left analogues of (R0)-(R2) and (R5) are defined by replacing b with b̃, and the
left analogue of (R3) is defined by replacing σ and τ .

Now let u : [0] → [1] be an isomorphism of functors. A right u-asymmetry
of a bilinear form (M, b) is a map λ ∈ EndA (M) such that uM ◦ b̃ = b ◦ λ (see
Proposition 2.2.8 for explanation). We can now consider the following property:

(R4) The bilinear form (M, b) has a unique right u-asymmetry.
Left asymmetries are defined with respect to an isomorphism u′ : [1] → [0]; a left
u′-asymmetry is a map λ ∈ EndA (M) such that u′M ◦ b = b̃ ◦ λ. Again, the inverse
of an invertible right u-asymmetry is a left u−1-asymmetry. A bilinear form (M, b)
will be called u-symmetric if b = u ◦ b̃.

So far, it is clear from section 2.2 that our new definition of bilinear forms agrees
with that of section 2.1 (if A is induced by a ring R and a double R-module K).
However, not all results of sections 2.3 and 2.5 hold for bilinear forms in categories
with a double duality, the reason being that maps that are monic and epic in A
need not be invertible.

It is now left to explain what are the categorical analogues of an involutions and
augmentable anti-isomorphisms. Rather than spelling out the definitions, which are
simple yet not intuitive at all, we first explain what stands behind them, collecting
some useful facts along the way. This will be done in the following two subsections.

2.7.2. Involutions. Let us restrict for a moment to the case where A arises
from a ring R and a double R-module K. By Proposition 2.2.7, any isomorphism
u : [0] → [1] corresponds to an anti-isomorphism κ of K. Since κ−1 is also an
anti-isomorphism of K, we can define ũ = uκ−1 : [0] → [1], which functions a an
alternative “inverse” of u. However, Proposition 2.2.7 does not tell us how to get ũ
from u by purely categorical means and this is what we shall now tend to.

With κ as before, let b : A × B → K be a bilinear paring. Then the map
bκ : B × A → K defined by bκ(y, x) = b(x, y) is also a bilinear pairing. Let
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BilK(A,B) denote the set of bilinear pairings b : A × B → K. Then by Corol-
lary 2.2.5, BilK(A,B) is in one-to-one correspondence with HomR(A,B[0]). There-
fore, the map b 7→ bκ : BilK(A,B) → BilK(B,A) gives rise to a map vκ,A,B :
Hom(A,B[0]) → Hom(B,A[0]) and a direct computation shows that vκ,A,B =
IB,A◦(uκ,B)∗ where (uκ,B)∗f = uκ,B◦f .8 Namely, the following diagram commutes:

Hom(A,B[0])
(uκ,B)∗//

vκ,A,B ''

Hom(A,B[1])

IB,A

��
Hom(B,A[0])

In the same manner, v−1
κ,A,B = vκ−1,B,A = IA,B ◦ uκ−1,A, so we can extend the

previous diagram as following:

(7) Hom(A,B[0])
(uκ,B)∗ //

vκ,A,B

**

Hom(A,B[1])

IB,A

��
Hom(B,A[1])

IA,B

OO

Hom(B,A[0])
(uκ−1,A)∗

oo

Let us now move back to arbitrary categories. Diagram (7) suggests that if an
isomorphism u : [0]→ [1] admits an “inverse” ũ, then the following diagram should
commute:

(8) HomA (A,B[0])
(uB)∗ // HomA (A,B[1])

IB,A

��
HomA (B,A[1])

IA,B

OO

HomA (B,A[0])
(ũA)∗
oo

Therefore, we need to find an isomorphism ũ : [0]→ [1] such that

(9) (ũA)∗ = I−1
A,B ◦ (uB)−1

∗ ◦ I−1
B,A : Hom(B,A[0])→ Hom(B,A[1])

(or less formally, I ◦ ũ∗ = (I ◦u∗)−1). It is therefore natural to ask whether ũ can be
determined from ũ∗. It turns out that the answer is yes and moreover, any natural
transformation fA,B : Hom(A,B[0]) → Hom(A,B[1]) is of the form (u0)∗ for some
u0 : [0]→ [1]. This is verified in the following proposition.

Proposition 2.7.2. Let A and B be categories and let F,G : B → A be two
contravariant functors. Then there is a one-to-one correspondence between natural
transformations u : F → G and natural transformations fA,B : HomA (A,FB) →
HomA (A,GB) given by u 7→ u∗ and f 7→ uf where (uf )A = fFA,A(idFA). In
addition, u is an isomorphism if and only if u∗ is.9

8 Other texts use Hom(A, uκ,B) to denote (uκ,B)∗. We chose the latter for brevity.
9 By saying fA,B is natural, we mean that for all A,A′ ∈ A , B,B′ ∈ B, α ∈ HomA (A,A′)

and β ∈ HomB(B,B′) the following diagram commutes:

Hom(A,FB)
fA,B // Hom(A,GB)

Hom(A′, FB′)

Fβ◦ ◦α

OO

fA′,B′ // Hom(A′, GB′)

Gβ◦ ◦α

OO
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Proof. It is straightforward to check that u∗ is a natural transformation (the
fact that u is natural is needed) and that uu∗ = u.

Let f be a natural transformation as above and let u = uf . We first claim
that f = u∗. Let A ∈ A , B ∈ B and let ψ ∈ HomA (A,FB). Then the following
diagram commutes since f is natural:

Hom(A,FB)
fA,B // Hom(A,GB)

Hom(FB,FB)

◦ψ

OO

fFB,B // Hom(FB,GB)

◦ψ

OO

Therefore, fA,Bψ = fA,B(idFB ◦ψ) = fFB,B(idFB) ◦ ψ = uB ◦ ψ, which implies
fA,B = (uB)∗. It is left to verify that u is natural. Let A ∈ A , B ∈ B and
ψ ∈ HomA (A,B). Then the following diagram commutes:

Hom(FB,FA)
fFB,A // Hom(FB,GA)

Hom(FB,FB)

Fψ◦

OO

fFB,B // Hom(FB,GB)

Gψ◦

OO

Since f = u∗, we get uA ◦Fψ = fFB,A(Fψ ◦ idFB) = Gψ ◦ (fFB,B idFB) = Gψ ◦ uB ,
as required.

If u is an isomorphism, then it is easy to see that so is u∗. If u∗ is an iso-
morphism, then define fA,B : HomA (A,GB) → HomA (A,FB) to be the inverse
of u∗. By what we have just shown, uf : G → F is a functor morphism. Observe
that (u ◦ uf )∗ = (idG)∗, hence the correspondence implies u ◦ uf = idG. Similarly,
uf ◦ u = idF , hence u is an isomorphism. �

Remark 2.7.3. The last proposition slightly resembles Yoneda’s Lemma (see
[42, Th. 5.34]) and also Theorems 3.2 and 3.2* in [53] (described below). However,
it seems that it cannot be rendered to either of them and moreover, Theorems 3.2
and 3.2* in [53] can be easily proved using it.

With Proposition 2.7.2 and (9) in mind, for any isomorphism u : [0]→ [1] and
A ∈ A , we define:

(10) ũA = (I−1
A,A[0] ◦ (uA[0])−1

∗ ◦ I−1
A[0],A

)(idA[0]) ∈ Hom(A[0], A[1]) .

Then ũ : [0]→ [1] is a functor isomorphism and by the definition of IA,B :

ũA = (I−1
A,A[0] ◦ (uA[0])−1

∗ ◦ I−1
A[0],A

)(idA[0])(11)

= (I−1
A,A[0] ◦ (uA[0])−1

∗ )(ΨA) = I−1
A,A[0](u−1

A[0] ◦ΨA)

= (u−1
A[0] ◦ΨA)[1] ◦ΨA[0] = Ψ[1]

A ◦ (u[1]
A[0])−1 ◦ΨA[0]

This leads to the following definition:

Definition 2.7.4. For any natural isomorphism u : [0] → [1], let ũ : [0] → [1]
be the natural isomorphism defined by ũA = Ψ[1]

A ◦ (u[1]
A[0])−1 ◦ΨA[0] . The map u will

be called an involution (of (A , [0], [1],Φ,Ψ)) if u = ũ.

Note that we know from (9) and Proposition 2.7.2 that ũ is an isomorphism,
but this is not obvious from our definition (since Ψ is not an isomorphism).

Proposition 2.7.5. In the previous notation, ũ has the following properties:
(i) ˜̃u = u and ũ−1

A = Φ[0]
A ◦ u

[0]
A[1] ◦ ΦA[1] for all A ∈ A .
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(ii) For any bilinear pairing (A,B, b), ũA ◦ ũB ◦ b̃ = b. Moreover, u is an

involution ⇐⇒ uA ◦ ũB ◦ b̃ = b for any bilinear pairing ⇐⇒ for all
A,B ∈ A , (uA)∗ ◦ IB,A ◦ (uB)∗ ◦ IA,B = idHom(B,A[0]) (or less formally,
(u∗ ◦ I)2 = id).

(iii) Define δ : [1][0] → [0][1] by δM = ũM [0] ◦ u[0]
M . Then δM is a natural

isomorphism satisfying Ψ = δ ◦ Φ and δM = u
[1]
M ◦ ũM [1] . (By symmetry,

the natural transformation δ̃M = uM [0] ◦ ũ[0]
M also satisfies these identities,

but δ 6= δ̃ in general.)
(iv) If A arises from a ring R and a double R-module K and u = uκ for some

anti-isomorphism κ of K, then ũ = uκ−1 . In particular, κ is an involution
if and only if uκ = ũκ.

Proof. (i) That ˜̃u∗ = u∗ is straightforward from (9), hence by Proposi-
tion 2.7.2, ˜̃u = u. To see the second equality, note that by diagram (8), (ũ−1

A )∗ =
(ũA)−1

∗ = IB,A ◦ (uB)∗ ◦ IA,B . By Proposition 2.7.2,

u−1
A = (IA[1],A ◦ (uA[1])∗ ◦ IA,A[1])(idA[1]) ,

and a computation similar to (11) would show ũ−1
A = Φ[0]

A ◦ u
[0]
A[1] ◦ ΦA[1] .

(ii) Observe that ũA ◦ ũB ◦ b̃ = ((ũA)∗ ◦ IB,A ◦ (uB)∗ ◦ IA,B)(b) and the right
hand side is b by (8). To see the second assertion, observe that the computation

we just carried out implies uA ◦ ũB ◦ b̃ = b for any b ∈ HomA (B,A[0]) if and
only if (uA)∗ ◦ IB,A ◦ (uB)∗ ◦ IA,B = idHom(B,A[0]). The latter is equivalent to the
commutativity of (8) when replacing ũA with uA. Since (ũA)∗ is the only map
making the diagram commutative, it follows that (ũA)∗ = (uA)∗ for all A ∈ A , so
by Proposition 2.7.2, ũ = u and u is an involution. The oppositive implications are
obvious. (The courageous reader is welcome to try verifying (i) and (ii) with direct
computation. Beware: this is trickier than (iii) below).

(iii) Let M ∈ A . Observe that the following diagram commutes:

M
ΨM //

ΦM
��

M [0][1]

Φ[0][1]
M��

M [1][1]u
[1]
Moo

Φ[1][1]
M��

M [1][0]
Ψ
M[1][0] //

u
[0]
M��

M [1][0][0][1]

u
[0][0][1]
M��

M [1][0][1][1]
u

[1]
M[1][0]oo

u
[0][1][1]
M��

Ψ[1]
M[1] // M [1][1]

u
[1]
M��

M [0][0]
Ψ
M[0][0] // M [0][0][0][1] M [0][0][1][1]

u
[1]
M[0][0]oo

Ψ[1]
M[0] // M [0][1]

(The squares commute because Ψ : id → [0][1], u[1] : [1][1] → [0][1] and
Ψ[1] : [0][1][1] → [1] are natural transformations. The top right triangle follows
from Proposition 2.2.1). By moving along the border of the diagram from the top
left object to the bottom right object, we see that

Ψ[1]
M [0] ◦ (u[1]

M [0][0])−1 ◦ΨM [0][0] ◦ u[0]
M ◦ ΦM = u

[1]
M ◦ idM [1][1] ◦(u[1]

M )−1 ◦ΨM = ΨM .

However, by definition, the left hand side is δM ◦ ΦM , hence Ψ = δ ◦ Φ. That
ũM [0] ◦ u[0]

M = u
[1]
M ◦ ũM [1] follows by moving along the diagram from M [1][0] to the

bottom left object along the second and third rows.
(iv) By (7), (uκ−1)∗ = (ũ)∗, hence uκ−1 = ũ by Proposition 2.7.2. Therefore,

uκ is an involution ⇐⇒ uκ = uκ−1 ⇐⇒ κ = κ−1 (by Proposition 2.2.7). �
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2.7.3. Augmentation. We will now define augmentable natural isomorphisms
u : [0]→ [1] using the ideas of the previous subsection. (The categorical definition
of an augmentation map for a given bilinear form will be given a the end of this
subsection). As with involutions, we first present the intuition behind the defini-
tion, so assume R is a ring, K is a double R-module, κ is an anti-isomorphism
and γ : idMod-R → idMod-R is natural transformation. Set u = uκ and observe
that for any bilinear pairing b : A × B → K and γ ∈ EndR(B), the identity
b(x, y)κκ = b(x, γBy) is equivalent to (IA,B ◦ (uA)∗ ◦ IB,A ◦ (uB)∗)(Ad`b) = γ

[0]
B ◦Ad`b

(this is a straightforward computation). Therefore, that γ is an augmentation for
κ is equivalent to IA,B ◦ (uA)∗ ◦ IB,A ◦ (uB)∗ = (γ[0]

B )∗. The latter is illustrated in
the following commutative diagram:

Hom(A,B[0])
(uB)∗ //

(γ[0]
B

)∗
��

Hom(A,B[1])
IB,A // Hom(B,A[0])

(uA)∗
��

Hom(A,B[0]) Hom(B,A[1])
IA,B

oo

Now let (A , [0], [1],Φ,Ψ) be any category with a double duality and let
u : [0] → [1] be an isomorphism of functors. Then by Proposition 2.7.2, there ex-
ists a unique natural transformation γ̂ = γ̂(u) : [0]→ [0] such that (γ̂B)∗ = IA,B ◦
(uA)∗◦IB,A◦(uB)∗ for all A,B ∈ A . In fact, by (9), IA,B ◦(u∗)B,A◦IB,A = (ũ−1

B )∗.
Hence

γ̂(u) = ũ−1 ◦ u

(since (γ̂B)∗ = (ũ−1
B )∗ ◦ (uB)∗ = (ũ−1

B ◦ uB)∗). More explicitly, we have:

γ̂A = (IA[0],A ◦ (uA[0])∗ ◦ IA,A[0] ◦ (uA)∗)(idA[0])
= (uA[0] ◦ ((uA ◦ idA[0])[0] ◦ ΦA))[0] ◦ ΦA[0]

= (uA[0] ◦ u[0]
A ◦ ΦA)[0] ◦ ΦA[0]

= Φ[0]
A ◦ u

[0][0]
A ◦ u[0]

A[0] ◦ ΦA[0] .

We say that u is augmentable if there exists a natural transformation γ : idA → idA

such that ũ−1◦u = γ̂ = γ[0]. Such a γ will be called an augmentation transformation
for u.

Given a bilinear form (M, b), a map γ0 ∈ EndA (M) will be called an augmen-
tation map for b (w.r.t. u) if γ[0]

0 = γ̂(u)M .

Proposition 2.7.6. In the previous assumptions, if A contains a generator
X such that the map [0] : EndA (X)→ EndA (X [0]) is injective (we can replace [0]
with [1] here since [0] ∼= [1]), then u has at most one augmentation transformation.

Proof. Assume β, γ : idA → idA are augmentations. Then β[0] = γ[0] = γ̂.
In particular, β[0]

X = γ
[0]
X , hence our assumptions imply βX = γX . Now, that X is

a generator is well known to imply β = γ. Indeed, if A ∈ A is any other object
and βA 6= γA, then there exists α : X → A such that βA ◦ α 6= γA ◦ α. But
βA ◦ α = α ◦ βX = α ◦ γX = γA ◦ α, a contradiction. �

We finish this subsection by showing that under certain assumptions, all functor
isomorphisms u : [0] → [1] are augmentable. Following section 2.5, call an object
A ∈ A , right (left) semi-reflexive if ΨA (ΦA) is monic and right (left) reflexive if
ΨA (ΦA) is bijective.
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Proposition 2.7.7. Assume all objects in A are right reflexive. Then any
natural isomorphism u : [0]→ [1] is augmentable and admits a unique augmentation
transformation.10

Proof. We shall make use of Proposition 2.5.6 whose proof can be easily
generalized to arbitrary categories with duality. Let u : [0] → [1] be a natural
isomorphism and let γ̂ = γ̂(u) : [0] → [0] be as above. Since all objects in A are
right reflexive, the map f 7→ f [0] from EndA (A) to EndA (A[0]) is invertible for all
A ∈ A . Thus, for all A ∈ A , there is unique γA ∈ EndA (A) such that γ[0]

A = γ̂A.
We are done if we prove that γ is natural. Indeed, let A,B ∈ A and f ∈ HomA .
Then (γB ◦ f)[0] = f [0] ◦ γ̂B = γ̂A ◦ f [0] = (f ◦ γA)[0], so Proposition 2.5.6 implies
γB ◦ f = f ◦ γA. �

2.7.4. The Connection to Categories with Duality. It is clear that a
triplet (A , ∗, ω) is a category with duality if and only if (A , ∗, ∗, ω, ω) is a category
with a double duality. Given a category with a double duality (A , [0], [1],Φ,Ψ)
and an involution u : [0] → [1], it turns out that there is a natural transformation
ωu : idA → [0][0] such that (A , [0], ωu) is a category with duality. This and much
more is verified in the following theorem:

Theorem 2.7.8. Let (A , [0], [1],Φ,Ψ) be a category with a double duality. Then
there is a one-to-one correspondence between involutions u : [0] → [1] and natural
transformations ω : idA → [0][0] for which (A , [0], ω) is a category with duality.
Moreover, if u is such an involution corresponding to ω : idA → [0][0], then there is
a natural one-to-one correspondence between bilinear forms in (A , [0], [1],Φ,Ψ) and
bilinear forms in (A , [0], ω) that sends u-symmetric forms to symmetric forms.11

Before proving the theorem, we give an explicit example of this correspondence:

Example 2.7.9. Let R be a ring, let K be a double R-module and define [0]
and [1] as in section 2.1. By Propositions 2.2.7 and 2.7.5(iv), there is a one to one
correspondence between involutions of K and involutions u : [0]→ [1].

Let κ be an involution of K. For all M ∈ Mod-R, define ωM : M → M [0][0]

by (ωMx)f = (fx)κ where x ∈M , f ∈M [0]. Keeping this convention for x and f ,
observe that ωMx ∈M [0][0] since

(ωx)(f · r) = ((f · r)x)κ = ((fx)�0 r)κ = (fx)κ �1 r = ((ωx)f)�1 r

and ωM is R-linear since

(ω(x · r))f = (f(x · r))κ = ((fx)�1 r)κ = (fx)κ �0 r = ((ωx)f)�0 r = ((ωx) · r)f .

In addition:

((ω[0]
M ◦ωM [0])f)x = (ω[0]

M (ωM [0]f))x = (ωM [0]f)(ωMx) = ((ωMx)f)κ = (fx)κκ = fx,

hence ω[0]
M ◦ ωM [0] = idM [0] . Therefore, (Mod-R, [0], ω) is a category with duality

and it can be checked that correspondence in Theorem 2.7.8 sends uκ to ω just
defined.

We first prove the following lemma.

10 Note that if there exists a functor isomorphism u : [0] → [1], then being right reflexive
is equivalent to being left reflexive by Proposition 2.7.5(iii). Thus, the assumptions on A are
effectively left-right symmetric.

11 It is possible to define isomorphisms of categories with a double duality (see the next
section) and then show that (A , [0], [1],Φ,Ψ) is isomorphic to (A , [0], [0], ω, ω). As this is not
needed for the chapter, we leave it to the reader to verify.
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Lemma 2.7.10. Let A be a category and let ∗ : A → A be a contravariant
functor. The there is a one-to-one correspondence between natural transformations
ω : idA → ∗∗ and natural transformations vA,B : Hom(A,B∗)→ Hom(B,A∗). The
correspondence is given by ω 7→ vω where vω is defined by vω,A,B(f) = f∗ ◦ ωB
for f ∈ Hom(A,B∗) and v 7→ ωv where ωv,A := vA∗,A(idA∗). In addition, if ω
corresponds to v, then ω∗A ◦ωA∗ = idA∗ for all A ∈ A if and only if vA,B ◦vB,A = id
for all A,B ∈ A .

Proof. We leave it to the reader to check that vω and ωv are indeed natural.
Given ω as above, ωvω,A = vω,A∗,A(idA∗) = idA∗∗ ◦ωA = ωA for all A ∈ A , hence
ωvω = ω. In addition, for any v as above and f ∈ Hom(A,B∗), the following
diagram commutes (since v is natural):

Hom(B∗, B∗)
vB∗,B //

◦f
��

Hom(B,B∗∗)

f∗◦
��

Hom(A,B∗)
vA,B // Hom(B,A∗)

Therefore, vωv,A,B(f) = f∗ ◦ ωv,B = f∗ ◦ vB∗,B(idB∗) = vA,B(idB∗ ◦f) = vA,B(f),
hence vωv = v.

To finish, if ω corresponds to v, then for all A,B ∈ A and f ∈ Hom(B,A∗),
vA,B(vB,Af) = vA,B(f∗◦ωA) = (f∗◦ωA)∗◦ωB = ω∗A◦f∗∗◦ωB = ω∗A◦ωA∗ ◦f (in the
last equality we used the fact ω is natural). Noting that we can take B = A∗ and
f = idA∗ , it follows that ω∗A◦ωA∗ = idA∗ for all A ∈ A if and only if vA,B◦vB,A = id
for all A,B ∈ A . �

Proof of Theorem 2.7.8. The natural transformations v : Hom(A,B[0])→
Hom(B,A[0]) satisfying vA,B ◦ vB,A = id are in one-to-one correspondence with
natural transformations f : Hom(A,B[0]) → Hom(A,B[1]) for which IA,B ◦ fB,A ◦
IB,A ◦fA,B = id. Indeed, let v correspond to f if and only vA,B = IB,A ◦fA,B . The
correspondence is then obvious from the following diagram:

Hom(A,B[0])
fA,B //
vA,B

$$

Hom(A,B[1])

IB,A

��
Hom(B,A[1])

IA,B

OO

Hom(B,A[0])
fB,A

oo
vB,A

dd

By Lemma 2.7.10, the v-s are in one-to-one correspondence with natural trans-
formations ω : idA → [0][0] for which (A , [0], ω) is a category with duality, and
by Propositions 2.7.2 and 2.7.5(ii), the f -s are in one-to-one correspondence with
involutions u : [0] → [1]. Therefore, there is a one-to-one correspondence between
natural transformations ω : idA → [0][0] for which (A , [0], ω) is a category with
duality and involutions u : [0]→ [1].

Now let u correspond to ω. We will represent bilinear forms in (A , [0], [1],Φ,Ψ)
and (A , [0], ω) by their left adjoint (rather than their right adjoint), i.e. as a pair
(M, b̃) with M ∈ A and b̃ ∈ HomA (M,M [0]). By mapping each form to itself, we
get a natural one-to-one correspondence between bilinear forms in (A , [0], [1],Φ,Ψ)
and in (A , [0], ω). In addition, a form (M, b̃) is u-symmetric in (A , [0], [1],Φ,Ψ)
⇐⇒ b = uM ◦ b̃ where b = I−1

M,M (̃b) ⇐⇒ b̃ = (IM,M ◦(uM )∗)(̃b) ⇐⇒ b̃ = vM,M (̃b)
where vA,B = IB,A ◦ (uB)∗ ⇐⇒ b̃ = (̃b)[0] ◦ ωM (since v = vω, by the construction
of the correspondence) ⇐⇒ b̃ is symmetric in (A , [0], ω). �
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Tracking along the proof, one can see that if u : [0]→ [1] is an involution, then
its corresponding ω : idA → [0][0] is given by simple formula:

ωA = (IA,A[0] ◦ (uA)∗)(idA[0]) = IA,A[0](uA) = u
[0]
A ◦ ΦA

and u can be recovered from ω by:

uA = (I−1
A,A[0] ◦ vω,A,A[0])(idA[0]) = I−1

A,A[0](id
[0]
A[0] ◦ωA) = ω

[1]
A ◦ΨA[0] .

(However, it is not clear from the formulas that u is an involution if and only if
ω

[0]
A ◦ ωA[0] = idA[0] for all A ∈ A .)

Remark 2.7.11. We can now see that in a certain sense our definition of bi-
linear forms from section 2.1 cannot be explained as a special case of a category
with duality. Indeed, there are rings R with a double R-module K admitting no
involution (e.g. Example 2.4.14 and the examples following it), hence by Proposi-
tions 2.2.7 and 2.7.5(iv), there is no involution u : [0]→ [1]. But then Theorem 2.7.8
implies that there is no ω : idMod-R → [0][0] for which (Mod-R, [0], ω) is a category
with duality, and hence (Mod-R, [0], [1],Φ,Ψ) cannot be equivalent to a category
with a double duality coming from a category with duality (i.e. a c.w.d.d. of the
form (A , ∗, ∗, ω, ω)).

2.7.5. Further Remarks. Categories with a double duality can be general-
ized even more, if one is only interested in bilinear pairings and not in bilinear
forms. Define a pairing context as a sextet C = (A ,B, [0], [1],Φ,Ψ) such that A
and B are categories, [0] : B → A and [1] : A → B are contravariant func-
tors, and Φ : idA → [1][0], Ψ : idB → [0][1] are natural transformations satisfying
Ψ[0]
B ◦ ΦB[0] = idB[0] and Φ[1]

A ◦ ΨA[1] = idA[1] for all A ∈ A and B ∈ B. As be-
fore, this induces a natural isomorphism IA,B : HomB(B,A[1]) → HomA (A,B[0])
(A ∈ A , B ∈ B) given by IA,B(b) = b[0] ◦ΦA, and Φ, Ψ can be recovered from I as
described above. A bilinear pairing in C is a triplet (A,B, b) with A ∈ A , B ∈ B
and b ∈ HomB(B,A[1]). However, one cannot define bilinear forms without some
identification of objects in A with objects in B.

2.8. The Transfer Principle

The transfer principle of categories with duality says that, roughly speaking,
every category with duality is “locally” the category of λ-hermitian forms over some
ring with involution. This allows to transfer the theory of arbitrary categories with
duality to the theory of hermitian forms; see [86, Ch. 7, §4] or [71] for details. In
this section we extend this result to categories with a double duality. That is, we
prove that every object in an additive category with a double duality is contained in
an additive full subcategory that is isomorphic (as categories with a double duality)
to a full subcategory of a category with duality obtained from some ring R and a
double R-module K. Our new transfer principle also benefits the theory categories
with duality as it allows transfer in situations that were not applicable before.

We begin with defining morphisms of categories with a double duality.

Definition 2.8.1. Let (A , [0], [1],Φ,Ψ) and (A ′, [0]′, [1]′,Φ′,Ψ′) be categories
with a double duality. A morphism of categories with a double duality from A
to A ′ consists of a triplet (F, θ0, θ1) such that F : A → A ′ is a functor and
θi : F [i]→ [i]′F is a natural isomorphism (i = 0, 1) satisfying

θ0,M [1] ◦ FΦM = θ
[0]′
1,M ◦ Φ′FM ,

θ1,M [0] ◦ FΨM = θ
[1]′
0,M ◦Ψ′FM .



90 2. BILINEAR FORMS OVER RINGS

If A and A ′ are additive then F is required to be additive as well. The morphism
(F, θ0, θ1) is called an equivalence of categories with a double duality if F is an
equivalence of categories.

Let A0 be a full subcategory of A . If F is only defined over A0, then (F, θ0, θ1)
is called a sub-morphism of categories with a double duality.12

If u : [0]→ [1] and u′ : [0]′ → [1]′ are natural isomorphisms, then (F, θ0, θ1) is
said to pass u to u′ if u′FM ◦ θ0,M = θ1,M ◦ FuM .

The following proposition shows that the theory of bilinear forms over a cate-
gory with a double duality can be transferred (in a certain sense) along morphisms
and sub-morphisms.

Proposition 2.8.2. Let (F, θ0, θ1) be a sub-morphism of categories with a dou-
ble duality from (A , [0], [1],Φ,Ψ) to (A ′, [0]′, [1]′,Φ′,Ψ′), and let A0 denote the do-
main of F . Let B0 (resp. B′) be the category of bilinear forms (M, b) over A0
(resp. A ′) with M ∈ A0 (resp. without restriction), with isometries as morphisms.
Then:

(i) (F, θ0, θ1) induces a functor G : B0 → B′. The functor G is faithful (resp.
faithful and full), provided F is.

(ii) If u : [0] → [1] and u′ : [0]′ → [1]′ are natural isomorphisms such that
(F, θ0, θ1) passes u to u′, then G sends u-symmetric forms to u′-symmetric
forms.

Proof. (i) Define G : B0 → B by G(M, b) = (FM, θ1,M ◦ Fb) and Gσ = Fσ
for every bilinear form (M, b) ∈ B0 and isometry σ : (M, b) → (M ′, b′) in B0.
Observe that Gσ is indeed an isometry since (Gσ)[1]′ ◦Gb′ ◦Gσ = (Fσ)[1]′ ◦ θ1,M ′ ◦
Fb′ ◦ Fσ = θ1,M ◦ F (σ[1]) ◦ Fb′ ◦ Fσ = θ1,M ◦ F (σ[1] ◦ b′ ◦ σ) = θ1,M ◦ Fb = Gb.
That G preserves composition is straightforward. Now let σ′ : (M, b) → (M ′, b′)
be another isometry. If F is faithful, then Gσ = Gσ′ implies Fσ = Fσ′, hence
σ = σ′. This means G is faithful. Now assume F is also full and let τ be an
isometry from G(M, b) to G(M ′, b′). We need to find and isometry σ : (M, b) →
(M ′, b′) such that Gσ = τ . Since F is faithful and full, there is an isomorphism
σ ∈ HomA (M,M ′) such that Fσ = τ . We claim that σ is an isometry from (M, b)
to (M ′, b′). Indeed, (Gσ)[1]′ ◦Gb′ ◦Gσ = Gb, so the previous computation implies
that θ1,M ◦ F (σ[1] ◦ b′ ◦ σ) = θ1,M ◦ Fb. Multiplying by θ−1

1,M on the right yields
F (σ[1] ◦ b′ ◦ σ) = Fb and since F is faithful, we get σ[1] ◦ b′ ◦ σ = b, as required.

(ii) Let u, u′ be as above and let (M, b) be a u-symmetric bilinear form. Recall
that this implies that b = uM ◦ b̃ = uM ◦ b[0] ◦ ΦM . We need to prove that
(θ1,M ) = u′FM ◦ (θ1,M ◦Fb)[0]′ ◦Φ′FM . Indeed, u′FM ◦ (θ1,M ◦Fb)[0]′ ◦Φ′FM = u′FM ◦
(Fb)[0]′ ◦θ[0]′

1,M ◦Φ′FM = u′FM ◦(Fb)[0]′ ◦θ0,M [0] ◦FΦM = u′FM ◦θ0,M ◦F (b[0])◦FΦM =
θ1,M ◦ FuM ◦ F (b[0]) ◦ FΦM = θ1,M ◦ F (uM ◦ b[0] ◦ ΦM ) = θ1,M ◦ Fb (we used the
fact θ0 is natural and that (F, θ0, θ1) passes u to u′). �

Henceforth, (A , [0], [1],Φ,Ψ) is an additive category with a double duality. Fix
an object A ∈ A and let RA = EndA (A). We let A |A denote the full subcategory
of A whose objects are (isomorphic to) summands of An for some n ∈ N. Let FA
be the functor Hom(A, ). Observe that for every M ∈ A , Hom(A,M) can be
made into a right RA-module by defining

f · r = f ◦ r ∀ f ∈ Hom(A,M), r ∈ RA = End(A) .
This makes FA into an additive functor from A to Mod-RA. The following propo-
sition is well known.

12 The reason we do not call F a morphism of c.w.d.d. from A0 to A ′ is that A0 might not
be a c.w.d.d. Indeed, [0] and [1] are not assumed to send A0 into itself.
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Proposition 2.8.3. Once restricted to A |A, the functor FA is full and faithful.
That is, for every M,N ∈ A |A, the following map is bijective:

FA : HomA (M,N)→ HomMod-RA(FAM,FAN) .

Proof. Since Hom is biadditive andM,N are summands of An for sufficiently
large n, it is enough to check this for M = N = A, which is routine. �

Remark 2.8.4. If A is a Grothendieck category (e.g. Mod-R for some ring R)
and A is a generator of A , then the GabrielŰ-Popesco Theorem ([70]) asserts that
FA is faithful and full on all of A (rather than just A |A).

Remark 2.8.5. If all idempotents in A split, then FA(A |A) = proj-RA, the
category of right finite projective RA-modules.

Let KA := Hom(A,A[1]). Then KA can be made into a double RA-module by
defining

f �0 r = r[1] ◦ f and f �1 r = f ◦ r

for all f ∈ KA and r ∈ RA. Thus KA induces an double duality structure on
Mod-RA, which, abusing the notation, we denote by (Mod-RA, [0], [1],Φ,Ψ). The
transfer principle is phrased in the following theorem.

Theorem 2.8.6 (Transfer Principle). There is a faithful full sub-morphism of
categories with a double duality from A |A to Mod-RA.

Proof. By the previous proposition, FA is an equivalence of categories from
A |A to its image. Hence it is enough to define natural transformations θi : FA[i]→
[i]FA such that (FA, θ0, θ1) is a sub-morphism of categories with a double duality.

Let M ∈ A . Define θi,M : FA(M [i])→ (FAM)[i] (i = 0, 1) by

θ0,M (t) = [f 7→ t[1] ◦ΨM ◦ f ] ,
θ1,M (s) = [f 7→ f [1] ◦ s]

where

t ∈ FA(M [0]) = HomA (A,M [0]) ,
s ∈ FA(M [1]) = HomA (A,M [1]) ,
f ∈ FA(M) = HomA (A,M) .

(Observe that (FAM)[i] = HomRA(HomA (A,M), (KA)i) and (KA)i = Hom(A,A[1])
considered as a right RA-module w.r.t. �i defined above.) Throughout the proof,
s, t, f would continue to denote arbitrary elements of the sets specified above and
r is always an element of RA.

We now have several technical checks to do. (The reader can skip to the end
of the proof without loss of continuity.) The maps θ0,M and θ1,M are RA-modules
homomorphisms since

(θ0,M (t · r))f = ((t ◦ r)[1] ◦ΨM ◦ f) = r[1] ◦ (t[1] ◦ΨM ◦ f) = (θ0,M t)f �0 r

= ((θ0,M t) · r)f

(θ1,M (s · r))g = g[1] ◦ (s ◦ r) = (g[1] ◦ s) ◦ r = (θ1,Ms)g �1 r = ((θ1,Ms) · r)g .
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(The additivity of θ0,M and θ1,M is clear.) In addition, for every M,M ′ ∈ A ,
σ ∈ HomA (M ′,M) and f ′ ∈ FM ′ = HomA (A,M ′), one has

((FAσ)[0](θ0,M t))f ′ = (θ0,M t)((FAσ)f ′) = (θ0,M t)(σ ◦ f ′) = t[1] ◦ΨM ◦ (σ ◦ f ′)
= t[1] ◦ σ[0][1] ◦ΨM ′ ◦ f ′ = (σ[0] ◦ t)[1] ◦ΨM ′ ◦ f ′

= (FA(σ[0])t)[1] ◦ΨM ′ ◦ f ′ = (θ0,M ′(FA(σ[0])t))f ′

((FAσ)[1](θ1,Ms))f ′ = (θ1,Ms)((FAσ)f ′) = (θ1,Ms)(σ ◦ f ′) = (σ ◦ f ′)[1] ◦ s
= f ′[1] ◦ σ[1] ◦ s = f ′[1] ◦ (FA(σ[1]))s = (θ1,M ((FA(σ[1]))s))f ′.

Thus, (FAσ)[0] ◦ θ0,M = θ0,M ′ ◦ FA(σ[0]) and (FAσ)[1] ◦ θ1,M = θ1,M ′ ◦ FA(σ[1]),
implying θ0 and θ1 are natural. Next, we have

((θ0,M [1] ◦ FAΦM )f)s = (θ0,M [1]((FAΦM )f))s = (θ0,M [1](ΦM ◦ f))s

= (ΦM ◦ f)[1] ◦ΨM [1] ◦ s = f [1] ◦ Φ[1]
M ◦ΨM [1] ◦ s = f [1] ◦ s

= (θ1,Ms)f = (ΦFAMf)(θ1,Ms) = (θ[0]
1,M (ΦFAMf))s

((θ1,M [0] ◦ FAΨM )f)t = (θ1,M [0]((FAΨM )f))t = (θ1,M [0](ΨM ◦ f))t
= t[1] ◦ (ΨM ◦ f) = (θ0,M t)f = (ΨFAMf)(θ0,M t)

= (θ[1]
0,M (ΨFAMf))t ,

so θ0,M [1] ◦ FAΦM = θ
[0]
1,M ◦ ΦFAM and θ1,M [0] ◦ FAΨM = θ

[1]
0,M ◦ ΦFAM . To finish,

we need to show that θ0,M and θ1,M are bijective. As everything is additive and
M is a summand of An for some n ∈ N, it is enough to show that θ0,A and θ1,A are
bijective. Indeed, the maps ηi : (FAA)[i] → FA(A[i]) = HomA (A,A[i]) defined by

η0(t′) = t′(idA)[0] ◦ ΦA ,

η1(s′) = s′(idA)

for all t′ ∈ (FAA)[0] = HomRA(RA, (KA)1) and s′ ∈ (FAA)[1] = HomRA(RA, (KA)0)
are inverses of θ0,A, θ1,A since

(θ0,A(η0t
′))r = (θ0,A(t′(idA)[0] ◦ ΦA))r = (t′(idA)[0] ◦ ΦA)[1] ◦ΨA ◦ r

= Φ[1]
A ◦ t

′(idA)[0][1] ◦ΨA ◦ r = Φ[1]
A ◦ΨA[1] ◦ t′(idA) ◦ r

= t′(idA)�1 r = t′(idA ·r) = t′(r)
(θ1,A(η1s

′)r = ((θ1,A)(s′(idA)))r = r[1] ◦ s′(idA) = s′(idA)�0 r

= s′(idA ·r) = s′(r) .

That η0 ◦ θ0,A = id and η1 ◦ θ1,A = id is easy and thus left to the reader. �

Remark 2.8.7. We can also endow HomA (A,A[0]) with a double RA-module
structure by letting

f �0 r = f ◦ r and f �1 r = r[0] ◦ f .

The resulting double R-module is isomorphic toKA and the isomorphism is the map
I−1
A,A : Hom(A,A[0]) → Hom(A,A[1]). Identifying Hom(A,A[1]) with Hom(A,A[0])
in this way, the map θ0 of the last proof can be described by the formula θ1,M (t) =
[f 7→ f [0] ◦ t] (here f [0] ◦ t lies in Hom(A,A[0]) rather than Hom(A,A[1])). Thus,
although it is not clear at first sight, the definitions of θ0 and θ1 are basically the
same up to 0-1 exchange.

The next proposition shows how FA interacts with natural isomorphisms from
[0] to [1].
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Proposition 2.8.8. Assume that u : [0]→ [1] is a natural isomorphism (resp.
involution). Then KA has anti-isomorphism (resp. involution) κ and (FA, θ0, θ1)
passes u to uκ (that is, uκ,FAM ◦ θ0,M = θ1,M ◦ FAuM for all M ∈ A |A).

Proof. Define κ : KA → KA = Hom(A,A[1]) by κ(f) = ((uA)∗ ◦ IA,A)f =
uA ◦ f [0] ◦ΦA. It is straightforward to check that κ is an anti-isomorphism and by
Proposition 2.7.5(ii), κ2 = id when u is an involution. The equality uκ,FAM ◦θ0,M =
θ1,M ◦ FAuM holds since for all t ∈ FA(M [0]) = HomA (A,M [0]) and f ∈ FAM =
HomA (A,M), we have
(uκ,FAM (θ0,M t))f = (κ ◦ (θ0,M t))f = κ((θ0,M t)f) = κ(t[1] ◦ΨM ◦ f)

= uA ◦ (t[1] ◦ΨM ◦ f)[0] ◦ ΦA = uA ◦ f [0] ◦Ψ[0]
M ◦ t

[1][0] ◦ ΦA
= f [1] ◦ uM ◦Ψ[0]

M ◦ ΦM [0] ◦ t = f [1] ◦ uM ◦ t = (θ1,M (uM ◦ t))f
= (θ1,M ((FAuM )t))f .

(Recall that uκ = κ ◦ .) �

The previous results imply that everything we have proved for bilinear forms
over rings in the previous sections also applies to arbitrary categories with a double
duality. However, precaution should be taken since a bilinear form which is epic
in A might not be epic (i.e. surjective) once transferred to Mod-RA. Nevertheless,
monic bilinear forms over A |A are transferred to monic (i.e. injective) bilinear forms
over Mod-RA.

Remark 2.8.9. Under mild assumptions, we can say quite a lot about the
structure of KA: Assume that there is a right regular bilinear form (A, b0). Then
b0 induces an anti-endomorphism ∗ of RA given by r 7→ b−1 ◦ r[1] ◦ b. Let K be the
double RA-modules obtained from RA by defining x �0 r = r∗x and x �1 r = xr
(x, r ∈ RA). Then K ∼= KA as double RA-modules. The isomorphism is given by
k 7→ b ◦ k. In particular, if b0 is u-symmetric for some u : [0] → [1], then ∗ is an
involution and the bilinear forms on A |A are equivalent to sesquilinear forms over
(RA, ∗). When restricted to categories with duality, the last observation is just the
classical transfer principle.

Remark 2.8.10. Observe that the transfer principle we have obtained in this
section is interesting even for categories with duality. Indeed, the standard transfer
in categories with duality (see the end of the previous remark or [71], [86, Ch. 7])
can be applied only for objects A admitting a regular symmetric or skew-symmetric
bilinear form b0. We have dropped this condition, as well as the dependency in b0,
which is inherent in the classical transfer.

2.9. Rings That Are Morita Equivalent to Their Opposites

In this section, we use our new notion of bilinear forms to partially answer a
problem that was suggested to the author by David Saltman (to whom the author
is grateful). Consider the following three properties that a ring R might posses:

(1) There is a ring with an involution (S, ∗) and S is Morita equivalent to R.
(2) There is a ring with an anti-automorphism (S, ∗) and S is Morita equiva-

lent to R.
(3) R is Morita equivalent to Rop.

While (1)=⇒(2)=⇒(3) is obvious, one could ask whether there are other implica-
tions between (1), (2) and (3). Indeed, in [82], Saltman proves (2)=⇒(1) in case R
is an Azumaya algebra over some commutative ring, and the following conditions
are well known to be equivalent when R is a f.d. simple algebra (e.g. [2, Ch. X]):

(1′) R has an involution of the first kind,
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(2′) R has an anti-automorphism fixing Cent(R).
(However, (2′) 6=⇒(1′) for Azumaya algebras.) We will show below that (3)=⇒(2)
for a large family of rings and against expectations, (2) 6=⇒(1) even for f.d. algebras.
The results to follow, as well as some improvements such as a new proof of Saltman’s
result, can also be found in [40].

It will be useful to introduce some general notation for this section: For a
ring R, let proj-R denote the category of finite projective right R-modules and
let Iso(proj-R) denote the isomorphism classes of proj-R. The isomorphism class
of P ∈ proj-R will be denoted by [P ]. Let R and S be rings. By saying M is
an (S,R)-progenerator we mean that M is an (S,R)-bimodule, MR and SM are
progenerators (of the appropriate categories), R = End(SM) and S = End(MR).
Recall that an (S,R)-progenerator exists precisely when R is Morita equivalent to
S. For a detailed discussion of Morita equivalence, see [58, §18], [80, §4.1] and also
[72, Ch. 4].

We begin by proving (3)=⇒(2) for certain rings.

Definition 2.9.1. Let (M,+) be an abelian monoid. An element x ∈ M is
called indecomposable if x = y + z implies y = 0 or z = 0. We say (M,+) is
strongly finitely generated if M is spanned as a monoid by a finite set of indecom-
posable elements.

A ring R is said to be of (right) finite projective representation type (abbrev.:
FPRT) if (Iso(proj-R),⊕) is strongly f.g., i.e. if R admits finitely many indecom-
posable finite projectives (up to isomorphism) and any finite projective module is a
direct sum of finite number of indecomposables.

Note that if (M,+) is a monoid and S is a generating set for M consisting of
indecomposable elements, then S is the only generating set consisting of indecom-
posable elements and it consists of all indecomposable elements. In particular, any
automorphism of M permutes S.

Example 2.9.2. Any semiperfect ring has FPRT since (Iso(proj-R),⊕) ∼=
(Nk,+) for some k ∈ N; see [80, §2.9]. More generally, if RnR has a Krull-Schmidt de-
composition (i.e. a representation as a sum of indecomposables which is unique up to
isomorphism and reordering) for all n ∈ N, then R has FPRT (since (Iso(proj-R),⊕)
is spanned by the indecomposable components of R). For example, this holds when
R is homogeneous semilocal (i.e. R/ Jac(R) is simple artinian), as follows from [26].
Other examples of rings with FPRT include maximal orders in f.d. simple algebras
over global fields. This follows from [72, Th. 26.4, §35-36].

Theorem 2.9.3. Let R be a ring with FPRT that is Morita equivalent to its
opposite, then there exists a ring with anti-isomorphism (S, ∗) such that S is Morita
equivalent to R.

Proof. Let P be an (Rop, R)-progenerator. We make P into a double R-
module by letting �1 be the standard right action of R on P and �0 be the right
action of R on P obtained by twisting the left action of Rop. Observe that for i ∈
{0, 1}, R[i] = Hom(RR, P1−i) ∼= Pi and hence R[i][1−i] ∼= Hom(Pi, Pi) ∼= RR. It is
now routine to verify that R is reflexive and since being reflexive is preserved under
finite direct sums and passes to summands, any finite projective right R-module is
reflexive. For i ∈ {0, 1} define ϕi : Iso(proj-R) → Iso(proj-R) by ϕi[P ] = [P [i]].
Then ϕi is well-defined and the previous discussion implies ϕi = ϕ−1

1−i. Moreover,
since [i] preserves direct sums, ϕi is a monoid isomorphism.

Since (Iso(proj-R),⊕) is strongly f.g., there exists indecomposable P1, . . . , Pt ∈
proj-R such that S := {[P1], . . . , [Pt]} generates Iso(proj-R). LetM = P1⊕· · ·⊕Pt.
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Then ϕ1 permutes S, hence [M ] ∼= [M [1]]. This gives rise to a right regular bilin-
ear space (M, b, P ) (take Adrb would be the isomorphism M ∼= M [1]). Since M is
finite projective, it is left reflexive, so by Proposition 2.5.4(ii) b is also left regu-
lar. Therefore, there is an anti-automorphism ∗ : EndR(M) → EndR(M), namely
the one that corresponds to b (see Propositions 2.3.3 and 2.3.4). As S generates
Iso(proj-R), M must be a progenerator, hence EndR(M) is Morita equivalent to R
and we are through. �

Remark 2.9.4. Define an equivalence relation on Iso(proj-R) by [P ] ∼ [Q]
⇐⇒ there exists n ∈ N such that [Pn] = [Qn]. Then Iso(proj-R/ ∼,⊕) is a
monoid. It is easy to see that Theorem 2.9.3 also holds when Iso(proj-R/∼,⊕) is
strongly finitely generated.13 The proof is similar, but one obtains a module M
for which [M ] ∼ [M [1]]. By replacing M with Mn for n sufficiently large, we may
assume M ∼= M [1] and proceed with the proof.

Other finiteness assumptions on proj-R also imply the existence of M with
M ∼= M [1]. For example, if Iso(proj-R) is finite (see [4] and related papers for such
examples), then one can takeM = Q1⊕· · ·⊕Qt whereQ1, . . . , Qt are representatives
for the isomorphism classes of proj-R.

The proof of Theorem 2.9.3 had two stages. The first was to show that any
(Rop, R)-progenerator gives rise to a duality from proj-R to itself and the second
consisted of finding a generatorM ∈ proj-R withM ∼= M [1], or equivalently, a right
regular bilinear space (M, b, P ) (with P as above). We will now show that any ring
with anti-isomorphism (S, ∗) for which S is Morita equivalent to R is obtained via
this principle (compare with [82, Th. 4.2]).

Proposition 2.9.5. Let R be a ring that is Morita equivalent to Rop and
let M be an R-progenerator. Then any anti-isomorphism ∗ of S := EndR(M) is
induced from a right regular bilinear space (M, b, P ), where P is obtained from some
(Rop, R)-progenerator. Moreover, if ∗ is an involution, then P admits an involution
κ and b is κ-symmetric.

Proof. Consider M as an (S,R)-bimodule and observe that M can be made
into an (Rop, S)-bimodule by defining rop ·m · s = s∗

−1
mr. Define P = RopPR =

RopMS ⊗S SMR and make it into a double R-module by letting:
(x⊗S y)�0 r = ropx⊗S y, (x⊗S y)�1 r = x⊗ yr ∀x, y ∈M, r ∈ R .

It is now clear that b : M × M → P defined by b(x, y) = x ⊗S y is a bilinear
form. In addition, for all s ∈ S, b(sx, y) = (sx)⊗S y = (x · s∗)⊗S y = x⊗S s∗y =
b(x, s∗y), hence the corresponding anti-endomorphism of b is ∗, provided b is regular.
However, we postpone the proof of the latter fact to Chapter 3 (Theorem 3.5.5),
where we shall generalize the construction of P . If ∗ is an involution, then the map
κ : P → P defined by (x ⊗ y)κ = y ⊗ x (x, y ∈ M) is well-defined and it is easy
to check that it is an involution of P and b is κ-symmetric. Finally, RopPR is an
(Rop, R)-progenerator because it is the tensor product of an (Rop, S)-progenerator
(namely, RopMS) and an (S,R)-progenerator (SMR). (This fact is a consequence
of Morita’s Third Theorem; see [58, §18D].) �

Note that Proposition 2.9.5 only promises us some (Rop, R)-progenerator, but
in general, a given (Rop, R)-progenerator P need not admit a regular bilinear form
(M, b, P ) with M a progenerator (hence the proof of Theorem 2.9.3 does not work
for arbitrary rings). This is demonstrated in the next example. Can it be that all
(Rop, R)-progenerators P are “bad” (in the sense of not having a regular bilinear

13 The author does not know if this condition is implied from R having FPRT, but this is
true in case R is right noetherian.
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space (M, b, P ))? We believe that the answer is yes. In particular, we conjectures
that (3) 6=⇒(2) in general.

Example 2.9.6. Let F be a field and let R = lim−→{M2(F )⊗n}n∈N. Then any
finite projective right R-module is obtained by scalar extension from a finite pro-
jective over M2(F )⊗n ↪→ R. It now not hard (but tedious) to show that the monoid
(Iso(proj-R),⊕) is isomorphic to (Z[ 1

2 ] ∩ [0,∞),+). (If Vn is the unique indecom-
posable right projective over M2(F )⊗n, then Vn ⊗R is mapped to 2−n.)

Let T denote the transpose involution on M2(F ). Then T̂ = lim−→{T
⊗n}n∈N is

an involution of R. Now let P = R2 ∈ proj-R. Then EndR(P ) ∼= M2(R) ∼= R

and using T̂ , we can identify EndR(P ) with Rop, thus making P into an (Rop, R)-
progenerator. We claim that there is no regular bilinear form (M, b, P ) with 0 6=
M ∈ proj-R. To see this, identify Iso(proj-R) with Z[ 1

2 ] ∩ [0,∞) and observe that
monoid isomorphisms ϕ0, ϕ1 : Z[ 1

2 ] ∩ [0,∞) → Z[ 1
2 ] ∩ [0,∞) of Theorem 2.9.3

satisfy ϕ0(1) = 1
2 and ϕ1(1) = 2, hence ϕ0(x) = 1

2x and ϕ1(x) = 2x for all
x ∈ Z[ 1

2 ] ∩ [0,∞). But this means ϕ1(x) 6= x for all 0 6= x ∈ Z[ 1
2 ] ∩ [0,∞), so

M �M [1] for all 0 6= M ∈ proj-R.

The next example shows that (2) 6=⇒(1). The example we bring was suggested
by Scharlau in [85] as an example of a ring with an anti-automorphism but without
involution. However, it turns out that any ring that is Morita equivalent to this
example does not have an involution.

Example 2.9.7. Recall that a poset consists of a finite set I equipped with a
transitive reflexive relation which we denote by ≤. For a field F and a poset I,
the incidence algebra A = F (I) is defined to be the subalgebra of the I-indexed
matrices over F spanned as an F -vector space by {eij | i, j ∈ I, i ≤ j}.

The poset I can be recovered (up to isomorphism) from A as follows: The
ring B = A/ Jac(A) is a semisimple ring. Let e1, . . . , et denote the set of central
idempotents in B for which eiBei is simple and let `i = length(eiBei). Since Jac(A)
is nil, e1, . . . , et can be lifted to orthogonal idempotents f1, . . . , ft ∈ B (the f -s are
uniquely determined up to conjugation). Define I ′ = {xij | 1 ≤ i ≤ t, 1 ≤ j ≤ `i},
and let xij ≤ xkl ⇐⇒ fiAfk 6= 0. Then A ∼= F (I ′). This implies that two
incidence algebras are isomorphic (as rings) if and only if their underlying posets
are isomorphic. Moreover, any anti-automorphism (resp. involution) of A permutes
e1, . . . , et, preserves `1, . . . , `t, reverse the order in I ′, and thus induces an anti-
automorphism (resp. involution) on I ′. It follows that A has an anti-automorphism
(resp. involution) if and only if I has one.

Any poset (I,≤) gives rise to an equivalence relation ∼ on I defined by i ∼ j
⇐⇒ i ≤ j and j ≤ i. The quotient set I/∼ can be made into a poset by defining
[x] ≤ [y] ⇐⇒ x ≤ y (where [x] is the equivalence class of x). It is well known
that two incidence algebras F (I) and F (J) are Morita equivalent if and only if
I/∼ ∼= J/∼ as posets. The converse is also true, any ring that is Morita equivalent
to F (I) is an incidence algebra F (J) with I/∼ ∼= J/∼.

Now observe that if I admits an involution, then so is I/∼. Therefore, by the
previous paragraphs, if we can find I such that I = I/∼ (i.e. ≤ is anti-symmetric)
and I admits an anti-automorphism but no involution, then any ring that is Morita
equivalent to F (I) does not have an involution. (Otherwise, this would imply that
I = I/∼ has an involution). Such an example was given in [85] by Scharlau (for
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other purposes); I is the 12-element poset whose Hasse diagram is:
• // •

•

??

��

•

OO

• •

__

oo

•

��

// • •

��

•

OO

��
• •oo

(Using Scharlau’s words, it is “the simplest example I could find”.) The anti-
automorphism of I is given by rotating the diagram by ninety degrees clockwise.

Remark 2.9.8. Incidence algebras are a good source of examples for rings
without anti-automorphisms that are Morita equivalent to their opposites — just
take I such that I � Iop but I/ ∼ ∼= Iop/ ∼. The simplest such example is
I = {1, 2, 3} with the relation I × I \ {(3, 2), (3, 1)}. In this case, the poset algebra
is the algebra of 3× 3 matrices of the form ∗ ∗ ∗∗ ∗ ∗

0 0 ∗

 .

Note that in this case I/ ∼ has an involution, hence F (I/ ∼) has an involution
although F (I) does not even have an anti-automorphism. Moreover, by Propo-
sition 2.9.5 this means that there is a symmetric regular bilinear form over F (I)
defined over a faithful F (I)-module, despite the fact that F (I) does not admit an
anti-automorphism.

Remark 2.9.9. Call a semiperfect ring R basic if RR is a direct sum of non-
isomorphic indecomposable projectives. Every semiperfect ring has a unique basic
ring that is Morita equivalent to it (see [58, Prp. 18.37] and the preceding discus-
sion). For instance, in case R = F (I) for some field F and a poset I, F (I/ ∼)
is the basic ring that is Morita equivalent to R. The proof of Theorem 2.9.3 now
implies that if a semiperfect ring is Morita equivalent to its opposite, then then
the basic ring which is Morita equivalent to it has an anti-automorphism. Indeed,
the basic ring that is Morita equivalent to R is just EndR(P1 ⊕ · · · ⊕ Pt) where
P1, . . . , Pt are the indecomposables in proj-R (up to isomorphism). In addition,
Example 2.9.7 was based on the observation that if F (I) has an involution, then so
does its basic ring F (I/∼). The author believes that the this claim actually holds
for other families of semiperfect rings.

2.10. Addendum

In Example 2.4.12, we have definedM to be the free monoid over {x0, x1, x2, . . . }
subject to the relations:

x2k+1x2k = 1 = x2k+1x2k+2

xn+2+2kx2k = x2kxn+2k, x2k+1xn+2k+3 = xn+2k+1x2k+1

for all n, k ≥ 0. The example relies on the fact that x0 6= x2 and this addendum
is dedicated to verify that. In fact, we will solve the word problem in M and show
that any element of M admits a unique canonical form.

We start by recalling the Bergman-Bokut Diamond Lemma. For proof, see
[18].
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Proposition 2.10.1 (Diamond Lemma). Let X be a set and → a reduction
relation on X satisfying:

(i) Any element of X can be reduced only a finite number of times.
(ii) If a → b and and a → c (a, b, c ∈ X), then b and c have a common

reduction d ∈ X (i.e., b ∗−→ d and c ∗−→ d, where ∗−→ is the transitive closure
of →).

Then any element of X has a unique irreducible reduction.

Let F denote the free word monoid on the letters {x0, x1, x2, . . .}. Inspired by
the relations of M , we define four families of reduction rules on the words of F
(denoted I,II,III and IV) given by:

I: x2k+1x2k −→ 1
II: x2k+1x2k+2 −→ 1
III: xn+2+2kx2k −→ x2kxn+2k (“even indices move left”)
IV: x2k+1xn+2k+3 −→ xn+2k+1x2k+1 (“odd indices move right”)

(where n, k ≥ 0.) Let → denote the union of all these reduction relations. We will
now prove that the conditions of the Diamond Lemma hold.

Lemma 2.10.2. In the previous notation:
(i) Any word in F can be reduced only a finite number of times.
(ii) Let a ∈ F . If a→ b and a→ c then b and c has a common subreduction.

Proof. (i) Each reduction decreases the sum of the indices of the letters in
the word. Therefore, only finitely many reductions can be applied on a given word.

(ii) Let a, b, c be given. Denote by t1 and t2 the type of the reductions a → b
and a → c respectively (recall that there are four such types: I,II,III and IV). We
now split into cases, checking separately all possible pairs (t1, t2). By symmetry,
we may assume t1 ≤ t2. We may also assume that the letters exchanged in the
reduction a→ b overlap those exchanged in a→ c. (Otherwise, it clear that b and
c have a common reduction.) We also ignore the case b = c for obvious reasons.

In the rest of the proof, our notation will consist of diagrams of reductions. To
avoid extra notation, a condition on an arrow means that the reduction is valid
(only) when the condition holds. We let ∗ be the anti-endomorphism of F obtained
by sending xn to xn+1. Observe that it preserves the reduction relation. We will
always assume m,n, k are non-negative integers.

(t1, t2) is one of (I,I), (I,II), (II,II): Here either b = c or the letters ex-
changed in a do not overlap.

(t1, t2)=(I,III): The case is resolved as in the following diagram (n ≥ k):

a = . . . x2n+3x2n+2x2k . . . //

��

b = . . . x2k . . .

c = . . . x2n+3x2kx2n . . . // . . . x2kx2n+1x2n . . .

OO

(t1, t2)=(II, III): (n ≥ k):

a = . . . x2n+1x2n+2x2k . . . //

��

b = . . . x2k . . .

c = . . . x2n+1x2kx2n . . .
n>k //

n=k
44

. . . x2kx2n−1x2n . . .

OO

(t1, t2)=(I,IV): Apply ∗ on the diagram of case (t1, t2) =(II,III).
(t1, t2)=(II,IV): Apply ∗ on the diagram of case (t1, t2) =(I,III).
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(t1, t2)=(III,III): (n ≥ 2k + 2 ≥ 2m+ 4; we removed all the dots; it suffices
to check the overlaps.)

a = xnx2kx2m //

��

b = x2kxn−2x2m // x2kx2mxn−4

��
c = xnx2mx2k−2 // x2mxn−2x2k−2 // x2mx2k−2xn−4

(t1, t2)=(IV,IV): Apply ∗ on the diagram of case (t1, t2) =(III,III).
(t1, t2)=(III,IV): (n ≥ 2m+ 3, 2k + 2; Again, we removed the dots.)

x2k−2x2m+1xn−2

))
b = x2m+1x2kxn−2

k∈{m,m+1}

))

k<m //

k>m+1
55

x2kx2m−1xn−2

##

x2k−2xn−4x2m+1

a = x2m+1xnx2k

OO

��

xn−2

c = xn−2x2m+1x2k

k∈{m,m+1}

44

k<m
**

k>m+1
// xn−2x2k−2x2m+1

;;

x2kxn−4x2m−1

xn−2x2kx2m−1

55

We conclude that in all cases, b and c have a common reduction. �

We can now assert by the Diamond Lemma that any element of F has a unique
irreducible reduction w.r.t. →. This implies that two words in F are equal in M if
and only if the have the same irreducible reduction. (This solves the word problem
in M .) In particular, x0 6= x2 in M since both words are irreducible.





CHAPTER 3

Bilinear Forms and Anti-Endomorphisms

The following theorem is a classical result about bilinear forms over fields that
lies at the heart of the connection between quadratic forms and involutions; for
proof and generalizations see [57, Ch. 1].

Theorem 3.0.1. Let F be a field and let V be a f.d. vector space. Then there
is a one-to-one correspondence between regular bilinear forms b : V × V → F ,
considered up to scalar multiplication, and anti-automorphisms of EndF (V ) pre-
serving F . The correspondence is given by sending each form b to its corresponding
anti-automorphism ∗, i.e. the anti-automorphism satisfying

b(σx, y) = b(x, σ∗y) ∀ x, y ∈ V, σ ∈ EndF (V ) .
Moreover, under this correspondence, symmetric and anti-symmetric forms corre-
spond to orthogonal and symplectic involutions, respectively.

Our goal in this chapter is to generalize Theorem 3.0.1 to bilinear forms over
rings, as defined in the previous chapter. That is, we would like to show that the
map sending a right regular bilinear form to its corresponding anti-endomorphism
induces a one-to-one correspondence between the right regular bilinear forms on a
given module M ∈ Mod-R, considered up to a certain equivalence, and the anti-
endomorphisms of End(M). We will show that: (1) the correspondence fails over
arbitrary rings, and in particular over f.d. algebras, (2) under mild assumptions on
the moduleM (e.g. being finite projective) or on the base ringR, the correspondence
holds in its original setting and (3) in some cases the correspondence holds under
a slight adjustment, namely the anti-endomorphisms correspond to certain right
stable bilinear forms rather than to right regular bilinear forms. For example,
when R is a semiprime Goldie ring (e.g. an semiprime noetherian ring), the adjusted
correspondence holds when M is a f.g., faithful and torsion-free.

Byproducts of the work include several results about general rings of quotients
and pseudo-Frobenius (abbrev.: PF) rings, such as:

(1) Let R be a ring and let S be a (two-sided) denominator set such that RS−1

is right PF ring. Then for any faithful f.g. S-torsion-free M ∈ Mod-R,
End(MS−1) is the maximal symmetric quotient ring of End(M).

(2) For any faithful right module M over a right PF ring, End(M) coincides
with its maximal symmetric ring of quotients.

(3) Suppose R is an Ore domain and D is the division ring of fractions of R.
Then End(M ⊗RD) is the (two-sided) classical fractions ring of End(M)
for any torsion-free f.g. M ∈ Mod-R.

In addition, the adjusted correspondence holds for M in each of these cases.
The contents of each section are described at the end of section 3.1, which also

serves as a preface. Some results of this chapter can also be found at [39].

3.1. The Correspondence

LetR be a ring and letM be a fixed right R-module. SetW = EndR(M) and let
End−(W ) (Aut−(W )) denote the set of anti-endomorphisms (anti-automorphisms)

101



102 3. BILINEAR FORMS AND ANTI-ENDOMORPHISMS

of W . Recall that a bilinear space (M, b,K) is right regular if Adrb : M → M [1] is
bijective (see section 2.1 for all relevant definitions). In this case b is right stable,
i.e. for every w ∈W , there exists unique w′ ∈W such that

b(wx, y) = b(x,wαy) ∀x, y ∈M .

We denote the map w 7→ w′ by α = α(b). It is routine to verify that it lies in
End−(W ). Furthermore, if b is κ-symmetric w.r.t. to some involution κ of K, then
α is an involution. Indeed,

b(x,wy) = b(wy, x)κ = b(y, wαx)κ = b(wαx, y) = b(x,wααy)

for all x, y ∈ M and w ∈ W , so the right-stability of b implies w = wαα (see
Proposition 2.2.9).

Denote by Bilreg(M) the class of all right regular bilinear forms over M (the
forms can take values in any double R-module, hence this is not a set; we will soon
make this class into a category). In this section, we will explain in detail how to
make the map b 7→ α(b) : Bilreg(M) → End−(W ) into the ideal correspondence
described in the preamble.

Our first step is to introduce an “inverse” to b 7→ α(b). While this requires
most of the work in Theorem 3.0.1 and its generalizations (using tools such as the
Skolem-Noether Theorem), our new notion of bilinear forms allows an easy and
explicit construction of such an inverse.

Let α ∈ End−(W ) and let A,B be two left W -modules. Define:

A⊗α B = A⊗Z B

〈wa⊗ b− a⊗ wαb | a ∈ A, b ∈ B,w ∈W 〉
.

For a ∈ A and b ∈ B, we let a ⊗α b denote the image of a ⊗Z b in A ⊗α B (the
subscript α will be dropped when obvious from the context).

Remark 3.1.1. For any B ∈ W -Mod and α ∈ End−(W ), let Bα denote the
right W -module obtained by twisting B via α. Namely, Bα = B as sets, but Bα is
equipped with a right action �α : B×W → B given by x �α w = wαx for all x ∈ B
and w ∈ W . Then the abelian group A ⊗α B can be identified with Bα ⊗W A.
Therefore, ⊗α is an additive bifunctor and Wn ⊗α B ∼= Bn.

Now consider M as a left W -module and let α ∈ End−(W ). Define Kα =
M ⊗αM and note that Kα is a double R-module w.r.t. the operations

(x⊗α y)�0 r = xr ⊗α y and (x⊗α y)�1 r = x⊗α yr

(x, y ∈ M , r ∈ R). It is now clear that the map bα : M ×M → Kα defined by
bα(x, y) = x⊗α y is a bilinear form and

(12) bα(wx, y) = wx⊗α y = x⊗α wαy = bα(x,wαy)

for all x, y ∈M and w ∈W , hence α(bα) = α, provided bα is right regular. In fact,
the pair (bα,Kα) is universal w.r.t. satisfying (12) in sense that if b : M ×M → K
is another bilinear form satisfying (12), then there is a unique double R-module
homomorphism f : Kα → K such that b = f ◦ bα. Moreover, assume α is an
involution. Then Kα admits an involution κα given by x ⊗ y 7→ y ⊗ x and bα is
κα-symmetric, so every involution corresponds to a symmetric form!

Example 3.1.2. Let F be a field and let α be an anti-automorphism of Mn(F ) ∼=
End(Fn) preserving F . We will show below that Kα is just F with �0 and �1 being
the standard action of F on itself. Moreover, if α is an involution, then κα = idF
if α is orthogonal and κα = − idF if α is symplectic.
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Let us summarize what we have done so far: For every bilinear form b ∈
Bilreg(M), we have defined the anti-endomorphism α = α(b) ∈ End−(W ) to be the
unique anti-endomorphism of W satisfying.

b(wx, y) = b(x,wαy) ∀x, y ∈M, w ∈W
(namely, α is the corresponding anti-endomorphism of b). In addition, for every
α ∈ End−(W ), we constructed a bilinear space (M, bα,Kα) and showed that it is
universal w.r.t. satisfying (12). The maps b 7→ α(b) and α 7→ bα will induce, after
suitable adjustments, the desired correspondence.

Our next step is to define some equivalence relation on Bilreg(M). Call two
bilinear forms b : M × M → K and b′ : M × M → K ′ similar if there is an
isomorphism f ∈ HomDMod-R(K,K ′) such that b′ = f ◦ b. In this case, f is called a
similarity from b to b′ and we write b ∼ b′. The class Bilreg(M) can be made into a
category by taking the similarities as morphisms, and we let Iso(Bilreg(M)) denote
its isomorphism classes. Clearly any two similar right regular forms b, b′ satisfy
α(b) = α(b′).

Example 3.1.3. Let F be a field and let V be a f.d. F -vector space. Then two
bilinear forms b, b′ : V × V → F are similar if and only if they are the same up to
(non-zero) scalar multiplication.

We conclude the previous paragraphs by stating that we would like to have a
1-1 correspondence as in the following diagram

(13) Iso(Bilreg(M))

b 7→α(b)
++
End−(W )

α7→bα

kk
.

One can easily verify that this description agrees with the correspondence of The-
orem 3.0.1.

However, it turns out that the correspondence in (13) fails in general, and for
two gaps, which the reader might have already spotted:

(a) bα is not always right regular (e.g. see Example 3.4.2 below).
(b) bα(b) need not be similar to b, even when both b and bα(b) are regular (see

Example 3.4.8).
In addition, it is still open whether that b is right regular implies that so is bα(b).
We note that the problems (a) and (b) occur even when considering bilinear forms
over f.d. algebras.

Remark 3.1.4. For a bilinear space (M, b,K), let im(b) denote the additive
group spanned by {b(x, y) |x, y ∈M}.1 It is easy to see that im(b) is a sub-double-
R-module of K. We will say b is onto if im(b) = K. It might look as if problem (b)
would be solved if we insisted on considering only forms that are onto, but this is
not the case. The forms constructed in Example 3.4.8 are onto, thus demonstrating
that problem (b) is inherent.

Problem (a) is solved when restricting to special cases, e.g. when M is finite
projective or a generator (see section 3.5). However, these cases are not so common.
Another way to approach (a) is to replace Bilreg(M) with Bilst(M) in (13), where
Bilst(M) is the category of right stable bilinear forms on M (with similarities as
morphisms). Note that bα is right stable if and only if it is right semi-stable (see
section 2.1 for definitions). In particular, if bα is right injective, then it is right
stable (in contrast to arbitrary right injective forms; e.g. Example 2.4.9). We will

1 Caution: in general im(b) is not the image of b in the usual sense.
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show below that this adjustment is indeed crucial sometimes. In particular, there
are anti-automorphisms α such that bα is right stable but not right regular (and
not even right injective; see Example 3.4.5).

While extending the domain of b 7→ α(b) to Bilst(M) only worsens problem (b),
it turns out that it can be solved completely by restricting the domain of b 7→ α(b)
to the image of α 7→ bα (up to similarity). This calls for the following definition:

Definition 3.1.5. A bilinear form b : M ×M → K is called generic if it is
right stable and b is similar to bα(b).2

Since α(bα) = α (provided bα is right stable), bα is always generic, and by
definition, any generic form is obtained this way, up to similarity. As implied from
our previous comments, generic does not imply right regular nor does right regular
imply generic (unless special assumptions are made on the module M).

Proposition 3.1.6. Let (M, b,K) and (M, b′,K ′) be two right stable bilinear
spaces. Then:

(i) If b and b′ are generic, then α(b) = α(b′) implies b ∼ b′.
(ii) If b is generic, then it is onto (in the sense of Remark 3.1.4).
(iii) If b is generic and α(b) = α(b′), then there exists a unique double R-

module homomorphism f such that b′ = f ◦ b.
(iv) If b is generic and α(b) is an involution, then K has an involution κ and

b is κ-symmetric.3
(v) bα(b) is generic. (In particular, bα is right stable.)

Proof. (i) By definition, b ∼ bα(b) ∼ bα(b′) ∼ b′.
(ii) Clearly bα(b) is onto and since being onto is preserved under similarity, b is

onto.
(iii) The universal property of bα(b) implies that there is a unique double R-

module homomorphism g : Kα(b) → K ′ such that b′ = g ◦ b (define g(x ⊗α(b) y) =
b′(x, y) for all x, y ∈M). Let h be a similarity from b to bα(b). Then f = g ◦h is the
required morphism. The uniqueness of f is easy to prove and is left to the reader.

(iv) We can identifyK withKα and b with bα(b). Then bα(b) is κα(b)-symmetric,
as explained above.

(v) We only need to check that bα(b) is right semi-stable. By the universal
property of bα(b) there is f ∈ HomDMod-R(Kα(b),K) such that b = f ◦ bb(α). We are
now done by the following Lemma. �

Lemma 3.1.7. Let (M, b,K) and (M, b′,K ′) be two bilinear spaces and let f ∈
HomDMod-R(K,K ′) such that b′ = f ◦ b. If b′ is right (left) semi-stable then so is b.

Proof. We treat only the right case. Assume σ ∈ End(M) is such that
b(x, σy) = 0 for all x, y ∈ M . By applying f on both sides we get b′(x, σy) = 0,
hence σ = 0, as required. �

Let Bilgen(M) stand for the category of generic bilinear forms over M with
similarities as morphisms. Then the last proposition implies:

2 Generic forms as defined now should have been called right generic. However, we will not
consider left generic forms in this chapter. Moreover, we shall see in section 3.9 below that the
left and right definitions can be united into a left-right symmetric definition.

3 If b is not generic, then this is false even when b is regular; see Example 3.4.8 below.
Example 2.4.5 above already demonstrates that in case b is only right regular.
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Corollary 3.1.8. In the previous notation, provided bα is right stable for all
α ∈ End−(W ), there is a one-to-one correspondence:

(14) Iso(Bilgen(M))

b7→α(b)
++
End−(W )

α7→bα

kk
.

Note that Proposition 3.1.6(v) implies that any right stable form b can be turned
into a generic form by replacing it with bα(b). This process is called generization
and it is a useful tool for studying bilinear forms.

Remark 3.1.9. Call two right stable bilinear forms weakly similar (denoted
∼w) if they have similar generizations. Then under the assumptions of Corol-
lary 3.1.8, there is a one-to-one correspondence between Bilst(M)/∼w and End−(W ).
However, we could not find a natural way to make Bilst(M) into a category whose
isomorphism classes are the equivalence classes of ∼w, i.e. defining weak similari-
ties. As a thumb rule, a definition of weak similarities would be appropriate if it
applied to arbitrary bilinear forms, rather than just right stable forms.

In section 3.2 we present some of the basic properties of bα, such as when it
admits an asymmetry. We also show that provided bα and bβ are regular, Kα

∼= Kβ

if and only if α ◦ β−1 is an inner automorphism. Section 3.3 explains how the map
b 7→ bα interacts with orthogonal sums. (Namely, assume e ∈ E(W ) is such that
eα = e. Then α1 := α|eWe ∈ End−(eWe) = End−(EndR(eM)) and we can from
bα1 : eM × eM → Kα1 . How does bα1 relate to bα?) The results obtained are
used to give an explicit description of Kα in case M is a generator. Section 3.4
present various examples. In particular, problems (a) and (b) are demonstrated. In
section 3.5, we provide sufficient conditions for bα to be right regular. For example,
bα is right regular when M is a finite projective and regular when M is a generator
and α ∈ Aut−W . Sections 3.6 and 3.7 present conditions that insure bα is right
injective, e.g. those described in the preamble. In addition, in section 3.7 we obtain
several results about general quotient rings and right PF rings that are of interest
in their own right (e.g. Theorem 3.7.10, Corollary 3.7.22). In section 3.9, we show
how to generalize the generization process to non-stable bilinear forms.

We note that most of our results about regularity or injectivity of bα assume
α is an anti-automorphism; we will usually get a one-to-one correspondence be-
tween (left and right) stable generic forms, considered up to similarity, and anti-
automorphisms of W .

3.2. Basic Properties

Let R, M and W be as in the previous section and let α ∈ End−(W ). In
this section we present some basic properties of Kα and bα. In particular, we
discuss when is Kα

∼= Kβ (for β ∈ End−(W )) and when bα has an asymmetry.
Throughout, Inn(W ) denotes the group of inner automorphisms of W (i.e. those
given by conjugation with an invertible element of W ).

Proposition 3.2.1. Let α ∈ End−(W ) and assume bα is right stable. Then
bα is left stable (semi-stable) ⇐⇒ α is bijective (injective).

Proof. This follows from Proposition 2.3.4. �

Proposition 3.2.2. Let α ∈ End−(W ) and assume there exists λ ∈ W such
that wααλ = λw for all w ∈ W and λαλ ∈ W× (e.g. if α2 ∈ Inn(W )). Then the
map κ : Kα → Kα defined by (x ⊗α y)κ = y ⊗α λx is well-defined, it is an anti-
isomorphism of Kα and λ is a right κ-asymmetry of bα. Moreover, if λαλ = 1,
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then κ is an involution. Conversely, if bα is right regular and Kα has an anti-
isomorphism (or involution) κ, then there exists λ ∈ W as above and κ is induced
from λ.

Proof. This is similar to the proof of Proposition 2.4.1(ii) (which is actually
a special case of this proposition — take M = RR). Nevertheless, we will repeat
the argument since there are additional details to be added. Throughout, w ∈ W ,
r ∈ R and x, y ∈M .

The map κ is well-defined since

(wx⊗α y)κ = y ⊗α λwx = y ⊗α wααλx = wαy ⊗α λx = (x⊗α wαy)κ .

To see that κ is invertible, it is enough to check that κ2 is invertible. This holds
since

(x⊗α y)κκ = λx⊗α λy = x⊗α λαλy ,

and the map x⊗α y 7→ x⊗α λαλy has an inverse given by x⊗α y 7→ x⊗α (λαλ)−1y.
(The latter is well-defined since (λαλ)−1 commutes with im(α); see Remark 2.4.2.)
That (k�i r)κ = kκ �1−i r for all k ∈ K is straightforward and hence κ is an anti-
isomorphism. In addition, the last equation also implies that κ is an involution if
λαλ = 1. That λ is a right κ-asymmetry of bα is routine.

If bα is right regular and Kα has an anti-isomorphism κ, then bα has a right
κ-asymmetry λ, and by Proposition 2.3.9(i) and Lemma 2.3.12, λ satisfy all the
requirements. The anti-isomorphism κ is necessarily induced from λ because

(x⊗α y)κ = bα(x, y)κ = bα(y, λx) = y ⊗α λx . �

We do not know if the second part of the last proposition holds under the
weaker assumption that bα is right stable.

Corollary 3.2.3. If α ∈ End−(W ) and α2 is inner, then bα is right regular
if and only if bα is left regular.

Proof. Proposition 3.2.2 implies Kα has an involution. In addition, α is
bijective (since α2 is). Therefore, we are done by Proposition 2.3.13. �

Proposition 3.2.4. Let α ∈ End−(W ) and ϕ ∈ Inn(W ). Then Kα
∼= Kϕ◦α

as double R-modules. Conversely, if α, β ∈ End−(W ) are such that bα and bβ are
right regular and Kα

∼= Kβ as double R-modules, then there exists ϕ ∈ Inn(W )
such that β = ϕ ◦ α.

Proof. Let u ∈ W× be such that ϕ(w) = u−1wu for all w ∈ W . Define
f : Kα → Kα◦ϕ by f(x⊗α y) = x⊗ϕ◦α uy. Then f is well-defined since

f(wx⊗α y) = wx⊗ϕ◦α uy = x⊗ϕ◦α (uwαu−1)uy = x⊗ϕ◦α uwαy = f(x⊗ wαy) ,

and it is easy to see that f is an isomorphism of double R-modules (its inverse is
given by x⊗ϕ◦α y 7→ x⊗α u−1y). Therefore, Kα

∼= Kϕ◦α.
To prove the second part of the proposition, it is enough to show that if

b, c : M ×M → K are two right regular bilinear forms, with corresponding anti-
endomorphisms α and β, then there exists ϕ ∈ Inn(W ) s.t. β = ϕ ◦ α. Indeed,
define u = (Adrb)−1 ◦ Adrc ∈ W×. Then for all x, y ∈ M , c(x, y) = (Adrcy)x =
(Adrb(uy))x = b(x, uy). Therefore, for all w ∈W :

c(x,wβy) = c(wx, y) = b(wx, uy) = b(x,wαuy) = c(x, u−1wαuy)

and it follows that wβ = u−1wαu, as required. �
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We finish this section by presenting a left analogue of bα. Assume A,B ∈
W -Mod. In section 3.1 we have defined A⊗α B and we now similarly define

Aα⊗B = A⊗Z B

〈a⊗ wb− wαa⊗ b | a ∈ A, b ∈ B,w ∈W 〉
.

In addition, we define αK = Mα⊗M and αb : M ×M → αK by b(x, y) = xα⊗ y.
All the results of this chapter have left versions obtained by replacing bα, Kα with
αb, αK and every right property with its left analogue.

We also note that if α is bijective, then A ⊗α B is naturally isomorphic to
Aα−1⊗ B (via x⊗α y ↔ xα−1⊗ y) and bα is similar to α−1b, hence both right and
left versions of our results apply. We will use freely the fact that A⊗αB ∼= Bα⊗W A
and Aα⊗B ∼= Aα⊗W B. (Recall that for A ∈W -Mod and α ∈W -Mod, Aα denotes
the right W -module obtained by twisting A via α; see Remark 3.1.1.)

3.3. Relation to Orthogonal Sums

Let R, M and W be as in the previous section and let α ∈ End−(W ). In this
section, we shall examine how the map α 7→ bα interacts with orthogonal sums.
We shall then use our results to describe Kα explicitly in case M is a generator of
Mod-R. This in turn is then used to show that bα is regular for all α ∈ Aut−W
(providedM is an R-generator) and to justify the assertions made in Example 3.1.2.

Let α ∈ End−(W ) and assume there are orthogonal idempotents e1, . . . , et ∈W
such that 1W =

∑
ei and eαi = ei for all i. Then αi := α|eiWei is an anti-

endomorphism of eiWei, hence we can form bαi : eiM × eiM → Kαi . It is now
natural to ask what is the connection between bα, Kα and {bαi ,Kαi}ti=1.

To make this less obscure, let Mi = eiM ∈ Mod-R. Then M =
⊕t

i=1Mi and
for all i 6= j:

bα(Mi,Mj) = bα(eiMi,Mj) = bα(Mi, e
α
iMj) = bα(Mi, eiMj) = bα(Mi, 0) = 0 ,

hence bα = b1 ⊥ · · · ⊥ bt where bi = bα|Mi×Mi
. As clearly bi(wx, y) = bi(x,wαiy)

for all w ∈ eiWei and x, y ∈Mi, there is a unique double R-module homomorphism
fi : Kαi → Kα such that bi = fi ◦ bαi . It is given by fi(x ⊗αi y) = x ⊗α y.
Our question thus becomes whether fi is an isomorphism, or at least injective.
In general, the answer is “no” (even when all forms involved are right regular).
However, in special cases, a positive answer can be guaranteed.

Example 3.3.1. The maps fi are neither injective nor surjective in general:
Let F be a field, let R be the ring of upper-triangular 2×2 matrices over F and let
M = RR. We identify End(MR) = End(RR) with R in the standard way. Define
α : R → R by [ a b0 c ]α = [ a 0

0 c ] and let ei = eii (where {eij} are the standard matrix
units). Then α is an anti-endomorphism satisfying eαi = ei for i = 1, 2. Define Mi,
αi, bi and fi as above. We shall now compute f1 and f2 explicitly.

Firstly, we claim Kα
∼= R via x ⊗α y 7→ xαy where the double R-module

structure on R is given by x �0 r = rαx and x �1 r = xr for all x, r ∈ R. This is
easily seen once noting (RR)α⊗R (RR) ∼= R via x⊗R y 7→ x�α y = yαx. Next, make
K := M2(F ) into a double R-module by defining x �0 r = rTx and x �1 r = xr
(where rT is the transpose of r ∈ R). It is easy to see that the map Kαi → K
given by x⊗αi y 7→ xTy is an injection of double R-modules. (Indeed, αi = ideiRei
and eiRei ∼= F , hence Kαi = Mi ⊗αi Mi

∼= Mi ⊗F Mi via x ⊗α y 7→ x ⊗F y and
Mi⊗F Mi embeds in M2(F ) via x⊗F y 7→ xTy.) We can thus identify Kα1 with K
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and Kα2 with {[ 0 0
0 a ] ∈ K | a ∈ F} ⊆ K. The isomorphisms are given by:[

a b
0 0

]
⊗α1

[
a′ b′

0 0

]
7→

[
aa′ ab′

ba′ bb′

]
[

0 0
0 c

]
⊗α2

[
0 0
0 c′

]
7→

[
0 0
0 cc′

]
This allows us to compute f1 and f2 explicitly — under the previous identifications
they are given by:

f1

([
a b
c d

])
=

[
a b
0 0

]
f2

([
0 0
0 x

])
=

[
0 0
0 x

]
(Indeed, the first formula easily follows from f1(

[
aa′ ab′

ba′ bb′

]
) = f1(b1([ a b0 0 ] ,

[
a′ b′

0 0
]
)) =

bα([ a b0 0 ] ,
[
a′ b′

0 0
]
) = [ a b0 0 ]α

[
a′ b′

0 0
]

=
[
aa′ ab′

0 0
]
and the second is shown via similar

computation.) In particular, f1 is neither injective nor surjective and f2 is not
surjective. Note that b1, b2, bα1 , bα2 and bα are all right regular. This easy fact
is left to the reader. (Alternatively, that bα1 , bα2 and bα are right regular follows
from Theorem 3.5.5 below, because M , M1 and M2 are finite projective, and b1, b2
are right regular because they are summands of bα, see Proposition 2.6.2(i).)

Lemma 3.3.2. Let N ∈ Mod-W , M ∈ W -Mod and let e ∈ E(W ). Define
ϕ : Ne⊗eWe eM → N ⊗W M by x⊗eWe y 7→ x⊗W y. Then:

(i) WeM = M =⇒ ϕ is onto.
(ii) WeW = W =⇒ ϕ is an isomorphism.

Proof. (i) Let x ∈ N , y ∈ M . Then there is y′ ∈ M and w ∈ W such that
y = wey′. Thus, x ⊗W y = x ⊗W wey′ = xwe ⊗W ey′ = ϕ(xwe ⊗eWe ey

′), so ϕ is
onto.

(ii) Write 1W =
∑
i uiu

′
i where u1, . . . , ut ∈ We and u′1, . . . , u

′
t ∈ eW and

define ψ : N ⊗W M → Ne⊗eWe eM by ψ(x⊗W y) =
∑
i xui ⊗eWe u

′
iy. Then ψ is

well-defined because
ψ(xw ⊗W y) =

∑
i

xwui ⊗eWe u
′
iy =

∑
i,j

xuju
′
jwui ⊗eWe u

′
iy

=
∑
i,j

xuj ⊗eWe u
′
jwuiu

′
iy =

∑
j

xuj ⊗eWe u
′
jwy = ψ(x⊗W wy) ,

and it is straightforward to check that ψ = ϕ−1. �

Remark 3.3.3. An idempotent e ∈ E(W ) satisfying WeW = W is called full.
This condition is equivalent to eWW (or WWe) being a progenerator (so eWe is
Morita equivalent to W in this case).

Proposition 3.3.4. In the notation prior to Example 3.3.1:
(i) Kα =

∑
fi(Kαi).

(ii) If bα is right stable, then so is bαi .
(iii) If WMi = M , then fi is onto.
(iv) If ei is full (i.e. WeiW = W ), then fi is an isomorphism.

Proof. (i) It is enough to prove x⊗α y ∈
∑
fi(Kαi) for all x, y ∈M . Indeed,

x⊗α y =
∑
i,j eix⊗α ejy =

∑
i,j eix⊗α eαi ejy =

∑
i eix⊗α eiy =

∑
i fi(eix⊗αi eiy).

(ii) It is enough to prove bαi is right semi-stable. Indeed, observe that bα =
fi ◦ bαi , so this follows from the proof of Lemma 3.1.7 (note we have identified
End(Mi) with eiWei ⊆ End(M)).
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To see (iii) and (iv), let e = ei. Identify Kα with Mα ⊗W M and Kαi with
Mαi
i ⊗eWeMi = Mαe⊗eWe eM . Then under these identifications, fi is the map ϕ

of Lemma 3.3.2, hence we are through. �

Corollary 3.3.5. Let M ∈ Mod-R, W = End(MR), α ∈ End−(W ) and
n ∈ N. Identify End(Mn

R) with Mn(W ) and let β ∈ End−(Mn(W )) be defined by w11 . . . w1n
...

. . .
...

wn1 . . . wnn


β

=

 wα11 . . . wαn1
...

. . .
...

wα1n . . . wαnn

 .

Then n · b := bα ⊥ · · · ⊥ bα︸ ︷︷ ︸
n times

is similar to bβ (and in particular, Kα
∼= Kβ).

Proof. Let {eij} be the standard matrix units of U := Mn(W ), let βi =
β|eiiUeii and let ψi : M → Mn be the embedding of M as the i-th component of
Mn. Let 1 ≤ i ≤ n. Then gi : Kα → Kβi defined by gi(x ⊗α y) = ψix ⊗βi ψiy
is an isomorphism (this is straightforward), and since UeiiU = U , fi : Kβi → Kβ

defined by fi(x ⊗βi y) = x ⊗β y is an isomorphism (Proposition 3.3.4(iii)). Thus
h := fi◦gi : Kα → Kβ is an isomorphism and it is independent of i since h(x⊗αy) =
ψix⊗β ψiy = eijejiψix⊗β ψiy = ejiψix⊗β eβijψix = ψjx⊗ ψjy for all x, y ∈M . It
is now routine to verify that h is a similarity from n · bα to bβ . �

Corollary 3.3.6. Let b : M×M → K be a bilinear form and let n ∈ N. Then
b is generic ⇐⇒ n · b is generic.

Proof. By Corollary 2.6.6, b is right stable if and only if n · b is right stable.
Assume this holds and let α, β be the corresponding anti-endomorphisms of b, n · b,
respectively. Then it is easy to check that β is obtained from α as in Corollary 3.3.5
and hence bβ ∼ n · bα. Now, if b is generic then b ∼ bα, hence n · b ∼ n · bα ∼ bβ . On
the other hand, if n ·b is generic then n ·b ∼ bβ ∼ n ·bα. LetM1 = M×0×· · ·×0 ⊆
Mn. Then the previous similarity induces a similarity (n·b)|M1×M1 ∼ (n·bα)|M1×M1

and this clearly implies b ∼ bα. �

The previous corollary leads to the following question, which is still open.

Question 2. Let b1 : M1 ×M1 → K and b2 : M2 ×M2 → K be two generic
bilinear forms. Is b1 ⊥ b2 always right stable? Provided it is, is it always generic?

We shall now exploit Proposition 3.3.4 to provide an explicit description of Kα

in case M is an R-generator.4 We first recall the following definition.

Definition 3.3.7. Let M be a right R-module and W = EndR(M). The mod-
ule M is called faithfully balanced if the standard map R → EndW (M) is an
isomorphism.

Example 3.3.8. It is well known that any generator of Mod-R is faithfully
balanced (e.g., see [80, Exer. 4.1.14]).

LetM be a generator of Mod-R. Then RR is a summand ofMn for some n ∈ N.
Let e : Mn → R be the projection from Mn to RR. Then e is an idempotent in
End(Mn

R) which we identify with U := Mn(End(MR)) = Mn(W ). Observe that
UUe ∼= UM

n via ue 7→ u(1R). (Here 1R is the unity of R, considered as an element
ofMn. The inverse of this isomorphism is given by x 7→ [y 7→ x·e(y)] ∈ U .) Identify
Ue with Mn. Then, End(UMn) = End(UUe) = eUe and since Mn

R is faithfully

4 Recall that a module M ∈ Mod-R is called a generator (or an R-generator for brevity) if
for all A,B ∈ Mod-R and 0 6= f ∈ Hom(A,B) there is g : M → A such that f ◦ g 6= 0. This is
equivalent to RR being a summand of Mn for some n ∈ N; see [58, §18B].
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balanced (it is a generator), it follows that R ∼= eUe as rings, so we may assume
R = eUe. In particular, Ue and Mn coincide as (U,R)-bimodules and eiiUe is just
the i-th copy of M in Mn (where {eij} are the standard matrix units in U).

Proposition 3.3.9. Keeping the previous notation, let α ∈ End−(W ) and
define β ∈ End−(U) as in Corollary 3.3.5. Make eβUe into a double R-module by
letting

u�0 r = rβu, u�1 r = ur ∀ r ∈ R = eUe, u ∈ eβUe
and define b : M ×M = e11Ue× e11Ue→ eβUe by b(x, y) = xβy. Then:

(i) bα ∼ b. The similarity is given by x⊗α y 7→ xβy (x, y ∈M = e11Ue).
(ii) Assume κ is an involution. Then, when identifying Kα with eUeβ, κα is

just β|eβUe.

Proof. (i) We can understand Kα as Kβ1 where β1 = β|e11Ue11 . By Proposi-
tion 3.3.4(iii), the map f1 : Kβ1 → Kβ , given by x⊗β1 y 7→ x⊗βy, is an isomorphism
(because Ue11U = U). Consider Kβ as (Ue)β⊗U Ue. Then the latter is isomorphic
to (Ue)β �β e = eβUe via x ⊗U u 7→ x �β u = uβx (this is a general fact; for any
A ∈ Mod-U , A⊗U Ue ∼= Ae). Part (i) now follows by composing the isomorphisms
Kα → Kβ and Kβ → eβUe. This is illustrated in the following:

e11Ue⊗β1 e11Ue ∼= Ue⊗β Ue ∼= (Ue)β ⊗U Ue ∼= eβUe
x⊗β1 y 7→ x⊗β y 7→ y ⊗U x 7→ y �β x = xβy .

(ii) Assume α is an involution and identify Kα with eβUe. Then for all x, y ∈
e11Ue, (x ⊗α y)κ = y ⊗α x, so under the identification we get (xβy)κα = yβx and
the latter equals (xβy)β since β is also an involution. Thus, κα coincides with β on
eβUe. �

Corollary 3.3.10. Assume M ∈ Mod-R is free of rank n ∈ N, let W =
End(MR) and let α ∈ Aut−(W ). Then (Kα)n1 ∼= Rn as right R-modules. (Recall
that (Kα)1 means “Kα considered as a right R-module w.r.t. �1”.)

Proof. Assume M = Rn and identify W with Mn(R). Let {eij} be the
standard matrix units of W . Then by Proposition 3.3.9, we may assume Kα =
eα11We11 (take e = e11). Consider Ki := eαiiWe11 a right R-module. Then Ki

∼= Kj

for all i, j (the isomorphism being multiplication on the left by eαij). Thus, (Kα)n1 ∼=
K1 ⊕ · · · ⊕Kn = (

∑
i e
α
ii)We11 = We11 ∼= RnR as right R-modules. �

Corollary 3.3.11. Assume M ∈ Mod-R is a generator, let W = End(MR)
and let α ∈ End−(W ). If α is injective, then bα is left injective. If α is bijective,
then bα is regular.

Proof. By Corollary 3.3.5 and Proposition 2.6.2(i), we can replace bα with
n · bα, thus assuming n = 1, U = M1(W ) = W , e11 = 1 and β = α in pre-
vious computations. (This step is not really necessary, but it simplifies the ar-
guments to follow.) Let b be as in the last proposition. Then it is enough to
prove b is injective/regular. Indeed, b(x,M) = 0 implies xα ∈ ann` Ue. Since
U = End(MR) = End(UeeUe), UUe is faithful, so xα = 0. Thus, if α is injective,
x = 0, and thus bα is left injective.

Now assume α is bijective. We claim that b is left surjective. This is easily seen
to be equivalent to the fact that any f ∈ HomR(Ue, eαUe) is induced by left multi-
plication with an element of (Ue)β = eβU . Indeed, viewing f is an endomorphism
of Ue, we see that f(x) = ux for some u ∈ U (because U = End(Mn

R) = End(UeR)).
Replacing u with eβu if needed (it is not needed), we may assume u ∈ eβU , as re-
quired. Thus, b is left surjective and hence left regular by the previous paragraph.
That b right regular follows by symmetry. �
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We will give another proof for the second assertion of Corollary 3.3.11 in sec-
tion 3.5. We finish with the following example that proves the claims posed in
Example 3.1.2.

Example 3.3.12. (i) Let F be a field, let V be a nonzero f.d. vector space, let
W = EndF (V ) and let α ∈ End−(W ). Note that α(Cent(W )) ⊆ Cent(W ). Thus,
α induces an anti-endomorphism of Cent(W ), which we freely identify with F . Let
e be any primitive idempotent of W := End(VF ). Then e induces a projection from
V to FF , hence Proposition 3.3.9 implies Kα

∼= eαWe as double F -modules. Since
isomorphism between F and eWe is given by a 7→ ae (a ∈ F ), the double F -module
structure on eαWe is given by

(eαwe)�0 a = (ae)α(eαwe) = eαaαeαwe = (eαwe)aα

(the last equality holds since aα ∈ F = Cent(W )) and

(eαwe)�1 a = (eαwe)a .

Therefore, k �0 a = k �1 a
α for all a ∈ F . In addition, by Corollary 3.3.10,

eαWeF ∼= FF (but dim F e
αWe might be larger than 1!). Moving the 0-product

along this isomorphism we get that Kα
∼= F where F is considered as a double

F -module via the actions k �0 a = aαk and k �1 a = ka. In particular, if α is an
F -algebra isomorphism, then �0 = �1 and bα : V × V → F is just a “classical”
bilinear form (i.e. a standard (non-symmetric) bilinear form over a field). Since any
classical regular bilinear form b : V ×V → F gives rise to such α, it follows that all
classical regular bilinear forms are generic.

The previous argument still works if we replace F with any commutative ring
C and take e to be eii for some i. The only exception is the fact that (Kα)1 need
not be isomorphic to CC , but rather (Kα)n1 ∼= Cn where V ∼= Cn, i.e. (Kα)1 is a
rank-1 projective.

(ii) Keeping the notation of (i), assume α is an involution of the first kind. By
Proposition 3.3.9(ii), κα is just α restricted to eαWe, which we henceforth identify
with Kα. We will now compute κα by carefully choosing the idempotent e.

Assume first α is orthogonal. Then α is obtained from a classical regular non-
alternating5 symmetric bilinear form b : V × V → F . In this case, it is well known
that V admits a basis x1, . . . , xn such that b = (b|x1F×x1F ) ⊥ · · · ⊥ (b|xnF×xnF )
(even when charF = 2; see [86, Th. 3.5] for charF 6= 2 and [1] for arbitrary
characteristic). Take e to be projection from V to x1F with kernel x2F ⊕· · ·⊕xnF .
Then it is easy to see that eα = e (see the proof of Proposition 2.6.2(ii)). Now,
eαWe = eαFe = eF so it is clear that κα = idKα .

Now assume α is symplectic, i.e. α is the corresponding anti-endomorphism of
an a classical regular alternating form b : V × V → F . Then it is well known that
dimV is even and V admits a basis x1, . . . , xn such that

b(xi, xj) =

 1 i+ j = n+ 1 and i > j
−1 i+ j = n+ 1 and i < j

0 otherwise

Take x1, . . . , xn to be the standard basis of V and identify W with Mn(F ). Then
b(e11xi, xj) = b(xi, ennxj) for all i, j, hence b(e11x, y) = b(x, enny) for all x, y ∈ V .
This implies eα11 = enn and similarly, one obtains eαn1 = −en1. Take e = e11.
Then eαWe = eα11We11 = ennWe11 = en1F . Since eαn1 = −en1, it follows that
κα = − idKα .

5 A bilinear form b : V × V → F is alternating if its associated quadratic form is 0, i.e.
b(x, x) = 0 for all x ∈ V . Symmetric alternating bilinear forms exists only when charF = 2.
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A similar argument would show that when α is an involution of the second
kind, κα is just α|F , where Kα is identified with F as in (i). (Thus, bα is just an
α|F -hermitian form.)

3.4. Examples

Before we turn to prove our main results about the regularity or injectivity of
bα, we present a series of examples with explicit computations of bα and Kα. In
particular, the examples demonstrate problems (a) and (b) of section 3.1.

We begin with a positive example in which bα is always right regular.
Example 3.4.1. Let R be a ring and let α be an anti-endomorphism of R.

Identify R with End(RR) in the standard way. Then Kα
∼= R via x ⊗α y 7→ xαy.

Here R is a considered as a double R-module by
x�0 r = rαx, x�1 r = xr, ∀x, r ∈ R .

The proof is similar to the argument in the second paragraph of Example 3.3.1
above. Identifying Kα with R, bα is given by bα(x, y) = xαy. Thus, by Example
2.1.4, bα is right regular, so there is a one-to-one correspondence between generic
bilinear forms on RR and anti-endomorphism of R, as in (14). (We will show below
that this still holds if we replace RR with any finite projective R-module.)

The next two examples demonstrate that the correspondence in (14) fails in
general, even over f.d. algebras.

Example 3.4.2. Consider the Z-module M = Z[ 1
p ]/Z. It is well known that

End(MZ) = Zp where Zp are the p-adic integers. (This follows from Matlis’ Duality
Theory; see [63] or [58, §3I]). Take α = idZp ∈ End−(MZ) and note that Kα =
M ⊗αM ∼= M ⊗Zp M . The module M is p-divisible, hence for all x, y ∈M ,

x⊗ y = x⊗ pn(p−n)y = α(pn)x⊗ p−ny = pnx⊗ p−ny .
(The “quotient” p−ny is not uniquely determined, but this does not matter to us.)
As pnx = 0 for sufficiently large n, it follows that x⊗ y = 0. This implies Kα = 0,
hence bα = 0 (!). Moreover, the universal property of bα implies that there is no
bilinear form 0 6= b′ : M ×M → K ′ satisfying b′(wx, y) = b′(x,wαy) for all w ∈ Zp
and x, y ∈M . In particular, α does not correspond to a right stable form on M .

Example 3.4.3. Let F be a field and let R be the commutative subring of
M3(F ) consisting of matrices of the form: a

b a
c a

 .

Let x = e21 and y = e31 (where {eij} are the standard matrix units of M3(F )). Then
{1, x, y} is an F -basis of R. Consider the elements ofM = F 3 as row vectors and let
{e1, e2, e3} be the standard F -basis of M . Then M is naturally a right R-module
(the action of R being matrix multiplication on the right) and a straightforward
computation shows that End(MR) ∼= R, i.e. all R-linear maps f : M → M are of
the form m 7→ mr for some r ∈ R. Let α = idR ∈ Aut−(R). Then we may assume
M ⊗αM = M ⊗RM . Now:

bα(e1, e1) = e1 ⊗ e1 = xe2 ⊗ e1 = e2 ⊗ xe1 = 0
bα(e2, e1) = e2 ⊗ e1 = e2 ⊗ ye3 = ye2 ⊗ e3 = 0
bα(e3, e1) = e3 ⊗ e1 = e3 ⊗ xe2 = xe3 ⊗ e2 = 0 .

Therefore, bα(M, e1) = 0, hence bα is not right injective. Moreover, let σ : M →M
be defined by σ(x, y, z) = (y, 0, 0). Then σ ∈ End(MR) and bα(x, σy) = 0 for
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all x, y ∈ M , implying bα is not right semi-stable (and hence not right stable).
Similarly, bα(e1,M) = 0 and bα is not left semi-stable. In addition, a detailed
computation would show that {ei ⊗ ej | i, j ∈ {2, 3}} is an F -basis for Kα, and
this is easily seen to imply that b is not right nor left surjective. In particular, the
correspondence (14) fails for M .

The next examples demonstrate that bα can be stable even when it is not
regular.

Example 3.4.4. Let R be a commutative ring admitting a proper nonzero ideal
AER with the following properties:

(a) AR is flat and ann(A) = 0.
(b) A2 = A.
(c) End(AR) ∼= R, i.e. all R-linear maps f : A → A are of the form a 7→ ar

for some r ∈ R.
Let α = idEnd(AR) = idR. Then we can identify A ⊗α A with A ⊗R A. Since AR
is flat, the latter is isomorphic to A2 = A via x ⊗ y 7→ xy (see [58, §4A]). This
is clearly a double R-module isomorphism, where the actions �0 and �1 on A are
the standard action of R on A. Thus, bα is similar to b : A × A → A defined
by b(x, y) = xy. Moreover, b(A, x) = 0 implies x ∈ annA = 0, hence b is right
injective, thus right stable. However, b is not right regular since idA 6= Adrb(a) for
all a ∈ A. (Indeed, if idA = Adrb(a), then 1 − a ∈ ann(A) = 0, hence 1 = a ∈ A
which contradicts our assumptions.) Similarly, b is left stable but not right regular.

It is left to provide an explicit example of R and A. Let F be a field. Then
any of the following satisfies (a), (b) and (c):

(1) R = F [xq | 0 < q ∈ Q] and A = 〈xq | 0 < q ∈ Q〉.
(2) R =

∏
ℵ0
F and A =

⊕
ℵ0
F .

In (1) any ideal of R is flat since R is a Prüfer domain, and in (2) any ideal of R is
flat since R is von-Neumann regular; see [58, §4B]. The rest of the details are left
to the reader.

We also note that in case (1), the stable generic bilinear forms on A correspond
to anti-automorphism of R as in (14) (but there is no correspondence between
regular generic forms on A and Aut−(R)).6 This follows from Theorem 3.7.19
below (take Q to be the fraction field of R.)

Example 3.4.5. Let F be a field and let T = F [xr | 0 < r ∈ R]. For any set S
of non-negative real numbers, let IS denote the ideal of S generated by {xs | s ∈ S}.
Define R = T/I[1,∞) and letM = I(0,∞)/I(1,∞). ThenM is a right R-module and it
is routine to check that End(MR) can be understood as the ringW of formal power
series

∑∞
n=1 αnx

εn with {αn}∞n=1 ⊆ F , 0 ≤ ε1 < ε2 < ε3 · · · < 1 and εn
n→∞−−−−→ 1

subject to the relation xε = 0 for all ε ≥ 1. (The element xε ∈ W acts on M like
xε + I[1,∞) ∈ R).

Let α = idW and identify Kα with M ⊗W M . We make M into a double R-
module by letting both �0 and �1 be the standard action of R on M . To simplify
the notation, let r := r + I(1,∞) ∈ M for r ∈ I(0,∞). We claim that Kα

∼= M as
double R-modules via a⊗W b 7→ ab. Indeed, as F -vector spaces:

M ⊗W M = M ⊗F M
spanF {wxε ⊗F xε

′ − xε ⊗F wxε′ |w ∈W, ε, ε′ ∈ (0, 1]}
.

6 Moreover, there are no regular bilinear forms on A. This follows from the fact that A[1] ∼=
A[0] ∼= RR � AR.
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The set {xε ⊗F xε′ | ε, ε′ ∈ (0, 1]} is an F -basis for the nominator, and the denomi-
nator is easily seen to be spanned by{
xε1 ⊗F xε2 − xε3 ⊗F xε4

∣∣∣∣∣ ε1, . . . , ε4 ∈ (0, 1],
ε1 + ε2 = ε3 + ε4

}⋃{
xε1 ⊗F xε2

∣∣∣∣∣ ε1, ε2 ∈ (0, 1],
ε1 + ε2 > 1

}
.

It is now straightforward to check that the map f : M⊗WM →M sending xε⊗Rxε′

to xε+ε′ is a well-defined F -vector space isomorphism. As f is easily seen to be a
double R-module homomorphism, we conclude that M ⊗W M ∼= M , as required.
Thus, bα is similar to b : M × M → M defined by b(a, b) = ab. Observe that
b(x,M) = b(M,x) = 0, hence b is right and left degenerate (i.e. not injective).
However, b is right stable since any w ∈ W satisfying b(a,wb) = 0 for all a, b ∈ M
satisfies wxε = 0 for all ε > 0 (take a = b = xε/2) and this implies w = 0. Therefore,
bα is right semi-stable, hence right stable. Similarly, bα is also left stable.

Now consider the ring homomorphism β : R→ R defined by β(g(x)+ I[1,∞)) =
g(x2) + I[1,∞). Then a similar argument would show that Kβ

∼= K, where K is M
equipped with double R-module structure given by:

s�0 r = β(r)s s�1 r = sr ∀s ∈M, r ∈ R ,

and bα is similar to b : M ×M → K defined by b(a, b) = β(a+ I[1,∞))b. Then b is
again right and left degenerate and right stable, but b is not left semi-stable since
b(wM,M) = 0 for w = x1/2 ∈W .

The next two examples demonstrate what might happen when M is a gener-
ator, but α ∈ End−(End(M)) is not bijective. In particular, they imply that the
injectivity of α in Corollary 3.3.11 is essential.

Example 3.4.6. Let N be any nonzero torsion Z-module and letM = Z⊕N ∈
Mod-Z. We consider the elements of M as column vectors. Then

W := EndZ(M) =
[

End(ZZ) Hom(N,Z)
Hom(Z, N) End(NZ)

]
=
[
Z 0
N End(NZ)

]
.

Note thatM is a generator and e := [ 1 0
0 0 ] ∈W is a projection fromM to ZZ. Thus,

we can identify M with

We =
[
Z 0
N 0

]
.

Define α ∈ End−(W ) by [ a 0
b c ]α = [ a 0

0 a ] where a is the image of a ∈ Z in End(NZ).
Then by Proposition 3.3.9, bα is similar to b : M ×M → eαWe = We = M defined
by b(

[
x 0
y 0
]
, [ z 0
w 0 ])) =

[
x 0
y 0
]α [ z 0

w 0 ] = [ x 0
0 x ] [ z 0

w 0 ] [ xz 0
xw 0 ]. It is now easy to see that b

is right injective but not left injective. In addition, b is not right regular. To see
this, let 0 6= f ∈ End(NZ) and note that the homomorphism

[
x 0
y 0
]
7→
[ 0 0
f(y) 0

]
∈

HomZ(M, (Kα)0) does not lie in im(Adrb).

Example 3.4.7. View N := Z[ 1
p ]/Z as a Zp-module as in Example 3.4.2. Then

End(NZp) = Zp. Define M = Zp ⊕ N ∈ Mod-Zp and consider the elements of M
as column vectors. Then

W := EndZ(M) =
[

End(Zp) Hom(N,Zp)
Hom(Zp, N) End(N)

]
=
[
Zp 0
N Zp

]
.

Let e ∈ W be as in the previous example and identify M with We. Define
α ∈ End−(W ) by

[
x 0
y z

]
= [ z 0

0 z ]. Then by Proposition 3.3.9, Kα is isomorphic
to eαWe = 0We = 0, so bα is the zero form!

Our last example demonstrates that bα(b) need not be similar to b.
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Example 3.4.8. Let 1 < n ∈ N and let F be a field. Denote by Tn the ring of
upper-triangular matrices over F . For 0 ≤ i ≤ n, letMi denote the right Tn-module
consisting of row vectors

( 0, . . . , 0, ∗, . . . , ∗︸ ︷︷ ︸
i

) ∈ Fn

with Tn acting by matrix multiplication on the right. It is not hard to verify that
dimF HomTn(Mn,Mn/Mm) = 1 for all 0 ≤ i < n. In particular, EndTn(Mn/Mm) =
F for all 0 ≤ m < n. We need the following fact which easily follows from the
Krull-Schmidt Theorem (see Theorem 1.1.1 above or [80, Th. 2.9.17]): Assume
a0 + · · ·+an = b0 + · · ·+ bn and

⊕n
i=0(Mn/Mi)ai ∼=

⊕n
i=0(Mn/Mi)bi . Then ai = bi

for all 0 ≤ i ≤ n. (The assumption a0 + · · ·+an = b0 + · · ·+ bn was needed because
Mn/Mn is the zero module.)

Make K = Mn(F ) into a double Tn-module by defining
A�0 B = BTA A�1 B = AB

for all A ∈ K and B ∈ Tn. Then b : Mn ×Mn → K defined by b(x, y) = xTy is a
bilinear form. For 0 ≤ u, v ≤ n, let Ku,v denote the matrices A = (Aij) ∈ K for
which Aij = 0 if i ≤ u or j ≤ v. For example, when n = 3, K1,2 and K2,0 consist
of matrices of the forms: 0 0 0

0 0 ∗
0 0 ∗

 ,

 0 0 0
0 0 0
∗ ∗ ∗


respectively. Then Ku,v is a sub-double-Tn-module of K, hence K/Ku,v is a double
Tn-module in its own right and bu,v : Mn ×Mn → K/Ku,v defined by b(x, y) =
xTy +Ku,v is a bilinear form.

We claim that bu,v is right regular when u > 0 and (left and right) stable if
(u, v) 6= (0, 0). Indeed, it is easy to check that bu,v is right injective if u > 0.
Moreover, in this case (K/Ku,v)0 ∼= Mv

n ⊕ (Mn/Mn−u)n−v as right Tn-modules
(the summands are the columns of K/Ku,v = Mn(F )/Ku,v) and hence

dimF HomTnM
[1] = dimF HomTn(Mn, (K/Ku,v)0)

= v dimF HomTn(Mn,Mn) + (n− v) dimF HomTn(Mn,Mn/Mn−u) = n .

Therefore, dimension considerations imply Adrbu,v is bijective, i.e. bu,v is right reg-
ular. To see that bu,v is right stable when (u, v) 6= 0, observe that ker Adrbu,v
is always contained in Mn−1 (which a unique maximal submodule of Mn). As
HomTn(Mn,Mn−1) = 0, it follows that Hom(Mn, ker Adrbu,v ) = 0, hence bu,v is right
semi-stable. Now observe that EndTn(Mn) ∼= F (i.e. all endomorphisms of Mn are
given by x 7→ xa for some a ∈ F ) and bu,v(ax, y) = bu,v(x, ay) for all x, y ∈ Mn

and a ∈ F . Thus, bu,v is right stable with corresponding anti-endomorphism idF .
The form bu,v is left stable by symmetry.

We have thus shown that the forms {bu,v | 0 ≤ u, v ≤ n, (u, v) 6= (0, 0)} have the
same generization and we now claim that this generization is similar to b. Indeed, let
α = idF ∈ End−(F ). Then dimF Kα = dimF Mn ⊗αMn = dimF Mn ⊗F Mn = n2.
The universality of bα implies that there is a double Tn-module homomorphism
f : Kα → K, that must be onto since im(b) = K.7 Since f is clearly F -linear and
dimF K = n2, dimension considerations imply that f is an isomorphism. Thus, b
is the generization of all the forms {bu,v | 0 ≤ u, v ≤ n, (u, v) 6= (0, 0)}.

We now exhibit an interesting phenomena — the forms
{bu,v | 0 ≤ u, v < n, (u, v) 6= (0, 0)} ∪ {bn,n}

7 Recall that im(b) was defined to be the additive group spanned by {b(x, y) |x, y ∈Mn}.
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share the same generization (up to similarity), but they are pairwise non-similar.
The reason is that (K/Ku,v)0 � (K/Ku′,v′)0 for distinct pairs (u, v), (u′, v′) ∈
{0, . . . , n−1}2∪{(n, n)}\{(0, 0)}, so there cannot be an isomorphism from Ku,v to
Ku′,v′ . Indeed, (K/Ku,v)0 ∼= Mv

n ⊕ (Mn/Mn−u)n−v and Mv
n ⊕ (Mn/Mn−u)n−v ∼=

Mv′

n ⊕ (Mn/Mn−u′)n−v
′ implies (u, v) = (u′, v′) by the fact stated above. In par-

ticular, the forms {bu,v | (u, v) ∈ {1, . . . , n− 1}2} are non-generic regular forms.
We also point out that if (u, v), (u′, v′) ∈ {0, . . . , n− 1}2 \ {(0, 0)} are distinct

and satisfy uv = u′v′, then any double Tn-module homomorphism from K/Ku,v to
K/Ku′,v′ is not injective nor surjective. For otherwise, it would have to be bijective
since dimF K/Ku,v = dimF K/Ku′,v′ . This shows that the problem of defining weak
similarities, posed in Remark 3.1.9, is far from trivial. In particular, one cannot
expect weak similarities to merely consist of morphisms between double modules.
In addition, we also note that K/Ku,v does not have an anti-isomorphism when
u 6= 0, although α(bu,v) = idF is an involution. This is true because

(K/Ku,v)1 ∼= Mu
n ⊕ (Mn/Mn−v)n−u �Mv

n ⊕ (Mn/Mn−u)n−v ∼= (K/Ku,v)0

when u 6= v (and an anti-isomorphism on K/Ku,v clearly induces an isomorphism
(K/Ku,v)1 ∼= (K/Ku,v)0).

To finish, observe that the form b0,v (v > 0) is right degenerate and can thus be
classified as “badly behaved”. However, we have seen that its generization is regular,
which can be considered as “well behaved”. This demonstrates how generization
can make badly behaved forms into well behaved forms.

We could neither find nor contradict the existence of:
• An anti-automorphism α such that bα is right regular but not left regular.
(In this case α2 cannot be inner, as implied by Corollary 3.2.3.)

An example of a f.g. torsion-free module M over a noetherian integral domain and
α ∈ Aut−(End(M)) such that bα is not regular (but necessarily injective, as we shall
see at the end of section 3.6), was found after the submission of the dissertation
and can be found in [39].

3.5. Conditions That Imply bα Is Right Regular

Let R, M and W be as in section 3.1. In this section we present conditions
on R, M , W and α that ensure bα is right regular, as well as other supplementary
results.

Assume momentarily that W and R are arbitrary rings and let Mod-(W,R)
denote the category of (W,R)-bimodules. Let A ∈ Mod-W , B ∈ Mod-R and C ∈
Mod-(W,R). Then HomR(B,C) is a right W -module w.r.t. the action (fw)m =
f(wm) (where f ∈ HomR(B,C), w ∈W and m ∈M), and there is a natural map

Γ = ΓA,B,C : A⊗W HomR(B,C)→ HomR(B,A⊗W C)
given by (Γ(a⊗ f))b = a⊗ f(b) for all f ∈ HomR(B,C), a ∈ A and b ∈ B.

Now assume M ∈ Mod-R, W = End(MR) and α ∈ End−(W ). Then M can be
viewed as a (W,R)-bimodule. Therefore, we have a map

Γ = ΓMα,M,M : Mα ⊗W HomR(M,M)→ HomR(M,Mα ⊗W M) .
The following lemma shows that up to certain identifications, Adrbα is Γ.

Lemma 3.5.1. In the previous notation, there is a commutative diagram

Mα ⊗W End(MR,MR) Γ //

ψ

��

HomR(M,Mα ⊗W M)

ϕ

��
M

Adrbα // M [1]
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where M [1] = HomR(M, (Kα)0) and ψ, ϕ are bijective.

Proof. Let ψ be the identity map Mα → M (recall that Mα = M as sets)
composed on the standard isomorphism

Mα ⊗W End(MR,MR) = Mα ⊗W W ∼= Mα .

Then ψ is given by ψ(m ⊗W w) = m �α w = wαm and its inverse is m 7→ m ⊗ 1.
The map ϕ is defined by ϕ(f) = δ ◦f where δ is the isomorphismMα⊗WM → Kα

given by x ⊗W y 7→ y ⊗α x. The diagram commutes since for all x, y ∈ M and
w ∈W :

(Adrbα(ψ(x⊗W w)))y = (Adrbα(wαx))y = bα(y, wαx) = y ⊗α wαx

= wy ⊗α x = δ(x⊗W wy) = δ((Γ(x⊗W w))y) = (ϕ(Γ(x⊗W w)))y . �

It is now of interest to find sufficient conditions for Γ to be bijective (injective,
surjective). This is done in the following lemma.

Lemma 3.5.2. Let A ∈ Mod-W , B ∈ R-Mod and C ∈ Mod-(W,R). Then:
(i) If one of the following holds:

(a) A is finite projective.
(b) A is projective and B is f.g.
(c) B is finite projective.
(d) B is projective and A is f.p.
Then Γ is bijective.

(ii) If A is projective, then Γ is injective.
(iii) If B is projective and A is f.g., then Γ is surjective.
(iv) If there is an exact sequence A1 → A0 → A→ 0 and B is projective, then:

(a) ΓA0,B,C is surjective =⇒ ΓA,B,C is surjective.
(b) ΓA0,B,C is bijective and ΓA1,B,C is surjective =⇒ ΓA,B,C is bijective.

(v) If there is an exact sequence 0→ A→ A0 → A1 and HomR(B,C) is flat
(in W -Mod), then:
(a) ΓA0,B,C is injective =⇒ ΓA,B,C is injective.
(b) ΓA0,B,C is bijective, ΓA1,B,C is injective and WC is flat =⇒ ΓA,B,C

is bijective.
(vi) If there is an exact sequence B1 → B0 → B → 0 and A is flat, then:

(a) ΓA,B0,C is injective =⇒ ΓA,B,C is injective.
(b) ΓA,B0,C is bijective and ΓA,B1,C is injective =⇒ ΓA,B,C is bijective.

In particular, this implies that:
(vii) If A embeds in a free module and HomR(B,C) is flat, then Γ is injective.
(viii) If A embeds in a flat module, B is f.g. and HomR(B,C) is flat, then Γ is

injective.
(ix) If A is flat and B is f.p., then Γ is bijective.

Proof. We prove (i), (ii) and (iii) together: Since Γ is additive, we may replace
projective with free and finite projective with f.g. and free. Assume A =

⊕
i∈IW ,

then Γ becomes the standard map
⊕

i∈I HomR(B,C) → HomR(B,
⊕

i∈I C). This
map is clearly injective and provided I is finite, it is bijective. In addition, it is
also easy to verify it is surjective if B is f.g. Now assume B =

⊕
i∈I R. Then Γ

becomes the standard map ε : A⊗
∏
i∈I C →

∏
i∈I(A⊗ C), which is bijective if I

is finite. In addition, by [58, §4F], ε is surjective if A is f.g. and bijective if A is
finitely presented.
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(iv) We have a commutative diagram with exact rows:

A1 ⊗HomR(B,C) //

ΓA1,B,C

��

A0 ⊗HomR(B,C) //

ΓA0,B,C

��

A⊗HomR(B,C)

ΓA,B,C
��

// 0

HomR(B,A1 ⊗ C) // HomR(B,A0 ⊗ C) // HomR(B,A⊗ C) // 0

(The bottom row is exact because B is projective.) Then (a) and (b) now follow
from the Four Lemma and the Five Lemma, respectively.

(v) and (vi) are very similar to (iv) and are left to the reader.
(vii) Let 0→ A→ A0 → A1 be an exact sequence with A0 free. Then ΓA0,B,C

is injective by (ii), hence ΓA,B,C is injective by (v), since HomR(B,C) is flat.
(viii) Let 0 → A → A0 → A1 be an exact sequence with A0 flat and let

B1 → B0 → B → 0 be a projective resolution with B0 finitely generated. Then
ΓA0,B0,C is bijective by (i)-(c), hence ΓA0,B,C is injective (by (vi), since A0 is flat),
so ΓA,B,C is injective (by (v), since HomR(B,C) is flat).

(ix) Let B1 → B0 → B → 0 be an exact sequence with B1 and B0 being
finite projective. Then ΓA,B1,C and ΓA,B0,C are bijective by (i)-(c), hence ΓA,B,C
is bijective (by (vi), since A is flat). �

Corollary 3.5.3. Let M ∈ Mod-R, W = End(MR) and α ∈ End−(W ).
Then:

(i) If MR or Mα are finite projective, then bα is right regular.
(ii) If MR is projective and Mα is f.g., then bα is right surjective.
(iii) If Mα embeds in a free right W -module, then bα is right injective.
(iv) If Mα embeds in flat right W -module and MR is f.g., then bα is right

injective.
(v) If Mα is flat and MR is f.p., then bα is right regular.

Proof. By Lemma 3.5.1, that bα is bijective (injective, surjective) is equivalent
to ΓMα,M,M being bijective (injective, surjective). Observe that HomR(MR,WMR) ∼=
WW and hence HomR(M,M) is flat. Parts (i)-(v) of the corollary now follow from
parts (i), (iii), (vii), (viii) and (ix) of Lemma 3.5.2, respectively. �

Remark 3.5.4. Let α be an anti-automorphism of W , then Mα is (resp.: em-
beds in) a free/projective W -module if and only if M is. Since any flat module is a
direct limit of f.g. free modules (see [60]) and twisting commutes with direct limits,
the previous assertion holds upon replacing “free” with “flat”.

We now get the following remarkable result.

Theorem 3.5.5. If MR is finite projective then there exists a one-to-one corre-
spondence between Iso(Bilgen(M)) and End−(W ) as in (14). Moreover, all generic
forms on M are right regular.8

Proof. This is clear from Corollary 3.5.3(i). �

In addition, we now have another proof for the second part of Corollary 3.3.11.

Theorem 3.5.6. If MR is a generator and α is an anti-automorphism of W ,
then bα is regular. In particular, there is a one-to-one correspondence between
regular generic forms on M , considered up to similarity, and anti-automorphisms
of W .

8 However, generic forms on M need not be left regular! Just take α to be non-bijective.
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Proof. It is well known that WM is finite projective (see [80, Exer. 4.1.14];
this follows from the discussion before Proposition 3.3.9). Thus, Mα

W is finite
projective, so we are done by Corollary 3.5.3(i) (bα is left regular by symmetry, as
explained at the end of section 3.2). �

The following example includes additional cases when bα is right regular or
right injective for all α ∈ Aut−(W ).

Example 3.5.7. (i) If W is semisimple, then any W -module is projective. In
particular, Mα is projective, hence by Corollary 3.5.3(iii), bα is right injective for
all α ∈ End−(M). For example, it is well known that W is semisimple if M is
semisimple and f.g. (hence bα is actually right regular in this case). In addition,
by [58, Thms. 13.1, 13.3], W is semisimple if M is quasi-injective9 (abbrev.: QI)
non-singular10 of finite uniform dimension.11

(ii) More generally, if W is von-Neumann regular,12 then any W -module is flat
([58, Th. 4.21]) and in particular Mα. It follows that if MR is f.g. (f.p.), then bα is
right injective (regular). For example, W = EndR(M) is von Neumann regular if
M is QI and non-singular by [58, Th. 13.1].

(iii) A ring R is called right pseudo-Frobenius (abbrev.: PF) if any faithful right
R-module is a generator (this is equivalent to R being right self-injective, semilocal
and soc(RR) ⊆e R; see [58, Th. 19.25]). Hence, provided M ∈ Mod-R is faithful,
we can apply Theorem 3.5.6 to assert that bα is regular for all α ∈ Aut−(W ). Any
semisimple ring or a local artinian ring with a simple right socle is a two-sided PF.

(iv) If R is a Dedekind domain and MR is f.g. then MR is generator over
R/ ann(M). This follows from classification of f.g. modules over Dedekind domains
(e.g. see [72, Th. 4.14]). Therefore, as in (iii), bα is regular for all α ∈ Aut−(W ).

3.6. Conditions That Imply bα Is Right Injective – Commutative
Localization

Let M , R and W = EndR(M) be as in the previous section. In the following
two sections, we will provide conditions on R, M , W and α ∈ End−(W ) ensuring
that bα is right injective.

The results of both sections will be based on the following lemma.

Lemma 3.6.1. Let M,R,W and α be as above. Assume that there are rings
R′ ⊇ R, W ′ ⊇W and a (W ′, R′)-bimodule M ′ containing M as a (W,R)-bimodule
such that W ′ = EndR′(M ′). Furthermore, assume α extends to an anti-endomor-
phism of W ′, denoted α′. Then bα′ is right injective implies is bα right injective.

9 A module MR is QI if any homomorphism from a submodule of M to M can be extended
to an endomorphism of M . Any injective module is QI, but not vice versa. For example, Z/pn ∈
Mod-Z is QI but not injective for any prime p ∈ N. See [58, §6G]

10 A moduleMR is called non-singular if annR(m) is not essential in R for allm. For example,
the non-singular Z-modules are precisely the torsion free modules. See [58, §7].

11 The uniform dimension of a module MR, denoted u. dimMR is defined to be the largest
n s.t. M contains a direct sum of n non-zero modules. For example, any module containing an
essential noetherian submodule has a finite uniform dimension. See [58, §6].

12 A ring W is von-Neumann regular if for all x ∈W there exists y ∈W such that xyx = x.
The endomorphism ring of a semisimple module is always von-Neumann regular.
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Proof. Since M is a (W,R)-submodule of M ′, Mα is a (right) W -submodule
of (M ′)α′ . Therefore, we have a commutative square:

Mα ⊗W HomR(M,WM) //

Γ
��

(M ′)α′ ⊗W ′ HomR′(M ′,W ′M ′)

Γ
��

HomR(M,Mα ⊗W M) // HomR′(M ′, (M ′)α
′ ⊗W ′ M ′)

Since the top arrow is injective (it is just the inclusion Mα → (M ′)α′), that
Γ(M ′)α′ ,M ′,M ′ is injective implies ΓMα,M,M is injective, so we are through by
Lemma 3.5.1. �

Our strategy in this section will be to take R′ of Lemma 3.6.1 to be a localization
of R. For that purpose, we shall now briefly recall the basic properties of (classical
non-commutative) localization (also known as Ore localization). For a detailed
discussion, see [80, §3.1] or [58, §10].

Let S ⊆ R be a multiplicative monoid. A classical right fractions ring of R
(w.r.t. S) is a ring R′ equipped with a homomorphism ϕ : R→ R′ such that

(1) ϕ(S) ⊆ (R′)×.
(2) R′ = {ϕ(r)ϕ(s)−1 | r ∈ R, s ∈ S}.
(3) kerϕ = {r ∈ R | ∃s ∈ S : rs = 0}.

We will usually omit ϕ from the notation, writing rs−1 instead of ϕ(r)ϕ(s)−1.
The ring R′ exists precisely when S is a right denominator set, namely (1) for all
s ∈ S and r ∈ R, sR ∩ rS 6= 0 and (2) if sr = 0 for some s ∈ S and r ∈ R,
then there exists s′ ∈ S such that rs′ = 0. (For example, if S ⊆ Cent(R), then
S is a right denominator set.) In this case, R′ is unique up to isomorphism and
we write RS−1 := R′. Furthermore, there is an exact functor M 7→ MS−1 from
Mod-R to Mod-RS−1 and a natural R-module homomorphism M → MS−1 with
kernel {m ∈ M | ∃s ∈ S : ms = 0}. When this kernel is trivial, M is said to be
S-torsion-free. We will not bring here the construction of RS−1 and MS−1, but
instead record the following two useful facts:

• If x1, . . . , xn ∈MS−1, then there exists m1, . . . ,mn ∈M and s ∈ S such
that xi = mis

−1 for all i.
• If m1,m2 ∈ M and s1, s2 ∈ S, then m1s

−1
1 = m2s

−1
2 (in MS−1) if and

only if there are a1, a2 ∈ R such that m1a1 = m2a2 and s1a1 = s2a2 ∈ S.
(Intuitively, this means m1s

−1
1 = (m1a1)(s1a1)−1 = (m2a2)(s2a2)−1 =

m2s
−1
2 .)

Note that the standard map R → RS−1 is injective if and only if S consists of
regular elements (i.e. non-zero-divisors). If RS−1 exists when S is the set of the
all regular elements, then we say R is right Ore and call RS−1 the classical right
fractions ring of R, which is denoted by Qrcl(R).

When S is a left and right denominator set of R, then rings RS−1 and S−1R
coincide. We then call S a denominator set. In the special case where S consists
of all regular elements in R, we get that Qrcl(R) coincides with Q`cl(R) (i.e. the
classical left factions ring of R), provided both exist.

Our first step will be to establish that under mild assumptions, anti-endomor-
phisms of R extends to RS−1.

Proposition 3.6.2. Let S be a right denominator set of a ring W . Assume
α ∈ End−(W ) is such that Sα ⊆ S. Then there is α′ ∈ End−(WS−1) extending
α. Moreover, if α is bijective and Sα = S, then α′ is bijective (in this case S is
necessarily a two-sided denominator set).
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Proof. Define α′ : W ′ → W ′ by α′(ws−1) = (sα)−1wα. We need to check
that α′ is a well-defined anti-automorphism of WS−1.

To see that α′ is well-defined, assume w1s
−1
1 = w2s

−1
2 . Then there are a1, a2 ∈

W such that s1a1 = s2a2 ∈ S and w1a1 = w2a2. In addition, there are v ∈ W
and t ∈ S such that (sα1 )−1wα1 = vt−1, implying wα1 t = sα1 v. Therefore, (s1a1)αv =
aα1 s

α
1 v = aα1w

α
1 t = (w1a1)αt, which means (sα1 )−1wα1 = vt−1 = ((a1s1)α)−1(a1w1)

(recall that s1a1 ∈ S and Sα ⊆ S). Similarly (sα2 )−1w2 = ((a2s2)α)−1(a2w2), hence
(w1s

−1
1 )α = (w2s

−1
2 )α (becase s1a1 = s2a2 and w1a1 = w2a2).

Next, we need to verify that α is an anti-endomorphism of W ′. That 1α = 1
is clear. Let x, y ∈ W . Then there is s ∈ S and w1, w2 ∈ W such that x = w1s

−1

and y = w2s
−1. It is now easy to see that (x + y)α = xα + yα. In addition, there

exist v ∈ W and t ∈ S such that s−1w2 = vt−1 =⇒ w2t = sv =⇒ tαwα2 = vαsα

=⇒ wα2 (sα)−1 = (tα)−1vα. We now get:
(xy)α = (w1s

−1w2s
−1)α = (w1v(st)−1)α = ((st)α)−1(w1v)α

= (sα)−1(tα)−1vαwα1 = (sα)−1wα2 (sα)−1wα1 = yαxα ,

so α reverses order of multiplication.
If α is bijective and Sα = S, then we can extend α−1 to WS−1 as we did with

α. It is straightforward to check that this extension is the inverse of α′. �

Keeping our general assumptions on R, M and W , assume S is a right denom-
inator set in R and M is S-torsion free. Then any endomorphism of M naturally
extends to an RS−1-endomorphism of M ′ := MS−1, hence we can view W as
a subring of W ′ := EndRS−1(M ′) (the map W → W ′ has trivial kernel because
M ↪→MS−1). The following proposition is well known.

Proposition 3.6.3. In the previous notation, if S is central in R and M is
f.g., then W ′ = WŜ−1 where Ŝ = {m 7→ ms | s ∈ S}.

Proof. For all s ∈ S, write ŝ = [m 7→ ms] ∈ W . Then ŝ is clearly invertible
in W ′ (its inverse is the map x 7→ xs−1 ∈ W ′). Now let {x1, . . . , xt} be a set of
generators for M and let w′ ∈W ′. Then there are m1, . . . ,mt ∈M and s ∈ S such
that w′xi = mis

−1 for all i. Therefore, w′ŝ(M) ⊆M , implying w′ŝ ∈ W . It is left
to verify that if ŝw′ = 0 for some s ∈ S and w′ ∈ W , then w′t̂ = 0 for some t ∈ S.
However, this is trivial because Ŝ consists of regular elements. (Indeed, W ↪→ W ′

and Ŝ ⊆ (W ′)×.) �

Corollary 3.6.4. Under the assumptions of Proposition 3.6.3, if α ∈ End−(W )
is such that (Ŝ)α ⊆ Ŝ, then α extends to an anti-endomorphism α′ : W ′ → W ′.
Furthermore, if bα′ is right injective (e.g., if MS−1 is finite projective over RS−1),
then so is bα.

Proof. This follows from Propositions 3.6.3, 3.6.2 and Lemma 3.6.1. �

The condition (Ŝ)α ⊆ Ŝ of the last corollary is usually very limiting. Our next
results concern special cases in which it can be dropped.

Corollary 3.6.5. Keep the assumptions of Proposition 3.6.3 and assume all
regular central elements of W ′ are invertible (e.g. if W ′ is artinian, local or simple).
Then any α ∈ Aut−(W ) extends to an anti-automorphism α′ : W ′ →W ′ and if bα′
is right injective, then so is bα.

Proof. By Proposition 3.6.3, W ′ is a localization of W w.r.t. some right de-
nominator set consisting of central regular elements. Therefore, the assumptions
on W ′ imply it is also the localization of R w.r.t. the set T of all central regular
elements in W . Since α is bijective, α(T ) = T and hence Proposition 3.6.2 implies
that α extends to some α′ ∈ Aut−(W ′). We are done by Lemma 3.6.1. �
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Lemma 3.6.6. Let M be a faithfully balanced R-module and let W = End(MR).
Then Cent(R) ∼= Cent(W ).

Proof. Let r ∈ Cent(R). Then the map wr : m 7→ mr from M to itself
clearly lies in Cent(W ). Similarly, for all w ∈ W , the map rw : m 7→ wm lies in
Cent(R) (since MR is faithfully balanced). For all m ∈ M and r ∈ Cent(R) we
have mr = wrm = mrwr , hence r = rwr . Similarly, w = wrw for all w ∈ W . The
map r 7→ wr : Cent(R) → Cent(W ) is easily seen to be a ring homomorphism, so
we are through. �

Corollary 3.6.7. Keep the assumptions of Proposition 3.6.3 and assume that:
(1) S is the set of all regular elements in Cent(R). (Caution: This need not

be the set of central regular elements in R.)
(2) MS−1 is a balanced RS−1-module (e.g. if MS−1 is an RS−1-generator).

Then the assertions of Corollary 3.6.5 apply.

Proof. All regular elements of Cent(RS−1) are invertible, so by the previous
lemma all regular elements of Cent(W ′) are invertible. Since W ′ = WŜ−1 and Ŝ
is a set of regular central elements of W , it follows that W ′ = WT−1 where T
is the set of all regular elements in Cent(W ). The set T is preserved under any
anti-automorphism of W , so we can argue as in Corollary 3.6.5. �

We conclude some special cases of the previous corollaries in the following
theorem.

Theorem 3.6.8. Let M ∈ Mod-R be f.g., let W = End(MR) and let S be a
central multiplicative submonoid of R such that M is S-torsion-free. Assume that
at least one of the following holds:

(i) All central regular elements of End(MS−1) are invertible and MS−1 is
either finite projective or a generator in Mod-RS−1.

(ii) S consists of all regular elements of Cent(R) and MS−1 is a generator.
Then for any α ∈ Aut−W , bα is injective. In particular, there is a one-to-one
correspondence between stable generic forms on M , considered up to similarity,
and anti-automorphisms of W . Furthermore, any generic form on M is injective.

Proof. Let W ′ = EndRS−1(MS−1). Then Corollaries 3.6.5 and 3.6.7 imply
that any α ∈ Aut−(W ) extends to an α′ ∈ Aut−W ′ (note that when (ii) holds,
MS−1

RS−1 is faithfully balanced because it is a generator). SinceMS−1 is a generator
or finite projective as an RS−1-module, bα′ is right regular (Theorems 3.5.5 and
3.5.6). Therefore, bα is right injective and by symmetry, it is also left injective. �

Example 3.6.9. (i) Let C be a integral domain with fractions field F and
let A be a f.d. F -algebra. A C-order in A is a C-subalgebra R ⊆ A such that
FR = A. Such orders are extensively studied in the literature, especially when
A is semisimple (e.g. see the classical works [72], [92] and related papers). If R
is a C-order in A, then clearly A = RS−1 where S := C \ {0}. Furthermore, for
any f.g. S-torsion-free right R-module M , the ring W ′ := EndA(MS−1) is a f.d.
F -algebra, hence all regular elements inW ′ are invertible. Therefore, that ifMS−1

is projective or a generator as an A-module, then the assertions of Theorem 3.6.8
apply. Also note that when A is semisimple, any f.g. A-module is finite projective
and when A is quasi-Frobenius (e.g. a finite group algebra), any faithful A-module
is a generator.

(ii) Generalizing (i), let R be a ring and let S be a central multiplicative sub-
monoid such that RS−1 is π-regular (e.g. a semiprimary ring; see section 1.2). Let
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M be a f.p. S-torsion-free R-module. Then MS−1 is also f.p., hence by Corol-
lary 1.7.3, W ′ := End(MS−1) is π-regular. By [58, Ex. 11.6(2)], this implies all
regular elements in W ′ are invertible, so we can apply Theorem 3.6.8 if MS−1 is
finite projective or a generator.

(iii) Let C and F be as in (i), let R be any torsion-free C-algebra and let
A = R⊗C F = R(C \ {0})−1. Write S = C \ {0}. Then the endomorphism ring of
any R-module is a C-algebra. If α is anti-endomorphism of End(M) that respects
the C-algebra structure, then α(Ŝ) ⊆ Ŝ. Thus, we can apply Corollary 3.6.4.

Remark 3.6.10. We could not find R, M , W and α as in Theorem 3.6.8 such
that bα is not regular. However, we believe such examples should exist.

The question of what happens when we localize R in a non-central set is more
difficult and will be dealt in a more general context in the next section. Roughly
speaking, we will show that the assertions of Theorem 3.6.8 hold when S is any
two-sided denominator set andMS−1 is a torsionless RS−1-generator (the latter is
always satisfied when RS−1 is a right pseudo-Frobenius ring). However, when R is
an Ore domain, we can provide an answer without introducing additional notation,
and we shall now tend to this.

A right Ore domain is a domain that is right Ore (i.e. Qrcl(R) exists). It turns
out that a domain R is right Ore ⇐⇒ u.dimRR < ∞ ⇐⇒ u.dimRR = 1 and
that in this case Qrcl(R) is division ring. Examples of right Ore domains include
right noetherian domains, PI domains and twisted polynomial rings over right Ore
domains; see [58, §10B] for more details.

Proposition 3.6.11. Let R be a (two-sided) Ore domain (e.g. a noetherian
or a PI domain), let S = R \ {0} and let M be a f.g. S-torsion-free R-module.
Then EndRS−1(MS−1) = Qrcl(EndR(M)) = Q`cl(EndR(M)) and bα is injective for
all α ∈ Aut−(End(RS−1)).

Proof. Let D = Qrcl(R) = Q`cl(R). Then D is a division ring, hence V :=
MS−1 is a f.d. right D-vector space. Let t = dimVD.

We first claim that for any f.g. module NR ≤ VR there is a D-basis {e1, . . . , et}
such that N ⊆ e1R + · · · + etR. Indeed, let x1, . . . , xs ∈ N be a set of generators
for N and let {e1, . . . , et} be an arbitrary D-basis of V . Then we can write xj =∑t
i=1 eidij with dij ∈ D. Since R is left Ore, there is s ∈ S and rij-s in R such that

dij = s−1rij . Therefore, xj =
∑t
i=1(eis−1)rij ∈

∑
i eis

−1R, so {e1s
−1, . . . , ets

−1}
is the required basis.

For the rest of the proof, let {m1, · · · ,ms} be a set of generators of M . Clearly
s ≥ t and w.l.o.g. we may assume {m1, . . . ,mt} is a D-basis of V . In addition,
let W = End(M), W ′ = End(MS−1) and let T be the set of regular elements in
W . We will consider elements of W as elements of W ′. Observe that under this
identification, an element w ∈ W ′ lies in W if and only w(M) ⊆ M . In order to
show W ′ = Qrcl(W ) = Q`cl(W ), we need to prove T ⊆ (W ′)× and

W ′ = {wu−1 |w ∈W,u ∈ T} = {u−1w |w ∈W,u ∈ T} .
Let u ∈W \(W ′)×. Then there is 0 6= x ∈ V such that u(x). Since V = MS−1,

there is s ∈ S such that 0 6= xs ∈ M . Let {e1, . . . , et} be a D-basis such that
M ⊆

∑
eiR and let w : V → V be defined by w(ei) = xs. Then w(M) ⊆M , hence

w ∈W . Since clearly uw = 0, it follows that u /∈ T . Therefore, T ⊆ (W ′)×
Let w ∈ W ′. Then w(M) + M is f.g., hence there is a D-basis {e1, . . . , et}

such that w(M) + M ⊆
∑
eiR. Define u : V → V to be the unique D-linear map

satisfying u(ei) = mi. Then u lies in W (because u(M) ⊆ M) and it is clearly
invertible in W ′, thus u ∈ T . Furthermore, uw(M) ⊆ M , hence uw ∈ W . It now
follows that W ′ = {u−1w |w ∈W,u ∈ T}.
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Now observe that w−1(M) ⊆e VR (because M ⊆e VR), and since the intersec-
tion of essential modules is also essential, N := w−1(M) ∩M ⊆e VR. This implies
u.dimNR = u.dimVR = u.dimVD = t (see [58, Cr. 6.10(2), Exer. 10.18(5)]).
Therefore, there are 0 6= e1, . . . , et ∈ N such that e1R ⊕ · · · ⊕ etR ⊆ N . Note
that {e1, . . . , et} must be a D-basis. Now let {e′1, . . . , e′t} be a D-basis such that
M ⊆

∑
e′iR and let u : V → V be defined by u(

∑
e′idi) =

∑
eidi. Then u(M) ⊆M

and u ∈ (W ′)×, hence u ∈ T . Moreover, wu(M) ⊆ w(N) ⊆M , so wu ∈ W . Thus,
W ′ = {wu−1 |w ∈W,u ∈ T} and we conclude that W ′ = Qrcl(W ) = Q`cl(W ).

To see the final assertion of the proposition, let α ∈ Aut−(W ). Then α(T ) = T ,
so by Proposition 3.6.2, α extends to an anti-endomorphism α′ ∈ End−(W ′). By
Theorem 3.5.5, bα′ is right regular by (since VD is finite projective), hence by Lemma
3.6.1, bα is right injective. By symmetry, bα is also left injective. �

3.7. Conditions That Imply bα Is Right Injective – General Case

This section generalizes the results of the previous section to non-commutative
localizations and, more generally, to rational extensions. Reading this section re-
quires basic knowledge about rational extensions, maximal rings of quotients and
pseudo-Frobenius rings (abbrev.: PF rings). Non-experts are advised to read the
preliminaries chapter before continuing, if they have not done so yet. Alternatively,
one can skip this section without loss of continuity.

3.7.1. Preliminaries. We begin by recalling some facts about rational exten-
sions of rings and modules. For an extensive discussion and definitions we refer to
[80] and [58]. Our notation and terminology mostly follow the latter reference.

Let M ∈ Mod-R and N ≤ M . Throughout, N ⊆d M (N ⊆e M) means that
N is dense13 (essential14) in M , or equivalently, that M is a rational (essential)
extension of N . For all x ∈M , x−1N denotes the right ideal {r ∈ R : xr ∈ N}. It
is well known that N ⊆d M (N ⊆e M) implies x−1N ⊆d RR (x−1N ⊆e RR). We
define the following submodules of M :
Z(M) = {x ∈M : annR x ⊆e RR}, T (M) = {x ∈M : annR x ⊆d RR} .

The module Z(M) is called the singular radical of M and M (resp. R) is called
(right) nonsingular if Z(M) = 0 (resp. Z(RR) = 0).15 The rational (injective) hull
of M will be denoted by Ẽ(M) (E(M)).

A ring Q containing R will be called a right quotient ring of R if RR ⊆d QR.16

If Q is both a left and right quotient ring of R, then Q will be called a quotient
ring of R. We let Qrmax(R) (Q`max(R)) denote the maximal right (left) quotient ring
of R. Recall that this ring is maximal in the sense that if Q′ is any other right
quotient ring of R, then there exists a unique embedding of Q′ in Qrmax(R) that
fixes R.

We will need the following facts to proceed:

Proposition 3.7.1. Let M,N,K ∈ Mod-R.
(i) If f ∈ Hom(N,M), then f(Z(N)) ⊆ Z(M) and f(T (N)) ⊆ f(T (M)).
(ii) If N ⊆e M and T (N) = 0 (Z(N) = 0), then T (M) = 0, (Z(M) = 0)

13 Recall that N is dense in M if for all x, y ∈ M with x 6= 0 there exists r ∈ R such that
xr 6= 0 and yr ∈ N . This is equivalent to Hom(N ′/N,M) = 0 for all N ⊆ N ′ ⊆M .

14 The names “big” and “large” are also used in the literature.
15 Other texts use Sing(M) instead of Z(M).
16 The term “quotient ring” usually refers to a quotient of the ring by an ideal (i.e. an

epimorphic image of the ring) and thus many authors prefer to use “ring of quotients” instead of
“quotient ring” (which usually leads to cumbersome phrasing). However, as we do not consider
quotients of rings by ideals anywhere in this section, there is no risk of confusion.
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(iii) If N ⊆d M and T (K) = 0, then any homomorphism f ∈ Hom(N,K)
extends uniquely to f ′ ∈ Hom(M, Ẽ(K)). In particular, if f(N) = 0, then
f ′ = 0.

(iv) Let Q be a right quotient ring of R and assume M and N have a right Q-
module structure extending their right R-module structure. Then provided
T (MR) = 0, HomQ(N,M) = HomR(N,M). Moreover, the Q-module
structure on M is the only one extending its R-module structure.

(v) Let Q, N , M be as in (iv) and assume T (NR) = 0. Then NQ ⊆d MQ if
and only if NR ⊆d MR.

(vi) If Z(M) = 0 and N,K ⊆ M , then Ẽ(M) = E(M) and N ⊆d K if and
only if N ⊆e K. In particular, if R is right nonsingular, then T (M) =
Z(M) for all M .

(vii) If M embeds in a free product
∏
i∈I RR, then T (M) = 0.

(viii) Let Q be a right quotient ring of R and let Q′ be a right quotient ring of Q.
Then Q′ is a right quotient ring of R. In particular, Qrmax(Qrmax(R)) =
Qrmax(R).

Proof. (i) This is immediate since annR(fx) ⊇ annR x for all x ∈ N .
(ii) We have 0 = T (N) = N ∩ T (M). Since N ⊆e M , this implies T (M) = 0.

The argument remains valid upon replacing T with Z.
(iii) Let f ′ and f ′′ be two extensions of f . Then there is a nonzero homo-

morphism g : M/N → K given by g(x + N) = f ′(x) − f ′′(x). For all x ∈ M ,
annR(x + N) = x−1N ⊆d RR, hence x + M ∈ T (M/N) and by (i) g(x + M) ∈
T (K) = 0. As this holds for all x ∈M , g = 0 and f ′ = f ′′.

To see that f exists, we may assume K = Ẽ(K). By [58, Th. 8.24], it is
now enough to prove that Hom(M/N,E(K)) = 0. Indeed, the previous argument
implies T (M/N) = M/N and (ii) implies T (E(K)) = 0, so we are done by (i).

(vi) Let f ∈ HomR(N,M). We need to prove f ∈ HomQ(N,M) (the opposite
implication is clear). Let x ∈ N and define h : Q → M by h(q) = f(xq) − f(x)q.
Then h is an R-module homomorphism and h(R) = 0. Therefore, by (iii), h = 0,
hence f is Q-linear. To see that the Q-module structure on M is unique, put N =
QQ and observe that there is a natural isomorphism MQ

∼= HomQ(QQQ,MQ) =
HomR(QQR,MR). Therefore, the Q-module structure on M is induced from the
Q-module structure on HomR(QQR,MR), which depends only on MR.17

(v) Clearly NR ⊆d MR implies NQ ⊆d MQ (this holds for any Q containing
R). To see the converse, assume NQ ⊆d MQ and let x, y ∈ M with x 6= 0. Then
there is q ∈ Q such that xq 6= 0 and xq, yq ∈ N . Let A = q−1R ⊆d RR and observe
that xqA 6= 0 (because T (NR) = 0). Therefore, there is a ∈ A such that x(qa) 6= 0
and y(qa) ∈ N . We are done because qa ∈ R.

(vi) See [58, Ex. 8.18(5) and Prp. 8.7].
(vii) It is enough to prove T (RR) = 0. Indeed, let 0 6= u ∈ R and let x = u,

y = 1. Then yr ∈ annr u implies xr = 0, hence annr u *d RR.
(viii) By (vii), T (RR) = 0, hence by (i), T (QR) = 0 (because R ⊆d Q), thus

by (v), QR ⊆d Q′R (because QQ ⊆d Q′Q), so RR ⊆d Q′R. �

Part (vii) of Proposition 3.7.1 calls for the following definition, which is taken
from [58].

Definition 3.7.2. A right R-module M is called torsionless if it embeds in
some free product

∏
i∈I RR. Equivalently, M is torsionless if for all x ∈ M there

exists f ∈ HomR(M,RR) with f(x) 6= 0.

17 This can also be proved directly: IfM admits twoQ-module structures �1, �2 : M×Q→M

that extend its R-module structure, then for all x ∈M define h : Q→M by h(q) = x�1 q−x�2 q.
Then h is an R-module homomorphism vanishing on R, so it must be 0.
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Recall that a moduleM ∈ Mod-R is called a cogenerator if for allA,B ∈ Mod-R
and 0 6= f ∈ Hom(A,B), there exists g ∈ Hom(B,M) such that g ◦ f 6= 0. All
right R-modules are torsionless precisely when RR is a cogenerator. Such rings are
called right cogenerator rings.

3.7.2. Localizing at a Quotient Ring. In the previous section, we have
considered localization of modules w.r.t. some denominator set. We shall now
introduce a generalization of this process that works for arbitrary right quotient
ring of R. Namely, for any right quotient ring Q of R, we will construct a functor
M 7→ MQ defined on modules M ∈ Mod-R with T (M) = 0. To do this, we first
recall the following fact.

Proposition 3.7.3. For all M ∈ Mod-R with T (M) = 0, Ẽ(M) can be en-
dowed with a unique Qrmax(R)-module structure extending its R-module structure.

Proof (sketch). 18 If we can show existence, then the uniqueness is guaran-
teed by Proposition 3.7.1(iv).

Let M be an arbitrary right R-module. Consider the set X of pairs (A, f)
where A ⊆d RR and f ∈ HomR(A,M) and define an equivalence relation on X

by (A, f) ∼ (B, g) if f and g agree on some dense right ideal of R. Let M̂ =
{[A, f ] | (A, f) ∈ X} where [A, f ] is the equivalence class of (A, f). Then M̂ is a
right R-module w.r.t. the operations:

[A, f ] + [B, g] = [A ∩B, f |A∩B + g|A∩B ], [A, f ] · r = [r−1A, s 7→ f(rs)]

and there is a natural R-module homomorphism M → M̂ given by sending m ∈M
to [RR, r 7→ mr] ∈ M̂ . The kernel of this homomorphism is T (M), henceM embeds
in M̂ if T (M) = 0. It is well known that Qrmax(R) can be understood as R̂ where
the multiplication on R̂ is given by:

[A, f ] · [B, g] = [g−1(A), f ◦ g] ∀ [A, f ], [B, g] ∈ R̂ .

By letting [A, f ] range over M̂ instead of R̂, the previous formula defines a right
Qrmax(R)-module structure on M̂ .

We now claim that when T (M) = 0, M̂ ∼= Ẽ(M) as R-modules, so we can
transfer the Qrmax(R)-module structure on M̂ to Ẽ(M). Indeed, for all x ∈ Ẽ(M),
let fx : R → Ẽ(M) be given by fx(r) = xr. Define ψ : Ẽ(M) → M̂ by ψ(x) =
[x−1M,fx] (note that x−1M ⊆d RR because M ⊆d Ẽ(M)). Then ψ is easily seen
to be an R-module homomorphism. It is injective because if fx and fy agree on
a dense right ideal then they must be equal by Proposition 3.7.1(iii), and it is
surjective because for any [A, f ] ∈ M̂ , f extends to some f ′ ∈ Hom(RR, Ẽ(M))
(again by Proposition 3.7.1(iii)) and thus f ′ = fx for some x ∈ Ẽ(M). �

LetM be a right R-module with T (M) = 0 and let Q be a right quotient ring of
R. Then Propositions 3.7.3 and 3.7.1(iv) imply that Ẽ(M) has a unique Q-module
structure extending its R-module structure. In this case, we define MQ to be the
Q-submodule of Ẽ(M) generated by M . Part (iv) of the following proposition
shows that MQ is a “correct” generalization of MS−1.

Proposition 3.7.4. Let MR denote the category of right R-modules M with
T (M) = 0. Then:

(i) The map M 7→MQ is an additive functor from MR to MQ.

18 We could not find a reference proving Proposition 3.7.3 explicitly (possibly due to a lack
of applications); most textbooks on ring theory do not mention this fact (e.g. [58]), or prove it
only when R is right nonsingular (e.g. [80]), or treat it implicitly under the more general (or too
general) context of torsion theories.
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(ii) Any endomorphism of M ∈MR extends uniquely to an endomorphism of
MQQ. In particular, EndR(M) embeds in EndQ(MQ) = EndR(MQ).

(iii) If M ∈MR is a generator (resp. torsionless), then so is MQQ.
(iv) Let S be a right denominator set in R consisting of regular elements. Then

any M ∈MR is S-torsion-free and MRS−1 ∼= MS−1 as RS−1-modules.
(v) Ẽ(MR) = Ẽ(MQQ).

Proof. (i) IfN,M ∈MR, then by Proposition 3.7.1(iii), any f ∈ HomR(N,M)
extends uniquely to an R-homomorphism f ′ : Ẽ(N)→ Ẽ(M), which is a Qrmax(R)-
homomorphism by Proposition 3.7.1(iv). Therefore, f ′ maps NQ into MQ and it
is routine to verify that M 7→MQ becomes a functor once defining fQ := f ′|NQ.

To see that M 7→ MQ is additive, it is enough to prove that Ẽ(M1 ⊕M2) =
Ẽ(M1) ⊕ Ẽ(M2) for all M1,M2 ∈ M .19 Indeed, by [58, Prp. 8.19], Ẽ(M1 ⊕M2)
embeds in Ẽ(M1)⊕ Ẽ(M2) and M1⊕M2 is fixed under this embedding (this holds
for arbitrary modules). Therefore, it is enough to prove M1 ⊕M2 ⊆d Ẽ(M1) ⊕
Ẽ(M2). Let (x1, x2), (y1, y2) ∈ Ẽ(M1) ⊕ Ẽ(M2) be such that (x1, x2) 6= 0. Then
y−1

1 M1, y
−1
2 M2 ⊆d RR and hence A := y−1

1 M1∩y−1
2 M2 ⊆d RR. W.l.o.g. x1 6= 0 and

therefore A *d annR x1 (otherwise x1 ∈ T (M1) = 0). Take some r ∈ A \ annR x1.
Then r satisfies (y1, y2)r ∈M1 ⊕M2 and (x1, x2)r 6= 0, so we are done.

(ii) This is immediate from (i) and Proposition 3.7.1(iii) (because MR ⊆d
MQR).

(iii) IfM is a generator, then there is an epimorphism f : Mn → RR for some n.
Therefore, there is a homomorphism fQ : MQn → QQ. Since 1 ∈ im(f) ⊆ im(fQ),
fQ is onto, implyingMQ is a Q-generator. Now assumeM is torsionless. Then for
all m ∈ M , there is a homomorphism fm : M → RR such that fm(m) 6= 0. Define
f̂ : MQ→ (QQ)M by f̂(x) = ((fmQ)x)m∈M . Then ker f̂ ∩M = 0, hence ker f̂ = 0
(because MR ⊆e MQR). Thus, MQ is torsionless.

(iv) Assume that ms = 0 for some m ∈ M and s ∈ S. Then sR ⊆ annRm.
We claim sRR ⊆d RR and therefore m = 0. Indeed, if x, y ∈ R with x 6= 0, then
yS ∩ sR 6= φ (because S is a right denominator set) and hence there is t ∈ S such
that yt ∈ sR. As t is regular, xt 6= 0, so sRR ⊆d RR, as required.

Observe that M ⊆d MS−1 as R-modules,20 hence there is an embedding of
R-modules f : MS−1 → Ẽ(M) which is an RS−1-homomorphism by Proposi-
tion 3.7.1(iv) (because RR ⊆d RS−1

R ). It is now easy to see that the image of f is
MRS−1. Since ker f∩M = 0, it follows that ker f = 0, hence f : MS−1 →MRS−1

is an isomorphism.
(v) By Proposition 3.7.1(v), any rational extension of MQQ is a rational ex-

tension of MQR and hence of MR. Therefore, we can view Ẽ(MQQ) as an
R-submodule of Ẽ(M) and by Proposition 3.7.1(iv), the former is in fact a Q-
submodule of the latter. Now, MQR ⊆d Ẽ(M)R implies MQQ ⊆d Ẽ(M)Q, so
Ẽ(MQQ)Q ⊆d Ẽ(MR)Q and thus equality must hold. �

Remark 3.7.5. At this level of generality, we do not know whether MQ ∼=
M ⊗R Q or MQrmax(R) = Ẽ(M). However, it is well known that MS−1 ∼= M ⊗R
RS−1.

3.7.3. The Maximal Symmetric Quotient Ring. Our next step would be
to prove an analogue of Proposition 3.6.2 for right or left quotient rings (rather than

19 Caution: In general, the module Ẽ(M1 ⊕M2) does not coincide with Ẽ(M1) ⊕ Ẽ(M2);
see [58, Ex. 8.21].

20 Indeed, let x, y ∈ MS−1 with x 6= 0. Then we can write y = ms−1 for some m ∈ M and
s ∈M . Thus, ys ∈M and xs 6= 0 (because xss−1 = x 6= 0).
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classical fraction rings). However, this turns out to be impossible, since an anti-
automorphisms of R need not extend to Qrmax(R). To overcome this, we introduce
the maximal symmetric quotient ring of R.21 This construction was apparently first
suggested in [87] and was lengthly studied in [59]. As this notion rarely appears
in textbooks, we shall include proofs regarding it.

Lemma 3.7.6. Let R ⊆ Q be rings such that RR ⊆e QR. Then Q is a left
quotient ring of R if and only if for all q ∈ Q there is a dense left ideal A ⊆d RR
such that Aq ⊆ R.

Proof. Assume RR ⊆d RQ. Then for all q ∈ Q,
Rq−1 := {r ∈ R : rq ∈ R} ⊆d RR .

Therefore, A = Rq−1 is a dense left ideal satisfying Aq ⊆ R. To see the converse, let
x, y ∈ Q with x 6= 0. Then there is A ⊆d RR such that Ay ⊆ R. Since RR ⊆e QR,
there is a ∈ R such that 0 6= xa ∈ R. Now, Axa 6= 0 (otherwise, xa ∈ T (RR) = 0),
implying that there exists r ∈ A such that rxa 6= 0. This r satisfies rx 6= 0 and
ry ∈ R, so RR ⊆d RQ. �

Proposition 3.7.7. Let R be a ring and let Q = Qrmax(R). Define
Qsmax(R) := {q ∈ Q | ∃A ⊆d RR : Aq ⊆ R} .

Then Qsmax(R) is a (two-sided) quotient ring of R. Moreover, it is maximal in
the sense that any other quotient ring of R, Q′, admits a unique embedding into
Qsmax(R) (as extensions of R). Up to isomorphism, Qsmax(R) is the only maximal
quotient ring of R.

Proof. Provided Qsmax(R) is a ring, Qsmax(R) is clearly a right quotient ring
of R (because it is contained in Qrmax(R)) and by the previous lemma it is also a
left quotient ring of R.

To see that Qsmax(R) is a ring, let q, q ∈ Qsmax(R). Then there are A,A′ ⊆d RR
such that Aq,A′q′ ⊆ R. This implies (A∩A′)(q+q′) ⊆ R, hence q+q′ ∈ Qsmax(R). In
addition, B := {a ∈ A | aq ∈ A′} ⊆d RR (because B = f−1(A′) where f : A→ RR
is defined by f(a) = aq). This implies Bqq′ ⊆ A′q′ ⊆ R, so qq′ ∈ Qsmax(R), as
required.

Now let Q′ be any quotient ring of R. Then Q′ is a right quotient ring, hence
there exists a unique embedding ϕ : Q′ → Qrmax(R) that fixes R. By Lemma 3.7.6,
any q ∈ Q′ admits a left ideal A ⊆d RR such that Aq ⊆ R. This means that Aϕ(q) ⊆
R and hence imϕ ⊆ Qsmax(R), as required. The uniqueness of the embedding follows
from Proposition 3.7.1(iii), since the embedding is an R-module homomorphism.

The maximal quotient ring of R is unique up to isomorphism because being a
maximal ring of quotients is a universal property. Details are left to the reader. �

The ring Qsmax(R) of the last proposition is called the maximal symmetric
quotient ring of R. Observe that it can also be defined as a subring of Q`max(R) by
Qsmax(R) = {q ∈ Q`max(W ) | ∃A ⊆d RR : qA ⊆ R}. (In fact, Qsmax(R) is the largest
extension of R that is contained in both Qrmax(R) and Q`max(R).) We now have the
following:

Proposition 3.7.8. Let W be any ring. Then any α ∈ Aut−(W ) extends
uniquely into an anti-isomorphism α′ : Qrmax(W ) → Q`max(W ). If one considers
Qsmax(W ) as a subring of both Qrmax(W ) and Q`max(W ), then α′ restricts to an
anti-automorphism of Qsmax(W ).

21 Note: The maximal symmetric quotient ring is not the Martindale symmetric ring of
quotients which is often used when studying semiprime rings.
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Proof. Consider α as a ring isomorphism α : W → W op. Then it is well
known that α extends to an isomorphism α′ : Qrmax(W )→ Qrmax(W op) ∼= Q`max(W )op

(note that the last isomorphism fixes W op). This gives rise to an anti-isomorphism
α′ : Qrmax(W )→ Q`max(W ) that extends α.

For all q ∈ Qrmax(W ) and A ≤ WW , Aq ⊆W ⇐⇒ qα
′
Aα ⊆W and A ⊆d WW

⇐⇒ Aα ⊆d WW . Thus, q ∈ Qsmax(W ) ⇐⇒ qα
′ ∈ Qsmax(W ) (where the latter

Qsmax(W ) is the copy of Qsmax(W ) inside Q`max(W )). �

Example 3.7.9. An anti-automorphism α ∈ Aut−(W ) need not extend to an
anti-endomorphism of Qrmax(W ). Let F be a field and let V = Fn for some n > 1.
Define W = {[ a v0 b ] | a, b ∈ F, v ∈ V }. Then by [58, Ex. 13.26], Qrmax(W ) ∼=
Mn+1(F ) and the embedding W ↪→ Qrmax(W ) is given by

[
a v
0 b

]
7→

 aIn

v1
...
vn

0 . . . 0 b


where In is the unity of Mn(F ) and v = (v1, . . . , vn). Define α ∈ Aut−(W ) by
[ a v0 b ]α = [ b v0 a ] and assume by contradiction that α can be extended to an anti-
endomorphism of Mn+1(F ), which we also denote by α. Let T be the trans-
pose involution. Then α ◦ T is an F -algebra endomorphism of Mn+1(F ) and thus
inner by the Skolem-Noether Theorem. This means that α = ϕ ◦ T for some
ϕ ∈ Inn(Mn+1(F )) and therefore, X and Xα has the same characteristic polyno-
mial for all X ∈ Mn+1(F ). But this is absurd (if n > 1) because[

1 · In 0
0 0

]α
=
[

0 · In 0
0 1

]
.

(Note: The ringW just defined seems to have originated in a paper by Zelmanowitz
and Li ([62, Ex. 2.7]), who only considered the case F = Q and n = 2 for other
purposes. The example was then generalized by Lam in [58, Ex. 13.26] to arbi-
trary F and n and was used to demonstate that Qrmax(W ) and Q`max(W ) might be
isomorphic as rings, but not as extensions of W .)

3.7.4. Main Result and Consequences. Let M be a right R-module with
T (M) = 0. A rational extension of M , M ′, is said to have the extension property if
any endomorphism of M extends to a (necessarily unique) endomorphism of M ′.22

In this case, W := EndR(M) can be considered as a subring of W ′ := EndR(M ′).
For example, by Proposition 3.7.4, MQ has the extension property for any right
quotient ring Q of R. Our main result is:

Theorem 3.7.10. Let Q be a quotient ring of R, let M be a right R-module
with T (M) = 0 and let M ′ be a right Q-module such that MR ⊆d M ′R and M ′R has
the extension property w.r.t. M . Assume that:

(0) M ′Q is f.g. or Q = Qsmax(R).
(1) M ′Q is a torsionless generator.
(2) W ′ := EndR(M ′) is a quotient ring of W := EndR(M).

Then there exists M ′′ ∈ Mod-Qsmax(R) such that:
(i) M ′Q ⊆d M ′′Q and MR ⊆d M ′′R.
(ii) M ′′ has the extension property w.r.t. MR and MQ.
(iii) EndQsmax(R)(M ′′) = EndR(M ′′) = Qsmax(W ).
(iv) M ′′Qsmax(R) is a torsionless generator.

22 This is not to be confused with the extension property of homorphisms used to define
injective modules.
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Moreover, in this case, bα is injective for any α ∈ Aut−(W ).
We shall postpone the proof of Theorem 3.7.10 to the end of this section,

bringing first its various applications. However, at this point, we can easily deduce
the final assertion of the theorem from (i)-(iv): By Proposition 3.7.8, α′ extends
to an anti-endomorphism of Qsmax(W ) = EndQsmax(R)(M ′′) and since M ′′Qsmax(R) is a
generator, bα′ is regular. Therefore, by Lemma 3.6.1, bα is right injective (the left
injectiveness follows by symmetry).

The hardest obstruction for applying Theorem 3.7.10 is condition (2), which is
by no means easy to verify. Therefore, let us first record some cases in which it is
satisfied. (These cases will in fact be used in the proof of Theorem 3.7.10.) To begin
with, note that condition (2) is satisfied if M is f.g., Q = RS−1 and M = RS−1

for some central denominator set S consisting of regular elements, as implied by
Proposition 3.6.3.

Lemma 3.7.11. Let Q be a (two-sided) quotient ring of R, let X,A,B ∈ Mod-R
and let 0 6= f ∈ Hom(A,B).

(i) Assume there is n ∈ N and a generator G ∈ Mod-R such that:
(1) Xn ⊆d G.
(2) T (B) = 0.
Then there exists g ∈ Hom(X,A) such that f ◦ g 6= 0.

(ii) Assume that:
(1) B is dense in a f.g. R-module, B1, and B1 embeds (as an R-module)

in a torsionless right Q-module, T .
(2) X is faithful and T (B) = 0.
Then there exists g ∈ Hom(B,X) such that g ◦ f 6= 0. If Q = R, then the
assumption that B1 is f.g. can be dropped.

(iii) Assume that:
(1) R is commutative23 or semiprime.
(2) X is dense in a f.g. R-module, X1, and X1 is dense (as an R-module)

in a generator of Mod-Q, G.
(3) T (X) = 0 and T (B) = 0.
Then there exists g ∈ Hom(X,A) such that g ◦ f 6= 0.

Proof. (i) Since G is a generator there is h ∈ Hom(G,A) such that f ◦ h 6= 0.
By Proposition 3.7.1(iii), f ◦ h|Xn 6= 0 (otherwise, f ◦ h|Xn would be a nonzero
extension of the zero map from Mn to B). Therefore, f ◦ h must be nonzero on at
least one of the copies of X in G. Let g be the restriction of h to that copy. Then
g is clearly the required homomorphism.

(ii) Pick some nonzero b0 ∈ im(f). It is enough to find g ∈ Hom(B,X) with
g(b0) 6= 0. Condition (1) implies that there is h ∈ HomQ(T,QQ) such that h(b0) 6=
0. Let {b1, . . . , bt} be a set of generators for B1. Then since RR ⊆d RQ, there is
r ∈ R such that rh(bi) ∈ R for all 0 ≤ i ≤ t and rh(b0) 6= 0. Since X is faithful,
there is x ∈ X such that xrh(b0) 6= 0. Now define g : B → X by g(b) = xrh(b).

If Q = R, then we can take r = 1 regardless of the generators of B1, so the
assumption that B1 is finitely generated is superfluous.

(iii) Since GQ is a generator, there is n ∈ N such that QQ is a summand
of Gn. Denote by π : Gn → QQ the corresponding projection and observe that
Mn ⊆d Mn

1 ⊆d GnR.24

Let B0 = im(f) and let U = annRB0. Then U E R and UR is not dense in
RR (because T (B) = 0). Therefore, by [58, Ex. 8.3(4)] there exists x ∈ R such

23 This implies Q is commutative; see [58, Lm. 14.15].
24 Caution: In general M ⊆d M ′ and N ⊆d N ′ does not imply M ⊕N ⊆d M ′⊕N ′ (see [58,

Ex. 8.21]). However, it is routine to check that this is true when M = N and M ′ = N ′.
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that xU = 0. Condition (1) now implies that there is y ∈ R such that Uy = 0.
(This is clear if R is commutative. If R is semiprime, then RxR ∩ U = 0 because
(RxR ∩ U)2 = 0, hence Ux ⊆ U ∩RxR = 0.) Therefore, again by [58, Ex. 8.3(4)],
RU *d RR.

Let {m1, . . . ,mt} be a set of generators for Mn
1 . Then since RR ⊆d RQ,

Rπ(mi)−1 := {r ∈ R : rπ(mi) ∈ R} ⊆d RR and this implies that

L := {r ∈ R : rπ(Mn
1 ) ⊆ R} =

t⋂
i=1

Rπ(mi)−1 ⊆d RR .

Thus, L \ U 6= φ (because RU *d RR). Let r ∈ L \ U . Then there is b ∈ B0 such
that br 6= 0. Let a ∈ A be such that f(a) = b, let X2 = π−1(R) + Xn

1 ⊆ GnR and
define h : X2 → A by h(x) = arπ(x). Then for any x ∈ X2 with π(x) = 1R we
have f(h(x)) = f(ar) = br 6= 0, so f ◦ h 6= 0. By definition, Xn ⊆ X2 and since
Xn ⊆d GnR, Xn ⊆d X2. Therefore, by Proposition 3.7.1(iii), f ◦ h|Xn 6= 0 and we
can proceed as in (i). �

Remark 3.7.12. (i) In part (iii) of the last lemma (and also of the next theo-
rem), one can replace condition (1) with the weaker assumption:

(1′) For all J E R, annr J = 0 implies ann` J = 0 (or equivalently, RJ ⊆d RR
implies JR ⊆d RR).

This condition fails for nonsingular rings, as implied by the next example.
(ii) There is a f.g. faithful module M over a (prime Goldie) ring R s.t. M is

not dense in a generator but M2 is dense in a generator. Indeed, let p be a prime
number, let

R =
{[

x 0
0 x

]
+
[
a b
c d

] ∣∣∣∣∣ x ∈ Z〈p〉, a, b, c, d ∈ pZ〈p〉
}

and take M to be the right R-module consisting of matrices of the form [ ∗ ∗0 0 ] in
R. Then M2 is isomorphic to Jac(R) which is dense in R. However, R is local
and hence must be a direct summand of any generator. This means that if P is a
generator containing M , then u.dimP ≥ u.dimRR = 2. However, u.dimM = 1
and hence M cannot be essential in P (see [58, Th. 6.1]).

Example 3.7.13. Lemma 3.7.11(iii) fails upon dropping condition (1), even
when R is nonsingular. For example, let F be a field, let R be the ring of 2 × 2
upper-triangular matrices over F , let X = Qrmax(R) = Q`max(R) = M2(F ) (see [58,
Ex. 13.13]) and let A consist of the matrices in R of the form [ 0 ∗

0 0 ]. Then X is
obviously dense in a Qrmax(R)-generator and Qrmax(R) is a two-sided quotient ring
of R. However, HomR(X,A) = 0, so the claim of Lemma 3.7.11(iii) fails regardless
of B and f .

Despite the last example, we believe that part (iii) of the following theorem
(which relies on Lemma 3.7.11(iii)) holds when R is nonsingular.

Theorem 3.7.14. Let Q be a (two-sided) quotient ring of R, let M be a right
R-module with T (M) = 0 and let M ′ be a rational extension of M satisfying the
extension property. Write W = EndR(M) and W ′ = EndR(M ′). Then:

(i) If Mn is dense in a generator of Mod-R for some n ∈ N, then W ′ is a
general right quotient ring of W .

(ii) Assume that:
(1) There exists a f.g. R-module M1 such that M ⊆ M1 ⊆ M ′ and M ′

embeds (as an R-module) in a torsionless Q-module.
(2) M is faithful.
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Then W ′ is a general left quotient ring of W . If Q = R, then the assump-
tion that M1 is f.g. can be dropped.

(iii) Assume that:
(1) R is commutative or semiprime.
(2) M is dense in a f.g. R-module, M1, and M1 is dense (as an R-

module) in a generator of Mod-Q (which need not contain M ′).
Then W ′ is a general right quotient ring of W .

In particular, if the assumptions of (i) and (ii) or (ii) and (iii) are satisfied, then
condition (2) of Theorem 3.7.10 is satisfied.

Proof. Throughout, we will freely consider elements of End(M) as elements
of End(M ′).

(i) We need to prove that WW ⊆d W ′W . That is, for all u, v ∈ W ′ with v 6= 0,
there is w ∈ W such that uw ∈ W and vw 6= 0. Indeed, let N = M ∩ u−1(M).
Then by Lemma 3.7.11(i) (take X = M , A = N , B = v(N) and f = v|N ; note that
v|N 6= 0 because N ⊆d M ′), there exists w ∈ Hom(M,N) such that v|N ◦ w 6= 0.
Since uw(M) ⊆ u(N) ⊆ u(u−1(M)) ⊆M , uw ∈W , as required.

(ii) We need to prove that WW ⊆d WW ′. That is, for all u, v ∈W ′ with v 6= 0,
there is w ∈W such that wu ∈W and wv 6= 0. Indeed, let B = u(M) +M . Then
B ⊆d u(M1)+M1, which is finitely generated. Therefore, by Lemma 3.7.11(ii) (take
X = M , A = v−1(B) and f = v|A), there exists w : B →M such that w◦v|v−1(B) 6=
0. Note that w extends to an endomorphism of M ′ because w|M ∈ End(M) (and
the extension of w|M to M ′ must agree with w on B by Proposition 3.7.1(iii)).
Thus, we have wv 6= 0 and since wu(M) ⊆M , wu ∈W , as required.

(iii) Argue as in (i) using part (iii) of Lemma 3.7.11 instead of part (i) (take
X = M , A = N := M ∩ u−1(M), B = v(N) and f = v|N ). �

Remark 3.7.15. One can prove a “dual” claim to part (i) of the last theorem,
namely, if M is a cogenerator with T (M) = 0, then W ′ is a general left quotient
ring of W . However, this boils down to triviality because these assumptions imply
M ′ = M . For otherwise, there would be a nonzero homomorphism from M ′/M to
M , which is impossible by the proof of Proposition 3.7.1(iii).

Corollary 3.7.16. Let Q be a quotient ring of R and let M,M1 ⊆ Mod-R
be such that M ⊆d M1, T (M) = 0 and M1Q has the extension property w.r.t. M .
Then:

(i) If M is faithful, M1 is f.g. and M1QQ is torsionless, then End(M1QR) is
a left quotient ring of End(MR). When Q = R, the assumption that M1
is f.g. can be dropped.

(ii) If at least one of the following holds:
(1) R is semiprime or commutative, M1 is f.g. andM1QQ is a generator.
(2) M1 is a generator.
then End(M1QR) is a right quotient ring of End(MR).

If both (i) and (ii) are satisfied, then conditions (0)–(2) of Theorem 3.7.10 are sat-
isfied forM ′ = M1Q and, in particular, bα is injective for all α ∈ Aut−(EndR(M)).

Proof. Apply Theorem 3.7.14 with M ′ = M1Q. �

In case Q of the corollary is a classical localization of R (i.e. Q = RS−1 = S−1R
with S a (two-sided) denominator set), we can prove a slightly stronger version of
Corollary 3.7.16.

Corollary 3.7.17. Let S be a (two-sided) denominator set of R consisting of
regular elements, let M,M1 ∈ Mod-R be such that M ⊆d M1, T (M) = 0, M1 is
f.g. and M1S

−1 has the extension property w.r.t. M . Then:
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(i) If M is faithful and M1S
−1
RS−1 is torsionless, then End(M1S

−1
R ) is a left

quotient ring of End(MR).
(ii) If M1S

−1 is an RS−1-generator, then End(M ′) is a general right quotient
ring of End(M) for any rational extension M ′ of M with the extension
property.

If both (i) and (ii) are satisfied, then conditions (0)–(2) of Theorem 3.7.10 are satis-
fied forM ′ = M1S

−1 and, in particular, bα is injective for all α ∈ Aut−(EndR(M)).

Proof. Note that MS−1 = MRS−1 by Proposition 3.7.4(iv), so part (i) is
just a special case of Corollary 3.7.16(i). We thus turn to part (ii).

Let Q = RS−1 = S−1R. Then there is n such that (M1S
−1)n = eQ ⊕ V for

some V ∈ Mod-Q and e ∈ (M1S
−1)n with annQ e = 0. Let {m1, . . . ,mt} be a set

of generators for Mn
1 . Then we can write mi = eqi + vi for unique qi ∈ Q and

vi ∈ V . There exist s ∈ S and r1, . . . , rt ⊆ R s.t. qi = s−1ri for all i (here we need
Q = S−1R). Therefore, replacing e with es−1, we may assume Mn

1 ⊆ P := eR⊕V .
The r.h.s. is clearly a generator of Mod-R and Mn is dense in (M1S

−1)n and hence
in P . We are now done by Theorem 3.7.14(i). �

Remark 3.7.18. Keeping the notation of Corollary 3.7.17, note that if Q :=
RS−1 is right Kasch (i.e. QQ contains a copy of any simple right Q-module), then
T (M) = 0 ⇐⇒ M is S-torsion-free. Indeed, one direction follows from Proposi-
tion 3.7.4(iv). To see the converse, assume by contradiction that A := annR(m) ⊆d
RR for some m ∈ M . Then a routine argument shows that AS−1 ⊆d RS−1 = Q
(as Q-modules). However, Q is right Kasch, so by [58, Cr. 8.28], AS−1 = Q. This
means 1 = as−1 for some a ∈ A and s ∈ S, thus implying s ∈ A. But then ms = 0,
so m = 0 since M is S-torsion-free.

In general, that M is S-torsion-free need does not imply T (M) 6= 0 even when
S consists of all regular elements in R. For example, let F be a field and take
R = Q =

∏
ℵ0
F , S = R× and M = R/

⊕
ℵ0
F .

The previous corollaries become much sharper when Q or RS−1 is right Pseudo
Frobenius (abbrev. PF). Recall that a ring Q is said to be right PF if all faithful
right Q-modules are generators. This turns out to be equivalent to QQ being an
injective cogenerator (see [54, Ch. 12] and [58, Th. 19.25]; also see [67], [94]), hence
all rightQ-modules are torsionless and all faithful rightQ-modules are cogenerators.

Theorem 3.7.19. Let Q be a quotient ring of R and let M be a faithful right
R-module satisfying T (M) = 0 which is dense in a f.g. R-module M1. Assume Q
is right PF. Then MQ = Ẽ(MR). Furthermore, if one of the following holds:

(1) there is a (two-sided) denominator set S consisting of regular elements
such that Q = RS−1,

(2) M1 is dense in an R-generator,
(3) R is commutative or semiprime,

then End(MQR) = Qsmax(End(MR)) and bα is injective for all α ∈ Aut−(End(MR)).

Proof. Proposition 3.7.4(v) implies Ẽ(MR) = Ẽ(MQQ), so it is enough to
prove Ẽ(MQQ) = MQQ. Indeed, MQQ is faithful, so the preceding discussion
implies MQQ is a cogenerator, and since T (MQQ) ⊆ T (MQR) = 0, Ẽ(MQQ) =
MQQ by Remark 3.7.15. Therefore, MQ = Ẽ(MR). In particular, MQ must
coincide with M1QR.

Since MQQ is a torsionless generator, Corollaries 3.7.16 and 3.7.17 imply that
we can apply Theorem 3.7.10 with M ′ = MQ to obtain a module M ′′ as in that
theorem. As M ′′R is a rational extension of MQ = Ẽ(MR), necessarily M ′′ = MQ,
so we are done. �



134 3. BILINEAR FORMS AND ANTI-ENDOMORPHISMS

Example 3.7.20. Recall that a ring R is said to be a right order in a ring Q
containing R if Q = Qrcl(R) (and the latter exists). (Equivalently, R is a right order
in Q if S ⊆ Q× and Q = {rs−1 | r ∈ R, s ∈ S} where S is the set or regular elements
in R.) Two-sided orders in right PF rings satisfy condition (1) of Theorem 3.7.19
and these turn out to be quite common. For example, Goldie’s Theorem ([45])
characterizes the right orders in semisimple rings as the semiprime right Goldie
rings (i.e. rings with ACC on right annihilators and finite right uniform dimension;
see [58, §11A] or [80, §3.2]), so noetherian semiprime rings are orders in semisimple
rings (and thus in right PF rings).

More generally, sufficient and necessary conditions for R to be a right order in
a QF or a right PF ring were given by Shock in [89], [90] and [91]. We also note
that if R is an order in a QF ring Q, then so is RG for any finite group G. Indeed,
it is easy to see that RG is an order in QG and the latter is noetherian (clear) and
self-injective by [74].

Remark 3.7.21. Condition (3) of Theorem 3.7.19 implies condition (1) in many
cases, namely when R is semiprime or when Q is commutative with ACC on right
annihilators (e.g. if Q is QF). Indeed, if R is commutative and Q has ACC on right
annihilators, then R has ACC on right annihilators (this is straightforward), hence
by [58, Cr. 13.16], Q = Qrmax(R) = Qrcl(R) (Q = Qrmax(R) because QQ is injective).
To see the semiprime case, recall that any right PF ring is semilocal and satisfies
soc(RR) ⊆e RR (see [58, Th. 19.25]). Now, Q is semiprime by [58, Exer. 13.8],
hence Jac(Q) ∩ soc(QQ) = 0 (because this is a nilpotent ideal). Since soc(QQ) ⊆e
QQ, Jac(Q) = 0, which implies Q is semisimple (because Q is semilocal). This
means R has ACC on annihilators (because Q has) and u.dimRR = u.dimQR =
u.dimQQ < ∞ (because RR ⊆e QR), hence R is a semiprime right Goldie. The
same argument implies R is also a left Goldie ring and thus Qrmax(R) = Q`max(R) =
Q`cl(R) = Qrcl(R).

In general, a commutative PF ring need not have ACC on annihilators. See
[58, Ex. 19.24] (the example is due to Osofsky).

Theorem 3.7.10 also has interesting consequences in the “trivial case” R = Q =
Qsmax(R) and M = M ′. Many examples of rings with R = Qsmax(R) can be found
in [59], [24] and related papers, and the following corollary enables one to find even
more.

Corollary 3.7.22. Let R be a ring satisfying R = Qsmax(R). Then:
(i) For every torsionless generator M ∈ Mod-R, there is a torsionless gener-

ator G ∈ Mod-R such that M ⊆d G, G has the extension property w.r.t.
M and End(G) = Qsmax(End(M)).

(ii) If RR is a cogenerator, then any generatorM ∈ Mod-R satisfies End(M) =
Qsmax(End(M)). If R is right PF, then any faithful module M ∈ Mod-R
satisfies End(M) = Qsmax(End(M)).

Proof. (i) Apply Theorem 3.7.10 with Q = R and M1 = M . Take G to be
M ′′. Conditions (0)-(2) of the theorem are automatically satisfied.

(ii) When RR is a cogenerator, M is torsionless and a cogenerator (because RR
is a summand of Mn). Thus, by Remark 3.7.15, Ẽ(M) = M , so if we apply (i),
G must necessarily be M . If R is right PF, then RR is a cogenerator and M is a
generator, so the previous argument implies End(M) = Qsmax(End(M)). �

To demonstrate the non-triviality of the last corollary, we note that it is well
known that if P is a finite projective over a QF algebra, then End(P ) need not
be QF (and thus not PF). (In this case P cannot be faithful, for otherwise it
would be a progenerator, and since being QF is a categorical property, this would
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imply End(P ) is QF.) The problem of determining when End(P ) is QF (when P is
projective) and its obvious generalization to PF rings were considered in [77], [97]
and related papers.

3.7.5. Proof of the Main Result. We finally turn to prove Theorem 3.7.10.

Lemma 3.7.23. Let Q be a right quotient ring of R and let e ∈ E(R) be such
that ann`RRe = 0. Then eQe is a right quotient ring of eRe and ReeRe ⊆d QeeRe.

Proof. Let x, y ∈ eQe be such that x 6= 0. Then there is r ∈ R such that
xr 6= 0 and xr, yr ∈ R. Thus xrRe 6= 0, hence there is s ∈ Re such that xrs 6= 0.
This implies x(erse) = xrs 6= 0 and y(erse) = yrs ∈ R, hence eQe is a right
quotient ring of eRe. The second assertion is shown in the same manner. �

Lemma 3.7.24. LetW be a ring, let e ∈ E(W ) and considerWe as a right eWe-
module. If annr eW = 0, then We is torsionless. The converse holds when WWe is
faithfully balanced (i.e. the standard map W → End(WeeWe) is an isomorphism).

Proof. Assume annr eW = 0 and let 0 6= x ∈ We. Then there exists y ∈ eW
such that yx 6= 0. Now, the map f : We → eWe defined by f(w) = yw is an
eWe-module homomorphism satisfying f(x) 6= 0. Conversely, assume WeeWe is
torsionless and End(WeeWe) = W . Then WWe is faithful, hence for all 0 6= x ∈W
there is z ∈ We such that xz 6= 0. Since xz ∈ We, there is an eWe-module
homomorphism f : We → eWe such that f(xz) 6= 0. As End(WeeWe) = W ,
the homomorphism f is given by f(w) = yw (w ∈ We) for some y ∈ eW . Thus,
yxz 6= 0, hence x /∈ annr eW (because yx 6= 0). Therefore, annr eW = 0. �

We are now ready to prove Theorem 3.7.10. This is done in several steps.

Proof of Theorem 3.7.10. Step 1. Without loss of generality, we may
assume R = Q and M = M ′ (use Proposition 3.7.1 to see that this is indeed
allowed). We thus drop M ′ and Q from our notation henceforth (in Step 2, M ′ will
be redefined as a different module). Note that MR is now a torsionless generator.

Next, we claim that we may assume R = Qsmax(R). Indeed, just replace
M with MQsmax(R). The latter is a torsionless Qsmax(R)-generator by Proposi-
tion 3.7.4(iii) and part (ii) of that proposition impliesMQsmax(R) has the extension
property w.r.t. MR. In addition, parts (i) and (ii) of of Theorem 3.7.14 imply that
End(MQsmax(R)) is a two-sided quotient ring of End(M). (Apply the theorem with
R,Qsmax(R),M,MQsmax(R) in place of R,Q,M,M ′. In part (i) take G = M and
in part (ii) take M1 = M .)

Step 2. Let W = End(MR) and let W ′ = Qsmax(W ). Since MR is a generator,
there is n ∈ N such that Mn ∼= RR ⊕N . Repeating the argument in the comment
before Proposition 3.3.9, we may assume that there is e ∈ E(U), where U :=
Mn(W ), such that R = eUe, M = e11Ue (as (W,R)-bimodules) and Mn = Ue
(as (U,R)-bimodules). Define U ′ = Mn(W ′) and, abusing the notation, let M ′ =
e11U

′e. Then M ′ is a (W ′, R)-bimodule and we claim it is the required R-module
M ′′, i.e. M ′R satisfies (i)-(iv).

Step 3. We start by observing End(W ′M ′) = eU ′e. Indeed, let U ′ = Mn(W ′)
act on (M ′)n from the left in the standard way. Then U ′(M ′)n ∼= U ′U

′e and it
is well known that End(U ′U ′e) = eU ′e (where eU ′e acts on the right by standard
multiplication). It is now routine to verify that End(U ′(M ′)n) ∼= End(W ′M ′), so
our claim is proved.

SinceMn = Ue, we may identify End(UeR) with Mn(W ) = U . As End(UUe) =
eUe = R, it follows that Ue is faithfully balanced (in both Mod-R and U -Mod).
In addition, UeR is a torsionless generator (since MR is). Thus, by Lemma 3.7.24,
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annr eU = 0. Moreover, UUe is faithfully balanced, thus faithful, so ann`U Ue =
annU (UUe) = 0. Now, Lemma 3.7.23 implies that eU ′e is a two-sided quotient
ring of R = eUe and (M ′)n = U ′eR is a rational extension of Mn = UeR, hence
MR ⊆d M ′R (this is straightforward). As R = Qsmax(R), it must coincide with eU ′e.
Therefore, RR is a summand of (M ′)nR, hence M ′R is a generator. Furthermore,
annrU (eU ′) ⊆ annrU (eU) = 0 and annrU (eU ′) = U ∩ annrU ′(eU ′), so annrU ′(eU ′) = 0
because UU ⊆e U ′U . This implies (M ′)nR is torsionless (Lemma 3.7.24) and hence
so is M ′R. We have thus shown that MR ⊆d M ′R and M ′R is a torsionless generator
with End(W ′M ′) = R. In addition, M ′R clearly has the extension property w.r.t.
MR. This settles (i), (ii) and (iv).

Step 4. We finish by showing (iii), i.e. W ′ = End(M ′R). (The last assertion of
Theorem 3.7.10 was verified immediately after its statement, so this concludes the
proof.) First observe that W ′ acts on M ′R = e11U

′e on the right by left multiplica-
tion. This action is faithful (for otherwise the action of U ′ on U ′e = (M ′)n would
be non-faithful), so we can consider W ′ as a subring of End(M ′R) that contains W .
Since M ′R is torsionless and MR is a generator, parts (i) and (ii) of Theorem 3.7.14
imply End(M ′R) is a two-sided quotient ring of W . As W ′ = Qsmax(W ), we must
have W ′ = End(M ′R), as required. �

Remark 3.7.25. We do not know if the module M ′ constructed in step 2 of
the last proof coincides with M (this would imply M ′′ = M ′Qsmax(R) in Theorem
3.7.10). Part (ii) of Corollary 3.7.22 presents special cases in which this can be
guaranteed. Furthermore, we do not know if M ′ is unique w.r.t. to being a rational
extension ofM satisfying Qsmax(End(M)) = End(M ′). However, the mapM 7→M ′

is a closure operation (i.e. (M ′)′ = M ′) defined for all torsionless generators over
rings R with R = Qsmax(R).

3.8. An Easy Proof for a Result of Osborn

As an application of the previous theory, we present an easy proof for a special
case of a result of Osborn:

Theorem 3.8.1 (Osborn). Let (W,α) be a ring with involution such that 2 ∈
W× and every element w ∈ W with wα = w is either a unit or nilpotent. Let α′
denote the induced involution on W/ Jac(W ). Then Jac(W ) ∩ {w ∈W : wα = w}
consists of nilpotent element and one of the following holds:

(i) W/ Jac(W ) is a division ring.
(ii) W/ Jac(W ) ∼= D ×Dop for some division ring D and under that isomor-

phism α′ exchanges D and Dop.
(iii) W/ Jac(W ) ∼= M2(F ) for some field F and under that isomorphism α′ is

a symplectic involution (i.e. it is induced by a classical alternating bilinear
form).

Proof. See [66, §4]. �

Osborn’s result has several generalizations (see papers related to [66]) and his
proof is based on Jordan algebras. Theorem 3.5.5 allows us to give a new proof
for the special case where W is semisimple (Osborn’s result can be deduced for
semilocal rings using this special case; see [66, §4]). Our assumptions are milder,
though.

Theorem 3.8.2. Let (W,α) be a ring with involution such thatW is semisimple
and the only ∗-invariant idempotents in W are 0 and 1. Then one of the following
holds:

(i) W is a division ring.
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(ii) W ∼= D × Dop for some division ring D and under that isomorphism α
exchanges D and Dop.

(iii) W ∼= M2(F ) for some field F and under that isomorphism α is a sym-
plectic involution.

Proof. We may assume W is not the zero ring. Let {e1, . . . , en} be the prim-
itive idempotents of Cent(W ). Then α permutes e1, . . . , en. Assume n > 1. Then
we have ei 6= eαi for all i. This implies e1 +eα1 is a non-zero α-invariant idempotent,
hence e1 +eα1 = 1. Thus, n = 2 and e∗1 = e2. WriteWi = eiW . ThenW ∼= W1×W2
and α exchanges W1 and W2. If 0 6= e ∈W1 is an idempotent, then eα ∈W2, hence
e+eα is a non-zero α-invariant idempotent, implying e+eα = 1 and e = 1W1 . This
means W1 is a simple artinian ring with no non-trivial idempotents, hence it is a
division ring. As W2 ∼= W op

1 via α, (ii) holds.
Now assume n = 1. Then W is simple artinian, hence we can write W =

End(Dk
D) for some division ring D. Let b = bα, K = Kα and κ = κα. Then b :

Dk×Dk → K is a regular κ-symmetric bilinear form by Theorem 3.5.5. Moreover,
by Corollary 3.3.10, dim(K1)D = 1.

We claim that if Dk = U1 ⊕ U2 with b(U1, U2) = b(U2, U1) = 0, then U1 = 0
or U2 = 0. Indeed, let e be the projection from Dk to U1 with kernel U2. Then it
is straightforward to check that b(ex, y) = b(ex, ey) = b(x, ey) and hence eα = e.
Therefore e = 1 or e = 0, so U1 = Dk or U1 = 0.

Assume there is x ∈ Dk such that b(x, x) 6= 0. Define L = x⊥ = {y ∈
Dk | b(x, y) = 0}. We claim that Dk = L⊕ xD. Clearly x /∈ L, hence xD ∩ L = 0.
On the other hand, for all v ∈ Dk, there exists d ∈ D such that b(x, x)�1d = b(x, v)
(because dim(K1)D = 1), hence b(x, v − xd) = b(x, v) − b(x, x) �1 d = 0 and this
implies v = xd + (v − xd) ∈ xD + L. Now, since b is κ-symmetric b(L, xD) =
b(xD,L)κ = 0, so by the previous paragraph, L = 0. But this means k = 1.
Therefore, W = End(D1

D) is a division ring and (i) holds.
We may now assume that b(x, x) = 0 for all x ∈ Dk. Then κ = − idK since

0 = b(x + y, x + y) = b(x, y) + b(y, x) = b(x, y) + b(x, y)κ for all x, y ∈ Dk.
Furthermore, for all x, y ∈ Dk and a ∈ D we have b(x, y) �0 a = b(xa, y) =
−b(y, xa) = −b(y, x)�1 a = b(x, y)�1 a, hence �0 = �1. This implies that for any
0 6= k ∈ K and a, b ∈ D, we have k �1 (ab) = (k �1 a) �1 b = (k �0 a) �1 b =
(k �1 b) �0 a = (k �1 b) �1 a = k �1 (ba), hence ab = ba. Therefore, D is a field
and K is isomorphic as a double R-module to D, with �0,�1 being the standard
right action of D on itself. As b(x, x) = 0 for all x ∈ Dk, b is a classical alternating
bilinear form. We are thus finished if we prove that k = 2 (as this would imply
W = End(D2

D) ∼= M2(D), as in (iii)). However, this follows from the well-known
fact that every regular alternating form is the orthogonal sum of 2-dimensional
alternating forms (and b cannot be the orthogonal sum of two non-trivial forms as
argued above). �

3.9. Generization of Arbitrary Forms

We finish this chapter by suggesting a way to define non-stable generic forms.

Let (M, b,K) be a bilinear space over a ring R and let W = End(MR). A pair
(σ, σ′) ∈W ×W will be called b-adjoint if b(σx, y) = b(x, σ′y) for all x, y ∈M . For
example, all pairs in {0}×Hom(M, ker Adrb) are b-adjoint. Let P (b) denote the set
of b-adjoint pairs in W ×W and define:

Kb = M ⊗Z M

〈σx⊗ y − x⊗ σ′y |x, y ∈M, (σ, σ′) ∈ P (b)〉 .
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The image of x ⊗Z y in Kb will be denoted by x ⊗b y. We make Kb into a double
R-module by letting

(x⊗b y)�0 r = xr ⊗b y, (x⊗b y)�1 r = x⊗b yr,

for all x, y ∈ M and r ∈ R. The generization of (M, b,K) is defined to be
(M, bgen,Kb) where bgen is the bilinear form defined by bgen(x, y) = x ⊗b y. The
form bgen has the following universal property: If (M, b′,K ′) is another bilinear
space such that P (b) ⊆ P (b′), then there exists a unique f ∈ HomDMod-R(Kb,K

′)
such that b′ = f ◦ bgen. (In particular, taking b′ = b yields that b can be recovered
from bgen.)

When b is right stable with right corresponding anti-endomorphism α, bα is
easily seen to be similar to bgen. (Indeed, P (b) = {(σ, σα) |σ ∈W} so Kα

∼= Kb via
by x⊗α y 7→ x⊗b y.) Thus, the map b 7→ bgen is a generalization of the generization
defined in section 3.1. However, in contrast to the one-sided definition of section 3.1,
the generization just defined is a left-right symmetric process. In particular, if b is
left stable with left corresponding anti-endomorphism α, then αb is also similar to
bgen.

Proposition 3.9.1. Let (M, b,K) be a bilinear space. Then:
(i) P (bgen) = P (b).
(ii) (bgen)gen = bgen.
(iii) b is right (semi-)stable ⇐⇒ bgen is right (semi-)stable.
(iv) If P (b) is a symmetric relation on End(M), then the map κb : Kb → Kb

defined by (x⊗b y)κb = y⊗b x is an involution, and bgen is κb-symmetric.

Proof. (i) That P (b) ⊆ P (bgen) is clear. To see the converse, let f : Kb → K
be the double R-module homomorphism satisfying b = f ◦ bgen. Then (σ, σ′) ∈
P (bgen) implies bgen(σx, y) = bgen(x, σ′y) for all x, y ∈M . Applying f to both sides
yields b(σx, y) = b(x, σ′y), so (σ, σ′) ∈ P (b).

(ii) This is follows from (i) and the definition of bgen.
(iii) This also follows from (i), since being right stable or right semi-stable can

be phrased as a property of P (b) (e.g.: b is right stable precisely when P (b) is a
function).

(iv) This is straightforward. �

It is now natural to call a bilinear form b : M ×M → K generic when b ∼ bgen.
Furthermore, call two bilinear forms b, b′ on M weakly similar if P (b) = P (b′). By
part (i) of the last proposition, this is equivalent to bgen = b′gen. Proposition 3.9.1(iv)
also calls for a new notion of symmetry — call b pre-symmetric if P (b) is a symmetric
relation. While all these new notions deserve further attention, the author could
not pursue them further due to time and space limitations.

Example 3.9.2. Let b : Z2 × Z2 → Z be the bilinear form defined in Exam-
ple 2.4.9, namely, b(x, y) = xT [ 1 0

0 2 ] y. Then b is not left nor right stable, but it is
generic. Indeed, the analysis done in Example 2.4.9 shows that

P (b) = {(
[
a 2b
c d

]
, [ a 2c
b d ]) | a, b, c, d ∈ Z}

(we consider End(Z2) as M2(Z)). Let

e1 = [ 1
0 ]⊗Z [ 1

0 ] , e2 = [ 1
0 ]⊗Z [ 0

1 ] , e3 = [ 0
1 ]⊗Z [ 1

0 ] , e4 = [ 0
1 ]⊗Z [ 0

1 ]

and let ei denote the image of ei in Kb. Then {e1, . . . , e4} is a Z-basis for Z2⊗Z Z2

and it not hard (but tedious) to verify that

Kb = e1Z+ e2Z+ e3Z+ e4Z
e2Z+ e3Z+ (2e1 − e4)Z .
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Thus, Kb
∼= Z via

∑
eiai 7→ a1 + 2a4. Denoting this map by f , one sees that f is

a similarity from bgen to b. Indeed:
f(bgen([ x1

x2 ] , [ y1
y2 ])) = f(x1y1e1 + x1y2e2 + x2y1e3 + x2y2e4)

= x1y1 + 2x2y2 = b([ x1
x2 ] , [ y1

y2 ]) .





CHAPTER 4

Isometry and Decomposition

In a paper from 1974 ([76]), C. Riehm, basing on the work of Wall, solved the
isometry problem of classical (non-symmetric) regular bilinear forms over fields,
where solving means reducing it to isometry of hermitian forms over other fields.
Extensions of the solution to degenerate forms ([44]) and to sesquilinear forms ([75],
[84]) soon followed and similar techniques were used to study pairs of symmetric
bilinear forms (e.g. see [88]). While this topic was somewhat ignored in the 80’s and
the 90’s, it has regained considerable interest in the last decade, the main problems
now being providing canonical representatives for isometry classes (e.g. [25], [51],
[50], [52], [43]), various decompositions of forms (e.g. [31], [38], [93]), determining
conjugation classes w.r.t. special matrices (such as unitary matrices; e.g. [30], [28])
and other topics (e.g. [61], [29]). Many of these papers consider pairs of bilinear
and sesquilinear forms as well.

In this final chapter, we present a method for generalizing the work of Riehm
and its predecessors to bilinear forms over rings. Moreover, we will show that there
is a canonical way of translating the theory of arbitrary non-symmetric forms into
the theory of regular symmetric forms and many of the previously mentioned refer-
ences turn out to “factor” through it. Strictly speaking, we show that the category
of arbitrary bilinear forms over a category with a double duality (see section 2.7) is
isomorphic to the category of symmetric regular bilinear forms over some category
with duality.1 This allows us to apply results originally designed for symmetric
bilinear forms over categories with duality to non-symmetric or non-regular forms
over rings. The applications are numerous and include:

(1) Witt’s Cancelation Theorem: Let b1, b2, b3 be (not-necessarily symmetric)
bilinear forms over a good ring (e.g. artinian ring in which 2 is a unit).
Then b1 ⊥ b2 ∼= b1 ⊥ b3 ⇐⇒ b2 ∼= b3 (where “∼=” denotes isometry).

(2) The isometry problem of bilinear forms over good rings can be reduced to
isometry of hermitian forms over division rings.

(3) The notion of isotypes (see below) can be suitably generalized to bilinear
forms over a good ring. Any form over such a ring is the orthogonal sum
of isotypes of different types and these isotypes are uniquely determined
up isometry. (This also applies to degenerate forms!)

(4) Classification of the indecomposable bilinear forms over good rings (gen-
eralizing [93] and [38]).

(5) If R is a f.d. algebra over an algebraically closed field F and b is an F -
linear (not-necessarily-symmetric) bilinear form over R, then there exists
an exact sequence of F -algebraic groups 1 → U → O(b) → G → 1 where
U is unipotent, O(b) is the isometry group of b and G is a product of
copies of On(F ), GLm(F ) and Spk(F ). The terms in the product are
determined by the types of the isotypes appearing in the decomposition of
b into isotypes (compare with [14]).

1 Categories with duality are also called hermitian categories.
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Furthermore, these results hold for (arbitrarily large) systems of bilinear forms.
(Additional applications were not included due to space and time limitations.)

The first two sections of this chapter are not mandatory and provide a survey
of Riehm’s solution to the isometry problem of classical regular bilinear forms over
a field and a (somewhat selective) survey of the theory of hermitian categories,
respectively. In section 4.3, we prove the categorical equivalence mentioned above
and discuss some of its implications. However, in order to apply the equivalence
properly, we need to make sure that the category with duality we obtain satisfies
several properties. This is done in section 4.4. Section 4.5 explains how to extend
the previous results to systems of bilinear forms. As the equivalence is a very
powerful, yet very unexplicit tool, sections 4.6–4.10 are concerned with providing
an explicit approach to study bilinear forms over rings. The results obtained are
merely a “pull-back along the equivalence” of known results on symmetric regular
bilinear forms over categories with duality, but they are proved explicitly, with no
trace of categories. Section 4.6 covers the basics of Kronecker modules of bilinear
forms and their connection with the asymmetry of the form, section 4.7 defines and
discusses hyperbolic forms, section 4.8 presents a “dictionary” for translating claims
on bilinear forms to ring theoretic claims and section 4.9 shows how to “lift” some
of these claims from an epimorphic image of the ring to the ring itself. Section 4.10
deals with additional technical issues. The rest of the chapter is concerned with
applications: section 4.11 classifies indecomposable bilinear spaces, section 4.12 is
devoted to isotypes and in section 4.13 we prove Witt’s Cancelation Theorem (for
non-symmetric non-regular systems of bilinear forms) and show how to reduce the
isometry problem of bilinear forms over good rings to isometry of hermitian forms
over division rings. Finally, section 4.14 uses the previous results to prove some
strong structural results about bilinear forms and isometry groups, provided the
base ring is a f.d. algebra over an algebraically closed field.

4.1. Survey: Isometry of Classical Bilinear Forms

We begin with a short overview on how to solve the isomorphism problem
of regular bilinear forms, where by solving one (always) means reduction to the
isomorphism problem of hermitian forms, and possibly other “easy” problems. We
have included this procedure because it presents many basic tools and concepts,
such as isotypes. In addition, it demonstrates how decomposition of bilinear forms
into orthogonal sums is essential to solve the isomorphism problem. Our exposition
roughly follows Riehm ([76]), Scharlau ([84]) and also the author’s M.Sc. Thesis
([38]); proofs can be found in these references. For simplicity, we shall not consider
the case charF = 2.

Let F be a field with charF 6= 2. For every monic polynomial f(x) ∈ F [x] with
f(0) 6= 0, define f∗(x) = f(0)−1xdeg ff(x−1). Then f∗∗ = f and (fg)∗ = f∗g∗ for
all monic f, g ∈ F [x] with f(0), g(0) 6= 1.

Let V be a f.d. F -vector space and let b : V ×V → F be a regular bilinear form.
Then b admits a (right idF -)asymmetry, namely, a map λ ∈ End(V ) satisfying

b(u, v) = b(v, λu) ∀u, v ∈ V .

Let fλ denote the minimal polynomial of λ. It turns out that f∗λ = fλ, hence we
can write fλ = (p1p

∗
1)m1 · · · (ptp∗t )mtq

n1
1 · · · qnss where p1, p

∗
1, . . . , pt, p

∗
t , q1, . . . , qs are

distinct monic primes and qi = q∗i for all 1 ≤ i ≤ s.

Theorem 4.1.1. In the previous notation, let
P = {(pip∗i )m | 1 ≤ i ≤ t, 1 ≤ m ≤ mi}
Q = {qni | 1 ≤ i ≤ s, 1 ≤ n ≤ ni} .
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Consider V as an F [x]-module by letting x act as λ. Then V can be expressed as a
direct sum of F [x]-modules

V =
⊕

g∈P∪Q
Vg

such that:
(i) Vg ∼= (F [x]/g)k as F [x]-modules for some k ∈ N ∪ {0},
(ii) the spaces {Vg}g∈P∪Q are pairwise orthogonal, i.e. b(Vg, Vg′) = 0 for every

distinct g, g′ ∈ P ∪Q (hence b =⊥g∈P∪Q (b|Vg×Vg )).
Moreover, if V =

⊕
g∈P∪Q V

′
g is another such decomposition, then (Vg, b|Vg×Vg ) ∼=

(V ′g , b|V ′g×V ′g ) for all g ∈ P ∪Q.

The existence of a decomposition satisfying (i) easily follows for the classifica-
tion of f.g. modules over principal ideal domains. Part (ii), as well as the uniqueness
of the decomposition up to isometry, are not trivial. The previous theorem calls for
the following definition:

Definition 4.1.2. The regular bilinear space (V, b) is called an isotype (or an
fλ-isotype) if V ∼= (F [x]/fλ)k as F [x]-modules for some k ∈ N and fλ = (pp∗)m
for some monic prime p ∈ F [x] with p 6= p∗ or fλ = qn for some monic prime
q ∈ F [x] with q = q∗.

Theorem 4.1.1 thus reduces the isomorphism problem of bilinear forms into the
isomorphism problem of g-isotypes. This process is a basic step in many of the
papers mentioned earlier.

It turns out the the parameter g strongly affects the diversity of isometry classes
of g-isotypes.

Theorem 4.1.3. Let g ∈ F [x] and let (V, b) be a g-isotype. Assume that at
least one of the following holds:

(1) g = (pp∗)n for some n ∈ N and prime p ∈ F [x] with p 6= p∗.
(2) g = (x− (−1)n)n for some n ∈ N.

Then V is the direct sum of F [x]-modules V1 ⊕ V2 such that:
(i) V1, V2 are totally isotropic (i.e. b(V1, V1) = b(V2, V2) = 0).
(ii) If (1) holds, then V1 ∼= (F [x]/pn)k and V2 ∼= (F [x]/(p∗)n)k (as F [x]-

modules) for some k ∈ N.
(iii) If (2) holds, then V1 ∼= V2 ∼= (F [x]/g)k (as F [x]-modules) for some k ∈ N.

In any case, the isometry class of b is determined by dimV and g.

Proof (partial, sketch). We only show the existence of V1 and V2 in case
(1) holds. Provided V1 and V2 exists, we show that b is uniquely determined up to
isometry by g and dimV .

Assume (1) holds and view V as an F [λ] := F [x]/g-module. Then the Chinese
Remainder Theorem implies F [λ] ∼= F [x]/pn×F [x]/(p∗)n. Thus, any F [λ]-module
U decompose into a direct sum of an F [x]/pn-module and an F [x]/(p∗)n-module,
namely U = annU (pn) ⊕ annU ((p∗)n) (and F [λ] acts on each component via the
isomorphism F [λ] ∼= F [x]/pn × F [x]/(p∗)n). Let V1 = annV (pn) = ker pn(λ) and
V2 = annV ((p∗)n) = ker(p∗)n(λ). Since VF [λ] is free, (V1)F [x]/pn and (V2)F [x]/(p∗)n

are also free of the same rank, so (ii) holds.
To see (i), let α be the corresponding anti-endomorphism of b. Then it is easy

to see that λα = λ−1 (Lemma 2.3.12(ii), γ = idV in our case). Also observe that
the image of (p∗)n in F [x]/pn is a unit, hence (p∗)n(λ|V1) ∈ GL(V1) := AutF (V1).
Let a = p∗(0)n. Then (p∗)n(λα) = (pn)∗(λ−1)n = a((pn)∗∗)(λ) = apn(λ). Now let
u, v ∈ V1. Then there is u0 ∈ V1 such that u = (p∗)n(λ)u0. Therefore, b(u, v) =
b((p∗)n(λ)u0, v) = b(u0, (p∗)n(λα)v) = b(u0, ap

n(λ)v) = b(u0, 0) = 0, as required.
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Now assume (V ′, b′) is another g-isotype. Write V ′ = V ′1 ⊕ V ′2 for V ′1 , V ′2
satisfying (i) and (ii) and let λ′ be the asymmetry of b′. Then λ|V1 and λ′|V ′1 are
conjugate (since they have the same canonical rational form by (ii)). Thus, b ∼= b′

by Proposition 4.7.6 below (the proof is a well-known argument). �

In light of the previous theorem, we need to solve the isomorphism problem for
g-isotypes only when g = qn for some prime q ∈ F [x] with x−(−1)n 6= q = q∗. The
latter turns out to be equivalent to the isomorphism problem of hermitian forms
over F [x]/q.

Let K/F be a f.d. field extension admitting an F -linear involution α. Assume
that there is λ0 ∈ K such that λ0λ

α
0 = 1 and let U be a K-vector space. Recall

that a biadditive map h : U × U → K is called an (α, λ0)-hermitian form if
h(xa, y) = aαh(x, y), h(x, ya) = h(x, y)a, h(x, y) = h(y, x)αλ0

for all x, y ∈ U and a ∈ F . Let Tr : K → F be a non-zero F -linear map such that
Tr(a) = Tr(aα) for all a ∈ K. Such a map always exist. We now have:

Proposition 4.1.4 (Riehm). Assume K = F [λ0] and let U be a f.d. K-vector
space. Let H(α, λ0) denote the set of (α, λ0)-hermitian forms defined on U and let
B(λ0) be the set of bilinear forms on U having λ0 as a (right idF -)asymmetry.2
Then H(α, λb) ∼= B(λ0) via h 7→ Tr ◦h.

Assume (V, b) is a g-isotype, where g = qn as above. Let λ be the asymmetry
of b and define

(π, ε) =
{

(λdeg q/2q(λ), 1) g(x) 6= (x+ (−1)n)n
(λ− λ−1,−1) g(x) = (x+ (−1)n)n .

(Note that deg q is even if q(1), q(−1) 6= 0.) It is easy to verify that
(15) b(πu, v) = εb(u, πv) ∀u, v ∈ V ,

and π generates the unique maximal ideal of F [λ] (which is 〈q(λ)〉). Let U = V/πV
and define a bilinear form bred : U ×U → F by bred(u, v) = (πn−1u, v) (this is well-
defined by (15)).3 Consider U as a vector space over K := F [λ]/π = F [x]/q and
let λ0 := εn−1λ. Then K admits an involution α sending x (and hence λ0) to its
inverse. As λ0 is easily seen to be the asymmetry of bred, Proposition 4.1.4 implies
that there is an (α, λ0)-hermitian form h : U ×U → K such that bred = Tr ◦h. The
following theorem states that the isometry class of b is determined by the isometry
class of h.

Theorem 4.1.5 (Riehm). Let (V, b), (V, b′) be two g-isotypes having the same
asymmetry λ and assume g = qn as above. Let h, h′ be the (α, λ0)-hermitian forms
induced by b and b′ as just explained. Then b ∼= b′ if and only if h ∼= h′.

To finish, we note that Riehm’s solution was extended by Gabriel to degenerate
forms ([44]). Roughly speaking, Gabriel proved that every bilinear space (V, b) can
be decomposed as a sum of a regular part and an essentially degenerate space
and that decomposition is unique up to isometry. While the isomorphism problem
of the regular part is solved as above, Gabriel showed that the degenerate part
is determined up to isometry by its Kronecker module (see below). We will not
describe Gabriel’s results here, but rather state them later in section 4.11, where
we shall provide a new easy proof. Somewhat ironically, the techniques used by
Gabriel (i.e. the Kronecker modules) are essential to deal with bilinear forms over
rings, regular or not.

2 In [76], Riehm also requires the forms in B(λ0) to satisfy b(xa, y) = b(x, yaα) for all x, y ∈ U
and a ∈ K. However, since we assume K = F [λ0], Riehm’s extra condition is automatically
satisfied because b(λ0x, y) = b(x, λα0 y).

3 The letters “red” in bred stand for “reduced”.
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4.2. Survey: Categories with Duality (Hermitian Categories)

In this section, we briefly survey the theory of categories with duality (also
called hermitian categories). This theory, designed to handle hermitian forms over
rings with involution, has initiated in 70’s and was developed by various authors
including Bak ([6]), Knebusch ([55]), Quebemmann Scharlau and Schulte ([71])
and others (see also [86, Ch. 7] and [7]). We will recall most of the definitions and
bring some of the fundamental results in this area. All proofs can be found in [71]
or [86].

Definition 4.2.1. A category with duality is a triplet (H , ∗, ω) such that H
is a category, ∗ : H →H is a contravariant functor and ω : idH → ∗∗ is a natural
transformation satisfying

ω∗M ◦ ωM∗ = idM∗
for all M ∈H . If A is an additive category, then we require ∗ to be additive.

A bilinear form over H is a pair (M, b) such thatM ∈H and b ∈ Hom(M,M∗).
The form (M, b) is called symmetric if b = b̃ := b∗ ◦ ωM . In this case, b is called
regular if it is bijective.

An isometry from a bilinear form (M, b) to a bilinear form (M ′, b′) is an iso-
morphism σ : M → M ′ such that σ∗ ◦ b′ ◦ σ = b. If H is additive, then we define
(M, b) ⊥ (M ′, b′) := (M ⊕M ′, b⊕ b′) (we identify (M ⊕M ′)∗ with M∗ ⊕M ′∗).

We will usually omit ∗ and ω from the notation, writing H instead of (H , ∗, ω).

Remark 4.2.2. It is customary to assume ω is a natural isomorphism, but as
in section 2.7, we will not enforce it. Note that if (M, b) is a regular symmetric
form over H , then ωM = (b∗)−1 ◦ b is bijective.

Example 4.2.3. Let (R,α) be a ring with involution and let λ ∈ R be a
central element satisfying λαλ = 1. For all M ∈ Mod-R, let M∗ = Hom(M,RR).
Then M∗ is a right R-module w.r.t. (f · r)m = rα · (fm) (where r ∈ R, m ∈ M ,
f ∈ M∗). Furthermore, there exists a natural transformation ωM : M → M∗∗

given by (ωMm)f = λ · (fm)α. Then (Mod-R, ∗, ω) is a category with duality.
The bilinear forms on Mod-R correspond to (α-)sesquilinear forms over R.

Indeed, for every sesquilinear form b : M × M → R, the pair (M,Adrb) (which
clearly determines b) is easily seen to be a bilinear form over Mod-R. Furthermore,
b is (α, λ)-hermitian (i.e. b(x, y) = λb(y, x)α) if and only if (M,Adrb) is symmetric.
In fact, the category of sesquilinear (λ-hermitian) forms over R can be understood
as the category of (symmetric) bilinear forms over Mod-R.

Remark 4.2.4. Let H be an additive category with duality. It turns out that
locally H looks like the previous example. More precisely, every object in H is
contained in a full subcategory that is isomorphic (as a category with duality) to
a full suchcategory of proj-R (the category of finite projective right R-modules),
considered as a category with duality w.r.t. some involution α of R and λ ∈ Cent(R)
with λαλ = 1. This is the principle of transfer and we refer the reader to [71] or
section 2.8 above for a detailed discussion.

In order to proceed, we need to assume that 2 is invertible in H .4 That is, H
satisfies the following condition:

(C0) 2 idM is an isomorphism for all M ∈H .
Furthermore, we also consider the following conditions:

4 This can be avoided by replacing bilinear forms with quadratic forms (see [71]). We have
omitted the definition and the details since we are only interested in bilinear forms.
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(C1) All idempotents in H split.5
(C2) End(M) is complete semilocal for all M ∈H .

In addition, it will be sometimes more convenient to consider the following stronger
version of (C2):

(C2′) End(M) is semiprimary for all M ∈H .
While conditions (C0) and (C1) are easy to satisfy, conditions (C2) and (C2′) are
very strong, so let us exhibit some examples in which they are satisfied.

Example 4.2.5. (i) Let F be a field. An F -category is a preadditive category
C such that for everyM,N ∈ C , Hom(M,N) is endowed with a f.d. F -vector space
structure and composition is F -bilinear. In this case, End(M) is a f.d. F -algebra
for every M ∈ C , hence condition (C2′) holds.

(ii) By Theorem 1.7.3 (resp. Corollary 1.8.5), the category of f.p. right R-
modules satisfies (C2′) (resp. (C2)) whenever R is semiprimary (resp. complete
semilocal with Jacobson radical f.g. as a right ideal).

Conditions (C1) and (C2) imply that every object in H has a Krull-Schmidt
decomposition (see Theorem 1.1.1) and that the endomorphism ring of every inde-
composable object is local (and complete by (C2)). If Σ is a set of isomorphism
classes of indecomposable objects in H , we say that an object M ∈H is of type-Σ
if for any indecomposable summand A of M , we have [A] ∈ Σ (where [A] is the
isomorphism class of A). We also let ΣM denote the set of isomorphism classes of
indecomposable summands of M .

The following three theorems imply that regular symmetric bilinear forms over
categories with duality satisfying conditions (C0)–(C2) have a very special struc-
ture.

Theorem 4.2.6 (Decomposition into Isotypes). Assume conditions (C0)–(C2)
hold. Let (M, b) be a bilinear form over H and let ΣM := {{[A], [A∗]} | [A] ∈ ΣM}.
Then there exists a decomposition

(M, b) ∼=
ζ∈ΣM

(Mζ , bζ)

such that Mζ is of type-ζ. The summand (Mζ , bζ) is uniquely determined up to
isometry by (M, b) and ζ.

Let A ∈ H be an indecomposable object and let ζ = {[A], [A∗]}. A bilinear
form (M, b) is called a ζ-isotype if M is of type-ζ. The previous theorem thus
asserts that every bilinear space over a category with duality satisfying (C0), (C1)
and (C2) is a sum of isotypes, which are uniquely determined up to isometry.

Definition 4.2.7. Let M ∈ H . The hyperbolic form H(M) is defined to be
(M ⊕M∗, bM ) where
bM =

[ 0 idM∗
ωM 0

]
∈ Hom(M ⊕M∗, (M ⊕M∗)∗) = Hom(M ⊕M∗,M∗ ⊕M∗∗) .

A bilinear form (M, b) is called hyperbolic if (M, b) ∼= H(N) for some N ∈H .

Theorem 4.2.8. Assume conditions (C0), (C1) and (C2) hold. Let A be an
indecomposable object such that there is no regular symmetric bilinear form on
A (e.g. if A � A∗). Then every {[A], [A∗]}-isotype is hyperbolic. Moreover, an
{[A], [A∗]}-isotype (M, b) is determined up to isometry by [M ].

5 Let A be a category and A ∈ A . An idempotent e ∈ EndA (A) is split if there exist B ∈ A ,
i ∈ Hom(B,A) and p ∈ Hom(A,B) such that i ◦ p = e and p ◦ i = idB . If A is additive, then
condition (C1) means that every idempotent e ∈ EndA (A) corresponds to a summand of A (such
a summand need not exist in general).
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Theorem 4.2.9. Assume conditions (C0), (C1) and (C2) hold. Let A be
an indecomposable object such that there exists a symmetric regular bilinear form
(A, h). Let L = End(A) and let α be the involution of L corresponding to h (i.e.
α : x 7→ h−1 ◦ x∗ ◦ h). Then D = L/ Jac(L) is a division ring and α induces an
involution on D, which we continue denoting by α. Consider mod-D (the category
of f.g. D-modules) as a category with duality w.r.t. α and λ = 1 as in Exam-
ple 4.2.3 and let H |A be the full subcategory of H consisting of objects of type
{[A]} = {[A], [A∗]}. Then there exists a homomorphism of categories with duality

: H |A → mod-D

such that A = DD, and for every two bilinear forms (M, b), (M ′, b′) over H and
every isometry σ0 : (M, b)→ (M ′, b′) there exists an isometry σ : (M, b)→ (M ′, b′)
with σ = σ0. In particular, the isometry problem of {[A]}-isotypes can be reduced
to isometry of 1-hermitian forms over D.

The last three theorems show that the isometry problem of symmetric regular
bilinear forms in a category with duality satisfying (C0)–(C2) can be reduced to:
(1) isomorphism and decomposition problems in H and (2) isometry of hermitian
forms over division rings. The applications of this principle are numerous; for
instance, we get:

Corollary 4.2.10 (Witt’s Cancelation Theorem). Let (M1, b1), (M2, b2),
(M3, b3) be symmetric regular bilinear spaces over a hermitian category H satisfy-
ing (C0)–(C2). Then (M1, b1) ⊥ (M2, b2) ∼= (M1, b1) ⊥ (M3, b3) ⇐⇒ (M2, b2) ∼=
(M3, b3).

Proof. This holds since Witt’s Cancelation Theorem holds for hermitian forms
over division rings of characteristic not 2. (Moreover, Witt’s Cancelation Theorem
holds for symmetric regular forms over semilocal rings; see [73].) �

Corollary 4.2.11. Let F be an algebraically closed field and assume H is an
F -category such that ∗ is F -linear. Then the isometry class of a regular symmetric
bilinear form (M, b) is determined by [M ].

Proof. Reduce to isometry of 1-hermitian forms over f.d. division F -algebras
with F -linear involution α. Since F is algebraically closed, the only such division
ring is F and α = idF . As F is algebraically closed, a hermitian form is determined
up to isometry but the dimension of its underlying vector spaces. The corollary
follows immediately. �

Remark 4.2.12. (i) The assumption that the conditions (C0)–(C2) hold for all
objects in A is usually superfluous. In most of the previous results, it is enough
to assume that the bilinear form under question, (M, b), satisfies 2 ∈ End(M)×, all
idempotents of End(M) split and End(M) is complete semilocal.

(ii) All previous results hold when replacing (C2) with the slightly milder con-
dition:6

(C2′′) End(M) is semiperfect pro-semiprimary (w.r.t. some ring topology) for
all M ∈H .

The proofs remain almost the same. (In addition, we give a detailed proof of the
critical arguments in section 4.9 below.) This is important since by Theorem 1.8.3,
the category of Hausdorff f.p. right R-modules satisfies (C2′′) when R is first count-
able semiperfect pro-semiprimary (e.g. a complete semilocal ring). Furthermore,

6 To writing these words, we do not know whether (C2′′) is indeed weaker than (C2); see
section 1.10.
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condition (C2′′) passes from an object to its summands (Proposition 1.2.3(ii)),
while it is not clear to us if the same applies to (C2).7

The reader may have spotted some similarity between the results of this section
and the results of Riehm from the previous section. In the next section we will show
that this is no coincidence — there is a canonical way to translate the theory of
non-symmetric forms into the theory of symmetric forms, and the results of Riehm,
Gabriel and others “factor” through it.

4.3. From Non-Symmetric to Symmetric

Until now, we have stated some known results which are due to various authors.
Beginning from this section, we describe our own work.

In this section, we will prove a deep result showing that the isometry problem
of bilinear forms is equivalent to the isometry problem of regular symmetric forms.
More explicitly, we will prove that the category of (arbitrary) bilinear forms over a
category with a double duality (see section 2.7 or the summary below) is isomorphic
to the category of regular symmetric bilinear forms over another category with
duality.8 The latter category will be the category of Kronecker modules. Once that
is achieved, the rest of this chapter will be dedicated to reduce this result into
“down-to-earth” results.9

Let us begin by first recalling the classical definition of Kronecker modules. In
the sense of [44], a Kronecker module over a field F consists of a quartet (U, f, g, V )
where V,U are vector spaces and f, g ∈ Hom(U, V ). Kronecker modules correspond
to modules over the Kronecker algebra, K(F ) =

[
F F⊕F
0 F

]
, which is the path algebra

of the quiver:
• ((

66 •
(the vector spaces U, V correspond to the vertices and f, g correspond to the ar-
rows). In the second half of the nineteenth centaury, Kronecker gave an explicit
description of the indecomposable Kronecker modules (of finite dimension) and
moreover, provided an algorithm for decomposition of a given module. As the
Krull-Schmidt Theorem implies that a Kronecker module is determined up to iso-
morphism by its indecomposable factors (with multiplicities; see section 1.1), the
isomorphism problem of Kronecker modules can be considered as solved or at least
very well-understood (see [44, §3] for more details).

Any bilinear form b : V × V → F gives rise to a Kronecker module
(V,Ad`b,Adrb , V ∗)

(where V ∗ = HomF (V, F )). As mentioned above, such Kronecker modules were
used by Gabriel and others (see [44] and related papers) to reduce the isomorphism
problem of arbitrary classical bilinear forms to nondegenerate forms. However, in
this chapter we shall consider Kronecker modules for completely different purposes.

Throughout, (A , [0], [1],Φ,Ψ) is a category with a double duality (see section
2.7). Recall that this means [0], [1] : A → A are contravariant functors (written

7 This boils down to the question whether for every complete semilocal ring R and e ∈ E(R),
eRe is also complete semilocal. This is not trivial since Jac(eRe)n = (e Jac(R)e)n might be strictly
smaller than e Jac(R)ne in general (but equality holds for n = 1).

8 Categories with duality are also known as “hermitian categories”.
9 A similar result, applying to arbitrary symmetric bilinear forms over a category with duality

was obtained in [16]. Furthermore, several days before submitting this work, I was introduced
with the unpublished (and recent) work [17], which proves a similar principle for arbitrary bilinear
forms over categories with duality. Both of these references assume all objects in the given category
with duality are reflexive, which is not necessary for the result obtained here. See Remarks 4.3.7
and 4.3.8 below for more details. (Eventually, the authors of [17] and I have combined our results
and submitted them together in [11].)



4.3. FROM NON-SYMMETRIC TO SYMMETRIC 149

exponentially) and Φ : idA : [1][0], Ψ : idA → [0][1] are natural transformations
satisfying Ψ[0]

M ◦ ΦM [0] = idM [0] and Φ[1]
M ◦ ΨM [1] = idM [1] for all M ∈ A . These

identities induce a natural isomorphism
IA,B : Hom(B,A[1])→ Hom(A,B[0])

given by IA,B(f) = f [0] ◦ ΦA; its inverse is given by I−1
A,B(g) = g[1] ◦ ΨB . If A is

additive (or preadditive), then we require [0] and [1] to be additive.
A bilinear form over (A , [0], [1],Φ,Ψ) (or just A for brevity) is a pair (M, b)

such that M ∈ A and b ∈ Hom(M,M [1]). In this case we define b̃ = IM,M (b) =
b[0]◦ΦM ∈ Hom(M,M [0]). A bilinear forms is right (resp. left) regular if b (resp. b̃) is
bijective. An isometry from (M, b) to (M ′, b′) is an isomorphism σ ∈ Hom(M,M ′)
such that σ[1] ◦ b′ ◦ σ = b.

Henceforth, (A , [0], [1],Φ,Ψ) is a fixed category with a double duality.

Definition 4.3.1. A Kronecker module over A (or (A , [0], [1],Φ,Ψ)) is a
quartet (M,f0, f1, N) such that M,N ∈ A and

f0 ∈ Hom(M,N [0]), f1 ∈ Hom(M,N [1]) .
A homomorphism between two Kroneker modules (M,f0, f1, N) and (M ′, f ′0, f ′1, N ′)
is a formal pair (σ, τop) with σ ∈ Hom(M,M ′) and τ ∈ Hom(N ′, N) such that:

f ′0 ◦ σ = τ [0] ◦ f0 and f ′1 ◦ σ = τ [1] ◦ f1 .

The composition of two morphisms of Kronecker modules (σ, τop) : (M,f0, f1, N)→
(M ′, f ′0, f ′1, N ′) and (σ′, τ ′op) : (M ′, f ′0, f ′1, N ′)→ (M ′′, f ′′0 , f ′′1 , N ′′) is given by

(σ′, τ ′op) ◦ (σ, τop) = (σ′ ◦ σ, (τ ◦ τ ′)op) .
This makes the class of Kronecker modules into a category which we denote by
Kr(A ).

Example 4.3.2. Let R be a ring and let K be a double R-module. Then
Mod-R admits a standard structure of category with a double duality induced by
K, hence we can consider Kronecker modules over Mod-R. These would be quartets
(M,f0, f1, N) withM,N ∈ Mod-R and fi ∈ Hom(M,N [i]) for i ∈ {0, 1}. Note that
precaution should be taken as these Kronecker modules do not naturally correspond
to (ring theoretic) modules over the Kronecker algebra K(R) :=

[
R R⊕R
0 R

]
. The

latter correspond to quartets (M,f, g,N) such that M,N ∈ Mod-R and f, g ∈
Hom(M,N) (and we shall stick to this description henceforth).

Nevertheless, when K admits an anti-isomorphism κ, there is a functor from
Kr(Mod-R) to Mod-K(R) given by F : (M,f0, f1, N) 7→ (M,uκ,N ◦f0, f1, N

[1]) (see
Proposition 2.2.7 for the definition of uκ; recall that uκ,N : N [0] → N [1] is a natural
isomorphism). A morphism (σ, τop) in Kr(Mod-R) will be mapped by F to (σ, τ [1]).

In general, the functor just defined is neither faithful nor full. However, if Z :=
(M,f0, f1, N) and Z ′ := (M ′, f ′0, f ′1, N ′) are Kronecker modules such that N,N ′
are reflexive (see section 2.5), then the map [1] : Hom(N ′, N) → Hom(N ′[1], N [1])
is bijective (Proposition 2.5.6(iii)), implying that F : HomKr(Mod-R)(Z,Z ′) →
HomMod-K(R)(FZ,FZ ′) is bijective. Thus, once restricted to the category of Kro-
necker modules (M,f0, f1, N) with N reflexive, F becomes faithful and full.

For example, if R is a field and K is the double R-module obtained from R by
letting �0 and �1 be the standard right actions of R on itself, then every f.d. R-
module is reflexive. Thus, the category of “finite dimensional” Kronecker modules
is equivalent to the category of f.g. K(R)-modules. As the latter is equivalent to
the category of Kronecker modules in the sense of [44] (see above), we get that
at least in the f.d. case, our new definition of Kronecker modules agrees (modulo
equivalence of categories) with the definition of Gabriel in [44].
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The category Kr(A ) inherits some of the properties of A . This is demonstrated
in the following proposition.

Proposition 4.3.3. In the previous assumptions:
(i) If A preadditive10 (in which case we assume [0] and [1] are additive), then

so is Kr(A ). The sum of two morphisms (σ1, τ
op
1 ), (σ1, τ

op
1 ) ∈ Hom(Z,Z ′)

is given by (σ1 + σ2, (τ1 + τ2)op).
(ii) If A is additive, then so is Kr(A ); the direct sum of two Kronecker mod-

ules (M,f0, f1, N), (M ′, f ′0, f ′1, N ′) ∈ Kr(A ) is given by
(M ⊕M ′, f0 ⊕ f ′0, f1 ⊕ f ′1, N ⊕N ′) .

(iii) If A is preadditive and all idempotent morphisms in A split, then all
idempotent morphisms in Kr(A ) split.

(iv) Let F be a field. If A is an F -category and [0], [1] are F -linear, then
Kr(A ) is an F -category.

Proof. This is routine. �

For every Kronecker module Z = (M,f0, f1, N) ∈ Kr(A ), define its dual by

Z∗ = (N, IN,M (f1), I−1
M,N (f0),M) = (N, f [0]

1 ◦ ΦN , f [1]
0 ◦ΨN ,M) .

The map Z 7→ Z∗ is a contravariant functor from Kr(A ) to itself, where the dual
of a morphism (σ, τop) ∈ Hom(Z,Z ′) is defined to be (τ, σop) ∈ Hom(Z ′∗, Z∗).
(Indeed, if Z ′ = (M ′, f ′0, f ′1, N ′), then σ[0] ◦ (f ′[0]

1 ◦ ΦN ′) = (f ′1 ◦ σ)[0] ◦ ΦN ′ =
(τ [1] ◦ f1)[0] ◦ ΦN ′ = f

[0]
1 ◦ τ [1][0] ◦ ΦN ′ = (f [0]

1 ◦ ΦN ) ◦ τ and similarly σ[1] ◦ (f ′[1]
0 ◦

ΨN ′) = (f [1]
0 ◦ ΦN ) ◦ τ , so (τ, σop) lies in Hom(Z ′∗, Z∗).) In addition, clearly

∗∗ = idA . Therefore, (Kr(A ), ∗, id) is a category with duality, where id is the
identity isomorphism from the identity functor idKr(A ) to ∗∗ = idKr(A ).11

Our newly defined duality structure on Kr(A ) allows us to consider symmetric
bilinear forms over Kronecker modules. Such forms consist of pairs (Z, (σ, τop))
with Z = (M,f0, f1, N) ∈ Kr(A ) and (σ, τop) ∈ Hom(Z,Z∗) (which implies σ, τ ∈
Hom(M,N)). The form (Z, (σ, τop)) is symmetric if (σ, τop) = (σ, τop)∗ ◦ idZ ,
i.e. if σ = τ , and regular if (σ, τop) is invertible, i.e. σ, τ are invertible. We let
Symreg(Kr(A )) denote the category of regular symmetric bilinear forms over Kr(A )
and Bil(A ) denote the category of arbitrary bilinear forms over A . The morphisms
in both categories are isometries.

Observe that any bilinear space (M, b) ∈ Bil(A ) induces a Kronecker module,
namely

Z(M, b) = (M, b̃, b,M) .
(For example, in the special case where A is obtained from a ring R and a double R-
moduleK, the Kronecker module of b : M×M → K will be (M,Ad`b,Adrb ,M)). The
following proposition characterizes the Kronecker modules obtained from bilinear
spaces.

Proposition 4.3.4. In the previous assumptions:
(i) Z = Z(M, b) for some bilinear form (M, b) ∈ Bil(A ) ⇐⇒ Z = Z∗.
(ii) The following conditions are equivalent:

(a) Z ∼= Z(M, b) for some bilinear form (M, b) ∈ Bil(A ).
(b) There exists an isomorphism η : M → N s.t. (f [0]

1 ◦ΦN )◦η = η[0]◦f0.

10 The category A is preadditive if for all N,M ∈ A , Hom(M,N) is equipped with an
additive group structure such that composition is biadditive.

11 The appropriate notation for id above should have been ididKr(A ) , but this is somewhat
incomprehensible, not to mention that it looks peculiar.
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(c) There exists an isomorphism η : M → N s.t. (f [1]
0 ◦ΨN )◦η = η[1]◦f1.

(d) There exists an isomorphism η : M → N s.t. (η, η) ∈ Hom(Z,Z∗).
(e) There exists a symmetric regular bilinear form (over Kr(A )) on Z.

Proof. (i) Z = Z∗ ⇐⇒ M = N , f0 = IM,M (f1) and f1 = I−1
M,M (f0) ⇐⇒

M = N and f0 = IM,M (f1) ⇐⇒ Z = Z(M,f1).
(ii) First, observe that the preceding discussion implies that (Z, (η, ηop)) is a

symmetric bilinear form over Kr(A ) and it is regular if and only if η is invertible.
Thus, (d)⇐⇒ (e).

We next prove (b) ⇐⇒ (c). Assume (b) holds, i.e. (f [0]
1 ◦ ΦN ) ◦ η = η[0] ◦ f0.

Then this implies η[1] ◦Φ[1]
N ◦ f

[0][1]
1 = f

[1]
0 ◦ η[0][1]. Composing on the right with ΨM

yields f [1]
0 ◦ η[0][1] ◦ΨM = η[1] ◦Φ[1]

N ◦ f
[0][1]
1 ◦ΨM = η[1] ◦Φ[1]

N ◦ΨN [1] ◦ f1 = η[1] ◦ f1
(in the second equality we used the fact that Ψ is natural and in the last equality
we used Proposition 2.2.1). As the l.h.s. equals f [1]

0 ◦ ΨN ◦ η (since Ψ is natural),
(c) holds. That (c) implies (b) follows by symmetry.

By definition, (d) is equivalent to “(b) and (c)”. As (b)⇐⇒ (c), we get (b)⇐⇒
(c)⇐⇒ (d). Assume (d) holds. Define Z ′ = (M,η[0]◦f0, η

[1]◦f1,M). Then (idM , η)
is clearly an isomorphism from Z to Z ′. In addition, by (c), (η[0] ◦ f0)[1] ◦ ΨM =
f

[1]
0 ◦η[0][1] ◦ΨM = f

[1]
0 ◦ΨN ◦η = η[1] ◦f1 and similarly, (η[1] ◦f1)[0] ◦ΦM = η[0] ◦f0.

Therefore, Z ′ = Z ′∗ and by (ii), Z ∼= Z ′ = Z(b) for some bilinear form b, i.e. (a)
holds.

Finally, assume (a) holds, i.e. there exists an isomorphism (σ, τ) : Z ∼= Z(b)
for some bilinear form b. Write Z(b) = (A, g0, g1, A). Then τ [0] ◦ f0 = g0 ◦ σ and
τ [1] ◦f1 = g1 ◦σ. By (ii), Z(b)∗ = Z(b), hence g0 = g

[0]
1 ◦ΦA. This and the previous

equations imply f [0]
1 ◦ΦN ◦ (τ ◦ σ) = f

[0]
1 ◦ τ [1][0] ◦ΦA ◦ σ = (τ [1] ◦ f1)[0] ◦ΦA ◦ σ =

(g1 ◦σ)[0] ◦ΦA ◦σ = σ[0] ◦ g[0]
1 ◦ΦA ◦σ = σ[0] ◦ g0 ◦σ = σ[0] ◦ τ [0] ◦ f0 = (τ ◦σ)[0] ◦ f0,

hence η = τ ◦ σ satisfies (b). �

Remark 4.3.5. (i) Caution: Z ∼= Z∗ does not imply that Z is isomorphic to a
Kronecker module of a bilinear form. This is demonstrated later and suggests the
following hierarchy:

(1) Z is of bilinear type (or just bilinear, for brevity) if Z ∼= Z(M, b) for some
bilinear form (M, b) ∈ Bil(A ),

(2) Z is self-dual if Z ∼= Z∗,
with (1) obviously implying (2). If Z � Z∗, then Z is called non-self-dual.

(ii) For every Kronecker module Z = (M,f0, f1, N), there exists a bilinear
form (MZ , bZ) such that Z ⊕ Z∗ ∼= Z(MZ , bZ). It is given by (MZ , bZ) where
MZ := M ⊕N and

bZ :=
[

0 I−1(f0)
f1 0

]
∈ Hom(M ⊕N,M [1] ⊕N [1]) .

In the special case where A is obtained from a ring R and a double R-module
K, the form bZ is given by the formula b((x, y), (x′, y′)) = (f1x

′)y + (f0x)y′ for
all x, x′ ∈ M and y, y′ ∈ N . (The form bZ is precisely the form induced from a
Kronecker module in the sense of [44].)

The highlight of this section (and one of the main highlights of this chapter)
is the following theorem which, roughly speaking, reduces the study of arbitrary
bilinear forms into regular symmetric bilinear forms.

Theorem 4.3.6. There is an equivalence of categories

F : Bil(A )→ Symreg(Kr(A ))
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given by

F (M, b) = (Z(M, b), (idM , idop
M )) and Fσ = (σ, (σ−1)op)

for all (M, b) ∈ Bil(A ) and any morphism σ in Bil(A ).

Proof. Let (M, b), (M ′, b′) ∈ Bil(A ) and σ ∈ HomBil(A )((M, b), (M ′, b′)).
Then (idM , idop

M )∗ = (idM , idop
M ), hence F (M, b) is indeed a symmetric regular form

over Symreg(Kr(A )). In addition, b = σ[1]◦b′◦σ, hence (σ−1)[1]◦b = b′◦σ. Applying
[0] to the first equation yields b[0] = σ[0] ◦ b′[0] ◦ σ[0][1]. Composing this with ΦM on
the right and (σ−1)[0] on the left, we get (σ−1)[0] ◦ b̃ = (σ−1)[0] ◦ b[0] ◦ ΦM = b′[0] ◦
σ[0][1] ◦ΦM = b′[0] ◦ΦM ′ ◦σ = b̃′ ◦σ. Thus, (σ, (σ−1)op) ∈ Hom(Z(M, b), Z(M ′, b′)).
In addition,

(Fσ)∗ ◦ (idM ′ , idop
M ′) ◦ Fσ = (σ−1, σop) ◦ (idM ′ , idop

M ′) ◦ (σ, (σ−1)op) = (idM , idop
M ),

so Fσ is an isometry from F (M, b) to F (M ′, b′). That F preserves composition is
straightforward.

We now define an inverse of F . Let (Z, (σ, τop)) ∈ Symreg(Kr(A )) with Z =
(M,f0, f1, N). Then the discussion preceding Proposition 4.3.4 implies that σ = τ
and σ : M → N is an isomorphism. In addition, Proposition 4.3.4 implies that
(f [0]

1 ◦ ΦN ) ◦ σ = σ[0] ◦ f0. Define

G(Z, (σ, σop)) = (M,σ[1] ◦ f1)

and for any isometry (η, θop) : (Z, (σ, σop))→ (Z ′, (σ′, σ′op)), define

G(η, θop) = η .

Write Z ′ = (M ′, f ′0, f ′1, N ′). Let us check that η is indeed an isometry from G(Z) to
G(Z ′), which amounts to η[1]◦(σ′[1]◦f ′1)◦η = σ[1]◦f1. First note that f ′1◦η = θ[1]◦f1
and (η, θop)∗ ◦ (σ′, σ′op) ◦ (η, θop) = (σ, σop) which means that θ ◦ σ′ ◦ η = σ. We
now get η[1] ◦ σ′[1] ◦ f ′1 ◦ η = η[1] ◦ σ′[1] ◦ θ[1] ◦ f1 = (θ ◦ σ′ ◦ η)[1] ◦ f1 = σ[1] ◦ f1, as
required. That G preserves composition is routine.

It is fairly easy to see that GF = idBil(A ). On the other hand, keeping the
above notation, we have

FG(Z, (σ, σop)) = ((M, (σ[1] ◦ f1)[0] ◦ ΦM , σ[1] ◦ f1,M), (idM , idop
M )) .

As (f [1]
0 ◦ΨM ) ◦ σ = σ[1] ◦ f1, we get that (σ[1] ◦ f1)[0] ◦ ΦM = f

[0]
1 ◦ σ[1][0] ◦ ΦM =

f
[0]
1 ◦ ΦN ◦ σ = σ[0] ◦ f0, so

(16) FG(Z, (σ, σop)) = ((M,σ[0] ◦ f0, σ
[1] ◦ f1,M), (idM , idop

M )) .

Define a natural transformation i : idSymreg(Kr(A )) → FG by i = i(Z, (σ, σop)) =
(idM , σop). It is easy to see from (16) that i is an isomorphism. To see that
i is natural, let Z ′, σ′, η, θ be as above. We need to show that i(Z ′, (σ′, σ′op)) ◦
(η, θop) = FG(η, θop) ◦ i(Z, (σ, σop)). Indeed, FG(η, θ) = Fη = (η, (η−1)op) hence
i◦ (η, θop) = (idM ′ , σ′op)◦ (η, θop) = (η, (θ ◦σ′)op) = (η, (σ ◦η−1)op) = (η, (η−1)op)◦
(idM , σop) = FG(η, θop)◦ i, as required. We thus conclude that F is an equivalence
of categories. �

Remark 4.3.7. A result of the same flavor was obtained by E. Bayer-Fluckiger
and L. Fainsilber in [16]. They showed that there is an equivalence between the cat-
egory of arbitrary symmetric bilinear forms over a category with duality (H , ∗, ω)
(here ω must be an isomorphism!) and the category of symmetric regular bilin-
ear forms over Mor(H ), the category of morphisms in H . The latter consists of
triplets (A, h,B) where A,B ∈ H and h ∈ Hom(A,B) with obvious morphisms.
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The contravariant functor ∗ : (A, h,B) 7→ (B∗, h∗, A∗) together with the natural iso-
morphism ω̂ : id→ ∗∗ given by ω̂(A,h,B) = (ωA, ωB) makes Mor(H ) into a category
with duality. The equivalence is given by F ′ : (M, b) 7→ ((M, b,M∗), (ωM , idM∗)).

To understand how the result in [16] relates to Theorem 4.3.6, assume that
(A , [0], [1],Φ,Ψ) = (H , ∗, ∗, ω, ω). Then Kr(A ) admits a full subcategory S con-
sisting of Kronecker modules Z = (M,f0, f1, N) with f0 = f1 (this is possible since
[0] = ∗ = [1]). Observe that any symmetric bilinear form (M, b) over A = H
satisfies Z(M, b) ∈ S . Now, there is a functor T : S → Mor(H ) given by

T (M,f, f,N) = (M,f,N∗) and T (σ, τop) 7→ (σ, τ∗)

for all (M,f, f,N) ∈ S and any morphism (σ, τop) in S . It can be checked that
T induces an isomorphism of categories with duality from S to Mor(H ) (see [71]
or section 2.8); the natural isomorphism i : T∗ → ∗T is given by i(M,f, f,N) =
(ωN , idM ) (here we need ω to be invertible!). Thus, Mor(H ) can be identified
as a full sub-category-with-duality of Kr(A ). This isomorphism also induces an
equivalence of categories Symreg(S )→ Symreg(Mor(H )) given by

((M,f, f,N), (σ, σop)) 7→ ((M,f,N∗), (ωN ◦ σ, σ∗))

and T (η, θop) = (η, θ∗). The functor F ′ : Sym(H ) → Symreg(Mor(H )) of [16] is
the composition of the functor Symreg(S ) → Symreg(Mor(H )) just defined with
F of Theorem 4.3.6, restricted to symmetric bilinear forms on A = H .

We note that since the assumption that ω is invertible is essential in [16],
Theorem 4.3.6 is more general than [16] even for symmetric forms. We will exploit
this later to work with systems of bilinear forms, rather than a single form.

Remark 4.3.8. Several days before submitting this dissertation, we were in-
troduced with the (still unpublished) work of E. Bayer-Fluckiger and D. Moldovan
([17], [64]). Independently of us, they obtained results which are very similar to
Theorem 4.3.6 by using a very similar construction, which also applies to systems of
bilinear forms. Explicitly, they have shown that the category of I-indexed systems
of arbitrary bilinear forms over a category with duality (H , ∗, ω) for which ω is
a natural isomorphism is equivalent to the category of regular symmetric bilinear
forms over another category with duality. (We should note that Theorem 4.3.6 can
also be applied to systems of bilinear forms; see section 4.5.) E. Bayer-Fluckiger,
D. Moldovan and I eventually published some of our results as a joint work; see
[11].

To make Theorem 4.3.6 fully applicable, we need to know whether conditions
(C0), (C1), (C2), (C2′), (C2′′) of the previous section hold for Kr(A ). Indeed,
conditions (C0) and (C1) clearly pass from A to Kr(A ) (Proposition 4.3.3), and
in section 4.4 below we will see that the same applies to (C2′) (Corollary 4.4.2).
However, in general, not much can be said about when Kr(A ) satisfies (C2) or
(C2′′); sufficient conditions appear in the following two sections.

Provided Kr(A ) satisfies conditions (C0)–(C2), the results of section 4.2 imply
that bilinear forms over A have:

• Decomposition into isotypes (Theorem 4.2.6).
• Witt’s Cancelation Theorem (Corollary 4.2.10).
• The isomorphism problem can be reduced to isomorphism and decompo-
sition of objects in Kr(A ) and isometry of hermitian forms over division
rings.

• If A is an F -category with F algebraically closed and [0], [1] F -linear,
then the isometry class of a bilinear form (M, b) over A is determined by
[Z(M, b)].
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Moreover, under mild assumptions, these results apply to systems of bilinear forms
over categories with a double duality. This will be demonstrated in section 4.5.

While this is quite impressive, the reader might now ask questions like: what
are the isotypes? how does the reduction of the isometry problem over A work in
practice? what does being hyperbolic in Kr(A ) mean? etc. With the exception
of sections 4.4–4.5, the rest of this chapter is dedicated to answer these questions,
i.e. to decipher the isomorphism of Theorem 4.3.6. Step by step, we will define
hyperbolic forms and isotypes, and reduce the isometry problem of bilinear forms
to isometry of hermitian forms. The discussion and proofs will be “category-free”
except some sporadic comments.

At the moment, we can answer the following question: How does Riehm and
its predecessors’ work relates to Theorem 4.3.6? The answer is that the isotypes of
section 4.1 become isotypes in Kr(Mod-F ) after applying the isomorphism of The-
orem 4.3.6. Furthermore, the isotypes discussed in Theorem 4.1.3 are hyperbolic
in Kr(Mod-F ) and actually correspond to the isotypes of Theorem 4.2.8. In gen-
eral, a bilinear space (V, b) becomes hyperbolic in Kr(Mod-F ) if and only if there
are totally isotropic subspaces V1, V2 ⊆ V such that V = V1 ⊕ V2. In addition,
Theorem 4.1.5 is just Theorem 4.2.9 applied to Kr(Mod-F ). The proof of all these
statements is technical and thus left to the reader; parts of the proof can be found
in the remainder of the chapter.

4.4. Conditions (C2), (C2′) and (C2′′)

Throughout, (A , [0], [1],Φ,Ψ) is an additive category with a double duality. In
this section we will show that under mild assumptions, the conditions (C2), (C2′)
and (C2′′) pass from A to Kr(A ). Recall that these conditions are:

(C2) End(M) is complete semilocal for all M ∈ A .
(C2′) End(M) is semiprimary for all M ∈ A .
(C2′′) End(M) is semiperfect and pro-semiprimary (w.r.t. some topology) for all

M ∈ A .
Note that (C2′)=⇒(C2)=⇒(C2′′).

The results of Chapter 1 will play an essential role in this section, mainly
because of the following result.

Proposition 4.4.1. Let Z = (M,f0, f1, N) ∈ Kr(A ), W = End(M) and
U = End(N). Then End(Z) is a semi-invariant subring of W × Uop.

Proof. First observe that End(Z) can be understood as a subring of W ×Uop

since it consists of pairs (σ, τop) with σ ∈W and τ ∈ U .
For i ∈ {0, 1}, view Hi := Hom(M,N [i]) as a (Uop,W )-bimodule by letting

uoph = u[i] ◦ h and hw = h ◦ w for all h ∈ Hi, w ∈W and u ∈ U . Let
S =

[
W 0
H0 U

op
]
×
[
Uop H1

0 W

]
.

Then we can consider W × Uop as a subring of S via
(w, uop) 7→

([
w 0
0 uop

]
,
[
uop 0
0 w

])
.

Observe that f0 ∈ H0 and f1 ∈ H1. We claim that under the previous embedding,
End(Z) = CentW×Uop(t), where t = (

[ 0 0
f0 0

]
,
[ 0 f1

0 0
]
). Indeed, (

[
w 0
0 uop

]
,
[
uop 0
0 w

]
)

commutes with t ⇐⇒ u[0] ◦ f0 = f0 ◦ w and u[1] ◦ f1 = f1 ◦ w ⇐⇒ (w, uop) ∈
End(Z). Thus, Wb is a semi-centralizer subring of W ×W op, so we are done by
Proposition 1.3.1(b). �

As an immediate corollary, we get:

Corollary 4.4.2. If A has (C2 ′), then Kr(A ) has (C2 ′).
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Proof. This follows from Proposition 4.4.1 and Theorem 1.4.6 (because (C2′)
implies W × Uop is semiprimary). �

Recall that a topological ring R is called linearly topologized (abbrev.: LT) if it
admits a local basis consisting of two-sided ideals. In this case, we let IR denote the
set of all open ideals (see section 1.5 for further details). We would like to get an
analogue of Proposition 4.4.1 to T-semi-invariant subrings, so that we could apply
it to conditions (C2) and (C2′′). In case Φ and Ψ are injective, there is a general
method to do this, but it is hard to deduce explicit results from it.

Keeping the notation of Proposition 4.4.1, observe that if ΦN and ΨN are
monic, then the map Uop → Ui := End(N [i]) given by uop 7→ u[i] is injective
(Proposition 2.5.6(ii)). Thus, we get the following embedding:

S ⊆
[
W 0
H0 U

op
]
×
[
Uop H1

0 W

]
↪→
[

End(M) 0
Hom(M,N [0]) U0

]
×
[
U1 Hom(M,N [1])
0 End(M)

]
⊆ End(M ⊕N [0])× End(N [1] ⊕M)

Now, if End(M⊕N [0]) and End(N [1]⊕M) are endowed with some Hausdorff linear
ring topologies, we can pull the product of these topologies back to S and the copy of
W×Uop inside S, thus making End(Z) into a T-semi-centralizer subring ofW×Uop

(and T-semi-centralizer subrings are T-semi-invariant by Proposition 1.5.4(b)). The
problem is that it is very hard to say something about the structure of W ×Uop as
a topological ring. Indeed, if the topologies on End(M ⊕N [0]) and End(N [1] ⊕M)
are denoted by τ1 and τ2, respectively, then the topology induced on W × Uop is
τW × τU where τW and τU are defined as follows:

(1) Pullback τ1 and τ2 to W along the injections w 7→ [w 0
0 0 ] ∈ End(M ⊕N [0])

and w 7→ [ 0 0
0 w ] ∈ End(N [1]⊕M), respectively. Then τW is the supremum

of the two topologies obtained in this manner.
(2) Pullback τ1 and τ2 to Uop along the injections uop 7→

[ 0 0
0 u[0]

]
∈ End(M ⊕

N [0]) and uop 7→
[
u[1] 0
0 0

]
∈ End(N [1] ⊕M), respectively. Then τU is the

supremum of the two topologies obtained in this manner.
However, in special cases, explicit statements can be shown. (This is perhaps the
place to note that we do not know if a ring which is pro-semiprimary w.r.t. to
two given ring topologies is pro-semiprimary w.r.t. to their supermum. A positive
answer would allow some improvement of the results that follow.)

Proposition 4.4.3. Assume that A satisfies (C2 ′′) and for every M ∈ A ,
End(M) is right or left noetherian. Then:

(i) A satisfies (C2).
(ii) If Φ and Ψ are bijective, then Kr(A ) satisfies (C2 ′′).

Proof. (i) By Proposition 1.9.10, every pro-semiprimary LT ring which is right
or left noetherian is complete semilocal and its topology is the Jacobson topology
(i.e. the ring topology is spanned by powers of the Jacobson radical). Thus, (C2)
holds.

(ii) Assume Φ and Ψ are bijective. By (C2′′), End(M⊕N [0]) and End(N [1]⊕M)
are pro-semiprimary and semiperfect w.r.t. some linear ring topologies. Keeping the
previous setting, choose τ1 and τ2 above to be these topologies. Since Φ and Ψ are
bijective, the maps uop 7→ u[0] and uop 7→ u[1] are bijective (Proposition 2.5.6(iii)).
Therefore, each of the two topologies induced on Uop in (2) makes it into a pro-
semiprimary ring (since if R is pro-semiprimary, then so is eRe for every e ∈
E(R); see Proposition 1.2.3). As Uop = End(N)op is right or left noetherian,
Proposition 1.9.10 implies each of these topologies is the Jacobson topology. Since
the same argument applies to W , we get that the topology induced on W × Uop
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is the Jacobson topology and W × Uop is complete semilocal. As End(Z) is a T-
semi-invariant subring ofW ×Uop w.r.t. this topology, Theorem 1.5.15 implies that
End(Z) is pro-semiprimary and semiperfect. �

Example 4.4.4. Let C be a commutative noetherian pro-semiprimary ring and
assume that for every M ∈ A , End(M) is a C-algebra which is f.g. as a module
over C. (For example, if R is a C-algebra which is f.g. as a module over C, then
the category of f.g. right R-modules has this property). Then End(M) is pro-
semiprimary (by Corollary 1.9.12(ii)) and noetherian (since End(M)C is f.g.) for
all M ∈ A , so the assertions of the previous proposition apply to A .

The following proposition applies only for categories of modules, but it does
not assume Φ and Ψ are bijective.

Proposition 4.4.5. Let R be an LT ring and let K be a double R-module.
Make Mod-R into a category with a double duality in the standard way and assume
that ⋂

J∈IR

(K0J +K1J) = 0

(here Ki denotes K considered as a right R-module via �i). For everyM ∈ Mod-R,
let τM be the ring topology on End(M) spanned by the local basis12

{Hom(M,MJ) | J ∈ IR} .
Then for every Kronecker module Z = (M,f0, f1, N) ∈ Kr(Mod-R) for which
τM and τN are Hausdorff, End(Z) is a T-semi-invariant subring of End(M) ×
End(N)op. In fact, this holds for any linear ring topology on End(M)×End(N)op

that contains τM × τop
N (where τop

N = {{xop |x ∈ X} |X ∈ τN}).
Proof. Let us assume first that End(M)×End(N)op is endowed with τM×τop

N .
Set W = End(M) and U = End(N). We will use the notation of the proof of
Proposition 4.4.1.

It is enough to endow S with a linear ring topology such that the embedding
W×Uop ↪→ S is a topological embedding (where the l.h.s. is endowed with τM×τop

N ).
For all J ∈ IR, let KJ = K0J +K1J . Then KJ is a double R-module. Also define
HJ
i = Hom(M,Hom(N,KJ

1−i)) ⊆ Hi (i = 0, 1), W J = Hom(M,MJ) and UJ =
Hom(N,NJ)op. Then,

⋂
J∈IR H

J
i = 0 (since

⋂
J∈IR K

J = 0),
⋂
J∈IRW

J = 0
(since τM is Hausdorff) and

⋂
J∈IR U

J = 0 (since τN is Hausdorff). Let

QJ =
[
WJ 0
HJ0 UJ

]
×
[
UJ HJ1
0 WJ

]
⊆ S .

We claim QJ is an ideal of S. Once we have proved that, it is easy to see that the
local basis {QJ | J ∈ IR} induces a topology on S as required. Indeed, checking
that QJ E S amounts to checking that W J EW , UJ E Uop, UJHi + HiW

J ⊆ Hi

and UHJ
i +HJ

i W ⊆ HJ
i (i ∈ {0, 1}). The first two assertions are straightforward.

As for the others, let fop ∈ UJ , f ′ ∈W J and h, h′ ∈ Hi. Then for all x, y ∈M :
((foph+ h′f ′)x)y = (f [i](hx))y + (h′f ′x)y = (hx)(fy) + (h′(f ′x))y ∈

(hx)(MJ) + (h′(MJ))y ⊆ ((hx)(M))�0 J + ((h′(M))y)�1 J ⊆ K0J +K1J = KJ ,

hence foph+ h′f ′ ∈ Hom(M,Hom(M,KJ
1−i)) = HJ

i . Next, let fop ∈ Uop, f ′ ∈ W
and h, h′ ∈ HJ

i . Then for all x, y ∈M :
((foph+ h′f ′)x)y = (f [i](hx))y + (h′f ′x)y = (hx)(fy) + (h′(f ′x))y ∈

Hom(M,KJ
1−i)(fy) + Hom(M,KJ

1−i)(y) ⊆ KJ +KJ = KJ ,

so foph+ h′f ′ ∈ Hom(M,Hom(M,KJ
1−i)) = HJ

i and we are through.

12 This is the topology τM1 of section 1.8.
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Now assume τ is a linear ring topology on W × Uop that contains τM × τop
N .

Observe that every ideal of W × Uop is a product of an ideal of W and an ideal of
Uop. Let B be a local basis of τ consisting of ideals. For every A×Bop ∈ B, define
SA,B

op to be the S-ideal generated by[
A 0
0 Bop

]
×
[
Bop 0

0 A

]
It is easy to check that SA,Bop ∩ (W × Uop) = A × Bop and that SWJ ,UJ ⊆ QJ

(note that W J × UJ ∈ τ by assumption). Therefore, the linear ring topology on
S spanned by {SA,Bop |A× Bop ∈ B}, denoted τS , restricts to τ on W × Uop and
contains the ring topology spanned by {QJ | J ∈ IR}. Thus, τS is Hausdorff and
we are through. �

Corollary 4.4.6. Let R be an LT ring which is first countable semiperfect and
pro-semiprimary and let K be a double R-module such that

⋂
J∈IR(K0J+K1J) = 0.

Consider Mod-R as a category with a double duality in the standard way. Then
for every Kronecker module Z = (M,f0, f1, N) ∈ Kr(Mod-R) for which M , N are
f.p. and τM , τN of Proposition 4.4.5 are Hausdorff, End(Z) is semiperfect and pro-
semiprimary. The assumption that τM , τN are Hausdorff can be dropped if R is
strictly pro-right-artinian (e.g. if R is right noetherian; see Chapter 1).

Proof. Recall that τM is just τM1 of section 1.8. By Theorem 1.8.3, End(M)
and End(N) are semiperfect and pro-semiprimary w.r.t. τM2 and τN2 , which contain
τM and τN , respectively. Thus, Proposition 4.4.5 implies End(Z) is a T-semi-
invariant subring of End(M) × End(N)op, when endowed with τM2 × (τN2 )op. As
End(M) × End(N)op is semiperfect and pro-semiprimary w.r.t. this topology, we
get that End(Z) is semiperfect and pro-semiprimary w.r.t. the induced topology,
by Theorem 1.5.15. The assumption that τM , τN are Hausdorff can be dropped
when R is strictly pro-right-artinian because in this case the Hausdorffness follows
from Corollary 1.9.8. �

Example 4.4.7. Let R be a Hausdorff LT ring and let α be an anti-endomor-
phism. Let K be the double R-module obtained from R by defining k �0 r = rαk
and k �1 r = kr. Assume α is continuous. Then for all J ∈ IR, there is I ∈ IR
such that I ⊆ α−1(J) and this implies K0(I ∩ J) + K1(I ∩ J) ⊆ IαR + RJ ⊆ J .
As I ∩ J ∈ IR, this means

⋂
J∈IR(K0J + K1J) ⊆

⋂
J∈IR J = 0. In particular, if

R is first countable semiperfect and pro-right-artinian, then the corollary implies
that the endomorphism ring any Kronecker module (M,f0, f1, N) over Mod-R with
M and N finitely presented is semiperfect and pro-semiprimary. (Here we endow
Mod-R with the the double duality structure induced by K.) Roughly speaking,
this means (C2′′) applies to the category of Kronecker modules with “f.p. support”.

4.5. Systems of Bilinear Forms

Most of the theory of this chapter applies to systems of bilinear forms and
not only to single forms. In this short section we will show how to obtain this.
Throughout, A is an additive category.

Let I be a nonempty set and assume that for every i ∈ I, A admits a struc-
ture of a category with a double duality (A , [0]i, [1]i,Φi,Ψi). A system of bilinear
forms over (A , [0]i, [1]i,Φi,Ψi)i∈I is a pair (M, {bi}i∈I) such that M ∈ A and
bi ∈ Hom(M,M [1]i). If (M ′, {b′i}i∈I) is another system of bilinear forms, then an
isometry σ : (M, {bi}i∈I) → (M ′, {b′i}i∈I) is an isomorphism σ from M to M ′

satisfying σ[1]i ◦ b′i ◦ σ = bi for all i ∈ I.
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It turns out that under mild assumptions, systems of bilinear forms can be
treated as a single form. This is demonstrated in the following proposition.

Proposition 4.5.1. Keeping the previous assumptions, assume the direct prod-
ucts

∏
i∈IM

[0]i and
∏
i∈IM

[1]i exist for all M ∈ A . Then there exists a structure
of a category with a double duality on A , (A , [0], [1],Φ,Ψ), such that the category
of bilinear forms over (A , [0], [1],Φ,Ψ) is isomorphic to the category of systems of
bilinear forms over (A , [0]i, [1]i,Φi,Ψi)i∈I . The functors [0] and [1] are given by:

M [0] =
∏
i∈I

M [0]i , M [1] =
∏
i∈I

M [1]i .

(The functors [0] and [1] act on morphisms in the obvious way.)

Proof. We need to define Φ and Ψ. Let pi,M (resp. qi,M ) denote the projection
from M [0] to M [0]i (resp. M [1] to M [1]i). Observe that every morphism f : M →
N [0] is determined by the I-indexed set {pi,N ◦ f}i∈I ∈

∏
i∈I Hom(M,N [0]i) and

every such set gives rise to a morphism M → N [0]. Using this, we define ΦM to be
the unique morphism from M to M [1][0] =

∏
i∈I(M [1])[0]i satisfying pi0,M [1] ◦ΦM =

q
[0]i0
i0,M

◦ Φi0,M for all i0 ∈ I. The map Ψ : idA → [0][1] is defined in the same
manner. We leave to the reader the (very long) technical check that Φ and Ψ are
natural and satisfy Φ[1]

M ◦ΨM [1] = idM[1] and Ψ[0]
M ◦ ΦM [0] = idM[0] for all M ∈ A .

It is now easy to check that there is a one-to-one correspondence between
bilinear forms over (A , [0], [1],Φ,Ψ) and systems of bilinear forms over
(A , [0]i, [1]i,Φi,Ψi)i∈I given by (M, b) 7→ (M, {qi,M ◦ b}i∈I). This map can be
made into a functor by sending all isometries to themselves. The details are left to
the reader. �

We will keep using the maps pi,M and qi,M throughout the section. In addition,
we will also write (A , [0], [1],Φ,Ψ) =

∏
(A , [0]i, [1]i,Φi,Ψi)i∈I .

Example 4.5.2. Let R be a ring and let {Ki}i∈I be a system of double R-
modules. Then each Ki induces a structure of a category with a double duality on
Mod-R, which we denote by (Mod-R, [0]i, [1]i,Φi,Ψi). If we apply Proposition 4.5.1
to (Mod-R, [0]i, [1]i,Φi,Ψi)i∈I , then the resulting structure (Mod-R, [0], [1],Φ,Ψ)
would be the one induced by the double R-module K :=

∏
i∈I Ki. Indeed, it is

fairly easy to see that a system of bilinear spaces {(M, bi,Ki)}i∈I can be understood
as a bilinear form on M taking values in K. If πi is the projection from K to Ki,
then the maps pi,M : M [0] → M [0]i (resp. qi,M : M [1] → M [1]i) are given by
pi,M (f) = πi ◦ f (resp. qi,M (f) = πi ◦ f).

Let (A , [0]i, [1]i,Φi,Ψi)i∈I be categories with duality and let (A , [0], [1],Φ,Ψ) =∏
(A , [0]i, [1]i,Φi,Ψi)i∈I . In order to apply the conclusions at the end of of sec-

tion 4.3 to systems of bilinear forms over (A , [0]i, [1]i,Φi,Ψi)i∈I , we need to know
whether one of the conditions (C2), (C2′) or (C2′′) holds for Kr(A , [0], [1],Φ,Ψ).
Indeed, by Corollary 4.4.2, the condition (C2′) is guaranteed to pass from A to
Kr(A , [0], [1],Φ,Ψ), regardless of [0], [1],Φ,Ψ. However, we cannot apply Proposi-
tion 4.4.3 to Kr(A , [0], [1],Φ,Ψ) as it is likely that Φ and Ψ would not be bijective.
This gap is treated in the following proposition.

Lemma 4.5.3. Keeping the previous notation, let Z ∈ Kr(A , [0], [1],Φ,Ψ) and
write Z = (M,f0, f1, N). Then for all i ∈ I, Zi := (M,pi,N ◦ f0, qi,N ◦ f1, N) ∈
Kr(A , [0]i, [1]i,Φi,Ψi) and End(Z) =

⋂
i∈I End(Zi).

Proof. This is straightforward. �
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Proposition 4.5.4. Keeping the previous notation, assume that A satisfies
(C2 ′′), End(M) is right or left noetherian for all M ∈ A and Φi, Ψi are bijective
for all i. Then A satisfies (C2 ′′).

Proof. Let Z = (M,f0, f1, N) ∈ Kr(A , [0], [1],Φ,Ψ) and let {Zi}∈I be de-
fined as in the lemma. Endow T := End(M)×End(N)op with the Jacobson topol-
ogy. Then by the proof of Proposition 4.4.3, T is semiperfect, pro-semiprimary
and End(Zi) is a T-semi-invariant subring of T . Now, Proposition 1.5.4(e) im-
plies that the intersection of T-semi-invariant subrings is again T-semi-invariant,
so by Lemma 4.5.3, End(Z) is a T-semi-invariant subring of T . As the latter is
semiperfect and pro-semiprimary, Theorem 1.5.15 implies that so is End(Z). �

Example 4.5.5. Let R be a right noetherian pro-semiprimary ring with 2 ∈ R×
and let {αi}i∈I be a family of anti-automorphisms of R. Let Ki denote the double
R-module obtained from R by defining r �0 a = aαir and r �1 a = ra. Then
Witt’s Cancelation Theorem applies to systems of bilinear forms {(M, bi,Ki)}i∈I ,
provided M is finite projective. Moreover, the isometry problem of such systems
can be rendered to isometry of hermitian forms over division rings. Indeed, let P be
the category of finite projective R-modules and let (Mod-R, [0]i, [1]i,Φi,Ψi) be the
category with double duality induced by Ki. Then by Example 2.5.3, Φi,R and Ψi,R

are bijective, hence Φi and Ψi are bijective on P. Moreover, since (Ki)0 ∼= (Ki)1 ∼=
RR, R[0]i ∼= (Ki)0 ∼= RR and R[1]i ∼= (Ki)1 ∼= RR. Thus, [0]i, [1]i map P into (and
also onto) itself. It follows that (P, [0]i, [1]i,Φi,Ψi) is a category with a double
duality for which Φi and Ψi are bijective. Therefore, (P, [0]i, [1]i,Φi,Ψi)i∈I satisfies
the assumptions of the previous proposition, hence the assertions at the end of
section 4.3 apply to systems of bilinear forms {(M, bi,Ki)}i∈I with M ∈P. (That
End(M) is right noetherian pro-semiprimary for all M ∈ P is a straightforward
argument; see Proposition 1.2.3.)

4.6. The Kronecker Module of a Bilinear Form

The time has come to explain how the equivalence of Theorem 4.3.6 works
in practice. In the sections to follow, we will restrict to bilinear forms over rings
(rather than categories with a double duality) and explain what are hyperbolic
forms, what are the isotypes and how to reduce the isometry problem to isometry
of hermitian forms over division rings.

Throughout, R is a ring and K is a double R-module. By a Krnocker Module,
we mean a Kronecker module over Mod-R, considered as a category with a double
duality w.r.t. K. That is, a Kronecker module is a quartet (M,f0, f1,M) with
M,N ∈ Mod-R and fi ∈ Hom(M,N [i]). Recall that every bilinear space (M, b,K)
gives rise to a Kronecker module (M,Adrb ,Ad`b, N), which we denote by Z(b).

This section is dedicated solely to the study of Kronecker modules. The facts
obtained will be used to show that there is a strong connection between the asym-
metry of a bilinear form (when exists) and its Kronecker module. This connection
explains the role of the asymmetry in the definition of the isotypes in section 4.1.13

In addition, we will also provide a description of the endomorphism ring of the
Kronecker module of a bilinear form in terms of the form.

We begin our discussion by generalizing several properties of bilinear forms to
Kronecker modules.

13 Historical note: What originally led us to consider Kronecker modules was the need to
have a replacement for the asymmetry in case K does not have an anti-isomorphism. In particular,
until the discovery of Theorem 4.3.6, our point of view on Kronecker modules was that they are
generalizations of asymmetries.
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Definition 4.6.1. Let Z = (M,f0, f1, N), Z ′ = (M ′, f ′0, f ′1, N ′) be Kronecker
modules.

(a) Z is called right stable if for all τ : N → N there exists unique σ : M →M
such that f1 ◦ σ = τ [1] ◦ f1.

(b) Z,Z ′ are called right joinable if Z⊕Z ′ = (M⊕M ′, f0⊕f ′0, f1⊕f ′1, N⊕N ′)
is right stable.

(c) A left quasi-asymmetry of Z is a map q ∈ Hom(N [1], N [0]) such that
q ◦ f1 = f0.

(d) Let κ be an anti-isomorphism of K. A left κ-asymmetry of Z is a map
λ ∈ End(N) such that u−1

κ,N ◦ λ[1] is a left quasi-asymmetry, i.e. u−1
κ,N ◦

λ[1] ◦ f1 = f0.14

Proposition 4.6.2. Let (M, b,K), (M ′, b′,K) be bilinear spaces. Then:
(i) b is right stable ⇐⇒ Z(b) is right stable.
(ii) b, b′ are right joinable ⇐⇒ Z(b), Z(b′) are right joinable.
(iii) Let κ be an anti-isomorphism of K. Then λ ∈ End(M) is a left κ-

asymmetry of b ⇐⇒ λ is a left κ-asymmetry of Z(b).
Proof. (i) follows from Proposition 2.2.6 and (ii) follows from (i) because

Z(b ⊥ b′) = Z(b) ⊕ Z(b′). To see (iii), observe that u−1
κ,M ◦ λ[1] ◦ Adrb = Ad`b ⇐⇒

b(λx, y)κ−1 = b(y, x) for all x, y ∈M , or deduce (iii) directly from Proposition 2.2.8.
�

Proposition 4.6.3. For i = 1, 2, let Zi = (Mi, gi, hi, Ni) be Kronecker mod-
ules. Then:

(i) Z1, Z2 are right joinable ⇐⇒ for all i, j ∈ {1, 2} and τ : Nj → Ni there
exists unique σ : Mi → Mj such that τ [1] ◦ hi = hj ◦ σ. In particular, Z
and Z ′ are right stable.

(ii) Let κ be an anti-isomorphism of K. If Z1 ⊕ Z2 has a unique left κ-
asymmetry λ, then Z1, Z2 have unique κ-asymmetries λ1, λ2 and λ =
λ1 ⊕ λ2.15

Proof. The proof of (i) is similar to the proof of Proposition 2.6.5 and the
proof of (ii) is similar to the proof of Proposition 2.6.2(iii). As the latter is not
phrased in terms of adjoint maps, we bring it here in full detail. We consider
elements of End(N1 ⊕ N2), Hom(M1 ⊕M2, N

[1]
1 ⊕ N

[1]
2 ), etc. as 2 × 2 matrices in

the standard way.
Let λ be the unique asymmetry of Z1⊕Z2. Write λ =

[
λ11 λ12
λ21 λ22

]
, λ[1] = [ q11 q12

q21 q22 ]
(with qij = λ

[1]
ji ) and u

−1
κ,N1⊕N2

=
[
u1 0
0 u2

]
where ui = u−1

κ,Ni
. Then[

u1q11h1 u1q12h2
u2q21h1 u2q22h2

]
=
[
u1 0
0 u2

] [
q11 q12
q21 q22

] [
h1 0
0 h2

]
=
[
g1 0
0 g2

]
.

But this implies uiλ[1]
ii hi = gi, hence λii is a left κ-asymmetry of Zi. Therefore,

λ11 ⊕ λ22 is a left κ-asymmetry of Z1 ⊕ Z2, so the uniqueness of λ implies λ =
λ11 ⊕ λ22. The latter equality also implies λ11 and λ22 are unique. �

For the following proposition, recall that two endomorphisms σ1 ∈ End(M1)
and σ2 ∈ End(M2) are conjugate, denoted σ1 ∼= σ2, if there exists a module isomor-
phism f : M1 →M2 such that f ◦ σ1 = σ2 ◦ f .16

14 See Proposition 2.2.7 for the definition of uκ.
15 The converse is not true for bilinear forms (Example 2.6.4) and hence not true for Kronecker

modules.
16 The notation σ1 ∼= σ2 means that σ1, σ2 are isomorphic in the category of endomorphisms

of right R-modules.
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Proposition 4.6.4. Let Z = (M,f0, f1, N), Z ′ = (M ′, f ′0, f ′1, N ′) be Kronecker
modules.

(i) Assume Z,Z ′ have unique left quasi-asymmetries q, q′ respectively. Then
Z ∼= Z ′ implies that there exists an isomorphism τ : N ′ → N such that
τ [0] ◦ q = q′ ◦ τ [1]. The converse holds when Z,Z ′ are right joinable.

(ii) Let κ be an anti-isomorphism of K and assume Z,Z ′ have unique left
κ-asymmetries λ, λ′ respectively. Then Z ∼= Z ′ =⇒ λ ∼= λ′. The converse
holds when Z,Z ′ are right joinable.

Proof. We only prove (ii); the proof of (i) is similar (and easier). Assume
(σ, τop) : Z → Z ′ is an isomorphism. We claim τ−1 ◦ λ ◦ τ is a left κ-asymmetry
of Z ′ and thus must coincide with λ′. This would prove λ ∼= λ′. Indeed, u−1

κ,N ′ ◦
(τ−1 ◦ λ ◦ τ)[1] ◦ f ′1 = u−1

κ,N ′ ◦ τ [1] ◦ λ[1] ◦ (τ [1])−1 ◦ f ′1 = τ [0] ◦ u−1
κ,N ◦ λ[1] ◦ f1 ◦ σ−1 =

τ [0] ◦ f0 ◦ σ−1 = τ [0] ◦ (τ [0])−1 ◦ f ′0 = f ′0.
Conversely, assume Z,Z ′ are right joinable and there is an isomorphism

τ : N ′ → N such that τ ◦ λ′ = λ ◦ τ . The fact Z,Z ′ are right joinable implies that
there are unique σ ∈ Hom(M,M ′) and σ′ ∈ Hom(M ′,M) such that τ [1]◦f1 = f ′1◦σ
and (τ [1])−1 ◦ f ′1 = f1 ◦ σ′. This is easily seen to imply (idM )[1] ◦ f1 = f1 ◦ (σ′ ◦ σ)
and (idM ′)[1] ◦ f ′1 = f ′1 ◦ (σ ◦ σ′). By Proposition 4.6.3(i), Z and Z ′ are right
stable and hence, σ′ ◦ σ = idM and σ ◦ σ′ = idM ′ , i.e. σ is invertible with
σ−1 = σ′. We now claim that (σ, τop) is an isomorphism from Z to Z ′. In-
deed, τ [1] ◦ f1 = f ′1 ◦ σ follows from the definition of σ, which in turn implies
f ′0 ◦ σ = u−1

κ,N ′ ◦ λ′[1] ◦ f ′1 ◦ σ = u−1
κ,N ′ ◦ λ′[1] ◦ τ [1] ◦ f1 = u−1

κ,N ′ ◦ (τ ◦ λ′)[1] ◦ f1 =
u−1
κ,N ′ ◦ (λ ◦ τ)[1] ◦ f1 = u−1

κ,N ′ ◦ τ [1] ◦ λ[1] ◦ f1 = τ [0] ◦ u−1
κ,N ◦ λ[1] ◦ f1 = τ [0] ◦ f0. We

are done since σ, τ are isomorphisms. �

Let (M, b,K) be a bilinear space. The following corollary shows that under
mild assumptions, the conjugacy class of the right asymmetry of b (when exists and
unique) determines the isomorphism class of Z(b) and vice versa. This explains
why the isomorphism of Theorem 4.3.6 takes the isotypes of section 4.1 (“Riehm’s
isotypes”) to the isotypes of section 4.2 (“isotypes of categories with duality”).

Corollary 4.6.5. Let (M, b,K), (M ′, b′,K) be bilinear spaces and let κ be an
anti-isomorphism of K. Assume b, b′ have unique left κ-asymmetries λ, λ′ respec-
tively. Then Z(b) ∼= Z(b′) =⇒ λ ∼= λ′. The converse holds when b, b′ are right
joinable (e.g. when b, b′ are right regular).

Proof. This follows from the proposition and Proposition 4.6.2(iii). �

We now turn our attention to homomorphisms between Kronecker modules
obtained from bilinear forms. Let (M, b,K) and (M ′, b′,K) be two bilinear spaces.
Then (σ, τop) is a homomorphism from Z(b) to Z(b′) if and only if

Ad`b′ ◦ σ = τ [0] ◦Ad`b and Adrb′ ◦ σ = τ [1] ◦Adrb .
A straightforward computation shows that this is equivalent to
(17) b′(σx, y′) = b(x, τy′) and b′(x′, σy) = b(τx′, y)
for all x, y ∈ M and x′, y′ ∈ M . It follows that if σ is an isometry from b to b′,
then (σ, σ−1) is an isomorphism from Z(b) to Z(b′), hence the isomorphism class
of Z(b) is invariant under isometry. We will write b ∼Kr b

′ to denote that b and b′
have isomorphic Kronecker modules.

Now consider the endomorphism ring of Z(b), denoted Wb. This ring will turn
out to be of great importance, hence the explicit notation. By (17), Wb consists of
formal pairs (σ, τop) such that σ, τ ∈W := End(M) and
(18) b(σx, y) = b(x, τy) and b(x, σy) = b(τx, y)
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for all x, y ∈ M . Thus, we can consider Wb as a subring of W × W op. The
equation (17) implies that (σ, τop) ∈ Wb ⇐⇒ (τ, σop) ∈ Wb. Therefore, the map
(σ, τop) 7→ (τ, σop), denoted by β = β(b), is a well-defined involution of Wb.

Remark 4.6.6. One can also understand β as the map f 7→ f∗ from End(Z(b))
to End(Z(b)∗) = End(Z(b)). Furthermore, β is the corresponding involution of the
bilinear form (Z(b), (idM , idop

M )) ∈ Symreg(Kr(Mod-R)) (see Theorem 4.3.6).

Remark 4.6.7. The ring Wb as defined here was defined in the literature for
systems of quadratic and bilinear forms over a field. See [12] and [15], for instance.

Proposition 4.6.8. Keeping the previous notation, define the radical and
quasi-radical of b to be

rad(b) := {x ∈M | b(x,M) = b(M,x) = 0} ,
qrad(b) := {w ∈W | b(wM,M) = b(M,wM) = 0} ,

respectively. Then:
(i) rad(b) = ker Ad`b ∩ ker Adrb and qrad(b) = Hom(M, rad(b)).
(ii) qrad(b)× qrad(b)op is an ideal of Wb.
(iii) If qrad(b) = 0, then Wb embeds in W via (σ, τop) 7→ σ. (The image of

this embedding is the set of elements σ ∈ W for which there is τ ∈ W
satisfying (18).)

Proof. (i) This is straightforward.
(ii) Let w,w′ ∈ qrad(b). Then b(wx, y) = 0 = b(x,w′y) and b(x,wy) = 0 =

b(w′x, y) for all x, y ∈ M , hence (w,w′op) ∈ Wb. Thus, qrad(b) × qrad(b)op ⊆
Wb. Next, if (σ, τop) ∈ Wb, then b(σwx, y) = b(wx, τy) = 0 = b(x,w′τy) and
similarly, b(x, σwy) = 0 = b(w′τx, y). This means σw,w′τ ∈ qrad(b), hence
(σ, τop)(w,w′op) ∈ qrad(b) × qrad(b)op. Therefore, qrad(b) × qrad(b)op is a left
ideal of Wb and a similar argument shows it is a right ideal as well.

(iii) Assume qrad(b) = 0. If (0, σop) ∈ Wb, then b(σx, y) = b(x, 0y) = 0 and
b(x, σy) = b(0y, x) = 0, hence σ ∈ qrad(b), which implies σ = 0. Thus, the
homomorphism Wb ↪→W ×W op →W is one-to-one. �

A bilinear space (M, b,K) is called reduced if rad(b) = 0 and quasi-reduced if
qrad(b) = 0. Every right or left semi-stable bilinear space is quasi-reduced, but
not necessarily reduced; see Example 2.4.4. In addition, (M/ rad(b), b,K) is always
reduced, where b is defined by b(x+ rad(b), y + rad(b)) = b(x, y).

Now assume (M, b,K) is right stable. Then Proposition 4.6.8 implies Wb em-
beds in W = End(M). The following proposition explains the connection between
the involution β(b) on Wb and the corresponding anti-endomorphism of b.

Proposition 4.6.9. Let (M, b,K) be a right stable bilinear space with corre-
sponding anti-endomorphism α and let W = End(M). Then ϕ : (σ, τop) 7→ σ

is an isomorphism of rings with involution from (Wb, β) to (W {α2}, α), where
W {α

2} := {w ∈W |wαα = w}.

Proof. Observe that b(σx, y) = b(x, τy) ⇐⇒ τ = σα. Thus, ϕ((σ, τop)β) =
ϕ(τ, σop) = τ = σα = (ϕ(σ, τop))α, i.e. ϕ is a homomorphism of rings with anti-
endomorphism. By Proposition 4.6.8(iii), ϕ is injective (qrad(b) = 0 since b is right
stable) and im(ϕ) = W {α

2} follow by a straightforward argument, hence we are
done. �

Remark 4.6.10. The ringW {α2} of the last proposition can be given a different
description in case b has an invertible κ-asymmetry λ — it just CentW (λ). This
follows from Proposition 2.3.9(i) which states that wαα = λwλ−1 for all w ∈ W .
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(In this case, Wb can be understood as a T-semi-invariant subring of W by Propo-
sition 1.5.4(b).)

4.7. Hyperbolic Forms

Recall that a regular symmetric bilinear space (V, b) over a field F is called
hyperbolic if V is the direct sum of two totally isotropic subspaces, i.e. V = V1⊕V2
with b(V1, V1) = b(V2, V2) = 0. The bilinear space (V, b) is metabolic if V admits a
subspace U ⊆ V such that U = {x ∈ V | b(x, U) = 0}. Clearly hyperbolic implies
metabolic and the converse holds (for symmetric forms) when charF 6= 2.

In this section, we extend the definition of hyperbolic forms to (non-symmetric
or non-regular) bilinear forms over rings as defined in Chapter 2 and study their
properties. Throughout, R is a ring and K is a fixed double R-module.

Definition 4.7.1. A bilinear space (M, b,K) is hyperbolic if M is the direct
sum of two totally isotropic submodules, namely there are M1,M2 ≤ M such that
M = M1 ⊕M2 and b(M1,M1) = b(M2,M2) = 0.

Remark 4.7.2. The regular symmetric hyperbolic bilinear spaces over a field
F with charF 6= 2 are precisely those isometric to (V, b) ⊥ (V,−b) for some regular
symmetric bilinear space (V, b) and many books define hyperbolic forms in this man-
ner. However, the obvious extension of this definition to arbitrary (non-symmetric)
forms is not equivalent to the hyperbolic forms defined here.

Example 4.7.3. (i) Let F be a field, let n,m ∈ N and let B ∈ Mn×m(F ),
C ∈ Mm×n(F ). Consider the block matrix A = [ 0 B

C 0 ] ∈ Mn+m(F ) and let b :
Fn+m × Fn+m → F be defined by b(x, y) = xTAy. Then b is hyperbolic since
Fn+m = (Fn×{0}m)⊕({0}n×Fm) and both summands are totally isotropic. The
form b is regular precisely when A is invertible, namely when m = n and B,C are
invertible.

(ii) The isotypes discussed in Theorem 4.1.3 are hyperbolic.
(iii) Let b be the zero form onM ∈ Mod-R, namely b(x, y) = 0 for all x, y ∈M .

Then b is hyperbolic since M = M ⊕ 0 and M , 0 are totally isotropic.
(iv) Let Z = (M,f0, f1, N) be a Kronecker module. In Remark 4.3.5(ii), we

have defined the bilinear form bZ : M ⊕N ×M ⊕N → K by

bZ((x, y), (x′, y′)) = (f1x
′)y + (f0x)y′ ∀ x, x′ ∈M, y, y′ ∈ N .

Then bZ is hyperbolic since bZ(M,M) = bZ(N,N) = 0.

It turns out that every hyperbolic form is of the form bZ for some Kronecker
module Z.

Proposition 4.7.4. Assume (M, b,K) is hyperbolic. Then there exists a Kro-
necker module Z such that b = bZ .

Proof. Let M1,M2 be totally isotropic submodules of M such that M1 ⊕
M2 = M . Identify M [i] with M

[i]
1 ⊕ M

[i]
2 via f 7→ (f |M1 , f |M2). Then since

Adrb(M1)(M1) = b(M1,M1) = 0 and Ad`b(M1)(M1) = b(M1,M1) = 0, we have
Adrb(M1) ⊆ M

[1]
2 and Ad`b(M1) ⊆ M

[0]
2 . Thus, Z := (M1,Ad`b|M1 ,Adrb |M1 ,M2) is a

Kronecker module. We claim b = bZ . Indeed, for all x, x′ ∈ M1 and y, y′ ∈ M2,
we have b(x + y, x′ + y′) = b(y, x′) + b(x, y′) = (Adrb |M1x

′)y + (Ad`b|M1x)y′ =
bZ(x+ y, x′ + y′). �

The last proposition implies that the isometry class of a hyperbolic form should
be almost completely determined by its Kronecker module. This is verified in the
following proposition.
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Proposition 4.7.5. Let (M, b,K) and (M ′, b′,K) be two hyperbolic bilinear
spaces and let M1,M2 ⊆ M and M ′1,M ′2 ⊆ M ′ be totally isotropic modules such
that M = M1 ⊕M2 and M ′ = M ′1 ⊕M ′2. For i ∈ {1, 2} let

Zi := (Mi,Ad`b|Mi ,Adrb |Mi ,M3−i)
Z ′i := (M ′i ,Ad`b|M ′i ,Adrb |M ′i ,M

′
3−i)

Then:
(i) Z1, Z

′
1, Z2, Z

′
2 are Kronecker modules, Z1 = Z∗2 , Z ′1 = Z ′∗2 and (σ, τop) ∈

Hom(Z1, Z
′
1) ⇐⇒ (τ, σop) ∈ Hom(Z ′2, Z2).

(ii) Assume Z1 ∼= Z ′1. Then Z2 ∼= Z ′2 and b ∼= b′.

Proof. (i) That Z1, Z
′
1, Z2, Z

′
2 are Kronecker modules was shown in Proposi-

tion 4.7.4. To see that Z1 = Z∗2 , observe that (Ad`b)[1] ◦ ΨM = Adrb and (Adrb)[0] ◦
ΦM = Ad`b (Corollary 2.2.5). Recall that we identify M [1] with M

[1]
1 ⊕M

[1]
2 and

under that identification Adrb maps Mi into M
[1]
3−i; similar statements hold for

M ′ and/or [0]. As ΨM = ΨM1 ⊕ ΨM2 and ΦM = ΦM1 ⊕ ΦM2 , we get that
(Ad`b|M2)[1] ◦ ΨM1 = Adrb |M1 and (Adrb |M2)[0] ◦ ΦM1 = Ad`b|M1 , hence Z1 = Z∗2
and similarly, Z ′1 = Z ′∗2 . The last assertion follows since (σ, τop) ∈ Hom(Z1, Z

′
1)

implies (τ, σop) = (σ, τop)∗ ∈ Hom(Z ′∗1 , Z∗1 ) = Hom(Z ′2, Z2). The converse follows
by symmetry.

(ii) Let (σ, τop) : Z1 → Z ′1 be an isomorphism. Then σ and τ are invertible
and therefore by (i), (τ, σop) : Z ′2 → Z2 is an isomorphism. Define η = σ ⊕ τ−1 :
M →M ′. Then η is clearly an isomorphism. We claim that η is an isometry from
b to b′, i.e. b′(ηx, ηy) = b(x, y) for all x, y ∈M . Since M1, M2, M ′1, M ′2 are totally
isotropic, it is enough to check the cases (x, y) ∈ M1 ×M2 and (x, y) ∈ M2 ×M1.
Indeed, in the first case

b′(ηx, ηy) = b′(σx, τ−1y) = b(x, ττ−1y) = b(x, y) ,

and in the second case

b′(ηx, ηy) = b′(τ−1x, σy) = b(ττ−1x, y) = b(x, y) ,

as required. �

The proposition has a weaker analogue phrased in terms of asymmetry maps.
(This should be of no surprise given Proposition 4.6.4.) This analogue, stated and
proved below, was noted by several authors in less general scenarios (e.g. [76], [75]).

Proposition 4.7.6. Let κ be an anti-isomorphism of K and let (M, b,K),
(M ′, b′,K) be two bilinear spaces with unique left κ-asymmetries λ, λ′, respectively.
Assume M = M1 ⊕ M2, M ′ = M ′1 ⊕ M ′2 and b(Mi,Mi) = 0, b′(M ′i ,M ′i) = 0
(i = 1, 2). Then:

(i) λ(Mi) ⊆Mi and λ′(M ′i) ⊆M ′i for i ∈ {1, 2}.
(ii) If λ|M1

∼= λ|M ′1 and b, b′ are right joinable, then λ′|M2
∼= λ|M ′2 and

(M, b,K) ∼= (M ′, b′,K).

Proof. (i) Let Z1, Z
′
1, Z2, Z

′
2 be as in Proposition 4.7.5. Then by Propo-

sition 4.6.2(iii), λ is a unique left κ-asymmetry of Z(b). As Z(b) = Z1 ⊕ Z2,
Proposition 4.6.3(ii) implies that λ|Mi is a unique left κ-asymmetry of Z3−i and
λ = λ|M1 ⊕ λ|M2 . A similar claim holds for Z ′1, Z ′2 and in particular, this implies
λ(Mi) ⊆Mi and λ′(M ′i) ⊆M ′i .

(ii) By Proposition 4.6.4(ii), λ|M1
∼= λ|M ′1 implies Z2 ∼= Z ′2, so by Proposi-

tion 4.7.5, Z1 ∼= Z ′1 and b ∼= b′. Finally, again by Proposition 4.6.4(ii), Z1 ∼= Z ′1
implies λ′|M2

∼= λ|M ′2 . �
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We will now show that the hyperbolicity of a bilinear form b can be described
in terms of the ring Wb and its involution β. The following definition is taken from
[13].

Definition 4.7.7. An involution ∗ on a ring S is called hyperbolic if there
exists an idempotent e ∈ E(S) such that e+ e∗ = 1.

Proposition 4.7.8. Let (M, b,K) be a bilinear space and let β = β(b). There
is a one-to-one correspondence between decompositions M = M1 ⊕M2 such that
M1 and M2 are totally isotropic and idempotents e ∈ E(Wb) satisfying e+ eβ = 1.
In particular, b is hyperbolic if and only if β is hyperbolic.

Proof. GivenM1,M2 as above, define e1 (resp. e2) to be projectionM →M1
(resp. M →M2) with kernel M2 (resp. M1). Then for all x, y ∈M we have

b(e1x, y) = b(e1x, e1y + e2y) = b(e1x, e2y) = b(e1x+ e2y, e2y) = b(x, e2y) ,
and similarly, b(x, e1y) = b(e2x, y). Thus, e := (e1, e

op
2 ) ∈ Wb. It is now clear that

e is an idempotent of Wb satisfying e + eβ = 1. Conversely, given e = (e1, e
op
2 ) ∈

E(Wb) with 1 = e + eβ = (e1 + e2, e
op
1 + eop

2 ), define M1 = e1M , M2 = e2M .
Then b(M1,M1) = b(e1M, e1M) = b(M, e2e1M) = b(M, 0) = 0 and similarly
b(M2,M2) = 0. The rest of the details are left to the reader. �

Remark 4.7.9. The definition of hyperbolic forms given in this section is the
“correct one” in the sense that the hyperbolic bilinear forms over R are precisely
those taken to hyperbolic forms over Kr(Mod-R) under the isomorphism of Theo-
rem 4.3.6 (symmetric hyperbolic forms over categories with duality were defined in
section 4.2). That is, (M, b,K) is hyerbolic ⇐⇒ (Z(b), (idM , idop

M )) is hyperbolic
over Kr(Mod-R). The easiest way to see this is to use that fact that (Wb, β(b)) is the
ring with involution corresponding to (Z(b), (idM , idop

M )) (see Remark 4.6.6) with
the previous proposition. As we did not prove Proposition 4.7.8 in the general con-
text of categories with a double duality, let us verify directly that (Z(b), (idM , idop

M ))
is hyperbolic when b is.

By Proposition 4.7.4, we may assume b = bZ with Z = (M,f0, f1, N) ∈
Kr(Mod-R). Consider

Z1 = (M ⊕ 0,
[ 0 0
f0 0

]
,
[ 0 0
f1 0

]
, 0⊕N)

Z2 = (0⊕N,
[

0 I−1
M,N

(f1)
0 0

]
,
[ 0 IN,M (f0)

0 0

]
,M ⊕ 0)

(recall that IN,M is the natural isomorphism Hom(M,N [0]) → Hom(N,M [1])).
Then Z1⊕Z2 = (M⊕N,

[
0 I−1

M,N
(f1)

f0 0

]
,
[

0 IN,M (f0)
f1 0

]
,M⊕N) = Z(bZ). In addition,

we can identify Z2 with Z∗1 . Now, if we consider the map (id, idop) : Z(bZ) →
Z(bZ)∗ = Z(bZ) as a map from Z1 ⊕Z2 = Z1 ⊕Z∗1 → Z∗1 ⊕ (Z1)∗∗ = Z∗1 ⊕Z1, it is
given by

[ 0 idZ∗1
idZ1 0

]
=
[

0 id∗Z1
idZ1 0

]
, hence (Z(bZ), (idM⊕N , idop

M⊕N )) is a hyperbolic
bilinear form over Kr(Mod-R).

4.8. A Dictionary

Throughout, R is a ring, K is a double R-module and (M, b,K) is a bilinear
space. Let W = End(MR) and let β = β(b) be the involution of Wb (as defined in
section 4.6). In the previous section we have seen a first example of how properties
of b can be translated into properties of Wb, namely that b is hyperbolic if and
only if β is. In this section we shall extend this approach by showing that various
properties of b can be phrased in terms of W , Wb and β. This will result in a
“dictionary” enabling us to prove claims on b by proving their analogue statements
about W , Wb, β and vice versa. In particular, we will see that the ring Wb holds
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a lot of information on b and forms related to it. (The results of this section are
expected, given Theorem 4.3.6 and Remark 4.6.6. However, for the applications, it
will be beneficial to work things out explicitly.)

4.8.1. Decomposition. By a decomposition of (M, b,K) (or just b) we mean
a representation of (M, b,K) as an (inner) orthogonal sum

(M1, b1,K) ⊥ · · · ⊥ (Mt, bt,K)
with each Mi nonzero. Clearly this induces a decomposition of M , namely M =⊕t

i=1Mi. A bilinear space is called indecomposable if all its decompositions has
length 1 (i.e. t = 1).

A unital decomposition of a ring S is an ordered set of nonzero pairwise or-
thogonal idempotents {e1, . . . , et} whose sum is 1S .17 If S has an involution ∗ and
e∗i = ei for all i, then {e1, . . . , et} is called ∗-invariant. It is well known that decom-
positions of M correspond to unital decompositions of W . Similarly, it turns out
that decompositions of b correspond to β-invariant unital decompositions of Wb.

Proposition 4.8.1. There is a one-to-one correspondence between decomposi-
tions of b and β-invariant unital decompositions of Wb. In particular, b is indecom-
posable precisely when Wb does not contain non-trivial β-invariant idempotents.

Proof. Observe that a β-invariant idempotent inWb consists of a pair (e, eop)
with e ∈ E(W ) (but e ∈ E(W ) need not imply (e, eop) ∈ Wb). Given a β-invariant
unital decomposition {(ei, eop

i )}ti=1, let Mi = eiM and bi = b|Mi×Mi . Then
{(Mi, bi,K)}ti=1 is a decomposition of b. (Indeed, b(Mi,Mj) = b(eiM, ejM) =
b(M, eiejM) = b(M, 0) = 0 for i 6= j.) Conversely, if (M, b,K) = (M1, b1,K) ⊥
· · · ⊥ (Mt, bt,K), let ei be the projection fromM toMi with kernel

∑
j 6=iMj . Then

for all x, y ∈ M , b(eix, y) = bi(eix, eiy) = b(x, eiy), hence (ei, eop
i ) ∈ Wb. Thus,

{(ei, eop
i )}ti=1 is a β-invariant unital decomposition of Wb. The rest of the details

are left to the reader. �

Definition 4.8.2. A subspace of (M, b,K) is a bilinear space (M1, b1,K) such
that M1 ⊆ M and b1 = b|M1×M1 . In this case, b1 is called a subform of b. The
subspace (M1, b1,K) (or just b1) is is a summand of (M, b,K) (or b) if there exists a
subspace (M2, b2,K) of (M, b,K) such that (M, b,K) = (M1, b1,K) ⊥ (M2, b2,K).
In this case, (M2, b2,K) is called a complement of (M1, b1,K).

When b is quasi-reduced, any summand of b admits a unique complement and
these summands correspond to β-invariant idempotents in Wb. This is verified in
the following propositions.

Proposition 4.8.3. Assume b is quasi-reduced. Then any summand of b admits
a unique complement.

Proof. Let (M1, b1,K) be a summand of (M, b,K) and let (M2, b2,K) and
(M ′2, b′2,K) be complements of (M1, b1,K). It is enough to prove M2 = M ′2. Let
{(e1, e

op
1 ), (e2, e

op
2 )} (resp. {(e′1, e

′op
1 ), (e′2, e

′op
2 )}) be the β-invariant unital decom-

position corresponding to b = b1 ⊥ b2 (resp. b = b1 ⊥ b′2). Then clearly e1e
′
1 = e′1

and e′1e1 = e1. We now have:
b(x, e1y) = b(e1x, y) = b(e′1e1x, y) = b(e1x, e

′
1y)

= b(x, e1e
′
1y) = b(x, e′1y) = b(e′1x, y) ,

and similarly b(e1x, y) = b(x, e′1y). Thus, (e1, e
′op
1 ) ∈ Wb which in turn implies

(0, (e1 − e′1)op) = (e1, e
op
1 ) − (e1, e

′op
1 ) ∈ Wb. The form b is quasi-reduced, so by

17 The set {e1, . . . , et} is also called a complete set of orthogonal idempotents. We have
changed it into unital decomposition for brevity.
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Proposition 4.6.8(iii), we must have e1 − e′1 = 0, hence e2 = e′2 and M2 = e2M =
e′2M = M ′2. �

Remark 4.8.4. With the notation of the last proof, note that M2 need not be
the orthogonal complement of M1, namely:

M⊥1 = {x ∈M : b(x,M1) = b(M1, x) = 0}
(but we always haveM2 ⊆M⊥1 ). For example, take any right stable form (b0,M,K)
with N := ker Adrb ∩ ker Ad`b 6= 0 (e.g. the form of Example 2.4.4). Then b = b0 ⊥
b0 is right stable (Corollary 2.6.6) and, abusing the notation, b0 is clearly the
complement of itself. However, (M ⊕ 0)⊥ = N ⊕M 6= 0 ⊕M . Nevertheless, it is
straightforward to check that when b is right injective, M2 = M⊥1 .

Proposition 4.8.5. Assume b is quasi-reduced. Then there is a one-to-one
correspondence between summands of b and β-invariant idempotents in Wb.

Proof. Let e1 ∈ E(Wb) be a β-invariant idempotent. Then {e1, 1 − e1} is a
unital decomposition of Wb, and hence it gives rise to a decomposition (M, b,K) =
(M1, b1,K) ⊥ (M2, b2,K). Let e1 be the idempotent corresponding to b1. Con-
versely, given a summand b1 of b, let b2 be its unique complement and let {e1, e2}
be the β-invariant unital decomposition corresponding to b = b1 ⊥ b2. Then b1
corresponds to e1. The rest of the details are left to the reader. �

Remark 4.8.6. Recall that by Proposition 4.7.8, idempotents e ∈ Wb with
e + eβ = 1 correspond to representations of M as a direct sum to two totally
isotropic submodules. However, in contrast to the last proposition, totally isotropic
submodules M1 ⊆M admitting a totally isotropic M2 ≤M s.t. M = M1 ⊕M2 do
not correspond to idempotents e ∈Wb satisfying e+eβ = 1, even when b is regular.
In particular, M2 is not uniquely determined by M1.

For example, let F be a field and let b : F 2×F 2 → F be the regular alternating
form defined by b((x1, x2), (y1, y2)) = x1y2 − x2y1. By Proposition 4.6.9, we may
identify (Wb, β) with (W {α2}, α) where α is the corresponding anti-endomorphism of
b. It is easy to check that α is given by

[
a b
c d

]α =
[
d −b
−c a

]
for all

[
a b
c d

]
∈ M2(F ) = W

and hence W {α2} = W {id} = W . Now, any 1-dimensional subspace of F 2 is totally
isotropic, hence M2 above cannot be uniquely determined. In addition, e = [ 1 0

0 0 ]
and e′ = [ 1 1

0 0 ] are idempotents in W = Wb = M2(F ) such that e+eα = e′+e′α = 1
and eF 2 = e′F 2 = F × 0. Thus, M1 = F × 0 does not correspond to a specific
idempotent e0 ∈Wb with e0 + eα0 = 1.

4.8.2. Isometry of Summands of M and b. Let (M1, b1,K), (M2, b2,K)
be two summands of (M, b,K) (we do not assume b = b1 ⊥ b2). We shall now
present necessary and sufficient conditions (in terms of Wb and β) for b1 and b2 to
be isometric. By Proposition 4.8.1, we may assume thatM1 = e1M andM2 = e2M
for some β-invariant idempotents (e1, e

op
1 ), (e2, e

op
2 ) ∈ Wb (the idempotents e1, e2

are uniquely determined when b is quasi-reduced, as implied by Proposition 4.8.5).

Definition 4.8.7. Let (S, ∗) be a ring with involution. Two ∗-invariant idem-
potents e, e′ ∈ E(S) are called isometric if there exists s ∈ e′Se such that

s∗s = e, and ss∗ = e′ .

In this case, s is called an isometry from e to e′.

Proposition 4.8.8. Let Mi, bi, ei be as above. Identify Hom(Mi,Mj) with
ejWei (i, j ∈ {1, 2}) in the standard way. Then isometries from b1 to b2 correspond
to isometries from (e1, e

op
1 ) to (e2, e

op
2 ) (in Wb) via σ ↔ (σ, (σ−1)op). (Here σ−1

stands for the unique element of e1We2 satisfying σ−1σ = e1 and σσ−1 = e2).
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Proof. Let w ∈ Hom(M1,M2) = e2We1 be an isometry from b1 to b2 and let
w′ ∈ Hom(M2,M1) = e1We2 be its inverse. We claim that (w,w′op) ∈Wb. Indeed,
for all x, y ∈ M , b(wx, y) = b2(e2wx, e2y) = b1(w′e2wx,w

′e2y) = b1(w′wx,w′y) =
b1(e1x,w

′y) = b(x,w′y) and similarly, b(x,wy) = b(w′x, y). The element (w,w′op)
is an isometry from (e1, e

op
1 ) to (e2, e

op
2 ) since (w,w′op)β(w,w′op) = (w′w,wopw′op) =

(e1, e
op
1 ) and (w,w′op)(w,w′op)β = (ww′, w′opwop) = (e2, e

op
2 ).

Conversely, if (w,w′op) ∈ Wb is an isometry from (e1, e
op
1 ) to (e2, e

op
2 ), then

(e1, e
op
1 ) = (w,wop)β(w,w′op) = (w′w,wopw′op), hence e1 = w′w and similarly

e2 = ww′. This means that w induces an invertible map from M1 to M2 (its
inverse is w′). The element w is an isometry from b1 to b2 since b2(we1x,we1y) =
b(wx,wy) = b(x,w′wy) = b(x, e1y) = b(x, e1e1y) = b(e1x, e1y) = b1(e1x, e1y) for
all x, y ∈M . �

Remark 4.8.9. Taking e1 = e2 = 1W in the previous proposition implies that
Wb contains a copy of the isometry group of b, namely the group of isometries from
b to itself. The proposition also implies that this group corresponds to the elements
u ∈W×b satisfying u−1 = uβ , as one would expect.

Now let M1, M2 be two summands of M (we do not assume b|M1×M1 , b|M2×M2

are summands of b). Assume b is right stable with corresponding anti-endomorphism
α. The following proposition shows that it is possible to express the fact that
b1 := b|M1×M1 and b2 := b|M2×M2 are isometric in terms of α and W . We may of
course assume that M1 = e1M and M2 = e2M for some e1, e2 ∈ E(W ) (but e1, e2
need not be α-invariant nor unique).

Proposition 4.8.10. In the previous notation, the following are equivalent:
(i) b1 ∼= b2.
(ii) There are w1 ∈ e2We1 and w2 ∈ e1We2 such that:18

wα1w1 = eα1 e1, wα2w2 = eα2 e2, w2w1 = e1, w1w2 = e2 .

Furthermore, there is a one-to-one correspondence between isometries from b1 to b2
and pairs (w1, w2) as in (ii).

Proof. Throughout, we identify Hom(Mi,Mj) with ejWei for all i, j ∈ {1, 2}.
Let σ : M1 → M2 be an isometry from b1 to b2. Then there are w1 ∈ e2We1,
w2 ∈ e1We2 such that σ(x) = w1x and σ−1(y) = w2y for all x ∈ M1 and y ∈ M2.
As w2w1 induces the identity homomorphism on M1, we have w2w1 = e1 and
similarly w1w2 = e2. Now let x, y ∈ M . Then b(x,wα1w1y) = b(w1x,w1y) =
b(w1e1x,w1e1y) = b(σ(e1x), σ(e1y)) = b(e1x, e1y) = b(x, eα1 e1y), hence wα1w1 =
eα1 e1 and similarly wα2w2 = eα2 e2.

Conversely, assume w1, w2 as above are given. Define σ : M1 → M2 and
τ : M2 → M1 by σ(x) = w1x and τ(y) = w2y. Then it is straightforward to check
τ ◦ σ = idM1 and σ ◦ τ = idM2 . In addition, for all x, y ∈ M1, b(σ(x), σ(y)) =
b(w1x,w1y) = b(x,wα1w1y) = b(x, eα1 e1y) = b(e1x, e1y) = b(x, y), hence σ is an
isometry from b1 to b2. �

Remark 4.8.11. The element w2 is uniquely determined by w1 in the sense
that it is the only element in e1We2 satisfying w2w1 = e1 and w1w2 = e2. Indeed,
if w′2 also satisfies these relations, then w′2 = w′2e2 = w′2w1w2 = e1w2 = w2.
(A less explicit yet more intuitive explanation for this is that w2 is induced from
σ−1 : M2 →M1 where σ : M1 →M2 is defined by σ(x) = w1x).

18 The second equality is in fact superfluous since the other three imply wα2 w2 = wα2 e
α
1 e1w2 =

wα2 w
α
1 w1w2 = (w1w2)α(w1w2) = eα2 e2.
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4.8.3. Isometry of Forms Related to b. Recall that for two bilinear spaces
(M, b,K) and (M ′, b′,K), we write b ∼Kr b

′ to denote that Z(b) ∼= Z(b′). That is,
there are isomorphisms σ ∈ Hom(M,M ′) and τ ∈ Hom(M ′,M) satisfying (17). In
this subsection, we will show that isometry classes of bilinear forms b′ with b ∼Kr b

′

correspond to congruence classes of invertible β-symmetric elements in Wb.
Let (S, ∗) be a ring with involution. Two elements x, y ∈ S are called ∗-

congruent if there is s ∈ S× such that x = s∗ys. This is an equivalence relation
which we denote by ∼∗, and its equivalence classes are called congruence classes
(w.r.t. ∗). An element x ∈ S is called ∗-symmetric if x∗ = x. Being ∗-symmetric
is preserved under the relation ∼∗. The set of ∗-symmetric elements in S will be
denoted by Sym(S, ∗). For example, Sym(Wb, β) consists of elements of the form
(w,wop) in Wb.

Henceforth, we will use [ · ] to denote both isometry classes and congruence
classes w.r.t. β. In case of ambiguity, the latter will be denoted by [ · ]β .

Proposition 4.8.12. There is a one-to-one correspondence between isometry
classes bilinear spaces (M ′, b′,K) with b′ ∼Kr b and congruence classes of elements
in Sym(Wb, β) ∩W×b .

Proof. Let (M ′, b′,K) be such that b′ ∼Kr b and let (σ, τop) : Z(b) → Z(b′)
be an isomorphism. The correspondence is given by sending [b′] to [(τσ, (τσ)op)].
However, we need to prove several things before we can assert this is indeed a
correspondence.

First, we need to show that τσ ∈ Sym(Wb, β) ∩W×b . Indeed, by (17), for all
x ∈M and x′ ∈M ′, we have b′(x′, σx) = b(τx′, x) and b′(σx, x′) = b(x, τx′). Thus,
for all x, y ∈ M , b(τσy, x) = b′(σy, σx) = b(y, τσy), implying (τσ, (τσ)op) ∈ Wb.
Repeating this argument with (τ−1, (σ−1)op), which is also an isomorphism from
Z(b) to Z(b′) (since (τ, σop) = (σ, τop)∗ is an isomorphism from Z(b′)∗ = Z(b′) to
Z(b)∗ = Z(b)), yields that σ−1τ−1 ∈Wb, hence στ ∈W×b .

Next, we need to show that [(τσ, (τσ)op)] is independent of b′, σ and τ . Let
(b′′,M ′′,K) be another bilinear space with [b′′] = [b′] and let (η, θop) : Z(b)→ Z(b′′)
be an isomorphism. We need to prove that [(τσ, (τσ)op)] = [(θη, (θη)op)]. Let
ζ : b′ → b′′ be an isometry. Then for all x, y ∈M ,

b(θζτ−1x, y) = b′′(ζτ−1x, ηy) = b′(τ−1x, ζ−1ηy) = b(x, σ−1ζ−1ηy)
and similarly b(x, θζτ−1y) = b(σ−1ζ−1ηx, y). Thus, s := (σ−1ζ−1η, (θζτ−1)op)
lies in Wb. As (θζτ−1) · (τσ) · (σ−1ζ−1η) = θη, it follows that s∗(τσ, (τσ)op)s =
(θη, (θη)op), hence [(τσ, (τσ)op)] = [(θη, (θη)op)].

Now drop the assumption [b′′] = [b′] and assume [(τσ, (τσ)op)] = [(θη, (θη)op)]
instead. We need to show that b′′ ∼= b′. Let s = (u,wop) ∈ Wb be an element
satisfying s∗(τσ, (τσ)op)s = (θη, (θη)op). Then u,w are automorphisms of M sat-
isfying wτσu = θη. Define ζ = θ−1wτ ∈ Hom(M ′,M ′′). Then ζ = θ−1(wτ) =
θ−1(θηu−1σ−1) = ηu−1σ−1 and for all x, y ∈M ′, we have

b′′(ζx, ζy) = b′′(θ−1wτx, ηu−1σ−1y) = b(wτx, η−1ηu−1σ−1y)
= b(τx, uη−1ηu−1σ−1y) = b′(x, σuη−1ηu−1σ−1y) = b′(x, y) .

Thus, ζ : b′ → b′′ is an isometry and [b′] = [b′′].
To finish, we prove that every w ∈ Sym(Wb) ∩W×b is of the form τσ for some

b′, σ, τ as above. Define b′ : M ×M → K by b′(x, y) = b(wx, y) = b(x,wy) (the
latter equality holds since (w,wop) ∈ Wb). Then (σ, τop) := (1, wop) is clearly an
isomorphism from Z(b) to Z(b′) satisfying [τσ] = [w]. �

The previous proposition reduces the isomorphism problem of semi-stable bi-
linear forms to (1) congruence of elements in Wb and (2) isomorphism of Kronecker
modules.
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Example 4.8.13. It might seem a little surprising that Proposition 4.8.12 holds
even for non-quasi-reduced forms, so let us exhibit the correspondence in a non-
quasi-reduced example. Assume b is the zero form. Then all bilinear forms b′ with
b′ ∼Kr b must also be zero and hence isometric to b. We thus expect only one
congruence class in Sym(Wb, β)∩W×b . Indeed, in this case Wb = W ×W op and for
all (w,wop), (w′, w′op) ∈ Sym(Wb, β)∩W×b we have (w,wop) ∼β (w′, w′op) because
(1, (w′w−1)op)β(w,wop)(1, (w′w−1)op) = (w′, w′op).

Remark 4.8.14. If b is right regular and K has an anti-isomorphism κ, then b
has a unique right κ-asymmetry, λ. In this case, the bilinear forms b′ with b′ ∼Kr b
are the right regular forms admitting a (unique) κ-asymmetry which is conjugate
to λ. (This follows from Proposition 4.6.4(ii) since any two right regular forms are
right joinable. In addition, it easy to see that if Z(b) ∼= Z(b′), then b is right regular
if and only if b′ is.)

4.8.4. Summary. The correspondences presented in this section and in sec-
tion 4.7 are summarized in the following table:

Property or Object Corresponds To

1. decompositions of (M, b,K) β-invariant unital decompositions ofWb

2. summands of b (provided b is quasi-
reduced)

β-invariant idempotents in Wb

3. b is indecomposable Wb does not contain β-invariant idem-
potents other than 0 and 1

4. isometries between summands b1, b2
of b

isometries from e1 to e2 in Wb, where
ei is the a β-invariant idempotent such
that bi = b|eiM×eiM (ei is uniquely de-
termined if b is quasi-reduced).

5. isometries between b1 := b|e1M×e1M
and b2 := b|e2M×e2M where e1, e2 ∈
E(W )

pairs (w1, w2) ∈ e2We1 × e1We2 satis-
fying w2w1 = e1, w1w2 = e2, wα1w1 =
eα1 e1 and wα2w2 = eα2 e2

6. representations M = M1 ⊕M2 with
M1,M2 totally isotropic

idempotents e ∈ E(Wb) such that e +
eβ = 1

7. b is a hyperbolic form β is a hyperbolic involution

8. isometry classes of forms b′ with
b′ ∼Kr b

congruence classes in Sym(Wb, β)∩W×b

The table implies that the ringWb and its involution β hold a lot of information
about the form b and other forms related to it. However, the ring Wb is still far too
complicated to allow an immediate usage of our “dictionary”. In the next section
we will show that under mild assumptions, most properties mentioned in the right
column of the table can be “lifted” fromWb/ Jac(Wb) toWb. Furthermore, we shall
later see that Wb/ Jac(Wb) is often semisimple. Once that is achieved, we will have
the tools to provide direct proofs to the consequences of Theorem 4.3.6, as well as
other applications.

4.9. Lifting Along the Jacobson Radical

In this section, (R, ∗) denotes a ring with involution and J is an ideal of R such
that J∗ = J (usually J would be Jac(R)). The involution ∗ induces an involution
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on R := R/J which we also denoted by ∗. The image of r ∈ R in R will be denoted
by r.

Motivated by the previous section, this section is concerned with presenting
sufficient conditions on R, J, ∗ to allow the lifting of various properties of (R, ∗) to
(R, ∗). In particular, we will consider lifting of ∗-invariant idempotents, isometries
between them, ∗-isotropic idempotents and ∗-congruences.

Definition 4.9.1. The ideal J is called idempotent lifting if J ⊆ Jac(R) and
for every ε ∈ E(R) there exists e ∈ E(R) such that e = ε.

Example 4.9.2. (i) Any nil ideal is idempotent lifting (see [80, Cr. 1.1.28]).
(ii) A semilocal ring is semiperfect if and only it its Jacobson radical is idem-

potent lifting (by definition).

The following well-known facts will be used throughout the section.

Proposition 4.9.3. If J is idempotent lifting, then any unital decomposition
of R, {εi}ni=1, can be lifted to R, i.e. there is a unital decomposition of R, {ei}ni=1,
such that ei = εi.

Proposition 4.9.4. Let e ∈ E(R). Then:
(i) Jac(eRe) = e Jac(R)e.
(ii) If J ER is idempotent lifting, then eJe is idempotent lifting in eRe.

4.9.1. Lifting ∗-Invariant Idempotents. Henceforth, J is idempotent lift-
ing.

Lemma 4.9.5. For a right ideal I ≤ RR, the following are equivalent:
(a) I = eR for some e ∈ E(R) with e = e∗.
(b) R = I ⊕ (ann` I)∗.
(c) R = I ⊕ annr(I∗).

The idempotent e of (a) is unique, i.e. if e′ ∈ E(R) is such that e′∗ = e′ and
I = e′R, then e = e′.19

Proof. (a)=⇒(b) and (a)=⇒(c) easily follows from the fact that for all e ∈
E(R), ann`(eR) = R(1− e) and annr(Re) = (1− e)R.

(b)=⇒(a): We can write 1 = e+ (1− e) where e ∈ I and (1− e) ∈ (ann` I)∗. It
is well known that e and 1− e are idempotents and I = eR. As 1− e ∈ ann` eR =
ann` I, we get (1− e)∗e = 0, implying e = e∗e. But e∗e = (e∗e)∗ = e∗, so e = e∗.

(c)=⇒(a) follows by repeating the previous argument with e∗(1− e) instead of
(1− e)e∗.

To finish, assume I = e′R and e′∗ = e′. Then, e′ = ee′ = e∗e′∗ = (e′e)∗ = e∗ =
e (the first and next to last equalities hold since eR = e′R). �

Theorem 4.9.6. Assume JER is idempotent lifting. Then for any ∗-invariant
idempotent ε ∈ E(R) there is a ∗-invariant idempotent e ∈ E(R) such that e = ε.20

Proof. Take some f ∈ E(R) with f = ε. Since ε = ε∗, f + (1 − f)∗ − 1
lies in J and hence f + (1 − f)∗ is invertible (because J ⊆ Jac(R)). Therefore,
R = fR+ (1− f)∗R. On the other hand, if r ∈ fR ∩ (1− f)∗R, then (1− f)r = 0
(because r = fr) and f∗r = 0 (because (1 − f)∗r = r), hence (1 − f + f∗)r = 0,
which implies r = 0 since (1 − f) + f∗ ∈ R×. Therefore, R = fR ⊕ (1 − f)∗R.21

19 It is worth pointing that this property is special for ∗-invariant idempotents and fails for
arbitrary idempotents.

20 Compare with [100, Lm. 3], which proves the same claim when J is nil.
21 This can also be shown using the fact fR and (1− f)∗R are projective covers of εR and

(1− e)R, respectively.
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Now, since (ann` fR)∗ = (1 − f)∗R, Lemma 4.9.5 implies that there is e ∈ E(R)
such that e = e∗ and eR = fR. Finally, Lemma 4.9.5 also implies that ε is the only
∗-invariant idempotent generating εR and therefore e = ε. �

Corollary 4.9.7. Any ∗-invariant unital decomposition {εi} of R can be lifted
to a ∗-invariant unital decomposition of R. That is, there exists a ∗-invariant unital
decomposition {ei} of R such that ei = εi for all i. In particular, if R is semiperfect,
then any ∗-invariant unital decomposition can be lifted from R/ Jac(R) to R.

Proof. Lift ε1 to e1 ∈ E(R) with e∗1 = e1 using Theorem 4.9.6. Now induct on
(1−e1)R(1−e1) and (1−e1)J(1−e1) (we are allowed do this due to Lemma 4.9.4(ii)).

�

Example 4.9.8. If ∗ is not an involution but merely an anti-automorphism,
then Theorem 4.9.6 might fail. For example, let p > 2 be a prime number, S = Z〈p〉,
R = M2(S), J = Jac(R) = pR = M2(pS) and let ∗ be the anti-automorphism
defined by:

A∗ =
[ 1 p

0 1
]−1

AT
[ 1 p

0 1
]
.

Then J is idempotent lifting since R is semiperfect. In addition, ∗ acts as the
transpose involution on R/ Jac(R) ∼= M2(Z/p), so R/ Jac(R) has plenty of non-
trivial ∗-invariant idempotents. On the other hand, the set of ∗-invariant elements
in R is contained in the subring {a ∈ R : a∗∗ = a} which is the centralizer of:

X =
[

1 p
0 1

]−1 [ 1 p
0 1

]T
=
[

1− p2 −p
p 1

]
in M2(S). It is not hard to verify that the centralizer of X in M2(Q) is Q[X] ∼=
Q[x]/

〈
x2 + (p2 − 2) + 1

〉
, which is a field (since p > 2). Therefore, M2(S) admits

no non-trivial ∗-invariant idempotents. In particular, there are ∗-invariant idempo-
tents in R/ Jac(R) that cannot be lifted to R.

4.9.2. Lifting Isotropic Idempotents. We will now consider lifting of idem-
potents ε ∈ R satisfying ε + ε∗ = 1 and, more generally, idempotents ε ∈ R such
that ε is orthogonal to ε∗. Such idempotents are called isotropic (or ∗-isotropic).
In contrast to the previous subsection, the mere assumption that J is idempotent
lifting does not guarantee such a lifting, as shown in the following example.

Example 4.9.9. Let n ∈ N be such that p = n2 + 1 is prime (e.g. n = 2). Let
S be the ring Z[√p] localized at the prime ideal

〈√
p
〉
and let I = √pS = Jac(S).

Let R = M2(S) and define ∗ : R→ R by

A∗ =
[ √

p n
n
√
p

]−1
AT
[ √

p n
n
√
p

]
.

Let J = Jac(R). We have R/ Jac(R) = M2(S)/M2(I) ∼= M2(S/I) ∼= M2(Z/p). The
action of ∗ on R/J can be described as:

A∗ =
[

0 n
n 0

]−1
A
T
[

0 n
n 0

]
=
[

0 1
1 0

]−1
AT
[

0 1
1 0

]
.

It is now easy to check that the matrix unit ε := e11 ∈ M2(Z/p) ∼= R/J satisfies
ε + ε∗ = 1. However, despite that R is semiperfect and J is idempotent lifting,
there is no e ∈ E(R) such that e+ e∗ = 1 and e = ε.

To see this, consider the bilinear form b : S2 × S2 → S defined by b(x, y) =
xT
[√

p n

n
√
p

]
y. Then b is stable and ∗ is its corresponding anti-endomorphism. In

addition, (Wb, β(b)) ∼= (R, ∗) by Proposition 4.6.9. Thus, e as above exists ⇐⇒
β(b) is hyperbolic ⇐⇒ b is hyperbolic (Proposition 4.7.8). But the latter is
impossible since b is anisotropic, i.e. b(x, x) 6= 0 for all 0 6= x ∈ S2. (Indeed,
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consider b as a form over R rather than S. Then the quadratic form corresponding
to b is 2-dimensional and has discriminant n2 − q = −1, hence it is anisotropic.22)

Definition 4.9.10. Let I E R. The ideal I is called (∗-)symmetric if I = I∗.
In this case we define:

Sym(I) = {x ∈ I | x = x∗} and Symd(I) = {x+ x∗ | x ∈ I} .
These sets are called the ∗-symmetric elements of I and the ∗-symmetrized elements
of I, respectively. The ideal I is called (∗-)symmetrized if it is symmetric and
Sym(I) = Symd(I).

A ring with involution (R, ∗) is dyadic if it admits a non-symmetrized symmet-
ric ideal. Otherwise, it is non-dyadic.

The results of this section would apply in their full strength when (R, ∗) is non-
dyadic. The dyadic is more complicated and will not be treated here. The following
proposition ensures that (R, ∗) is non-dyadic whenever 2 ∈ R× (take a = 1), hence
justifying the name “non-dyadic”.

Proposition 4.9.11. Let a ∈ Cent(R) and let I ER be symmetric. Then:
(i) Sym((a+ a∗)I) ⊆ Symd(aI + a∗I) + a ann(a+ a∗).
(ii) If a+ a∗ ∈ R×, then I is symmetrized. In particular, R is non-dyadic.
(iii) If a ann(a+ a∗) = 0, then Symd((a+ a∗)I) ⊆ Sym(I).

Proof. (ii) and (iii) easily follow from (i). To prove (i), let y ∈ Sym((a+a∗)I).
Then there exists x ∈ I such that y = (a + a∗)x. Now, (a + a∗)x = y = y∗ =
(a+ a∗)x∗ implying x− x∗ ∈ ann(a+ a∗). Therefore,
y = (a+ a∗)x = (a∗x) + (a∗x)∗ + a(x− x∗) ∈ Symd(aI + a∗I) + a ann(a+ a∗)

(note that we used a ∈ Cent(R)). �

Lemma 4.9.12. Assume that there are symmetric ideals I, J0, J1 ER such that
IJ0 + J0I ⊆ J1 ⊆ J0 ⊆ I and Sym(J0) ⊆ Symd(I) + J1. Let ε0 ∈ E(R/J0) be an
isotropic idempotent. Then there exists an isotropic idempotent ε1 ∈ E(R/J1), and
ε0, ε1 has the same image in R/I.

Proof. Let us work in R′ = R/J1 and set I ′ = I/J1, J ′0 = J0/J1. Then
(J ′0)2 = I ′J ′0 = J ′0I

′ = 0. In particular, J ′0 is nilpotent, hence there exists e ∈ E(R′)
whose image in R/J0 is ε0. Now take arbitrary x ∈ R with x + J1 = e. Since
ee∗ + J ′0 = J ′0 and (xx∗) = xx∗, xx∗ ∈ Sym(J0) and hence there is y ∈ I such that
xx∗ − (y + y∗) ∈ J1 (because Sym(J0) ⊆ Symd(I) + J1). Let a be the image of y
in R′ (so a ∈ I ′), then ee∗ = a + a∗. By replacing a with eae∗, we may assume
a = ea = ae∗ ∈ eI ′e∗. Now, ee∗ ∈ J ′0 implies

aa = aa∗ = a∗a = a∗a∗ = ae = a∗e = e∗a = e∗a∗ = 0
(because I ′J ′0 = J ′0I

′ = 0). Define g = e− a and observe that
g2 = e2 − ea− ae− a2 = e− a = g,

gg∗ = (e− a)(e∗ − a∗) = ee∗ − ea∗ − ae∗ + aa∗ = ee∗ − (a+ a∗) = 0,
g∗g = (e∗ − a∗)(e− a) = e∗e− e∗a− a∗e+ a∗a = e∗e .

Thus, g is an idempotent with gg∗ = 0, g∗g ∈ J ′1 and g = e1 in R/I1.
Repeating the previous argument with g∗ in place of e would yield an element

b ∈ I ′ with g∗g = b+ b∗ satisfying:
bb = bb∗ = b∗b = b∗b∗ = gb = gb∗ = bg∗ = b∗g∗ = 0 .

22 The discriminant of a quadratic form ax2 + 2bxy + cy2 is defined to be b2 − ac. It is well
known that (over fields) the quadratic forms is isotropic if and only the discriminant is a square.
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We finish by taking ε1 = g− b and noting that as before, we have ε2
1 = ε1, ε∗1ε2 = 0

and ε1ε
∗
1 = gg∗ = 0. �

Remark 4.9.13. Under the lemma’s assumptions one can also show that for
every ε0 ∈ E(R/J0) with ε∗0ε0 = 0, there exists ε1 ∈ E(R/J1) with ε∗1ε1 = 0, and
ε0, ε1 has the same image in R/I.

For the next theorem, recall that a Hausdorff linearly topologized (abbrev.:
LT) ring is called complete if R = lim←−{R/I}I∈B for some local basis of ideals B. In
this case, this holds for any local basis consisting of ideals (e.g. for IR – the set of
all open ideals of R). See section 1.5 for additional details.

Theorem 4.9.14. Assume R is a complete Hausdorff LT ring admitting sym-
metric ideals J1 ⊇ J2 ⊇ J3 ⊇ . . . and I1 ⊇ I2 ⊇ I3 ⊇ . . . such that for all n ∈ N:

(a) Jn ⊆ In and InJn + JnIn ⊆ Jn+1.
(b) Sym(Jn) ⊆ Symd(In) + Jn+1.

Also assume that one of the following holds:
(c) Every open ideal contains In for some n (e.g. if R = lim←−R/In as a topo-

logical ring).
(c′) Every open ideal contains Jn for some n and R is compact (i.e. R is an

inverse limit of finite rings).
Then for every isotropic ε ∈ E(R/J1), there exists isotropic e ∈ E(R) such that e, ε
has the same image in R/I1.

Proof. A repeated application of Lemma 4.9.12 (with In, Jn, Jn+1 in place of
I ′, J0, J1) yields idempotents εn ∈ E(R/Jn) with ε1 = ε such that εnε∗n = ε∗nεn = 0,
and εn+1, εn has the same image in R/In.

Now, if (c) holds, then for every U ∈ IR there is n = n(U) such that U ⊇ In.
Let eU be the image of εn ∈ R/Jn in R/U . Then eU is independent of n and the
elements {eU}U∈IR are compatible with the standard maps R/U → R/V (U, V ∈
IR). As R is complete, there is e ∈ R such that eU = e + U for all U ∈ IR and it
is routine to verify that e satisfies all the requirements (it is enough to check them
modulo In for all n ∈ N).

If (c′) holds, then take arbitrary elements {xn}∞n=1 with εn = xn + In. Since R
is compact, {xn}∞n=1 has a converging subsequence. Let e denote its limit. Then e
is easily seen to satisfy all the requirements. �

Remark 4.9.15. Assume that conditions (a),(b) of the previous theorem hold
for (R, ∗) and for the ideals {In}∞n=1, {Jn}∞n=1. Then for any e ∈ E(R) with e = e∗,
conditions (a) and (b) also hold for eRe and {eIne}∞n=1, {eJne}∞n=1. To see this,
notice that Sym(eIe) = e Sym(I)e, Symd(eIe) = e Symd(I)e for every symmetric
ideal I ER. The proof is straightforward.

Corollary 4.9.16. Assume R is pro-semiprimary and (R, ∗) is non-dyadic
(e.g. when there exists a ∈ Cent(R) such that a+a∗ ∈ R×). Then for every isotropic
idempotent ε ∈ E(R/ Jac(R)), there is isotropic e ∈ E(R) such that ε = e+ Jac(R).
In particular, ∗ is hyperbolic on R ⇐⇒ ∗ is hyperbolic on R/ Jac(R).

Proof. Take In = Jn = Jac(R)2n−1 in the previous theorem. Conditions (a) is
clear and condition (c) follows from Proposition 1.5.17. To see (b), note that since
(R, ∗) is non-dyadic, Sym(Jn) = Symd(Jn) = Symd(In) ⊆ Symd(In) + Jn+1. �

4.9.3. Lifting Congruences and Isometries. Recall that two elements
a, b ∈ R are called (∗-)congruent, denoted a ∼∗ b, if there exists u ∈ R× such
that u∗au = b. Congruence is an equivalence relation. In addition, two ∗-invariant
idempotents e, e′ ∈ E(R) are called isometric if there exists s ∈ e′Re such that
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s∗s = e and ss∗ = e′. In this case, s is called an isometry from e to e′. In this
subsection, we will prove that under certain assumptions, congruences between ele-
ments and isometries between idempotents can be lifted from R/J to R. As in the
previous subsection, we begin with a counterexample showing that the assumption
that J is idempotent lifting is insufficient for this.

Example 4.9.17. Let S = Z〈3〉 be Z localized at 〈3〉, let R = M2(S) and let
J = Jac(R) = 3R. Let ∗ be the transpose involution and consider the matrices

A =
[

0 1
1 0

]
and B =

[
3 1
1 3

]
.

Since A = B, A ∼∗ B. However, if A ∼∗ B, then there would be P ∈ M2(S) such
that A = PTBP implying −1 = detA = (detP )2(detB) = 8(detP )2. But this
implies − 1

8 ∈ (Q×)2, a contradiction.
Example 4.9.18. Let S,R, J be as in the previous example and let A = [ 1 0

0 7 ] ∈
M2(S). Define b : S2 × S2 → S by b(x, y) = xTAy. Then b is regular and its
corresponding anti-endomorphism ∗ is given by X∗ = A−1XTA. Let e = e11 and
e′ = e22, where {eij} are the standard matrix units in R. Then e = e∗, e′ = e′∗

and in R = R/J one has e∗21 = e12 (because A = 1R). Therefore, e∗21e21 = e

and e21e
∗
21 = e′, hence e21 is an isometry from e to e′. However, e and e′ are not

isometric. Indeed, by Proposition 4.8.8, it is enough to verify that the restrictions of
b to im(e) = S×{0} and im(e′) = {0}×S are not isometric, which is clear because
these forms have discriminants 1 and 7, respectively, and 1 6≡ 7 mod (S×)2.

Lemma 4.9.19. Let I, J0, J1 ⊆ Jac(R) be symmetric ideals such that I2 ⊆ J1 ⊆
J0 ⊆ I and Sym(J0) ⊆ Symd(I) + J1. Let e, e′ ∈ E(R) be ∗-invariant and let
a ∈ (eRe)× ∩ Sym(eRe, ∗), b ∈ (e′Re′)× ∩ Sym(e′Re′, ∗). Assume that there exists
u0 ∈ e′Re and v0 ∈ eRe′ such that all the following equations hold modulo J0:

v0u0 = e, u0v0 = e′, u0au
∗
0 = b .

Then there exists u1 ∈ e′Re and v1 ∈ eRe′ such that the following equations hold
modulo J1:

v1u1 = e, u1v1 = e′, u1au
∗
1 = b

and u0 + I = u1 + I, v0 + I = v1 + I.
Proof. Let a′ denote the inverse of a in eRe and note that a′∗ = a′ since

a∗ = a. Observe that u0au
∗
0 − b ∈ Sym(J0). As Sym(J0) ⊆ Symd(I) + J1, there

exists c ∈ I such that (c + c∗) + (u0au
∗
0 − b) ∈ J1. By replacing c with e′ce′, we

may assume c = e′ce′. Define u1 = u0 + cv∗0a
′. Calculating modulo J1, we have:

u1au
∗
1 = (u0 + cv∗0a

′)a(u∗0 + a′v0c
∗) = u0au

∗
0 + cv∗0a

′au∗0 + u0aa
′v0c

∗

= u0au
∗
0 + cv∗0u

∗
0 + u0v0c

∗ = u0au
∗
0 + c(u0v0)∗ + u0v0c

∗

= u0au
∗
0 + ce′ + c∗e′∗ = u0au

∗
0 + c+ c∗ = b .

Now let v1 = 2v0 − v0u1v0. Then modulo J1:
u1v1 = 2u1v0 − u1v0u1v0 = u1v0 + (e′ − u1v0)u1v0

= u1v0 + (e′ − u1v0)e′ = u1v0 + e′ − u1v0 = e′

(the third equality holds since e′−u1v0 ∈ J1, e′+J0 = u1v0 +J0 and J2
0 ⊆ I2 ⊆ J1)

and in the same way, v1u1 = e mod J1. �

Theorem 4.9.20. Assume R is a complete Hausdorff LT ring, let J1 ⊇ J2 ⊇
J3 ⊇ . . . and I1 ⊇ I2 ⊇ I3 ⊇ . . . be symmetric ideals such that:

(a) Jn ⊆ In and I2
n ⊆ Jn+1,23

23Notice that this is stronger than condition (a) of Theorem 4.9.14.
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(b) Sym(Jn) ⊆ Symd(In) + Jn+1,
and at least one of the following holds:

(c) every open ideal contains In for some n (e.g. if R = lim←−R/In as a topo-
logical ring),

(c′) every open ideal contains Jn for some n and R is compact (i.e. R is an
inverse limit of finite rings).

Then the following hold:
(i) Let a, b ∈ Sym(R) ∩ R×. Then a ∼∗ b if and only if a + J1 ∼∗ b + J1.

Furthermore, if x + J1 ∈ R/J×1 satisfies b = x∗ax mod J1, then exists
y ∈ R× such that b = yay∗ and x, y have the same image in R/I1.

(ii) Let e, e′ ∈ E(R) be ∗-invariant. Then e is is isometric to e′ ⇐⇒ e+ J1
is isometric to e′+ J1. Furthermore, if u+ J is an isometry from e to e′,
then there exists an isometry v from e to e′ such that u, v has the same
image in R/I1.

Proof. We will prove (i) and (ii) in the same manner: If the assumptions of
(i) hold, let e = e′ = 1, u = x∗ and v = (x∗)−1, and if the assumptions of (ii) hold
let a = e, b = e′ and v = u∗. Then u ∈ e′Re, v ∈ e′V e and modulo J1, vu = e,
uv = e′ and uau∗ = b.

Let u1 = u and v1 = v. A repeated application of Lemma 4.9.19 (with
un+1, un, vn+1, vn, In, Jn+1, Jn in place of u1, u0, v1, v0, I, J1, J0) would yield un, vn ∈
R such that

vnun = e, unvn = e′, unau
∗
n = b

modulo Jn and un+1 + In = un + In, vn+1 + In = vn + In for all n ∈ N. Arguing
as in the proof of Theorem 4.9.14, this implies the existence of û, v̂ ∈ R such that
v̂û = e, ûv̂ = e′, ûaû∗ = b and û+ I1 = u+ I1, v̂ + I1 = v + I1.

If e = e′ = 1 as in (i), then this clearly implies a ∼∗ b. If a = e and b = e′ as in
(ii), then e′ = b = ûaû∗ = ûeû∗ = ûû∗. Multiplying by v̂ on the left yields v̂ = û∗

and hence, e = v̂û = û∗û, implying û is an isometry from e to e′. �

Corollary 4.9.21. Assume R is pro-semiprimary and (R, ∗) is non-dyadic
(e.g. if exists a ∈ Cent(R) such that a+ a∗ ∈ R×). Then:

(i) Let a, b ∈ Sym(R) ∩R×. Then a ∼∗ b ⇐⇒ a+ Jac(R) ∼∗ b+ Jac(R).
(ii) Let e, e ∈ E(R) be ∗-invariant. Then e is isometric to e′ ⇐⇒ e+ Jac(R)

is isometric to e′ + Jac(R).

Proof. This is similar to the proof of Corollary 4.9.16. �

Remark 4.9.22. The assumption a, b ∈ Sym(R) ∩ R× in Corollary 4.9.21(i)
(and also in Theorem 4.9.20(i)) is essential. For example, take any ring R with
2 ∈ R× and Jac(R)2 = 0. Then the conditions of Corollary 4.9.21 hold. However,
for any non-congruent a, b ∈ Sym(Jac(R)) with a �∗ b, we have a + Jac(R) =
0 + Jac(R) ∼∗ 0 + Jac(R) = b+ Jac(R). In addition, for every x ∈ Jac(R)\Sym(R)
and a ∈ Sym(R) ∩ R×, the elements a, a + x lie in R× and are not congruent
(since a ∈ Sym(R) and a+ x /∈ Sym(R)), but a and a+ x have the same image in
R/ Jac(R), hence a+ Jac(R) ∼∗ (a+ x) + Jac(R).

We finish this section with the following open question, which has many con-
sequences if answered in the positive. The motivation for the question is that
quasi-π∞-regular rings (see section 1.5) resemble Henselian valuation rings.

Question 3. Do Theorem 4.9.14 and Theorem 4.9.20 hold under the weaker
assumption that R is a quasi-π∞-regular LT ring?
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4.10. Sufficient Conditions for Wb to Be Semiperfect

In the flavor of conditions (C2), (C2′) and (C2′′) above, most of our results
would apply to bilinear spaces (M, b,K) such that Wb is semiperfect or semiperfect
and pro-semiprimary. This section is therefore devoted to supplying sufficient con-
ditions for this to happen. Some general results of this type were already obtained
in section 4.4. However, we will focus here on more explicit conditions.

Throughout, R is a ring and K is a double R-module. Recall that if R is an
LT ring, then any right R-module M can be topologized by taking {MJ | J ∈ IR}
as a local basis. By saying that M is Hausdorff we mean it is Hausdorff w.r.t.
this topology, which amounts to

⋂
J∈IRMJ = 0 (see section 1.8 for a detailed

discussion).

Proposition 4.10.1. Let (M, b,K) be a bilinear space. Assume that one the
following holds:

(A0) R is semiperfect π∞-regular (e.g. right or left artinian) and M is f.p.
(A1) R is a semiperfect quasi-π∞-regular LT ring, M is Hausdorff f.p. and⋂

J∈IR(K0J +K1J) = 0.
(A2) R is complete semilocal with Jacobson radical f.g. as a right ideal, M is

f.p. and b is stable.
(A3) K has an anti-isomorphism κ, b is κ-symmetric and stable and M is a

finite direct sum of LE-modules.
(A4) M is of finite length.
(A5) End(M) is right or left noetherian and complete semilocal and M is re-

flexive (e.g. if there exists a regular bilinear space (M, b′,K)).
Then Wb is semiperfect.

Proof. Throughout, let W = End(M). Note that (A0) is just a special case
of (A1) (endow R with the discrete topology).

If (A1) holds, then End(M) is semiperfect quasi-π∞-regular (w.r.t. τM1 ) by
Theorem 1.8.3(ii). By Proposition 4.4.5, Wb is a T-semi-invariant subring of W ×
W op and hence semiperfect quasi-π∞-regular by Theorem 1.7.1.

If (A2) holds, then W = End(M) is semilocal complete by Corollary 1.8.5. Let
α be the corresponding anti-automorphism of b. Then Wb

∼= W {α
2} by Proposi-

tion 4.6.9. As any automorphism is continuous w.r.t. the Jacobson topology, α2 is
continuous. Therefore,W {α2} is a T-semi-invariant subring ofW , hence semiperfect
pro-semiprimary by Theorem 1.7.1.

If (A3) holds, then W is semiperfect. Since b is symmetric, its corresponding
anti-automorphism is an involution, hence by Proposition 4.6.9, Wb = W .

If (A4) holds, then W is semiprimary,24 hence W ×W op is semiprimary. By
Proposition 4.4.1, Wb is a semi-invariant subring of the latter and hence semipri-
mary by Theorem 1.7.1.

If (A5) holds, then Proposition 4.4.3 implies Wb is complete semilocal. �

In the same manner one can prove:

Proposition 4.10.2. Let (M, b,K) be a bilinear space and assume that one of
the following holds:

(B0) R is semiprimary and M is f.p.

24 Sketch of the proof: Write M =
⊕t

i=1 Mi with each Mi indecomposable. Let {ei}ti=1 be
the unital decomposition of W corresponding to M =

⊕t

i=1 Mi. By Proposition 1.2.3(ii), it is
enough to verify that eiWei ∼= End(Mi) is semiprimary, and this follows from Fitting’s Lemma
(see [80, §2.9]).
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(B1) R is a semiperfect first-countable pro-semiprimary LT ring, M is Haus-
dorff f.p. and

⋂
J∈IR(K0J +K1J) = 0.

(B2) R is complete semilocal with Jacobson radical f.g. as a right ideal, M is
f.p. and b is stable.

(B3) K has an anti-isomorphism κ, b is κ-symmetric and stable and End(M)
is semiperfect pro-semiprimary (see Theorem 1.8.3 for conditions on M
that imply this).

(B4) M is of finite length.
(B5) End(M) is right or left noetherian and complete semilocal and M is re-

flexive (e.g. if there exists a regular bilinear space (M, b′,K)).
Then Wb is semiperfect pro-semiprimary.

The next results present additional sufficient conditions that apply for systems
of bilinear forms. Henceforth, I is a set andK ′ =

∏
i∈I K. Observe that any system

of bilinear forms {(M, bi,K)}i∈I corresponds to a bilinear form b : M ×M → K ′

(see section 4.5) which we denote by
∏
i∈I bi.

Proposition 4.10.3. Assume R is an LT ring and M is Hausdorff and endow
W := End(M) with the topology τM defined in Proposition 4.4.5. Let {bi}i∈I be a
system of bilinear forms on M taking values in K such that there exists i0 ∈ I for
which bi0 is regular. Let b =

∏
i∈I bi and assume that one of the following holds:

(1) W is complete semilocal.
(2) K has an anti-isomorphism.

Then Wb is isomorphic as a ring to a T-semi-invariant subring of W .

Proof. Let α be the corresponding anti-automorphism of bi0 and let hi =
(Adrbi0 )−1◦Adrbi ∈W . Observe that bi(x, y) = (Adrbiy)x = (Adrbi0hiy)x = bi0(x, hiy).
As bi0 is regular, b is reduced, hence we may identify Wb with its projection to W
(Proposition 4.6.8(iii)). We claim that under this identification Wb = W {α

2} ∩
CentW ({hi, hα

−1

i | i ∈ I}).
Indeed, if w ∈W {α2}∩CentW ({hi, hα

−1

i | i ∈ I}), then bi(wx, y) = bi0(wx, hiy) =
bi0b(x,wαhiy) = bi0(x, (hα−1

i w)αy) = bi0(x, (whα−1

i )αy) = bi0(x, hiwαy) = bi(x,wαy)
and bi(wαx, y) = bi0(wαx, hiy) = bi0(x,wααhiy) = bi0(x,whiy) = bi0(x, hiwy) =
bi(x,wy). Hence b(wx, y) = b(x,wαy) and b(x,wy) = b(wαx, y), implying w ∈ Wb.
Conversely, if w ∈Wb, then there exists u ∈W such that bi(wx, y) = bi(x, uy) and
bi(x,wy) = bi(ux, y). Taking i = i0 implies wα = u and uα = w, hence wαα = w

and w ∈W {α2}. Furthermore, we now have bi0(x, hiwy) = bi(x,wy) = bi(wαx, y) =
bi0(wαx, hiy) = bi0(x,whiy) and bi0(hα−1

i wx, y) = bi0(wx, hiy) = bi(wx, y) =
bi(x,wαy) = bi0(x, hiwαy) = bi0(whα−1

i x, y), so hiw = whi and hα
−1

i w = whα
−1

i ,
as required.

By Proposition 1.5.4(b), CentW ({hi, hα
−1

i | i ∈ I}) is a T-semi-invariant subring
of W . As part (e) of that proposition implies that the intersection of two T-semi-
invariant subrings of W is T-semi-invariant, we are done if we prove that W {α2} is
T-semi-invariant. To show this, it is enough to verify α2 is continuous. Indeed, if
(1) holds, then any automorphism γ ofW is continuous since γ(Jac(W )) ⊆ Jac(W ),
implying γ(Jac(W )n) ⊆ Jac(W )n (and {Jac(W )n |n ∈ N} is a basis for the topology
on W ). If (2) holds, then bi0 has an invertible right κ-asymmetry λ, so α2 is inner
by Proposition 2.3.9(i), hence continuous. �

Corollary 4.10.4. Let {bi}i∈I be a system of bilinear forms on M taking
values in K and assume that there exists i0 ∈ I such that bi0 is regular. Let
b =

∏
i∈I bi. If the following holds:
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(A6) K has an anti-isomorphism, R is semiperfect quasi-π∞-regular LT ring
and M is Hausdorff f.p.,

then Wb is semiperfect. If one of the following holds:
(B6) K has an anti-isomorphism, R is first countable semiperfect and pro-

semiprimary LT ring and M is Hausdorff f.p.,
(B7) R is complete semilocal with Jacobson radical f.g. as a right ideal and M

is f.p.,
then Wb is semiperfect and pro-semiprimary.

Proof. In all cases, the previous proposition implies that Wb is isomorphic
to a T-semi-invariant of W := End(M), once endowed with τM (or τM1 ). If (A6)
holds, then W is semiperfect quasi-π∞-regular (by Theorem 1.8.3), hence Wb is
semiperfect by Theorem 1.7.1. The same argument implies that when (B6) holds,
Wb is semiperfect and pro-semiprimary. If (B7) holds, thenW is complete semilocal
by Corollary 1.8.5 and again we are though by Theorem 1.7.1. �

Remark 4.10.5. The following important observation will be used implicitly
throughout the following sections: If b is a bilinear form such thatWb is semiperfect
(semiperfect and pro-semiprimary), then so is Wb′ for every summand b′ of b. This
follows from the fact that being semiperfect (semiperfect and pro-semiprimary)
passes from a ring S to eSe for every e ∈ E(S) (Proposition 1.2.3).

4.11. Indecomposable Bilinear Forms

It is time to put the infrastructure we have developed into action. We begin
with classifying the indecomposable bilinear spaces in various situations. To view
this in the right context, note that classical regular indecomposable bilinear forms
were classified implicitly in [76], [75] and explicitly in [38], [93] (the latter uses a
different approach than the others). The degenerate case was treated in [44]. In
addition, a characterization of indecomposable regular hermitian forms in a Krull-
Schmidt category with duality appears in [86, Ch. 7, Th. 10.8]. In contrast to
previous works, our exposition applies to all bilinear forms, regular or non-regular,
and shows that both cases can be treated with the same tools.25

Let us set some general notation: (M, b,K) is a bilinear space over a ring R and
W = EndR(M). We let W b := Wb/ Jac(Wb) and w = w + Jac(Wb) for all w ∈Wb.
The involution β := β(b) induces an involution on W b which we keep denoting by
β.

Recall that a Kronecker module Z is of bilinear type if Z ∼= Z(b) for some
bilinear form, self-dual if Z ∼= Z∗ and non-self-dual otherwise. We let [Z] denote
the isomorphism class of Z.

Theorem 4.11.1. Keep the previous assumptions and assume (M, b,K) is in-
decomposable. If Wb is semiperfect (e.g. if one of the conditions (A0)-(A6),(B7) of
the previous section holds), then exactly one of the following holds:

(i) W b is a division ring. In this case Z(b) is indecomposable.
(ii) W b

∼= D×Dop for some division ring D and β exchanges D and Dop. In
this case Z(b) ∼= Z ′ ⊕ Z ′∗ for a non-self-dual indecomposable Kronecker
module Z ′. The set {[Z ′], [Z ′∗]} is uniquely determined by b.

25 The description to follow relates the indecomposable forms with the result of Osborn
classifying rings with involution without non-trivial idempotents invariant under the involution
(see section 3.8). Based on a conversation the author had with Manfred Knebusch several years
ago, this connection also seems to be new.
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(iii) W b
∼= M2(F ) for some field F and β (on W b) is a symplectic involution.

In this case, Z(b) ∼= Z ′⊕Z ′∗ for some self-dual indecomposable Kronecker
module Z ′. If 2 ∈ R×, then Z ′ is not of bilinear type. The isomorphism
class [Z ′] is uniquely determined by b.

The proof requires the following two well-known lemmas.

Lemma 4.11.2. Let A be an additive category in which all idempotents split.
Let A ∈ A , W = End(A), J = Jac(W ) and e, e′ ∈ E(W ). Let B = eA := im(e)
and B′ = e′A := im(e′). Then the following are equivalent:

(a) B ∼= B′.
(b) There are x ∈ e′We and y ∈ eWe′ such that yx = e and xy = e′.
(c) The right W -modules eW and e′W are isomorphic.
(d) The right W/J-modules eW/eJ and e′W/eJ are isomorphic.

Proof. The equivalences (a) ⇐⇒ (b) is routine (take x to be the isomor-
phism from B to B′ and y to be its inverse; x, y can be understood as elements of
e′We, eWe′, respectively). (b)⇐⇒ (c) is just a special case of (a)⇐⇒ (b) — take
A = Mod-W and A = WW . To see (b)=⇒(d) note that the equations yx = e,
xy = e′ also hold modulo J . Applying (b)=⇒(c) with W/J in place of W now
yields (d). Finally, (d)=⇒(c) follows from the fact that eW is the projective cover
of eW/eJ (as W -modules); the uniqueness of the projective cover implies that any
isomorphism eW/eJ → e′W/e′J lifts to an isomorphism eW → e′W . �

Lemma 4.11.3. Let F be a field, let V be a two-dimensional vector space,
let b : V × V → F be a regular classical alternating bilinear form and let α
be its corresponding anti-endomorphism. Then for every non-trivial idempotent
e ∈ E(EndF (V )) and w ∈ eEndF (V )eα, one has wα = −w.

Proof. Clearly eα is a non-trivial idempotent. As V is 2-dimensional, this
implies dim eαV = 1. Write eαV = vF . Then for all x, y ∈ V , there are s, t ∈ F
such that eαx = vs and eαy = vt. We now have

b(x,wy) = b(x, eweαy) = b(eαx,weαy) = b(vs, wvt)
= b(v, wv)st = −b(wv, v)st = −b(v, wαv)st
= −b(vs, wαvt) = −b(eαx,wαeαy) = −b(x, ewαeαy)
= b(x,−wαy) ,

so wα = −w (since b is right stable).26 �

Proof of Theorem 4.11.1. By Proposition 4.8.1, Wb does not have non-
trivial β-invariant idempotents. As Wb is semiperfect, Theorem 4.9.6 implies that
W b does not have non-trivial β-invariant idempotents. Therefore, by applying
Theorem 3.8.2 to W b (which is semisimple) we get that either (i) W b is a division
ring, (ii) W b

∼= D ×Dop for some division ring D and β exchanges D and Dop or
(iii) W b

∼= M2(F ) for some field F and β (on W b) is a symplectic involution.
If (i) holds, then we are clearly through, so suppose (ii) or (iii) hold. In both

cases, there are primitive idempotents ε, ε′ ∈ W b with ε + ε′ = 1. As Wb is
semiperfect, ε, ε′ can be lifted to primitive idempotents e, e′ ∈ Wb with e+ e′ = 1.
Define Z = eZ(b) and Z ′ = e′Z(b). Then Z(b) = Z ⊕ Z ′. Since e, e′ are primitive
and End(Z(b)) = Wb is semiperfect, Z(b) = Z⊕Z ′ is Krull-Schmidt decomposition,
i.e. it is the only decomposition of Z(b) up to isomorphism of terms and reordering
(see Theorem 1.1.1). As Z(b) = Z(b)∗ = Z∗ ⊕ Z ′∗ is another such decomposition,
either Z ′ ∼= Z∗ (and then Z ∼= Z ′∗) or Z ∼= Z∗ and Z ′ ∼= Z ′∗.

26 Using similar ideas one can also prove e+ eα = 1.
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We now apply the equivalence (a) ⇐⇒ (d) of Lemma 4.11.2 to e, e′ of the
previous paragraph with A being the category of Kronecker modules and A = Z(b).
This equivalence now reads as Z = eZ(b) ∼= e′Z(b) = Z ′ ⇐⇒ εW b

∼= ε′W b as
right W b-modules. When (ii) holds, it is well known that εW b � ε′W b (e.g. since
these modules have different annihilators), hence Z � Z ′. On the other hand, in
case (iii) holds, εW b

∼= ε′W b, so Z ∼= Z ′, implying Z(b) ∼= Z ′ ⊕ Z ′ and Z ′ ∼= Z ′∗

(since either Z ∼= Z ′∗ or Z ′ ∼= Z ′∗). It is therefore left to verify that Z ′ � Z ′∗ when
(ii) holds (which would imply Z ∼= Z ′∗ and Z(b) ∼= Z ′ ⊕ Z ′∗) and that Z ′ is not of
bilinear type when (iii) holds and 2 ∈ R×.

Write e′ = (e1, e
op
2 ), h0 = Ad`b, h1 = Adrb and identify M [i] with (e2M)[i] ⊕

((1 − e2)M)[i]. Then Z ′ = e′Z(b) = (e1M,h0|e1M , h1|e1M , e2M) and by Corol-
lary 2.2.5, Z ′∗ = (e2M,h0|e2M , h1|e2M , e1M). Assume that there is an isomor-
phism (σ, τ) : Z ′ → Z ′∗. We consider σ, τ as elements of e2We1 (where W =
End(M)), which we identify with Hom(e1M, e2M). Then τ [1]◦h1|e1M = h1|e2M ◦σ,
hence b(τx, y) = b(x, σy) for all x, y ∈ e1M . Recalling (17) and the fact that
(e1, e

op
2 ) ∈ Wb, we get that b(τx, y) = b(e2τe1x, y) = b(τe1x, e1y) = b(e1x, σe1y) =

b(x, e2σe1y) = b(x, σy) and similarly b(x, τy) = b(σx, y). Thus, w := (σ, τop) ∈Wb.
Now let u := (σ′, τ ′op) : Z ′∗ → Z ′ be the inverse of (σ, τop), i.e. σ′, τ ′ ∈ e1We2 =
Hom(e2M, e1M), σ′σ = τ ′τ = e1 and σσ′ = ττ ′ = e2. Then the same argument
would imply that u = (σ′, τ ′op) ∈ Wb. Now, uw = (σ′σ, (ττ ′)op) = (e1, e

op
2 ) = e′

and similarly, wu = (e2, e
op
1 ) = e′β . Modulo Jac(Wb) these equations become

uw = ε′ and wu = ε′β .
Assume (ii) holds. Then ε′β is necessarily ε. Therefore, the previous equations

and Lemma 4.11.2 imply that εW b
∼= ε′W , in contradiction to what shown above.

Thus, Z ′ � Z ′∗.
Finally, assume by contradiction that (iii) holds, 2 ∈ R× and Z ′ is of bilinear

type. Then by Proposition 4.3.4, we can take σ = τ in the above computation, thus
obtaining wβ = (σ, σop) = w. However, w = (σ, τop) = (e1σe2, (e1τe2)op) = e′we′β ,
so by Lemma 4.11.3, wβ = −w. As 2 ∈ R×, this implies w = 0, which is absurd.
Thus, Z ′ is not of bilinear type. �

For brevity, an indecomposable bilinear space whose Kronecker module has a
semiperfect endomorphism ring will be called a block. The previous theorem asserts
that there are essentially three families of blocks. A block satisfying conditions (i),
(ii) or (iii) we will be said to be of type-I, -II or -III, respectively. In case 2 ∈ R×,
these types can also be characterized as follows: If (M, b,K) is a block, then

• (M, b,K) is of type-I if Z(b) is indecomposable,
• (M, b,K) is of type-II if Z(b) ∼= Z ′ ⊕ Z ′∗ with indecomposable non-self-
dual Z ′,

• (M, b,K) is of type-III if Z(b) ∼= Z ′ ⊕ Z ′∗ with indecomposable self-dual
non-bilinear Z ′.

Example 4.11.4. The previous characterization type-III blocks fails when 2 /∈
R×. That is, there are type-III blocks (M, b,K) such that Z(b) ∼= Z ′ ⊕ Z ′∗

and Z ′ is of bilinear type. For example, let F be a field of characteristic two
and let b : F 2 × F 2 → F be the classical alternating bilinear form defined by
b(x, y) = xT [ 0 1

1 0 ] y. It is well known that b is indecomposable and it is straight-
forward to verify that Wb

∼= W b
∼= M2(F ), hence b is of type-III. Observe that

Z(b) = (x1F, h0|x1F , h1|x1F , x2F ) ⊕ (x2F, h0|x2F , h1|x2F , x1F ) with {x1, x2} being
the standard basis of F 2 and h0 = Ad`b, h1 = Adrb . Since b is symmetric and
(F 2)[0] = (F 2)[1] = (F 2)∗ := HomF (F 2, F ), we actually have h0 = h1 and h0(xi) =
x∗3−i where {x∗1, x∗2} is the dual basis of {x1, x2}. It is now easy to verify that the
specified summands of Z(b) are isomorphic to Z(b′) where b′ : F×F → F is defined
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by b′(x, y) = xy. (For example, the isomorphism from (x1F, h0|x1F , h1|x1F , x2F ) to
Z(b′) is given by (x1a 7→ 1Fa, (1Fa 7→ x2a)op).) Thus, Z(b) ∼= Z(b′)⊕ Z(b′)∗ with
Z(b′) clearly being bilinear.

Example 4.11.5. Let F be a field of characteristic not 2 and let (V, b) be a
classical regular bilinear space over F . Let λ denote the asymmetry of b and let
fλ and mλ be its characteristic and minimal polynomial, respectively. Recall from
section 4.1 that for every monic polynomial f ∈ F [x] with f(0) 6= 0, we define
f∗ = f(0)−1xdeg ff(x−1). Then in [38] (my M.Sc. thesis) I proved that

(i) b is a type-I block ⇐⇒ there exists a prime power p(x) ∈ F [x] with
p = p∗ such that mλ = fλ = p and p(x) 6= (x− (−1)n)n for all n ∈ N.

(ii) b is a type-II block ⇐⇒ there exists prime power q(x) ∈ F [x] with q 6= q∗

such that mλ = fλ = qq∗.
(iii) b is a type-III block ⇐⇒ there exists n ∈ N such that m2

λ = fλ =
(x− (−1)n)2n.

In particular, whether b is a block can be determined from the conjugacy class
of λ. (This should be expected as Corllary 4.6.5(ii) implies that the asymmetry
determines the Kronecker module up to isomorphism.)

We now show that when 2 ∈ R× and Wb is semiperfect and pro-semiprimary
(w.r.t. some linear ring topology), type-II and type-III blocks are hyperbolic and
determined up isometry by their Kronecker-modules (compare with Theorem 4.1.3).

Theorem 4.11.6. Assume 2 ∈ R× and let (M, b,K) be a type-II or type-III
block such that Wb is semiperfect pro-semiprimary (e.g. if one of the conditions
(B0)-(B6) is satisfied). Write Z(b) ∼= Z ′ ⊕ Z ′∗. Then b is hyperbolic and b ∼= bZ′ .
In particular, b is determined up to isometry by [Z(b)].

Proof. By Theorem 4.11.1, either W b
∼= D × Dop for some division ring D

with β exchanging D and Dop or W b
∼= M2(F ) for some field F with β being

a symplectic involution. In both cases, it is easy to see that β is hyperbolic on
W b, i.e. there exists ε ∈ E(W b) with ε + ε′ = 1,27 hence by Corollary 4.9.16, β is
hyperbolic on Wb. Therefore, by Proposition 4.7.8, b is hyperbolic, i.e. there are
totally isotropic M1,M2 ≤M such that M = M1 ⊕M2. On the other hand, bZ′ is
also hyperbolic, so we can write M = M ′1⊕M ′2 with bZ′(M ′1,M ′1) = bZ′(M ′2,M ′2) =
0. Let Z1, Z

′
1, Z2, Z

′
2 be as in Proposition 4.7.5 (with bZ′ in place of b′). By part

(ii) of that proposition, it is enough to prove Z1 ∼= Z ′1 or Z1 ∼= Z ′2 (in the latter
case replace Z ′1 and Z ′2). However, this follows from the Krull-Schmidt Theorem
since Z1 ⊕ Z2 = Z(b) ∼= Z ′ ⊕ Z ′∗ ∼= Z(bZ′) = Z ′1 ⊕ Z ′2. �

We finish with the following observation: Assume 2 ∈ R×. In order to find the
Kronecker modules of the indecomposable blocks, it is enough to (1) find all inde-
composables Kronecker modules with semiperfect endomorphism ring and (2) de-
termine for each indecomposable whether it is bilinear, self-dual and non-bilinear
or non-self-dual. After this is accomplished, the Kronecker modules of the blocks
are given (up to isomorphism) by:

• [Z] where Z is indecomposable of bilinear type. (In this case, Z ∼= Z(b)
for a type-I block b.)

• [Z⊕Z∗] where Z is a non-self-dual indecomposable. (In this case, Z⊕Z∗ ∼=
Z(b) for a type-II block b.)

• [Z⊕Z∗] where Z is a self-dual non-bilinear indecomposable. (In this case,
Z ⊕ Z∗ ∼= Z(b) for a type-III block b.)

27 In fact, this holds for all non-trivial idempotents.
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After finding the indecomposables in Kr(Mod-R), the hardest part in this process
is usually determining which self-dual indecomposables are bilinear.

We will now apply this principle to get an easy proof of Gabriel’s classification
of classical indecomposable degenerate bilinear spaces over a field (see [44] or the
end of section 4.1). Strictly speaking, Gabriel proved that any such bilinear space
is hyperbolic and determined up to isomorphism by its Kronecker module; his proof
is based on a careful analysis of the different families of indecomposable Kronekcer
modules over a field. We will prove a slightly more accurate statement:

Corollary 4.11.7. Let F be a field of characteristic not 2. Any classical
degenerate indecomposable bilinear form over F is a block of type-II. Furthermore,
it is hyperbolic and thus determined up to isometry by it by its Kronecker module.

Proof. In the proof we will use the classical notion of Kronecker modules
over a field, namely, quartets (U, f0, f1, V ) such that U, V are f.d. vector spaces and
f0, f1 ∈ Hom(U, V ). This is allowed by Example 4.3.2.

Let Z = (U, f0, f1, V ) be an indecomposable Kronecker-module. To see the first
assertion, it is enough to prove that if Z is self-dual, then f0 and f1 are bijective
(as this wouldn’t allow degenerate blocks of types I or III). The indecomposable
Kronecker modules over F are well known (e.g. see [44]) and the ones with U ∼= V
(which is required for Z ∼= Z∗) are of the form

(Fn, 1, A, Fn) or (Fn, 1, Jn, Fn), (Fn, Jn, 1, Fn)
where A is any indecomposable invertible linear transformation and Jn is a 0-
diagonal Jordan block. As (Fn, 1, Jn, Fn) � (Fn, 1, Jn, Fn)∗ = (Fn, JTn, 1, Fn),
the Kronecker modules (Fn, 1, Jn, Fn) and (Fn, Jn, 1, Fn) are not self dual. Thus,
Z ∼= (Fn, 1, A, Fn), implying f0 and f1 are invertible. The other claims follow from
Theorem 4.11.6 since (B4) holds (i.e. the base module is of finite length). �

Question 4. Can the previous corollary be generalized to degenerate forms
over other rings?

4.12. Isotypes

In this section we define and study isotypes. We keep the notation W b :=
Wb/ Jac(Wb) of the previous section.

Definition 4.12.1. Let Z be an indecomposable Kronecker module and let ζ =
{[Z], [Z∗]}. A bilinear space (M, b,K) is called a ζ-isotype if Z(b) is of type-ζ, i.e.
Z(b) is isomorphic to a direct sum of copies of Z and Z∗. If moreover (M, b,K) is
a block, then it called a ζ-block.

By Theorem 4.11.1, every block is a ζ-isotype for a uniquely determined ζ.
Moreover, a bilinear form b for which Wb is semiperfect is a ζ-isotype if and only
if it is a sum of ζ-blocks (as implied by Theorem 4.11.1 and the Krull-Schmidt
Theorem).

Henceforth, for every Kronecker module Z, let ΣZ denote the isomorphism
classes of the indecomposable summands of Z and set

ΣZ = {{[Z ′], [Z ′∗]} | [Z ′] ∈ ΣZ}
(compare with the notation ΣM , ΣM of section 4.2).

Theorem 4.12.2. Let (M, b,K) be a bilinear space.
(i) If Wb is semiperfect, then b =⊥ζ∈ΣZ(b)

bζ where each bζ is a ζ-isotype.
(ii) If moreover Wb is pro-semiprimary and 2 ∈ W×b , then the isotypes bζ of

(i) are determined up to isometry by b and ζ.
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The proof requires the following two lemmas.

Lemma 4.12.3. Let A be an additive category and let A1, . . . , At ∈ A be pair-
wise non-isomorphic objects with local endomorphism ring. Let Wi = End(Ai),
Ji = Jac(Wi) and A =

⊕t
i=1A

ni
i (where n1, . . . , nt ∈ N). Then

Jac(End(A)) =
t∑
i=1

Mn(Ji) +
∑
i 6=j

Hom(Anii , A
nj
j )

(we identify Mni(Wi) and Hom(Anii , A
nj
j ) as subsets of End(A) in the standard

way). In particular,

End(A)/ Jac(End(A)) ∼=
t∏
i=1

Mni(Wi/Ji)

Proof. This is a well-known argument. Let W = End(A). Since Jac(eWe) =
e Jac(W )e = Jac(W ) ∩ eWe for all e ∈ E(W ), we can reduce the proof to showing
that Jac(Mni(End(Wi))) = Mni(Jac(Wi)), which is well known, and Hom(Ai, Aj) ⊆
Jac(End(Ai ⊕ Aj)) for any two distinct 1 ≤ i, j ≤ t, which we verify below. This
would imply Jac(W ) ⊇

∑t
i=1 Mn(Ji) +

∑
i6=j Hom(Anii , A

nj
j ) and the reverse inclu-

sion follows since a quotient by the r.h.s. (which is an ideal by the argument below),
yields a semisimple ring.

It is thus left to verify that Hom(Ai, Aj) ⊆ Jac(End(Ai ⊕ Aj)) for any two
distinct 1 ≤ i, j ≤ t. W.l.o.g. i = 1 and j = 2. Let U = End(A1 ⊕ A2) and let
e1, e2 be the projections from A1⊕A2 to A1, A2, respectively. Then Hom(A1, A2) =
e2Ue1, hence we need to prove that w ∈ Jac(U) for all w ∈ e2Ue1. Let u ∈ U .
It is enough to prove that 1 + uw is invertible. Indeed, e1uw ∈ e1Ue1. We claim
that e1uw /∈ (e1Ue1)×. Assume by contradiction that e1uw ∈ (e1Ue1)×. Then
w 6= 0 and there exists u′ ∈ e1Ue1 such that u′uw = e1. This implies (wu′ue2)2 =
w(u′ue2w)u′ue2 = wu′ue2. As wu′ue2 ∈ e2Ue2 = End(A2) and End(A2) is local,
wu′ue2 ∈ {e2, 0}. Since 0 6= w = (wu′ue2)w, necessarily wu′ue2 = e2 and it follows
that u′ue2 is an isomorphism from A2 to A1 (its inverse is w), a contradiction to the
assumption A1 � A2. Thus, e1uw is not a unit in e1Ue1 = End(A1). As the latter
is local, e1 + e1uw is invertible in e1Ue1. Let a be its inverse. Then a + e2 ∈ U×
and (a+ e2)(1 + uw) = ae1(1 + uw) + e2(1 + uw) = e1 + e2 + e2uw = 1 + e2uw. As
(1 + e2uw)−1 = (1 − e2uw) (straightforward), it follows that 1 + uw is invertible
in U , as required. (Notice that this argument also implies that Hom(A1, A2) ·
Hom(A2, A1) ⊆ e2 Jac(U)e2 = Jac(A2) which justifies the claim in parenthesis at
the end of the previous paragraph.) �

Lemma 4.12.4. Let (R, ∗) be a ring with involution that does not contain an in-
finite set of orthogonal idempotents. Then there exists unique unital decomposition
{ei}ti=1 of R with the following properties: (1) each ei is ∗-invariant and central in
R and (2) eiRei does not contain non-trivial central ∗-invariant idempotents.

Proof. Let S be the set of all non-zero central ∗-invariant idempotents satis-
fying (2). It is enough to prove that S is a unital decomposition of R. First, note
that S 6= φ since R does not contain an infinite sum of orthogonal idempotents.
Next, let e, f ∈ S be distinct. We claim that ef = fe = 0. Indeed, since e, f are
central and ∗-invariant, ef is a central ∗-invariant idempotent in eRe. Thus, ef = 0
or ef = e. In the latter case, 0 6= e ∈ fRf . As e is central and β-invariant, we must
have e = f , a contradiction. Therefore, ef = fe = 0 which means that S consists
of pair-wise orthogonal idempotents. The assumptions on R imply that S is finite
and hence h := 1 −

∑
e∈S e is a ∗-invariant cental idempotent which is orthogonal

to all elements of S. If h 6= 0, take central β-invariant 0 6= h′ ∈ E(hRh) satisfying
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(2). Then h′ ∈ S (by definition) and 0 6= h′ = hh′ = 0 (since h is orthogonal to all
elements of S), a contradiction. Thus, necessarily h = 0 and we are through. �

Proof of Theorem 4.12.2. (i) By Theorem 4.11.1, (M, b,K) is an orthog-
onal sum of blocks {(Mi, bi,K)}ti=1. Take (Mζ , bζ ,K) to be the orthogonal sum of
the ζ-blocks in {(Mi, bi,K)}ti=1.

(ii) Since Jac(Wb) is idempotent lifting, W b does not contain an infinite set
of orthogonal idempotents. Therefore, by Lemma 4.12.4(i), there exists a unique
central β-invariant unital decomposition {εi}ti=1 such that εiW bεi does not contain
non-trivial central β-invariant idempotents. Now let {eζ}ζ∈ΣZ(b)

be the β-invariant
unital decomposition ofWb corresponding to b =⊥ζ∈ΣZ(b)

bζ (see Proposition 4.8.1).
We claim that {eζ | ζ ∈ ΣZ(b)} = {εi | 1 ≤ i ≤ t}. By the uniqueness of the set
{εi | 1 ≤ i ≤ t}, it is enough to check that for any ζ, eζ is β-invariant, central and
eζW beζ does not contain non-trivial central β-invariant idempotents.

Let ζ = {[Z], [Z∗]} ∈ ΣZ(b). That eζ is β-invariant is clear. To see it is central,
let Z ′ :=

∑
ζ 6=ζ′∈ΣZ(b)

Z(bζ′). By definition, Z(b) = Z(bζ)⊕Z ′ and [Z], [Z∗] /∈ ΣZ′ .
Therefore, by Lemma 4.12.3, eζ , which is the projection from Z(b) to Z(bζ) with
kernel Z ′, becomes central in W b.

We now show that eζW beζ does not contain non-trivial central β-invariant
idempotents. If Z is self-dual, then Z(bζ) ∼= Zn for some n ∈ N. Thus, eζW beζ is
simple artinian by Lemma 4.12.3 and thus has no non-trivial central idempotents,
as required. If Z is non-self-dual, then Z(bζ) ∼= Zn ⊕ (Z∗)m for some n,m ∈ N
and Z � Z∗ (in fact, n = m since Z(bζ)∗ = Z(bζ)). Let f1, f2 be the projections
from Z(bζ) to Zn, (Z∗)m, respectively. Then by Lemma 4.12.3, then only non-
trivial central idempotents in eζW beζ are f1, f2. It is enough to show that they
are not β-invariant. Indeed, assume by contradiction that f1 is β-invariant. Then
by Theorem 4.9.6, there exists a β-invariant f ′ ∈ E(eζWbeζ) such that f ′ = f1.
Let b = b1 ⊥ b2 be the decomposition corresponding the unital decomposition
{f ′, 1 − f ′} (Proposition 4.8.1). Then f ′Z(b) = Z(b1), hence f ′Z(b) is self-dual.
However, by Lemma 4.11.2, f ′ = f1 implies f ′Z(b) ∼= f1Z(b) = Zn which is not
self-dual by the Krull-Schmidt Theorem (as Z � Z∗), a contradiction. That f2 is
not β-symmetric follows by symmetry.

Now let b =⊥ζ∈ΣZ(b)
b′ζ be another decomposition of b into isotypes and let

{e′ζ}ζ∈ΣZ(b)
be the corresponding β-invariant unital decomposition of Wb. By what

we have just shown, {e′ζ | ζ ∈ ΣZ(b)} = {εi | 1 ≤ i ≤ t} = {eζ | ζ ∈ ΣZ(b)}. Since
eζZ(b) and e′ζ′Z(b) cannot be isomorphic for distinct ζ, ζ ′ (Krull-Schmidt Theorem),
eζW b � e′ζ′W b as right W b-modules (Lemma 4.11.2). In particular, eζ must be
distinct from e′ζ′ , which forces eζ = e′ζ for all ζ ∈ ΣZ(b). Now, eζ is isometric to
e′ζ (as they are equal), hence eζ is isometric to e′ζ (Theorem 4.9.20), so bζ ∼= b′ζ by
Proposition 4.8.8. �

Let (M, b,K) be a bilinear space and let ζ = {[Z], [Z∗]} with Z indecompos-
able. Assume that 2 ∈W×b and Wb is semiperfect and pro-semiprimary. We define
(Mζ , bζ ,K) as in Theorem 4.12.2 in case ζ ∈ ΣZ(b) and (Mζ , bζ ,K) = (0, 0,K) oth-
erwise. The bilinear space (Mζ , bζ ,K) is then uniquely determined up to isometry
and the map b 7→ bζ is additive in sense that

(b1 ⊥ b2)ζ ∼= (b1)ζ ⊥ (b2)ζ
(whenever Wb1⊥b2 is a semiperfect pro-semiprimary ring in which 2 is a unit).

Remark 4.12.5. One can define isotypes without assuming Wb is semiperfect
by defining them to be bilinear spaces (M, b,K) in which W b does not contain
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non-trivial central β-invariant idempotents. It can then be shown that if Jac(Wb)
is idempotent lifting and Wb does not contain an infinite set of orthogonal idem-
potents, then b is an orthogonal sum of isotypes b =⊥ki=1 bi and bi ⊥ bj is not
an isotype for i 6= j. If moreover Wb is complete in the Jacobson topology (e.g. if
Jac(Wb) is nilpotent), then the isotypes {bi}ki=1 are determined up to isometry and
reordering. However, there is no obvious way to form families of isotypes as we did
above. (It is possible to say that two isotypes b and b′ are of the same kind if b ⊥ b′
is also an isotype, but the author does not know if this is an equivalence relation in
general. In addition, it is not clear what are the equivalence classes. Nevertheless,
we suspect that if R is an algebra over Z which is f.g. as a Z-module, then some
positive results can be shown.)

Remark 4.12.6. Consider regular classical bilinear forms over a field F . Then
the Kronecker module of a bilinear forms is determined by the conjugacy class
of its asymmetry (Corollary 4.6.5) and the conjugacy class is determined by the
Jordan decomposition (or, equivalently, the canonical rational form). Using this,
one can see that the isotypes we have defined in this section agree with the definition
given in section 4.1 for classical regular bilinear forms. However, now we also have
degenerate isotypes.

4.13. Isometry and Cancelation

In this section, we show how to reduce the isometry problem of bilinear forms
(M, b,K) for which Wb is semiperfect pro-semiprimary with 2 ∈W×b to isometry of
hermitian forms over division rings. This is then used to prove Witt’s Cancellation
Theorem.

Recall that Theorem 4.12.2 reduces the isometry problem of bilinear forms b for
which is Wb is semiperfect pro-semiprimary with 2 ∈W×b to isometry of ζ-isotypes.
However, if ζ = {[Z], [Z∗]} for Z which is not of bilinear type, then the ζ-blocks are
necessarily of type-II or type-III. Therefore, in this case any ζ-isotype (M, b,K) is
hyperbolic and determined up to isometry by [Z(b)], as implied by Theorem 4.11.6.
We may thus restrict our attention to ζ-isotypes with ζ = {[Z], [Z∗]} and Z of
bilinear type (which implies ζ = {[Z]}).

Fix an indecomposable Kronecker module Z of bilinear type with End(Z) being
local and pro-semiprimary. W.l.o.g. we may assume Z = Z(b0) for some bilinear
space (M0, b0,K). Let L = End(Z) and let D = L/ Jac(L). Then D is a division
ring. For every n ∈ N, let

n · b0 = b0 ⊥ · · · ⊥ b0︸ ︷︷ ︸
n

and set Wn = Wn·b0 and Wn = Wn·b0 . As Z(n · b0) = Z(b0)n = Zn, we may
identify Wn with Mn(W1) and Wn with Mn(W 1) = Mn(D). We let βn denote the
involution induced by β(n · b0) on Wn.

Proposition 4.13.1. Under the identification Wn
∼= Mn(W1) we have w11 . . . w1n

...
. . .

...
wn1 . . . wnn


β(n·b0)

=


w
β(b0)
11 . . . w

β(b0)
n1

...
. . .

...

w
β(b0)
1n . . . w

β(b0)
nn


Proof. Recall that Wn = End(Zn) and β(n · b0) is nothing more than the

map ∗ : End(Zn) → End((Z∗)n) = End(Zn). The proposition holds since for any
element (fij)i,j of End(Zn) (written in matrix form), we have (fij)∗i,j = (f∗ji)i,j .
(This is a general fact about additive contravariant functors.) �
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Let Vn be an n-dimensional right D-vector space. Then EndD(Vn) ∼= Mn(D) =
Wn. By Theorem 3.5.5, the involution βn correspond to a regular bilinear form
bn : Vn × Vn → Kn, where Kn is some double D-module. Furthermore, by the dis-
cussion of section 3.1, there is an involution κn of Kn such that bn is κn-symmetric.

To get an explicit realization of (Vn, bn,Kn) and κn, we invoke Proposition 3.3.9
(with e = e11; here {eij} are the standard matrix units in Mn(D)). This proposition
implies that once identifying Vn with Wne11 = Mn(D)e11 and letting D act on Vn
from the right in the standard way, we can take Kn = eβn11 Mn(D)e11, with �0,�1
defined by

(eβn11 xe11)�0 a = (e11ae11)βn(eβn11 xe11), (eβn11 xe11)�1 a = (eβn11 xe11)a,
for all x ∈Wn, a ∈ D and κn = βn|Kn . The form hn : Vn× Vn → Kn is then given
by

hn(x, y) = xβny ∀ x, y ∈ Vn = Mn(D)e11 .

By Proposition 4.13.1, eβn11 = e11, hence Kn = e11De11 and there is a set iso-
morphism Kn → D given by e11ae11 7→ a. Pulling �0 and �1 to D along this
isomorphism, we get a double D-module structure on D given by

d�0 a = aβ1d, d�1 a = da .

Thus, identifying Kn with D, we get that hn is nothing but a (β1, 1)-hermitian form
over D. We henceforth consider hn as a hermitian form taking values in D. It is
given by hn(x, y) = d where d is the unique element of D satisfying xβy = e11de11.
Even more explicitly, taking {e11, . . . , en1} as the standard basis of Vn, one has

hn(
∑
i

ei1di,
∑
i

ei1d
′
i) =

∑
i

dβ1
i d
′
i .

We now apply the following argument: Isometry classes of bilinear forms b
over R with b ∼Kr n · b0 correspond to congruence classes of invertible elements in
Sym(Wn, β(n · b0)) (Proposition 4.8.12), which correspond to congruence classes of
invertible elements in Sym(Mn(D), βn) (Theorem 4.9.20) which in turn correspond
to isometry classes of bilinear forms h over D with h ∼Kr hn (again by Proposi-
tion 4.8.12). As bilinear forms h with h ∼Kr hn are just (β1, 1)-hermitian forms
defined over n-dimensional D-vector spaces (straightforward), it follows that the
isometry classes of bilinear forms b over R with b ∼Kr n · b0 are in one-to-one corre-
spondence with isometry classes of n-dimensional (β1, 1)-hermitian forms over D.
This is phrased more formally in the theorem below.

To handle extremal cases, we define both W0 and W 0 to be the zero ring (or,
if one insists, M0(W1) and M0(D)). We also let V0 be the zero right module over
D and h0 : V0 × V0 → D be the zero (β1, 1)-hermitian form.

Theorem 4.13.2. Keeping the previous notation, let (M, b,K) be a ζ-isotype.
Then there exists unique n ∈ N ∪ {0} such that b ∼Kr n · b0. Let (σ, τop) : Z(b) →
Z(n · b0) = Zn be any isomorphism. Define b : Vn × Vn → D by

b(x, y) = xβnτσy ∀x, y ∈ Vn = Wne11

and let (M ′, b′,K) be another ζ-isotype. Then:
(i) b is well-defined up to isometry. Moreover, b ∼= b′ ⇐⇒ b ∼= b′.
(ii) The map [b] 7→ [b] is additive in sense that b ⊥ b′ ∼= b ⊥ b′.

Proof. (i) Since b is a ζ-isotype and ζ = {[Z]}, we have Z(b) ∼= Zn = Z(n ·b0)
for some n ∈ N ∪ {0}, which is unique by the Krull-Schmidt Theorem. Tracking
along the proofs of Proposition 4.8.12 (and also Theorem 4.9.20), one sees that the
(β1, 1)-hermitian form corresponding to b in the preceding discussion is precisely b,
hence [b] determines [b] and vice versa.
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(ii) Let (σ, τop) : Z(b) → Zn and (σ′, τ ′op) : Z(b) → Zn
′ be isomorphisms

of Kronecker modules. Then (σ ⊕ σ′, (τ ⊕ τ ′)op) : Z(b ⊥ b′) → Zn+n′ is an iso-
morphism and considering all terms involved as matrices over D, we have τσ ⊕
τ ′σ′ = (τ ⊕ τ ′)(σ ⊕ σ′). It is now straightforward to check that by identifying
Vn ⊕ Vn′ with Vn+n′ via (

∑
i ei1ai,

∑
j ej1bi) 7→

∑n
i=1 ei1ai +

∑n′

j=1 en+jbi we have
b ⊥ b′ = b ⊥ b′. �

Theorem 4.13.2 implies that, under mild assumptions, the isometry problem of
bilinear forms can be reduced to isomorphism of Kronecker modules and isometry
of hermitian forms over division rings. We have noted this at the end of section 4.3,
but now we have presented an explicit way to see this. However, the categorical
approach taken in section 4.3 has the advantage that the reduction is functorial (i.e.,
rather than an additive correspondence between isometry classes, there is a functor
from the category of bilinear forms over R to the product of certain categories of
hermitian forms over certain division rings). This can be shown explicitly as well,
but as it requires additional notation that does not benefit the text, we have omitted
the details. We finish this section by proving Witt’s Cancellation Theorem.

Corollary 4.13.3 (Witt’s Cancellation Theorem). Let b1, b2, b3 be bilinear
forms over R such that b1 ⊥ b2 ∼= b1 ⊥ b3 (no assumption or regularity or symmetry
is needed). If Wb1⊥b2 is semiperfect pro-semiprimary and 2 ∈W×b1⊥b2 , then b2 ∼= b3.

Proof. By Theorem 4.12.2 and the preceding discussion, (b1)ζ ⊥ (b2)ζ ∼=
(b1)ζ ⊥ (b3)ζ for every ζ ∈ ΣZ(b1⊥b2). Therefore, we may assume bi = (bi)ζ for every
i ∈ {1, 2, 3}. Write ζ = {[Z], [Z∗]}. If Z is not of bilinear type, then all ζ-blocks
are hyperbolic and isomorphic to each other (Theorem 4.11.6), hence b1, b2, b3 are
determined up to isometry by their Kronecker module. As Z(b1)⊕Z(b2) ∼= Z(b1)⊕
Z(b3), the Krull-Schmidt Theorem implies Z(b2) ∼= Z(b3), and hence b2 ∼= b3. If
Z is of bilinear type, then by Theorem 4.13.2, it is enough to prove b2 ∼= b3. As
b1 ⊥ b2 = b1 ⊥ b3, we are through by Witt’s Cancelation Theorem for hermitian
forms over division rings of characteristic not 2, e.g. see [86, Ch. 7, §9] or [73]. �

Remark 4.13.4. Witt’s Cancelation Theorem was proved in various scenarios
including hermitian categories satisfying (C2) (see section 4.4), systems of classical
regular symmetric bilinear forms over a field ([86, Ch. 7, Ex. 11.8]) and also for
classical non-symmetric regular bilinear forms over a field ([76] and related papers).
Non-regular symmetric bilinear forms were treated in [16]. Corollary 4.13.3 gener-
alizes all of these results. Even in the classical symmetric case, it seems to be the
only result that applies to systems of non-regular bilinear forms (this is “almost”
obtained in [86, Ch. 7, Ex. 11.8]; the assumptions require at least one of the forms
to be regular).

4.14. Structure of the Isometry Group

Throughout, F is an algebraically closed field of characteristic not 2 and R is a
f.d. F -algebra. In this last section, we will use the results of the previous sections
to deduce some strong structural results about isometry groups of F -linear bilinear
of forms over R. (The case when F is not algebraically closed is briefly discussed at
the end.) Note that all the results of this section apply to systems of bilinear forms
and no regularity or symmetry assumption is needed. The results of this section
extend [14] and related works.

Definition 4.14.1. A double R-module K is F -linear if �0|K×F = �1|K×F
or, more explicitly, k�0 a = k�1 a for all k ∈ K and a ∈ F . A bilinear form taking
values in an F -linear double R-module is called F -linear.
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Let (M, b,K) be an F -linear bilinear space over R. Then EndR(M) is naturally
an F -algebra. In addition, the F -linearity of K implies that b(xa, y) = b(x, ya) for
all a ∈ F , hence F embeds in Wb via a 7→ (a, aop), which makes Wb into an F -
algebra as well (and Wb is a sub-F -algebra of EndR(M)×EndR(M)op). Also note
that β(b) is clearly F -linear. These facts will be used freely below.

We begin by showing that F -linear bilinear forms (M, b,K) over R with M
f.g. are determined up to isometry by Z(b) (this was already noted at the end
of section 4.3). Observe that condition (A4) of section 4.10 is satisfied (i.e. M
is of finite length), hence Wb is semiprimary (and in particular, semiperfect and
pro-semiprimary).

Proposition 4.14.2. Let (M, b,K) be an F -linear bilinear form over R with
M finitely generated. Then b is determined up to isometry by [Z(b)].

Proof. By Theorem 4.12.2, we may restrict to isotypes. Let Z = (A, f0, f1, B)
be an indecomposable Kronecker module such that dimF A+ dimF B <∞ and let
ζ = {[Z], [Z∗]}. We need to prove that for every ζ-isotype, b, the isometry class
[b] is determined by [Z(b)]. This follows from Theorem 4.11.6 in case Z is not of
bilinear type. If Z is of bilinear type, say Z = Z(b0), then by Theorem 4.13.2,
the problem reduces to showing that, up to isometry, there exists exactly one n-
dimensional (β1, 1)-hermitian form over D, where D = End(Z)/ Jac(End(Z)) and
β1 is the involution induced by b0. However, the previous discussion implies that
D is a f.d. F -algebra and β1 is F -linear (D is f.d. since End(Z) is f.d. and β1 is
F -linear since b0 is F -linear). As F is algebraically closed, necessarily D = F and
β1 = idF , implying that there exists exactly one n-dimensional (β1, 1)-hermitian
form over D, as required. �

We now turn our attention to isometry groups of F -linear bilinear forms. Let
(M, b,K) be such a form with M finitely generated. Then the isometry group of b,
denoted O(b), is an affine algebraic group over F (since it is a closed algebraic set
in EndF (M)× ∼= GLn(F ) for some n ∈ N).

Example 4.14.3. Assume R = F and b is regular. Write n = dimF M . If
b is symmetric, then O(b) is On(F ), namely the standard orthogonal group (type
B/D). However, when b is alternating (n is necessarily even), O(b) is Spn(F ), the
symplectic group (type C).

We will show that for general R and b the situation is not very different from
the last example; roughly speaking, after removing the unipotent radical, O(b) is a
product of copies of On(F ), Spn(F ) and GLn(F ).28

To simplify phrasing, we will say that a ζ-isotype is of type-I (-II, -III) if
ζ = {[Z], [Z∗]} and Z is of bilinear type (non-self-dual, self-dual but not bilinear).
Clearly the type-I (-II, -III) isotypes are precisely those which are sums of type-I
(-II, -III) blocks. In addition, for every ζ-isotype b, we let dimζ b be the unique
integer n with Z(b) ∼= Zn in case Z is bilinear and Z(b) ∼= (Z ⊕ Z∗)n in case Z is
not bilinear.

Theorem 4.14.4. Let (M, b,K) be an F -linear bilinear form over R with M
finitely generated. Then there exists an exact sequence of affine algebraic groups
(over F ):

1→ U → O(b)→ G→ 1

28 These families correspond to the three “typical” kinds of isometry groups: of symmetric
forms (a form of On(F )), of alternating forms (a form of Spn(F )) and of (α, λ)-hermitian forms
with α 6= id (a form of GLn(F )).
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such that U is unipotent and G is a product of copies of On(F ), GLm(F ), Spk(F )
(n,m, k may vary between the copies). If b =⊥ζ∈ΣZ(b)

bζ is the decomposition
of b into isotypes, then the On(F ) (resp.: GLn(F ), Sp2n(F )) components in G
correspond to the type-I (resp.: type-II, type-III) ζ-isotypes with dimζ bζ = n.

Proof. Recall that by Remark 4.8.9, the group O(b) is isomorphic to the
unitary group of (Wb, β(b)), i.e. {w ∈ Wb |wβ(b)w = 1}, via σ 7→ (σ, (σ−1)op). As
Wb is a f.d. F -algebra and β(b) is F -linear, this is easily seen to be an isomorphism
of algebraic groups. We may thus identify O(b) with its copy in Wb.

Observe that 1 + Jac(Wb) is a closed unipotent subgroup of W×b (that Jac(Wb)
is nilpotent follows from Proposition 4.10.1(A4)). Let U = (1 + Jac(Wb)) ∩ O(b)
and G = {w ∈ W b |wβ(b)w = 1}. By Theorem 4.9.20(ii), the map w 7→ w from
O(b) to G is onto (take e = e′ = 1 and choose the rest of the parameters as in
the proof of Corollary 4.9.21). Therefore, there is an exact sequence of algebraic
groups 1 → U → O(b) → G → 1 and U is unipotent. It is thus left to determine
the structure of G.

Let b =⊥ζ∈ΣZ(b)
bζ be the decomposition of b into isotypes. The proof of

Theorem 4.12.2 implies that W b
∼=
∏
ζW bζ with β(b) acting as β(bζ) on W bζ .

This isomorphism is easily seen to be an isomorphism of F algebras, hence G ∼=∏
ζ{u ∈ W bζ |uβu = 1} as algebraic groups. We will now determine the structure

of Gζ := {u ∈W bζ |uβu = 1}.
Write ζ = {[Z], [Z∗]} and n = dimζ bζ . Let b0 be a ζ-block. Then Z(bζ) ∼=

Z(b0)n, hence by Proposition 4.14.2, bζ ∼= n · b0, so w.l.o.g. we may assume bζ =
n · b0. Let W1 = Wb0 . Then Wbζ

∼= Mn(W1) and the proof of Proposition 4.13.1
implies that under this isomorphism β(bζ) acts by transposing and applying β(b0)
component-wise. That is, (Wbζ , β(bζ)) ∼= (Mn(F ), T )⊗F (W1, β(b0)) as F -algebras
with involution (here T denotes the transpose involution). This implies

(W bζ , β(bζ)) ∼= (Mn(F ), T )⊗F (W 1, β(b0)) .

As b0 is a block, the structure of (W 1, β(b0)) is determined in Theorem 4.11.1.
If b0 is of type-I, then (W 1, β(b0)) is a division ring with involution, implying

W 1 = F and β(b0) = idF . Thus, (Wbζ , β(bζ)) ∼= (Mn(F ), T ) and Gζ ∼= On(F ).
If b0 is of type-II, thenW 1 ∼= D×Dop and β(b0) exchangesD andDop. We must

have D = F and hence, W 1 ∼= F ×F with β(b0) exchanging the components. Thus,
(Mn(F ), T ) ⊗F (W1, β(b0)) ∼= (Mn(F ) ×Mn(F ), γ) where γ is given by (A,B)γ =
(BT , AT ). It is easy to check that the group {x ∈ Mn(F ) ×Mn(F ) |xγx = 1} is
isomorphic to GLn(F ), hence Gζ ∼= GLn(F ) in this case.

If b0 is of type-III, then W 1 ∼= M2(K) for some field K containing F and β(b0)
is a symplectic involution. Again, we must have K = F and hence (Mn(F ), T )⊗F
(W1, β(b0)) ∼= (M2n(F ), S) with S a symplectic involution. Thus, Gζ ∼= Sp2n(F ).

�

Remark 4.14.5. If F is not assumed to be algebraically closed, then there is
still an exact sequence of algebraic groups as in Theorem 4.14.4 (which induces an
exact sequence on the group of rational points). However, the group G is not a
product of On(F ), GLm(F ) and Spk(F ), but merely a form of such a product (i.e.
G becomes isomorphic to such a product over the algebraic closure of F ).
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