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A Foata bijection for the alternating group and for q-analogues

Dan Bernstein and Amitai Regev

Faculty of Mathematics and Computer Science
Weizmann Institute of Science Rehovot, 76100 Israel,

dan.bernstein@weizmann.ac.il and math@wisdom.weizmann.ac.il

May 5, 2005

The Foata bijection Φ : Sn → Sn is extended to the bijections

Ψ : An+1 → An+1 and Ψq : Sn+q−1 → Sn+q−1,

where Sm, Am are the symmetric and the alternating groups. These bijections imply bijective proofs
for recent equidistribution theorems, by Regev and Roichman, and extend a pattern-avoidance preser-
vation property of the Foata bijection to longer patterns.
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Non-intersecting patience sorting shadow diagrams and barred permutation patterns

Alexander Burstein1 and Isaiah Lankham2

1Department of Mathematics, Iowa State University, Ames, IA 50011-2064, USA
2Department of Mathematics, University of California, Davis, CA 95616-8633, USA

burstein@math.iastate.edu and issy@math.ucdavis.edu

3May 5, 2005

Abstract

Patience Sorting is a combinatorial algorithm that can be viewed as an iterated, non-recursive form of
the Schensted Insertion Algorithm. In recent work the authors have shown that the basic combinatorial
properties of Patience Sorting are most naturally expressed in terms of generalized barred permutation
pattern avoidance. Moreover, the authors have also recently given a geometric form for Patience
Sorting that is in some sense a very natural dual algorithm to G. Viennot’s well-known geometric
form for RSK. Unlike Geometric RSK, though, the lattice paths coming from Patience Sorting are
allowed to intersect.

In this work we characterize the intersections of these lattice paths and relate them to generalized
barred permutation pattern avoidance.

Key words: patience sorting, generalized permutation patterns, barred permutation patterns, shadow
diagrams, intersecting lattice paths

AMS Mathematical Subject Classifications: Primary: 05A05, 05A18; Secondary: 05E10

1. Introduction

The term Patience Sorting was first introduced in the 1960’s by C.L. Mallows [11] within the context
of studying a certain card sorting algorithm invented by A.S.C. Ross. This algorithm works by first
partitioning a shuffled deck of cards (which we take to be a permutation σ ∈ Sn) into its left-to-right
minima subsequences (called piles in this context), using what Mallows originally termed a “patience
sorting procedure”. The formation of these piles under Patience Sorting can be viewed as an iterated,
non-recursive form of the Schensted Insertion Algorithm for interposing values into the rows of a
Young tableau (see [2] and [4]). For a given σ ∈ Sn, we call the resulting collection of piles (given as
part of the more general Algorithm 1.1 in Section 1.1 below) the pile configuration corresponding to
σ and denote it by R(σ).

In [4] the authors augment the formation of R(σ) so that the resulting extension of Patience Sorting
essentially becomes a full non-recursive analogue of the celebrated Robinson-Schensted-Knuth (or
RSK) Correspondence. As with RSK, this Extended Patience Sorting Algorithm (Algorithm 1.1) takes
a simple idea—that of placing cards into piles—and uses it to build a bijection between elements of the
symmetric group Sn and certain pairs of pile configurations. In the case of RSK, one uses the Schensted
Insertion Algorithm to build a bijection with pairs of standard Young tableau having the same shape
(see [12]). However, in the case of Patience Sorting, one achieves a bijection between permutations

3The work of the second author was supported in part by the U.S. National Science Foundation under Grants
DMS-0135345 and DMS-0304414.
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and somewhat more restricted pairs of pile configurations. We denote this latter bijection by σ
PS←→

(R(σ), S(σ)) and call R(σ) (resp. S(σ)) the insertion piles (resp. recording piles) corresponding to σ.

Given a pile configuration R, one forms its reverse patience word RPW (R) by listing the piles in R
“from bottom to top, left to right” (see Example 1.2 below). In [4] these words are characterized
as being exactly the elements of Sn(3-1̄-42) (this notation is described in Section 2 below; see Bóna
[3] for more about permutation patterns in general), and the pairs of pile configurations (R(σ), S(σ))
given by Extended Patience Sorting are characterized by a certain simultaneous pattern avoidance
property in their reverse patience words. Moreover, in [5] the authors define a geometric form for
Extended Patience Sorting that is naturally dual to G. Viennot’s Geometric RSK (originally defined
in [13]). This gives, among other things, a geometric interpretation for what we call “stable pairs” of
3-1̄-42-avoiding permutations. (See [4] for details.)

Geometric Patience Sorting is unlike Geometric RSK in that the lattice paths formed under Extended
Patience Sorting are allowed to cross. In order to understand these crossings, we first give some ba-
sic results for barred permutation pattern avoidance in Section 2 and then in Section 3 look at how
such pattern avoidance affects both the resulting pile configurations and the corresponding shadow
diagrams. Then in Section 4 we characterize those permutations corresponding to non-crossing shad-
owlines and discuss how this is related to pattern avoidance.

We close this introduction by describing both Extended and Geometric Patience Sorting.

1.1. Extended Patience Sorting. Mallows’ original “patience sorting procedure” can be extended
to a full bijection between the symmetric group Sn and certain pairs of pile configurations using the
following algorithm (which was first introduced in [4]):

Algorithm 1.1 (Extended Patience Sorting Algorithm). Given a shuffled deck of cards σ = c1c2 · · · cn,
inductively build insertion piles R = R(σ) = {r1, r2, . . . , rm} and recording piles S = S(σ) =
{s1, s2, . . . , sm} as follows:

• Place the first card c1 from the deck into a pile r1 by itself, and set s1 = {1}.

• For each remaining card ci (i = 2, . . . , n), consider the cards d1, d2, . . . , dk atop the piles
r1, r2, . . . , rk that have already been formed.

– If ci > max{d1, d2, . . . , dk}, then put ci into a new pile rk+1 by itself and set sk+1 = {i}.
– Otherwise, find the left-most card dj that is larger than ci and put the card ci atop pile

rj while simultaneously putting i at the bottom of pile sj.

We visual represent the pile configurations R(σ) and S(σ) by listing their constituent piles vertically
as illustrated in the following example. (See [4] for motivation and further discussion of the algorithm
itself.)

Example 1.2. Given σ = 64518723 ∈ S8, one forms the following pile configurations under Algorithm
1.1:

R(σ) =
1 3
4 2 7
6 5 8

and S(σ) =
1 5
2 3 6
4 7 8
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Moreover, we define the reverse patience word for σ to be RPW (R(64518723)) = 64152873, which is
formed by “reading up the columns, from left to right”. Similarly, we can form RPW (S(64518723)) =
42173865.

1.2. Geometric Patience Sorting. In order to describe a natural geometric form for the Extended
Patience Sorting Algorithm given in Section 1.1 above, we begin with the following fundamental
definitions:

Definition 1.3. Given a lattice point (m,n) ∈ Z2, we define the (southwest) shadow of (m,n) to be
the quarter space U(m,n) = {(x, y) ∈ R2 | x ≤ m, y ≤ n}.

As with the northeasterly-oriented shadows that Viennot used when building his geometric form
for RSK (see [13]), the most important use of these southwesterly-oriented shadows is in building
shadowlines:

Definition 1.4. Given lattice points (m1, n1), (m2, n2), . . . , (mk, nk) ∈ Z2, we define their (southwest)
shadowline to be the boundary of the union of the shadows U(m1, n1), U(m2, n2), . . . , U(mk, nk).

In particular, we wish to associate to each permutation a certain collection of (southwest) shadow-
lines called its shadow diagram. However, unlike Geometric RSK, these shadowlines can intersect as
illustrated in Figure 1. (We characterize those permutations having intersecting shadow diagrams in
Theorem 4.2 below.)

Definition 1.5. Given a permutation σ = σ1σ2 · · ·σn ∈ Sn, the (southwest) shadow diagram D(0)(σ)
of σ consists of the (southwest) shadowlines

D(0)(σ) = {L(0)
1 (σ), L(0)

2 (σ), . . . , L(0)
k (σ)}

formed as follows:

• L
(0)
1 (σ) is the shadowline for those lattice points (x, y) ∈ {(1, σ1), . . . , (n, σn)} such that the

shadow U(x, y) does not contain any other lattice points.
• While at least one of the points (1, σ1), (2, σ2), . . . , (n, σn) is not contained in the shadowlines

L
(0)
1 (σ), L(0)

2 (σ), . . . , L(0)
j (σ), define L

(0)
j+1(σ) to be the shadowline for the points

(x, y) ∈ A := {(i, σi) | (i, σi) /∈
j⋃

k=1

L
(0)
k (σ)}

such that the shadow U(x, y) does not contain any other lattice points from the set A.

In other words, we define a shadow diagram by inductively eliminating points in the permutation
diagram until every point has been used to define a shadowline (as illustrated in Figure 1).

We can then produce a sequence D(σ) = (D(0)(σ), D(1)(σ), D(2)(σ), . . .), of shadow diagrams for
a given permutation σ ∈ Sn by recursively applying Definition 1.5 to the southwest corners (called
salient points) of a given set of shadowlines (as illustrated in Figure 1). The only difference is that,
with each iteration, newly formed shadowlines can only connect salient points along the same pre-
existing shadowline. One can then uniquely reconstruct the pile configurations R(σ) and S(σ) from
these shadowlines by taking their intersections with the x- and y-axes in the correct order. (See [5].)

Definition 1.6. We call D(k)(σ) the kth iterate of the exhaustive shadow diagram D(σ) for σ ∈ Sn.
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(f) Shadow Diagram
D(3)(64518723).

Figure 1. Examples of Shadowline and Shadow Diagram Constructions

2. Barred and Unbarred Generalized Pattern Avoidance

Definition 2.1. A barred pattern β is a generalized permutation pattern in which overbars are used
to indicate that barred values cannot occur at the barred positions. We denote by Sn(β) the set of
all permutations σ ∈ Sn avoiding β (i.e., permutations that do not contain a subsequence that is
order-isomorphic to β).

Example 2.2. An occurrence of the barred pattern 3-5̄-2-4-1 means that we have an occurrence of
the generalized pattern 3-2-4-1 (i.e., of the classical pattern 3241) in which no element greater than
“4” is allowed to occur between “3” and “2”. This is one of the two smallest excluded patterns for the
set of 2-stack-sortable permutations [9, 10]. (The other pattern is 2-3-4-1, i.e., the classical pattern
2341.)

Theorem 2.3. Sn(3-1̄-42) = Sn(3-1̄-4-2) = Sn(23-1) and |Sn(3-1̄-42)| = Bn (the nth Bell number).

Proof. As in [6], we see that each of these set consists of permutations having the form

σ = σ1a1σ2a2 . . . σkak,

where ak > ak−1 > · · · > a2 > a1 are the successive right-to-left minima of σ and where each segment
σiai is a decreasing subsequence. ¤

Remark 2.4. Even though Sn(3-1̄-42) = Sn(23-1), it is more natural to use avoidance of the barred
pattern 3-1̄-42 in studying Patience Sorting. As shown in [4], Sn(3-1̄-42) is the set of equivalence
classes of Sn modulo 3-1̄-42 ∼ 3-1̄-24, where every permutation in a given equivalence class has the
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same insertion piles R under Patience Sorting. This equivalence relation is much more difficult to
describe for occurrences of 23-1.

Corollary 2.5. As in Theorem 2.3,

(1) Sn(31-4̄-2) = Sn(3-1-4̄-2) = Sn(3-12)
(2) Sn(2̄-41-3) = Sn(2̄-4-1-3) = Sn(2-4-1-3̄) = Sn(2-41-3̄)
(3) |Sn(2̄-41-3)| = |Sn(31-4̄-2)| = |Sn(3-1̄-42)| = Bn.

Proof. (Sketches)

(1) Take reverse complement in Sn(3-1̄-42) and apply Theorem 2.3.
(2) Similar to (1). (Note that (2) is also proven in [1].)
(3) This follows from the fact that the patterns 3-1-4̄-2 and 2̄-4-1-3 are inverses of each other.

¤

3. Patience Sorting of Restricted Permutations

Proposition 3.1. Let ık = 12 · · · k and k = k · · · 21. Then there is

(1) a bijection between Sn(ık) and pairs of pile configurations having the same shape with at most
k piles.

(2) a bijection between Sn(k) and pairs of pile configurations having the same shape but with no
pile having more than k cards in it.

In [5] the authors prove

Proposition 3.2. Sn(3-1̄-42) = {RPW (R(σ)) | σ ∈ Sn}. In particular, given σ ∈ Sn(3-1̄-42), the
entries in each column of the insertion piles R(σ) (when read from bottom to top) occupy successive
positions in σ.

Using Proposition 3.2 and taking inverses, we obtain

Proposition 3.3. Sn(2̄-41-3) = {RPW (R(σ−1)) | σ ∈ Sn}. In particular, given σ ∈ Sn(2̄-41-3), the
columns of the insertion piles R(σ) (when read from top to bottom) contain successive values.

Corollary 3.4. Sn(3-1̄-42, 2̄-41-3) = Sn(3-1̄-42)∩S(2̄-41-3) is the set of layered permutations in Sn.

Proof. Apply Propositions 3.1–3.3 noting that Sn(3-1̄-42, 2̄-41-3) = Sn(23-1, 31-2) (as considered in
[7]). ¤
Theorem 3.5. The set Sn(3-1̄-42, 31-4̄-2) consists of all reverse patience words having non-intersecting
shadow diagrams. (I.e., no shadowlines cross in the 0th iterate shadow diagram.) Moreover, given a
permutation σ ∈ Sn(3-1̄-42, 31-4̄-2), the values in the bottom rows of R(σ) and S(σ) increase from left
to right.
Proof. From Theorem 2.3 and Corollary 2.5, Sn(3-1̄-42, 31-4̄-2) = Sn(23-1, 3-12) consists exactly of
set partitions of [n] = {1, 2, . . . , n} whose components can be ordered so that both the minimal and
maximal elements of the components simultaneously increase. (These are called strongly monotone
partitions in [8]).

Let σ ∈ Sn(3-1̄-42, 31-4̄-2). Since σ avoids 3-1̄-42, we have that σ = RPW (R(σ)) by Proposition 3.2.
Thus, the ith shadowline L

(0)
i (σ) of σ is the boundary of the union of shadows with generating points
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in decreasing segments σiai, i ∈ [k], where σiai are as in the proof of Theorem 2.3. Let bi be the ith

left-to-right maximum of σ. Then bi is the left-most (i.e. maximal) entry of σiai, so σiai = biσ
′
iai for

some decreasing subsequence σ′i. Note that σ′i may be empty so that bi = ai.

Since bi is the ith left-to-right maximum of σ, it must be at the bottom of the ith column of R(σ)
(similarly, ai is at the top of the ith column). So the bottom rows of both R(σ) and S(σ) must be in
increasing order.

Now consider the ith and jth shadowlines L
(0)
i (σ) and L

(0)
j (σ) of σ, respectively, where i < j. We have

that bi < bj from which the initial horizontal segment of the ith shadowline is lower than that of the
jth shadowline. Moreover, ai is to the left of bj , so the remaining segment of the ith shadowline is
completely to the left of the remaining segment of the jth shadowline. Thus, L

(0)
i (σ) and L

(0)
j (σ) do

not intersect. ¤

4. Non-intersecting shadow diagrams

Definition 4.1. Given two shadowlines, L
(m)
i (σ), L(m)

j (σ) ∈ D(m)(σ) with i < j, we call L
(m)
i (σ) the

lower shadowline and L
(m)
j (σ), the upper shadowline. Moreover, if L

(m)
i (σ) and L

(m)
j (σ) intersect,

then we call this a vertical crossing (resp. horizontal crossing) if it involves a vertical (resp. horizontal)
segment of L

(m)
j (σ).

Each shadowline L
(m)
i (σ) ∈ D(m)(σ) corresponds to the pair of segments of the ith columns of R(σ)

and S(σ) that are above the mth row (or are the ith columns if m = 0). We number rows from bottom
to top.

Theorem 4.2. Each iterate D(m)(σ) (m ≥ 0) of σ ∈ Sn is free from crossings if and only if every
row in both R(σ) and S(σ) is monotone increasing from left to right.
Proof. Since each L

(m)
i = L

(m)
i (σ) depends only on the ith columns of R = R(σ) and S = S(σ) above

row m, we may assume without loss of generality that R and S have the same shape with exactly two
columns.

Let m + 1 be the highest row where a descent occurs in either R or S. If this descent occurs in R,
then L

(m)
2 is the upper shadowline in a horizontal crossing since L

(m)
2 has y-intercept below that of

L
(m)
1 , which is the lower shadowline in this crossing (as in 312). If this descent occurs in S, then L

(m)
2

is the upper shadowline in a vertical crossing since L
(m)
2 has x-intercept to the left of L

(m)
1 , which is

the lower shadowline in this crossing (as in 231). Note that both descents may occur simultaneously
(as in 4231 or 45312).

Conversely, suppose m is the last iterate at which a crossing occurs in D(σ) (i.e., D(`)(σ) has no
crossings for ` > m). We will prove that L

(m)
2 may have a crossing only at the first or last segment.

This, in turn, implies that row m in R or S is decreasing. A crossing occurs when there is a vertex
of L

(m)
1 not in the shadow of any point of L

(m)
2 . We will prove that it can only be the first or last

vertex. Let {(s1, r1), (s2, r2), . . . } and {(u1, t1), (u2, t2), . . . } be the vertices that define L
(m)
1 and L

(m)
2 ,

respectively. Then {ri}i≥1 and {ti}i≥1 are decreasing while {si}i≥1 and {ui}i≥1 are increasing. Write
(a, b) ≤ (c, d) if (a, b) is in the shadow of (c, d) (i.e. if a ≤ b and c ≤ d), and consider L

(m+1)
1 and

L
(m+1)
2 . They are non-crossing and defined by points {(s1, r2), (s2, r3), . . . } and {(u1, t2), (u2, t3), . . . },

respectively. Then, for any i, (si, ri+1) ≤ (uj , tj+1) for some j. Suppose (si, ri+1) ≤ (uj , tj+1)
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and (si+1, ri+2) ≤ (uk, tk+1) for some j < k. Each upper shadowline vertex must contain some
lower shadowline vertex in its shadow, so for all ` ∈ [j, k], (si, ri+1) ≤ (u`, t`+1) or (si+1, ri+2) ≤
(u`, t`+1). Choose the least ` ∈ [j, k] such that (si+1, ri+2) ≤ (u`, t`+1). If (si, ri+1) ≤ (u`, t`+1),
then (si+1, ri+1) ≤ (u`, t`+1) ≤ (u`, t`). If (si, ri+1) � (u`, t`+1), then (si, ri+1) ≤ (u`−1, t`), so
(si+1, ri+1) ≤ (u`, t`). Thus, in both cases, (si+1, ri+1) ≤ (u`, t`), and the desired conclusion follows.

¤

We conclude by characterizing intersecting shadowlines beyond the 0th iterate of σ ∈ Sn in terms of
sub-pile patterns for the entries in R(σ) and S(σ). We state this result only for horizontal crossings,
but vertical crossings can then be characterized by inverting σ (i.e., by transposing within these pairs
of patterns via a Schützenberger-type symmetry result proven in [4]). Moreover, it is not difficult to
show that avoiding both horizontal and vertical crossings in every iterate is equivalent to avoiding all
crossings.

Theorem 4.3. If R(σ) and S(σ) contain either of the following two simultaneous sub-pile patterns,
then the permutation σ ∈ Sn has a horizontal crossing in D(m)(σ) (here {xs}s≥1 and {yr}r≥1 are
monotone increasing; m ≤ k, l; and the numbers in the boxes indicate the number of elements in
respective sub-piles):

i

y1 j

y3 y2

k m

⊂ R

k −m

x1 0
x2 x3

i + m j + m

⊂ S or

i

y1 j

y3 y2

k l

⊂ R

k −m l −m

x2 x1

x3 x4

i + m j + m

⊂ S
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signed permutations counted by the schröder numbers

Eric Egge

Department of Mathematics, Gettysburg College, 300 North
Washington Street Gettysburg, Pennsylvania 17325

eegge@gettysburg.edu

March 25, 2005

A signed permutation of 1, 2, . . . , n is a permutation of 1, 2, . . . , n in which each entry may or may not
have a bar over it. The type of a subsequence of a signed permutation is the type of the underlying
sequence, with bars over the elements corresponding to barred elements of the subsequence. For
instance, the subsequence 513 of the signed permutation 51423 has type 312. It is well-known that
the Catalan numbers count permutations which avoid a single pattern of length 3, and that the
Schröder number count permutations which avoid certain pairs of patterns of length 4. In addition,
Mansour and West have shown that the Catalan numbers count signed permutations which avoid
12, 12, and 12. In this talk I will discuss several sets of signed permutations which are counted by the
Schröder numbers.
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Pattern avoiding permutations under one roof: Scanning elements method and
functional equations

Ghassan Firro and Toufik Mansour
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April 30, 2005

Many families of pattern-avoiding permutations can be described by a generating tree in which each
node carries one integer label, computed recursively via a rewriting rule. In this article, we will
describe how to be an enumerator of number of permutations of length n that satisfy a certain set of
conditions. More precisely, we will present an algorithm for finding a system of recurrence relations for
the number of permutations of length n that satisfy a certain set of conditions. The rewriting of these
relations automatically gives a system of functional equation satisfied by the multivariate generating
function that counts the permutations by their length and the indexes of the corresponding recurrence
relations. We propose an approach to describing such equations. We thus recover and refine, in a
unified way, some results on τ -avoiding permutations, permutations containing τ exactly once, 1234-
avoiding permutations, and 1243-avoiding permutations, where τ any classical (generalized, distanced)
pattern of length three.



Compositions and multisets restricted by patterns of length three

Silvia Heubach1 and Toufik Mansour2

Department of Mathematics1,2

California State University Los Angeles, Los Angeles, CA 900321

University of Haifa, 31905 Haifa, Israel2

sheubac@calstatela.edu and toufik@math.haifa.ac.il

April 25, 2005

Abstract

We find generating functions for the number of compositions avoiding a single pattern or a pair of
patterns of length three on the alphabet {1, 2} and determine which of them are Wilf-equivalent
on compositions. We also derive the number of permutations of a multiset which avoid these same
patterns and determine the Wilf-equivalence of these patterns on permutations of multisets.

2000 Mathematics Subject Classification: 05A05, 05A15

1. Introduction

Pattern avoidance was first studied for Sn, the set of permutations of [n] = {1, 2, . . . , n}, avoiding a
pattern τ ∈ S3. Knuth [Kn] found that, for any τ ∈ S3, the number of permutations of [n] avoiding
τ is givien by the nth Catalan number. Later, Simion and Schmidt [SS] determined |Sn(T )|, the
number of permutations of [n] simultaneously avoiding any given set of patterns T ⊆ S3. Burstein
[Bu] extended this to words of length n on the alphabet [k] = {1, . . . , k}, determining the number
of words that avoid a set of patterns T ⊆ S3. Burstein and Mansour [BM] considered forbidden
patterns with repeated letters and we will use techniques similar to the ones used in their paper.
Recently, pattern avoidance has been studied for compositions. Heubach and Mansour [HM2] counted
the number of times a pattern τ of length 2 occurs in compositions, and determined the number
of compositions avoiding such a pattern. Most recently, Savage and Wilf [SW] considered pattern
avoidance in compositions for a single pattern τ ∈ S3, and showed that the number of compositions
of n with parts in N avoiding τ ∈ S3 is independent of τ .

Savage and Wilf posed some open questions, one of which asked about pattern avoidance in composi-
tions where the patterns are not themselves permutations, i.e., the pattern has repeated letters. We
will answer this questions for all such patterns of length 3, and also consider pattern avoidance for
pairs of such patterns. We will derive generating functions and determine which patterns or sets of
patterns are avoided equally often.

2. Preliminaries

Let N be the set of all positive integers, and let A be any ordered finite (or infinite) set of positive
integers, say A = {a1, a2, . . . , ad}, where a1 < a2 < a3 < · · · < ad. For ease of notation, “ordered set”
will always refer to a set whose elements are listed in increasing order.

A composition σ = σ1σ2 . . . σm of n ∈ N is an ordered collection of one or more positive integers
whose sum is n. The number of summands or letters, namely m, is called the number of parts of the
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composition. For any ordered set A = {a1, a2, . . . , ak} ⊆ N, we denote the set of all compositions of
n with parts in A (with m parts in A) by CA

n (CA
n;m).

To define a pattern, we utilize the notion of words. Let [k]n denote the set of all words of length n over
the (totally ordered) alphabet [k] = {1, 2, . . . , k}. We call these words k-ary words of length n. A
pattern τ is a word in [`]m that contains each letter from [`], possibly with repetitions. We say that the
composition σ ∈ CA

n (resp., σ ∈ CA
n;m) contains a pattern τ , if σ contains a subsequence isomorphic

to τ . Otherwise, we say that σ avoids τ and write σ ∈ CA
n (τ) (resp., σ ∈ CA

n;m(τ)). Moreover, if T is
a set of patterns on [k]n, then CA

n (T ) (resp., CA
n;m(T )) denotes the set all compositions in CA

n (resp.,
σ ∈ CA

n;m) that avoid all patterns from T simultaneously.

We say that two sets of patterns T1 and T2 belong to the same cardinality class, or Wilf class, or are
Wilf-equivalent, if for all values of A, m and n, we have |CA

n;m(T1)| = |CA
n;m(T2)|. It is easy to see

that for each τ ∈ [`]k, the reversal map defined by r : τi 7→ τk+1−i produces a pattern that is Wilf-
equivalent to τ . For example, if τ = 1232, then r(τ) = 2321. We call {τ, r(τ)} the symmetry class of
τ . Hence, to determine cardinality classes of patterns it is enough to consider only one representative
from each symmetry class.

We also look at pattern avoidance on Sm1m2...mk
, the set of permutations of the multiset S =

1m12m2 . . . kmk with mi > 0. Thus, Sm1m2...mk
is the set of all words of length m = m1+· · ·+mk that

contain the letter i exactly mi times. For a given set of patterns T , we denote the set of permutations
of the multiset S which avoid T by Sm1m2...mk

(T ).

3. Single patterns of length 3

For single patterns of length 3, there are eight symmetry classes for which we will use the following
class representatives: 111, 112, 121, 221, 212, 123, 132, and 213. We derive results for the first five
symmetry classes, those where the pattern τ is not a permutation on [3] and give the generating
functions for both the number of compositions with parts from a set A as well as for the number of
permutations of the multiset S = 1m12m2 . . . kmk that avoid a given pattern. In addition, we show
that 111 is not Wilf-equivalent to any representative of the other symmetry classes, that 112 and 121
are Wilf-equivalent, and that 221 and 212 are Wilf-equivalent. To show the Wilf-equivalence of the
first two patterns we exhibit a bijection ρ which can be adapted to show Wilf-equivalence of 221 and
212. Furthermore, for A = {1, s} we give explicit formulas for the number of compositions avoiding
112 (221, respectively) using combinatorial arguments and obtain connections to known sequences
listed in [S]. (The remaining three symmetry classes were considered by Savage and Wilf [SW], who
showed that they are Wilf-equivalent and gave a generating function.)

4. Pairs of patterns of length three

We classify pairs of patterns of length three on [2] and determine their equivalence classes and gen-
erating functions. Note that if τ1 and τ2 are two patterns, then any composition that avoids {τ1, τ2}
will also avoid {r(τ1), r(τ2)}, where r is the reversal map defined in Section 2. Using this argument,
the 21 possible pairs formed from the seven patterns of length 3 on [2] are reduced to 13 symmetry
classes:

{111, 112}, {111, 121}, {111, 212}, {111, 221}, {112, 121}, {112, 122}, {112, 211},
{112, 212}, {112, 221}, {121, 212}, {122, 212}, {122, 221}, {122, 121}.
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We show that the first and second symmetry classes of this list are Wilf-equivalent, and likewise, the
third and fourth symmetry classes. We establish the Wilf-equivalence of the representative pairs by
restricting the set of compositions to those that avoid 111, and then apply the bijection ρ used for
single patterns to obtain a bijection for the pairs. None of the other symmetry classes are in the same
equivalence class. We give generating functions for the number of compositions with parts from a
set A and as well as for the number of permutations of the multiset S = 1m12m2 . . . kmk that avoid
a given pair of patterns, with the exception of the pair {112, 122}. (This pair of patterns has also
proved difficult for pattern avoidance on words.) As before, we use the set A = {1, s} as an example
and give explicit formulas derived with combinatorial arguments.

5. Some patterns of arbitrary length

Finally, we consider two types of patterns of arbitrary length for which we give generating functions
for the number of compositions with parts from a set A and as well as for the number of permutations
of the multiset S = 1m12m2 . . . kmk that avoid one of these types of patterns. The first pattern
generalizes the pattern 111, and the second one generalizes 121. We denote the pattern consisting of s
1’s (respectively, t 1’s) to the left (respectively, right) of the single 2 by vs,t and show that all patterns
vs,t of the same length (= s + t + 1) are Wilf-equivalent.
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Abstract

We review selected known results on partially ordered patterns (POPs) and provide some new results
on a class of POPs.

1. Introduction and background

An occurrence of a pattern τ in a permutation π is defined as a subsequence in π (of the same length
as τ) whose letters are in the same relative order as those in τ . For example, the permutation 31425
has three occurrences of the pattern 1-2-3, namely the subsequences 345, 145, and 125. Generalized
permutation patterns (GPs) being introduced in [1] allow the requirement that two adjacent letters
in a pattern must be adjacent in the permutation. We indicate this requirement by removing a dash
in the corresponding place. If we write, say 2-31, then we mean that if this pattern occurs in a
permutation π, then the letters in π that correspond to 3 and 1 are adjacent. For example, the
permutation 516423 has only one occurrence of the pattern 2-31, namely the subword 564, whereas
the pattern 2-3-1 occurs, in addition, in the subwords 562 and 563.

Further generalization of the GPs is partially ordered patterns (POPs) when the letters of a pattern
form a partially ordered set (poset), and an occurrence of such a pattern in a permutation is a linear
extension of the corresponding poset in the order suggested by the pattern (we also pay attention
to eventual dashes). For instance, if we have a poset on three elements labelled by 1′, 1, and 2, in
which the only relation is 1 < 2, then in an occurrence of p = 1′-12 in a permutation π the letter
corresponding to the 1′ in p can be either larger or smaller than the letters corresponding to 12. Thus,
the permutation 31254 has three occurrences of p, namely 3-12, 3-25, and 1-25.

Let Sn(p1, . . . , pk) denote the set of n-permutations avoiding simultaneously each of the patterns
p1, . . . , pk.

The POPs were introduced in [5]3 as an auxiliary tool to study the maximum number of non-
overlapping occurrences of segmented GPs (SGPs), that is, the GPs, occurrences of which in per-
mutations form contiguous subwords (there are no dashes). However, the most useful property of
POPs known so far is their ability to “encode” certain sets of GPs which provides a convenient no-
tation for those sets and often gives an idea how to treat them. For example, the original proof of
the fact that |Sn(123, 132, 213)| = (

n
bn/2c

)
was on 3 pages ([4]); on the other hand, if one notices that

|Sn(123, 132, 213)| = |Sn(11′2)|, where 11′2 is as above, then the result is easy to see. Indeed, we

1Department of Mathematics, University of California, San Diego, CA 92093, USA
2This paper was written during the author’s stay at the Institut Mittag-Leffler, Sweden.
3The POPs in this paper is the same as the POGPs in [5], which is abbreviation for Partially Ordered Generalized

Patterns
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may use the property that the letters in odd and even positions of a “good” permutation do not affect
each other because of the form of 11′2. Thus we choose the letters in odd positions in

(
n

bn/2c
)

ways,
and we must arrange them in decreasing order. We then must arrange the letters in even positions in
decreasing order too.

In what follows we need the following notations. Let σ and τ be two POPs of length greater than 0.
We write σ < τ to indicate that any letter of σ is less than any letter of τ . We write σ <> τ when no
letter in σ is comparable with any letter in τ . Also, SPOP abbreviates Segmented POP.

Section 2 reviews selected results in the literature, and Section 3 provides some new results, on POPs.

2. Review of selected results on POPs

2.1. Co-unimodal patterns. For a permutation π = π1π2 · · ·πn ∈ Sn, the inversion index, inv(π),
is the number of ordered pairs (i, j) such that 1 ≤ i < j ≤ n and πi > πj . The major index, maj(π),
is the sum of all i such that πi > πi+1. Suppose σ is a SPOP and

placeσ(π) = {i | π has an occurrence of σ starting at πi}.
Let majσ(π) be the sum of the elements of placeσ(π).

If σ is co-unimodal, meaning that k = σ1 > σ2 > · · · > σj < · · · < σk for some 2 ≤ j ≤ k, then the
following formula holds [2]:

∑

π∈Sn

tmajσ(π−1)qmajσ(π) =
∑

π∈Sn

tmajσ(π−1)qinv(π).

2.2. A pattern of the form σ-m-τ . Let σ and τ be two SGPs (the results below work for SPOPs
as well). We consider the POP α = σ-m-τ with m > σ, m > τ , and σ <> τ , that is, each letter of σ
is incomparable with any letter of τ and m is the largest letter in α. The POP α is an instance of so
called shuffle patterns (see [5, Sec 4]).

Theorem 2.1. ([5, Thm 16]) Let A(x), B(x) and C(x) be the EGF for the number of permutations
that avoid σ, τ and α respectively. Then C(x) is the solution to the following differential equation
with C(0) = 1:

C ′(x) = (A(x) + B(x))C(x)−A(x)B(x).

Corollary 2.2. ([5, Thm 13]) Let α = σ-m, where σ is a SGP on [k − 1]. Let A(x) (resp. C(x))
be the EGF for the number of permutations that avoid σ (resp. α). Then C(x) = eF (x,A(y)), where
F (x,A(y)) =

∫ x

0
A(y) dy.

2.3. Multi-patterns. Suppose {σ1, . . . , σk} is a set of SGPs and p = σ1- · · · -σk where each letter of
σi is incomparable with any letter of σj whenever i 6= j (σi <> σj). We call such POPs multi-patterns.
Clearly, the Hasse diagram for such patterns is k disjoint chains. The following theorem is the basis
for calculating the number of permutations that avoid a multi-pattern.

Theorem 2.3. ([5, Thm 28]) Let p = σ1- · · · -σk be a multi-pattern and let Ai(x) be the EGF for
the number of permutations that avoid σi. Then the EGF A(x) for the number of permutations that
avoid p is

A(x) =
k∑

i=1

Ai(x)
i−1∏

j=1

((x− 1)Aj(x) + 1).
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Remark 2.4. Although the result in theorem 2.3 is stated in [5] for σi’s which are SGPs, one can
see that the same arguments work for σi’s which are SPOPs. Thus we have a generalization of this
theorem.

2.4. Non-overlapping patterns – an application of POPs. Theorem 2.3 and its counterpart in
the case of words [7, Thm 4.3] and [7, Cor 4.4], as well as Remark 2.4 applied for these results, give
Theorem 2.5 generalizing [5, Thm 32] and [7, Thm 5.1].

Theorem 2.5. ([6, Thm 16]) Let p be a SPOP and B(x) (resp. B(x; k)) is the EGF (resp. GF)
for the number of permutations (resp. words over [k]) avoiding p. Let D(x, y) =

∑
π yN(π) x|π|

|π|!
and D(x, y; k) =

∑
n≥0

∑
w∈[k]n yN(w)xn where N(s) is the maximum number of non-overlapping

occurrences of p in s. Then D(x, y) and D(x, y; k) are given by
B(x)

1− y(1 + (x− 1)B(x))
and

B(x; k)
1− y(1 + (kx− 1)B(x; k))

.

2.5. Segmented patterns of length four. In this subsection we state two results on SPOPs of
length four. Several other patterns are considered in [6]. Moreover, corollaries 3.3 and 3.5 in subsec-
tion 3.1 give extra results in this direction.

Theorem 2.6. ([5, Thm 30]) The EGF for 122′1′-avoiding permutations is
1
2

+
1
4

tan x(1 + e2x + 2ex sinx) +
1
2
ex cos x.

Proposition 2.7. ([6, Prop 8,9]) There are
(

n−1
b(n−1)/2c

)(
n

bn/2c
)

permutations in Sn that avoid the
SPOP 12′21′. The (n+1)-permutations avoiding 12′21′ are in one-to-one correspondence with different
walks of n steps between lattice points, each in a direction N, S, E or W, starting from the origin and
remaining in the nonnegative quadrant.

3. Patterns built on the letters a, a1, . . . , ak with the only relations a < ai for all i.

3.1. Avoidance and distribution of the patterns. The following proposition generalizes [3, Prop.
6].

Proposition 3.1. The permutations in Sn having cycles of length at most k are in one-to-one cor-
respondence with permutations in Sn that avoid a-a1 · · · ak. Thus, the EGF for the number of permu-
tations avoiding a-a1 · · · ak is given by exp(

∑k
i=1 xi/i).

Proposition 3.2. One has |Sn(a-a1 · · · ak)| = |Sn(aa1 · · · ak)|.
Corollary 3.3. The EGF for the number of permutations avoiding aa1a2a3 is given by exp(x+x2/2+
x3/3).

Theorem 3.4. (Distribution of a1a2 · · · akaak+1ak+2 · · · ak+`) Let

P := P (x, y) =
∑

n≥0

∑

π∈Sn

ye(π)xn/n!

be the BGF for permutations where e(π) is the number of occurrences of the SPOP a1a2 · · · akaak+1ak+2 · · · ak+`

in π. Then P is the solution to

(3.1)
∂P

∂x
= y

(
P − 1− xk

1− x

)(
P − 1− x`

1− x

)
+

2− xk − x`

1− x
P − 1− xk − x` + xk+`

(1− x)2
.
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with the initial condition P (0, y) = 1.

Corollary 3.5. The EGF for the number of permutations avoiding a1aa2a3 is

1 +
√

π

2
(erf(

1√
2
x +

√
2)− erf(

√
2))e

1
2 x(x+4)+2

where erf(x) = 2√
π

∫ x

0

e−t2 dt is the error function.

Corollary 3.6. The BGF for the distribution of peaks (valleys) in permutations is given by

1− 1
y

+
1
y

√
y − 1 · tan

(
x
√

y − 1 + arctan
(

1√
y − 1

))
.

3.2. Distribution of the patterns with additional restrictions. Let Pk =
∑k−1

n=0
1

n+1

(
2n
n

)
xn.

That is, Pk is the k initial terms in the expansion of the generating function 1−√1−4x
2x for the Catalan

numbers.

Theorem 3.7. (Distribution of a1a2 · · · akaak+1ak+2 · · · ak+` on Sn(2-1-3)) Let

P := P (x, y) =
∑

n≥0

∑

π∈Sn(2-1-3)
ye(π)xn

be the BGF for 2-1-3-avoiding permutations where e(π) is the number of occurrences of the SPOP
a1a2 · · · akaak+1ak+2 · · · ak+` in π. Then P is given by

1− x(1− y)(Pk + P`)−
√

(x(1− y)(Pk + P`)− 1)2 − 4xy(x(y − 1)PkP` + 1)
2xy

.

For certain choices of k, `, and y in theorem 3.7 one gets Catalan numbers, Pell numbers, and the
triangle of Narayna numbers.
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If X is a closed set of permutations (i.e., a lower ideal in (S,¹) where S is the set of all finite permuta-
tions and ¹ is the standard containment ordering) and Xn ⊂ X denotes the set of all n-permutations
in X, then it is known that the counting function n 7→ |Xn| is subject to various dichotomies and
restrictions (T. Kaiser and M. Klazar, Electronic J. of Combinatorics 9(2) (2002/3), R10). For ex-
ample, either |Xn| is eventually constant or |Xn| ≥ n for all n ≥ 1, or—another dichotomy—either
|Xn| ≤ nc for all n ≥ 1 with a constant c > 0 or |Xn| ≥ Fn for all n ≥ 1, where Fn = 1, 2, 3, 5, 8, 13, . . .
are the Fibonacci numbers.

In my talk I will discuss a general approach to extend these results from permutations to other classes
of objects, like those mentioned in the title, and to prove them uniformly as instances of a general
(meta) result.
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Noncrossing partitions form a relatively new subject in algebraic combinatorics. An investigation of
structural and enumerative properties of the lattice of noncrossing partitions of type A was initiated
by Kreweras and continued by many other researchers to achieve many interesting and important
results.

Bóna and Simion defined a bijection between NCA
n (the lattice of non-crosssing partitions) and Sn(132)

(the set of permutations avoiding the pattern 132). We define a simpler bijection which is more natural.
The bijection between NCA

n and Sn(132) proves that Sn(132) is a lattice with respect to the partial
order induced by the bijection, but this order is not simply defined in terms of the elements of Sn(132).
It impossible to define a slightly different order which is more natural on the elements of Sn(132).
This was first done by Bóna and Simion, who defined a partial order on the elements of Sn(132), and
turned it into a poset PA

n .

We also give a formula for the Möbius function of the poset PA
n , thus settling an open problem posed by

Bóna and Simion. This is done by converting the enumeration of chains in PA
n into an enumeration of

shapes (Young diagrams, or number partitions) and using a determinantal formula due to MacMahon.
In certain special cases we can also use a multiplicative formula due to Proctor.
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We show that certain matchings avoiding certain partial partial patterns are counted by the number
of ternary trees. We give a characterization of 12312-avoiding matchings in terms of restrictions on
the corresponding oscillating tableaux. We also find a bijection between Schröder paths without peaks
at level 1 and matchings avoiding the patterns 12312 and 121323. Such objects are counted by the
super-Catalan numbers or the little Schröder numbers. We further obtain a refinement of the super-
Catalan numbers. In the sense of Wilf-equivalence, we find that the patterns 12132, 12123, 12321,
12231, 12213 are equivalent to 12312.
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The powerful and partly mysterious Robinson-Schensted-Knuth (RSK) correspondence has been cen-
tral to many classical and recent developments in Enumerative and Algebraic Combinatorics, and in
permutation patterns in particular. We will discuss the structure of RSK, the underlying piecewise
linear geometry and elaborate on connections to other combinatorial bijections. Finally, we present
an extension of RSK to infinite permutations, which open a new venue for future research.
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Quantum entanglement. I would like to describe a “physical property” of permutations. In
Quantum Mechanics there is a fundamental quantity called entanglement. The role of entanglement
is important and often necessary in many contexts like quantum algorithms, quantum cryptography,
etc.. First of all, let me fix some terminology. In the Hilbert space formulation of quantum mechanics,
the state of a quantum mechanical system (completely isolated from the environment) is a unit vector
of the n-dimensional Hilbert space H ∼= Cn (where n depends on the classical degrees of freedom
of the system). In Dirac notation, a unit vector of H is denoted by |ψ〉, where ψ is simply a label;
given the vectors |ϕ〉 , |ψ〉 ∈ H, the linear functional sending |ψ〉 to the inner product 〈ϕ|ψ〉 is denoted
by 〈ϕ|. Let SA and SB be two quantum mechanical systems, associated to the p-dimensional and
q-dimensional Hilbert spaces HA

∼= Cp
A and HB

∼= Cq
B , respectively. The state of the composite

system SAB , consisting of the subsystems SA and SB , is a unit vector in HAB
∼= Cp

A ⊗ Cq
B . We say

that |χ〉 ∈ SAB is entangled if there are no |ψ〉 ∈ SA and |ϕ〉 ∈ SB such that |χ〉 = |ψ〉 ⊗ |ϕ〉; we say
that |χ〉 is separable, otherwise. Fixed p = q = d, an approximate measure of the entanglement in |χ〉
is given by (the linear entropy)

SL(|χ〉) := d
d−1 (1−trρ2), where ρ = TrB |χ〉〈χ|,

and TrB denotes transposition with respect to HB . The evolution in time of SAB from a state |χ〉 to
a state |χ′〉 is formalized by U |χ〉 = |χ′〉, where U is a given unitary matrix and |χ′〉 is the state after
the evolution. The amount of entanglement in |χ〉 may, of course, change under the action of U .

Entangling power of permutations. The entangling power of a unitary matrix U ∈ U(H) ∼= U(d2)
is the average amount of entanglement produced by U acting on a given (uncorrelated) distribution
of separable states, that is

ε(U) :=
∫

〈ψ1|ψ1〉=1

∫

〈ψ2|ψ2〉=1

SL(U |ψ1〉|ψ2〉)dψ1dψ2,

where dψ1 and dψ2 are normalized probability measures on unit spheres. Now, a permutation of
[n] = {1, 2, ..., n} is a bijection from [n] to itself. Every permutation p of [n] induces an n × n
matrix P = (pij), called a permutation matrix, such that pij = 1 if p(i) = j and pij = 0, otherwise.
Equivalently a permutation on [n] induces a linear map of an n-dimensional Hilbert space which
permutes a given basis of the space (a permutation operator on H). If n = d2 we can replace [n]
by [d] × [d] and write p(i, j) = (kij , lij); thus a permutation of [d2] is represented by a pair of d × d
matrices K = (kij) and L = (lij). The corresponding permutation operator permutes the elements
|i〉|j〉 of a basis of H: P (|i〉|j〉) = |kij〉|lij〉. I will describe some results about entangling power of
permutation matrices. The main tool for quantifying the entangling power of a permutation matrix
is a combinatorial formula given in the following theorem:

1This talk is based on ”Lieven Clarisse, Sibasish Ghosh, Simone Severini, Anthony Sudbery, Entangling Power of
Permutations, to appear in Phys. Rev. A. quant-ph/0502040”.
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Theorem 1.8. Let P =
∑

ij |kij lij〉〈ij| be a permutation matrix in U(H). The entangling power of
P is given by

ε(P ) = d4+d2−QP−QP S

d(d−1)(d+1)2 , with QP =
∑d

i,j,m,n=1 aijmaijnbimnbjmn,

where
aijm = 〈lim|ljm〉 = ajim and bimn = 〈kim|kin〉 = binm.

The quantity QPS is the corresponding expression for the permutation matrix PS, where S is the
permutation of [d]× [d] such that Sij,kl = 1 if i = l and j = k; Sij,kl = 0, otherwise.

Permutations with zero entangling power. Two permutation matrices P, Q ∈ U(H) are said to
be locally unitarily connected (for short, LU-connected) if there are unitaries V acting on HA and W
on HB such that (V ⊗W )P = Q. Then V and W are actually permutation operators. Note that if two
permutations are LU-connected then they have the same entangling power. The set of non-entangling
permutation matrices is denoted by E0.

Theorem 1.9. Let P ∈ U(H) be a permutation matrix. Then P ∈ E0 if and only if one of the
following two conditions is satisfied:

(1) P is LU-connected to I (where I is the identity);
(2) P is LU-connected to S.

Permutations with maximum entangling power. It is simple to construct the permutations
with the maximum entangling power d/(d + 1) that can be attained by any unitary matrix in U(H).
The construction makes use of latin squares. Recall that a latin square of side d is a d×d matrix with
entries from the set [d] = {1, . . . , d} such that every row and column is a permutation of {1, . . . , d},
and two d× d latin squares (kij) and (lij) are orthogonal if (kij , lij) is a permutation of [d]× [d].

Theorem 1.10. Let P ∈ U(H) be a permutation matrix defined by P (|i〉|j〉) = |kij〉|lij〉. Then the
entangling power of P equals the maximum value ε(P ) = d/(d + 1) over U(H) if and only if the
matrices (kij) and (lij) are orthogonal latin squares.

Corollary 1.11. For every d 6= 2, 6 there is a permutation matrix P ∈ U(H) such that ε(P ) is
maximum over U(H).

By looking at d2 × d2 permutation matrices as made up of d2 blocks, we can state an alternative
version of Theorem 1.10.

Theorem 1.12. Let P ∈ U(H) be a permutation matrix. Then ε(P ) is maximum over U(H) if and
only if P satisfies the following conditions:

(1) Every block contains one and only one nonzero element;
(2) All blocks are different;
(3) Nonzero elements in the same block-row are in different sub-columns;
(4) Nonzero elements in the same block-column are in different sub-rows.

Theorem 1.12 states that in a d2 × d2 permutation matrix P attaining the maximum value d/(d + 1),
every block contains one and only one nonzero entry. It is then possible to represent P by a d × d
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array P̃ = (p̃ij), whose cell p̃ij specifies the coordinates of the nonzero entry in the ij-th block of P .
For the above permutation matrix

R =




1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0




,

we have R̃ =
11 23 32
22 31 13
33 12 21

. Note that the ij-th cell of R̃ is of the form (kij , lij) where K = (kij)

and L = (lij) are the orthogonal latin squares K =
1 2 3
2 3 1
3 1 2

and L =
1 3 2
2 1 3
3 2 1

. It follows from

Theorem 1.12 that a permutation matrix P has maximal entangling power if and only if P̃ is obtained
by superimposing two orthogonal latin squares.

Direct calculations give the following result.

Theorem 1.13. The following statements are true:

(1) For d = 2 the matrix P =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 attains the value ε(P ) = 4

9 which is maximum

over all unitaries in U(H).
(2) For d = 6 the value ε(P ) = 628

735 is maximum over all permutations P ∈ U(H) and the
maximizing P is associated to

P̃ =

11 22 33 44 55 66
23 14 45 36 61 52
32 41 64 53 16 25
46 35 51 62 24 13
54 63 26 15 42 31
65 56 12 21 33 44

.

Permutations with minimum entangling power. The following theorem constructs the permu-
tations with the minimum nonzero entangling power that can be attained by permutation matrices in
U(H).
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Theorem 1.14. Let P ∈ U(H) be a permutation matrix. Then ε(P ) is nonzero but minimum over
all permutations in U(H) if

P̂ =

11 12 · · · · · · 1d
21 22 . . . . . . 2d
...

...
...

(d− 1)1 (d− 1)2 . . . . . . (d− 1)d
d1 d2 . . . dd d(d− 1)

.

In such a case ε(P ) = 8(d−1)
d(d+1)2 . (The diagram P̂ represents the action of P on the set [d] × [d]. The

ij-th cell of P̂ is kl if in P the contribution of the term |kl〉〈ij| is nonzero.)

Two permutation matrices P,Q ∈ U(H) are said to be in the same entangling class if ε(P ) = ε(Q).

Corollary 1.15. An upper bound to the number of different entangling classes of permutations is
given by B = 2 + 1

2 (d4 − d2 − 8(d− 1)2).

Counting the entangling classes and their respective members.

• Classes of permutations with different entangling power and the number of elements in each
class for d = 2:

Entangling Power ε(P ) Number of elements
in entangling class

0 8
4/9 16

.

• Classes of permutations with different entangling power and the number of elements in each
class for d = 3:

Entangling Power ε(P ) Number of elements
in entangling class

0 72
1/3 2592
3/8 864
5/12 1296

182/375 10368
23/48 20736
1/2 27432

25/48 36288
13/24 44064
9/16 101376
7/12 44712
29/48 46656
5/8 22464
2/3 3888
3/4 72

.
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• Number of classes of permutations with different entangling power and the average entangling
power as a function of the dimension d.

Dimension d Number of classes Average entangling power
2 2 8

27 ≈ 0.29
3 15 31

56 ≈ 0.55
4 ≥ 65 0.67± 0.01
5 ≥ 190 0.74± 0.01

Open problems. We conclude with a list of open problems:

• Describe a general classification of the permutation matrices according to their entangling
power (that is, give formulas to count the members in each entangling class and the number
of classes).

• Give a formula for the average entangling power over all permutation matrices of a given
dimension.

• For d = 6, does there exist U ∈ U(H) such that ε(U) > 628
735?

• Study the entangling power of permutation matrices in relation to multipartite systems. In
this context, it is conceivable that the permutation matrices with maximum entangling power
are related to sets of mutually orthogonal latin squares.
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We will look at two standard algorithms used to sort permutations by t (increasing) stacks in series.
The first is the right-greedy algorithm which works on t stacks in series the same way as t-stack sorting
as introduced by West. The second is the left-greedy algorithm introduced by Atkinson, Murphy, and
Ruškuc. They showed that the left-greedy algorithm is optimal for t = 2.

By considering where entries of the permutation are at key points in the process, it can be shown that
the use of the left-greedy algorithm on t stacks in series will result in sorting any permutation that
could be sorted using the right-greedy algorithm on t stacks in series. For t ≥ 2, one can construct
permutations which can be sorted by just two stacks in series using the left-greedy algorithm, but
cannot be sorted by t stacks in series using the right-greedy algorithm. In addition, there are ways to
construct permutations that are sortable by t stacks in series using the left-greedy algorithm (or with
no restriction to any one given algorithm) from other sortable permutations that does not work when
restricting the sorting process to the right-greedy algorithm. It can also be shown that when applied
to t stacks in series where t > 2, the use of the left-greedy algorithm is not optimal nor is the class of
permutations sorted by the left-greedy algorithm closed.

We also consider the addition of a type of movement on the stacks where entries from the last stack
can return to the first stack instead of going to the output. It can be shown that this allowance does
nothing to improve the sorting ability of two stacks in series. However, when this move is introduced
to three or more stacks in series, we are then able to sort any permutation.
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A 0-1 matrix A is said to contain another 0-1 matrix (a pattern) P if P is a submatrix of A or it can
be obtained from a submatrix of A by changing a few 1 entries to 0. The talk surveys the results on
the following extremal problem: How many 1 can be in a n by n 0-1 matrix not containing the pattern
P?

This problem can be considered a generalization of the Turan-type extremal graph theory where the
graph and the forbidden pattern have a specified vertex-order.

As classical extremal graph theory, the extremal theory of 0-1 matrices was also largely motivated
by implications and applications in combinatorial geometry. Later Martin Klazar showed an exciting
connection between this theory and the theory of forbidden permutation patterns that lead to the
solution of the Stanley-Wilf conjecture. I believe that the two theories are deeply connected and
exploiting this connection will lead to further developments in both theories.
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Almost a decade ago, Zeilberger introduced ”enumeration schemes,” a systematic method to produce
formulas for restricted permutations. Enumeration schemes bear some resemblence to other tech-
niques, such as generating trees (popularized by West) and the insertion encoding (recently introduced
by Albert, Linton, and Ruskuc). However, the important distinction between enumeration schemes
and other methods is that every step in the derivation of enumeration schemes can be completely
automated. This automatation is performed in Zeilberger’s Maple package WILF. Unfortunately, as
Zeilberger put it, ”the success rate of the present method, in its present state, is somewhat disap-
pointing.” I will discuss a new extension of enumeration schemes, implemented in my WILFPLUS
package, which boasts a less disappointing success rate.



33

Computer-generated permutation enumeration

Doron Zeilberger

Department of Mathematics
Rutgers University

110 Frelinghuysen Road, Piscataway, NJ 08854
zeilberg@math.rutgers.edu

May 16, 2005

Computers can do, all by themselves, much more than compute the number of n-permutations avoiding
such and such, for n less than 10. They can do it, in many cases, for n less than a 100, and in many
cases even for all n.

These claims are currently vindicated in the dynamic webbook ”Systematic Studies in Pattern Avoid-
ance” (http://www.math.rutgers.edu/ lpudwell/webbook/bookmain.html) written by my brilliant
students Lara Pudwell and Vince Vatter, and by my beloved electronic colleague and disciple, Shalosh
B. Ekhad.


