1. W.Y.C. Chen, L.H. Liu, C.J. Wang, Linked Partitions and Permutation Tableaux, arXiv, http://arxiv.org/pdf/1305.5357.pdf
2. Z. Higgins, E. Kelley, B. Sieben, A. Godbole, Universal and Near-Universal Cycles of Set Partitions, arXiv, http://arxiv.org/pdf/1502.04076.pdf
3. S. Dahlberg, R. Dorward, J. Gerhard, T. Grubb, C. Purcell, L. Reppuhn, B.E. Sagan, Set partition patterns and statistics, Discrete Mathematics 339 (2015) 1-16.
4. J. Bloom and D. Saracino, Pattern avoidance for set partitions a la Klazar, arXiv:1511.00192.




Typos (Thanks to Varpanen Harri, Jose Luis Remirez Ramirez, Armend Shabani):
p.004,l.-2: subscript s --> k
p.007,l.08: the upper bound of the last sum is n+1
p.017,l.-3: us --> as
p.020,l.-2: discus --> discuss
p.021,Def1.19: number --> numbers, reduce --> reduced
p.022,l.10: missing 'is'
p.036,Example 2.14 is missing some details!
p.041,l.-13: (2.3)--> (2.2)
p.043, Table 2.3 q(n)-->h(n), twice
p.046,l.11: rewriting --> rewrite
p.047,l.13: Integral Subscript t--> x
p.050,l.14: Ex)-->E(x)
p.060,l.12: 14, 132-->14, 42, 132
p.062, Example 2.65: there is are--> there are
p.074, Exercise 2.23 : m-->k
p.080,l.11-12: there are additional parenthesis
p.084,l.16: os--> of
p.098, The statement of Theorem 3.54 is not correct as it, we refer the reader to the original reference [208]
p.100, Exercise 3.4, need an aditional factorial
p.110,l.15: j-1-->m+1
p.112,l.12: 4.6-->4.8
p.114,l.02: F(x,y,r,l,d)-->F(x,y;r,l,d)
p.363,l.05: V_n-->V_n=
P.389,l.-10: Fibn --> Fibn+1
p.479,l.14: i>j--> i p.480, Exercise 2.20 subscript, Exercise 3.2 z^j/j! --> z^m/m!
p.504,l.08: (n-1)!-->n!