
QUOTIENT SETS
IN NONABELIAN GROUPS

VSEVOLOD F. LEV

Abstract. We show that for a finite, nonempty subset A of a group, the quotient set
A−1A := {a−1

1 a2 : a1, a2 ∈ A} has size |A−1A| ≥ 5
3 |A|, unless A is densely contained in

a coset, or in a union of two cosets of a finite subgroup.

1. Introduction: Background and the Main Result

One of the cornerstones of the additive combinatorics is Kneser’s theorem [Kn53, Kn55]

relating the size of a sumset in an abelian group to the sizes of the set summands. As

shown by Olson [O84], a straightforward, simple-minded analogue of Kneser’s theorem for

nonabelian groups fails to hold. Many partial extensions of the theorem in the nonabelian

settings are known, however; see, for instance, [F73, O84, O86, SW, T13, Z94, H13].

Particularly relevant in our present context are the papers by Freiman [F73], Olson [O86],

and Hamidoune [H13].

In [F73], Freiman classified finite, nonempty subsets A of a group with the product set

A2 := {a1a2 : a1, a2 ∈ A} satisfying |A|2 < 8
5
|A|.

Olson has extended Freiman’s result onto products with distinct set factors; namely,

as shown in [O84, Theorem 1], if A and B are finite, nonempty subsets of a group, then

“normally” the product set AB := {ab : a ∈ A, b ∈ B} has size |AB| ≥ |A|+ 1
2
|B|.

Improving the doubling coefficients 8
5
and 1

2
in the Freiman-Olson estimates is a fasci-

nating, mostly open, problem.

Addressing the case where B = A−1, Hamidoune [H13] has established some properties

of the quotient set A−1A := {a−1
1 a2 : a1, a2 ∈ A} assuming that |A−1A| < 5

3
|A|.

In this note, under the same assumption |A−1A| < 5
3
|A|, we completely determine the

structure of the set A itself, with an if-and-only-if-type classification.

For a subgroup H of a group G, let N(H) denote the normalizer of H in G.

2020 Mathematics Subject Classification. Primary 11B75.
Key words and phrases. Small doubling, Sumset, Kneser’s theorem.

1



2 VSEVOLOD F. LEV

Theorem 1. Let A be a finite subset of a group G. Then |A−1A| < 5
3
|A| if and only if

one of the following holds:

(i) there is a finite subgroup H ≤ G such that A is contained in a left H-coset and

|A| > 3
5
|H|;

(ii) there is a finite subgroup H ≤ G and elements a, b ∈ G with (a−1b)2 /∈ H and

a−1b ∈ N(H) such that A ⊆ aH ∪ bH and |A| > 9
5
|H|.

Moreover, in the case (i) we have A−1A = H, while in the case (ii) the set A−1A is a

disjoint union of H and two double H-cosets of size |H| each.

The coefficient 5
3
corresponds to a structure threshold: say, if H is a finite subgroup,

and g ∈ N(H) is an element with gi /∈ H for i ∈ [1, 4], then the set A := g−1H ∪H ∪Hg

satisfies |A−1A| = 5
3
|A|, while A does not have the structure described in the theorem.

We remark that the ostensible lack of symmetry in the statement of the theorem clears

off once we notice that any left coset is a right coset of a conjugate subgroup, and vice

versa.

With the exception of Section 5, the rest of the paper is devoted to the proof of

Theorem 1. In the next section we formally introduce the notation used and gather some

basic facts needed for the proof. In Section 3 we show that conditions (i) and (ii) of

Theorem 1 are sufficient for |A−1A| < 5
3
|A| to hold, and also that they imply the last

assertion of the theorem (concerning the structure of the quotient set). Additionally, in

Section 3 we prove a lemma that will be used in the course of the proof of necessity in

Section 4. Finally, in the concluding Section 5 we state and briefly discuss a conjectural

extension of Theorem 1 onto the sets A satisfying |A−1A| < 2|A|.

2. Preliminaries: notation and tools

For subsets A and B of a group, we denote by A−1 the set of inverses of the elements

of A, and by AB the product set:

A−1 := {a−1 : a ∈ A} and AB := {ab : a ∈ A, b ∈ B}.

Thus, for instance, A−1A = {a−1b : a, b ∈ A}.
The subgroup generated by A is denoted by ⟨A⟩, and the identity element of the group

by 1. A left (right) coset of a subgroup H is a set of the form gH (Hg), where g is an

element of the group. A double H-coset if a set of the form HgH.

The following lemma summarizes the basic properties of double cosets.
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Lemma 1. If H is a subgroup of a group G, then G is a disjoint union of double H-

cosets. A set S ⊆ G is a union of double H-cosets if and only if it is stable under both left

and right multiplication by H; that is, if and only if HS = SH = S; alternatively, if and

only if there is a set T ⊆ G such that S = HTH. For a, b ∈ G, we have HaH = HbH if

and only if there exist h1, h2 ∈ H such that b = h1ah2.

The normalizer of a subgroup H, denoted N(H), is the subgroup consisting of all

those group elements g satisfying gH = Hg.

Given a finite subset A of a group, and a group element g, by r(g) we denote the number

of representations of g in the form g = a−1b with a, b ∈ A. Clearly, r is supported on

the quotient set A−1A, and r(g−1) = r(g) ≤ r(1) = |A| for any element g. Moreover,

r(g) = |A| if and only if Ag = A. Therefore, the number of elements g ∈ G satisfying

Ag = A is the size of the maximal subgroup H such that A is a union of left H-cosets.

For a real x, the largest integer not exceeding x and the smallest integer not smaller

than x are denoted ⌊x⌋ and ⌈x⌉, respectively.

Lemma 2. For any finite subgroup H and any group elements a and b, either aH = Hb,

or |aH ∩Hb| ≤ 1
2
|H|.

Proof. Assuming that aH ∩Hb is nonempty, fix an element g ∈ aH ∩Hb. Then a ∈ gH

and b ∈ Hg, whence |aH ∩Hb| = |gH ∩Hg| = |H ∩ g−1Hg|. The result follows since the
intersection in the right-hand side is a subgroup of H. □

Lemma 3. Suppose that H is a finite subgroup, and a, b are elements of a group. For

aH = Hb to hold, it is necessary and sufficient that a, b ∈ N(H) and aH = bH.

Proof. If aH = Hb, then b ∈ aH whence a−1b ∈ H; equivalently, b−1a ∈ H, or a ∈ bH.

As a result, aH = bH, and, consequently, Hb = bH, so that b ∈ N(H). In a similar way

we get a ∈ N(H). The opposite direction is trivial: if a, b ∈ N(H) and aH = bH, then

aH = bH = Hb. □

Lemma 4. Suppose that H is a subgroup, and g /∈ H is an element of a group. For the

union H ∪ gH to be a subgroup, it is necessary and sufficient that g2 ∈ H.

Proof. If H ∪ gH is a subgroup, then g−1 ∈ H ∪ gH whence, indeed, g−1 ∈ gH, and then

g2 ∈ H. Conversely, if g2 ∈ H, then H ∪ gH is easily seen to be closed under the “skew

multiplication” (a, b) 7→ a−1b. □

Lemma 5. Suppose that H is a finite subgroup of a group G. For an element g ∈ G, the

double H-coset HgH has size |HgH| = |H| if and only if g ∈ N(H).
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Proof. Write S = HgH. Then gH ⊆ S and Hg ⊆ S. Hence, |S| = |H| if and only if

gH = Hg; that is, if and only if g ∈ N(H). □

We will use the box principle in the following form.

Lemma 6. Suppose that A is a finite, nonempty subset of a group G. If g1, g2 ∈ G are

group elements with r(g1) + r(g2) > |A|, then g−1
1 g2 ∈ A−1A.

Proof. For i ∈ {1, 2}, let Ai be the set of all those elements a ∈ A the inverse of which

appears as the first factor in some representation gi = a−1b with b ∈ A. Thus, |Ai| =
r(gi), and from r(g1) + r(g2) > |A| and A1, A2 ⊆ A it follows that A1 and A2 have a

common element; that is, there are a, b1, b2 ∈ A such that g1 = a−1b1 and g2 = a−1b2.

Consequently, g−1
1 g2 = b−1

1 aa−1b2 = b−1
1 b2 ∈ A−1A. □

We need the following result of Kemperman and Wehn.

Theorem 2 (Kemperman-Wehn). If A and B are finite, nonempty subsets of a group,

then |AB| ≥ |A|+ |B| − r(g) for any element g ∈ AB.

Quoting from [O84],

“Theorem 2 goes back to results of L. Moser and P. Scherk in the case of

abelian groups, and was proved for nonabelian groups by J. H. B. Kem-

perman and (independently) D. F. Wehn. For proof see Kemperman’s

paper [K56].”

3. Proof of Theorem 1: sufficiency

If G is a group, H is a finite subgroup of G, and A is a subset of G contained in

an H-coset and satisfying |A| > 3
5
|H|, then A−1A = H by the box principle, whence

|A−1A| < 5
3
|A|. Thus, condition (i) of the theorem is sufficient for A to satisfy |A−1A| <

5
3
|A|, and it also implies the corresponding part of the last assertion of the theorem. We

now prove a similar result for condition (ii).

Proposition 1. Let H be a finite subgroup of a group G, and suppose that A ⊆ aH ∪ bH

where a, b ∈ G are elements with a−1b ∈ N(H) and (a−1b)2 /∈ H. If |A| > 9
5
|H|, then

|A−1A| < 5
3
|A|; moreover, in this case A−1A is a disjoint union of H and two double

H-cosets of size |H| each.
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Proof. The assumption |A| > 9
5
|H| implies that the cosets aH and bH are disjoint. We

write A = aX ∪ bY with X, Y ⊆ H and notice that

A−1A = (X−1a−1 ∪ Y −1b−1)(aX ∪ bY )

= ((X−1X) ∪ (Y −1Y )) ∪ (X−1a−1bY ) ∪ (Y −1b−1aX). (1)

Since |X| + |Y | = |A| > |H|, we have either |X| > 1
2
|H|, or |Y | > 1

2
|H|; accordingly,

by the box principle, either X−1X = H, or Y −1Y = H. Thus, (X−1X) ∪ (Y −1Y ) = H.

Furthermore, since a−1b ∈ N(H), we have a−1bY ⊆ a−1bH = Ha−1b; consequently, there

is a subset Y ′ ⊆ H such that a−1bY = Y ′a−1b, and then X−1a−1bY = X−1Y ′a−1b =

Ha−1b, asX−1Y ′ = H in view of |X−1|+|Y ′| = |X|+|Y | > |H|. Therefore |X−1a−1bY | =
|H|. Taking the inverses, we get |Y −1b−1aX| = |H|. Hence, |A−1A| ≤ 3|H| < 5

3
|A|.

Next, X−1a−1bY = Ha−1b = a−1bH shows that X−1a−1bY is a double H-coset, and so is

its inverse Y −1b−1aX = Hb−1a = b−1aH. Finally, the two double H-cosets are disjoint

from H and from each other thanks to the assumption (a−1b)2 /∈ H. □

Next, we prove a lemma that provides a simple criterion for a given set to satisfy

conditions (i) and (ii) of Theorem 1; this lemma will be used in the proof of necessity in

the next section.

Lemma 7. Let H be a finite subgroup of a group G, and suppose that A ⊆ aH ∪ bH

where a, b ∈ G. If |A| > 9
5
|H| and |A−1A| ≤ 3|H|, then A satisfies either condition (i),

or condition (ii) of Theorem 1, according to whether (a−1b)2 ∈ H or (a−1b)2 /∈ H.

Proof. As in the proof of Proposition 1, we write A = aX ∪ bY with X, Y ⊆ H, and

use (1). If a−1b /∈ N(H), then Ha−1b ̸= a−1bH by the definition of the normalizer

subgroup; hence,

|X−1a−1b ∩ a−1bY | ≤ |Ha−1b ∩ a−1bH| ≤ 1

2
|H|

by Lemma 4. Without loss of generality, we assume a, b ∈ A whence 1 ∈ X ∩ Y .

Consequently, both X−1a−1b and a−1bY lie in X−1a−1bY , and we conclude that

|X−1a−1bY | ≥ |X−1a−1b ∪ a−1bY | = |X|+ |Y | − |X−1a−1b ∩ a−1bY | > |H|.

Taking the inverses, we get |Y −1b−1aX| > |H|, and then from (1) we obtain |A−1A| >
3|H|, contradicting the assumptions. Thus, a−1b ∈ N(H). By Lemma 3, the set F :=

H ∪ (a−1b)H is a subgroup if and only if (a−1b)2 ∈ H. In this case A ⊆ aF and

|A| > 9
5
|H| = 9

10
|F | > 3

5
|F | so that A satisfies condition (i). Finally, if (a−1b)2 /∈ H,

then A satisfies condition (ii). □
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4. Proof of Theorem 1: necessity

Let A ⊆ G be a finite subset with |A−1A| < 5
3
|A|, and suppose that the assertion

is true for all sets A ⊆ G satisfying either |A−1A| < |A−1A|, or |A−1A| = |A−1A| and
|A| > |A|. We show that A is contained ether in a coset, or in a union of two cosets, as

specified in the conditions (i) and (ii) of the theorem.

We write Q := A−1A; thus, |A| > 3
5
|Q|.

Recall, that for an element g ∈ G, we have denoted by r(g) the number of representa-

tions g = a−1b with a, b ∈ A. By Theorem 2,

r(g) ≥ 2|A| − |Q|, g ∈ Q.

Let Q+ := {g ∈ Q : r(g) > |Q|− |A|}. We notice that Q+ is nonempty as, for instance,

it contains the identity element. Also, Q+ is stable under inversion.

For any g ∈ Q and g0 ∈ Q+ we have

r(g) + r(g0) > (2|A| − |Q|) + (|Q| − |A|) = |A|.

Hence, g−1
0 g ∈ Q by Lemma 6, implying g ∈ g0Q. It follows that g0Q = Q for any

g0 ∈ Q+. Therefore, Q+Q = Q and, considering the inverses, QQ+ = Q. Letting

F := ⟨Q+⟩, we furthermore conclude that QF = FQ = Q. As a result,

(AF )−1(AF ) = FA−1AF = FQF = FQ = Q = A−1A. (2)

From these equalities and by the choice of A, either AF = A, or there is a finite

subgroup H ≤ G such that one of the following holds:

– AF is contained in a left H-coset, |AF | > 3
5
|H|, and (AF )−1(AF ) = H;

– AF meets exactly two left H-cosets, |AF | > 9
5
|H|, and (AF )−1(AF ) is a disjoint

union of H and two double H-cosets of size |H| each.

In the first case, recalling (2) we get Q = (AF )−1(AF ) = H; as a result, A is contained

in a single left H-coset, and |A| > 3
5
|Q| = 3

5
|H|; thus, A satisfies condition (i).

In the second case, with (2) in mind, |Q| = |(AF )−1(AF )| = 3|H| showing that

|A| > 3
5
|Q| = 9

5
|H|. By Lemma 7, the set A satisfies condition (i) or condition (ii).

Having ruled out the exceptional cases where AF is contained in a single coset, or in

a union of two cosets, we proceed with the proof using the additional assumption

AF = A, F = ⟨Q+⟩. (3)
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Thus, A is a union of left F -cosets, and so is Q = ∪a∈Aa
−1A. It follows that F ⊆ Q.

Indeed, we have F = Q+: here the inclusion Q+ ⊆ F is trivial, while F ⊆ Q+ follows by

observing that if g ∈ F , then r(g) = |A| > |Q| − |A| by (3), whence g ∈ Q+.

As we have just observed, if g ∈ F , then r(g) = |A|. Conversely, if g ∈ Q is an element

with r(g) = |A|, then r(g) > |Q| − |A| showing that g ∈ Q+ = F . As a bottom line,

r(g) = |A| if and only if g ∈ F .

If g ∈ G is an element with r(g) > |Q| − |A|, then g ∈ Q+ = F , whence, indeed,

r(g) = |A|. Thus, we have

2|A| − |Q| ≤ r(g) ≤ |Q| − |A|

for all elements g ∈ Q with r(g) < |A|. We remark that the first of the two inequalities

is just Theorem 2, but the second one is new and, in our view, is quite amazing.

We write k := |A|/|F |. If k = 1, then A is a single left F -coset; therefore A satisfies

condition (i). If k = 2, then A is a union of two left F -cosets and |A−1A| < 5
3
|A| < 4|F |;

therefore, applying Lemma 7, we conclude that A satisfies condition (ii). Suppose thus

that k ≥ 3.

Since A and Q are unions of left F -cosets, both |A| and |Q| are divisible by |F |. From
this observation and |Q| < 5

3
|A| = 5

3
k|F |, we get

|Q| ≤
(⌈

5

3
k

⌉
− 1

)
|F |. (4)

Furthermore, to any representation g = a−1b with a, b ∈ A there correspond |F | rep-
resentations g = (fa)−1(fb), f ∈ F . (Notice that these representations are “legal” in

the sense that both af and bf lie in A.) Therefore, also r(g) is divisible by |F |, for any
g ∈ G. Moreover, since g is constant on any left F -coset, for any given positive integer

m, the number of elements g ∈ Q with r(g) = m is divisible by |F |;
Let Q0 and Q1 denote the sets of all those elements g ∈ Q with r(g) ≤ 1

2
|A| and with

r(g) > 1
2
|A|, respectively. We write N0 := |Q0| and N1 := |Q1| and define

σ0 :=
∑
g∈Q0

r(g) and σ1 :=
∑
g∈Q1

r(g);

thus, N0 +N1 = |Q|, σ0 + σ1 = |A|2, and N0, N1, σ0, and σ1 are all divisible by |F |. The
sum σ0 has N0 terms, each of them divisible by |F | and not exceeding 1

2
|A| = 1

2
k|F |;

therefore, σ0 ≤
⌊
1
2
k
⌋
|F |N0. The sum σ1 has N1 terms, of them |F | are equal to |A|, and
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each of the remaining N1 − |F | terms does not exceed |Q| − |A|. Therefore,

σ1 ≤ |F ||A|+ (N1 − |F |)(|Q| − |A|) = 2|F ||A| − |Q||F |+N1|Q| −N1|A|.

Letting n := N1/|F | and q := |Q|/|F |, we obtain

|A|2 ≤
⌊
1

2
k

⌋
|F |N0 + 2|F ||A| − |Q||F |+N1|Q| −N1|A|,

k2|F | ≤
⌊
1

2
k

⌋
(N0 +N1) + 2|A| − |Q|+

(
q −

⌊
1

2
k

⌋)
N1 − kN1,

k2 ≤
(⌊

1

2
k

⌋
− 1

)
q + 2k +

(
q − k −

⌊
1

2
k

⌋)
n.

Since q ≤
⌈
5
3
k
⌉
− 1 by (4), we derive that

k2 ≤
(⌊

1

2
k

⌋
− 1

)(⌈
5

3
k

⌉
− 1

)
+ 2k +

(⌈
5

3
k

⌉
− 1− k −

⌊
1

2
k

⌋)
n.

A routine analysis shows that for k ≥ 3, the last inequality is false if n ≤ k. (Hint:

exact computation for 3 ≤ k ≤ 6, substituting n = k and using the crude estimates

⌊k/2⌋ ≤ k/2 and ⌈5k/3⌉ ≤ (5k + 2)/3 for k ≥ 7.) Therefore n ≥ k + 1; that is,

|Q1| = N1 ≥ |A|+ |F | (k ≥ 3). (5)

From Lemma 6 and the definition of the set Q1, we have g
−1
1 g2 ∈ Q for any g1, g2 ∈ Q1.

Consequently, Q−1
1 Q1 ⊆ Q whence, by the choice of A, there is a finite subgroup H ≤ G

such that one of the following holds:

1. Q1 is contained in a left H-coset and |Q1| > 3
5
|H|;

2. Q1 meets exactly two left H-cosets and |Q1| > 9
5
|H|.

We investigate these two cases separately.

Case 1: There is a finite subgroup H ≤ G such that Q1 is contained in a left H-coset

and |Q1| > 3
5
|H|. We have

|A| < |Q1| and Q1 ⊆ H = Q−1
1 Q1 ⊆ Q; (6)

here the inequality follows from (5), the first inclusion from 1 ∈ Q1, the equality from

|Q1| > 3
5
|H| and the box principle, and the second inclusion from Lemma 6.

Consider the coset decompositionA = A1∪· · ·∪An where n = |AH|/|H| andA1, . . . , An

are nonempty and reside in pairwise distinct left H-cosets. We number the sets Ai so
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that |A1| = min{|Ai| : 1 ≤ i ≤ n}. Fix a1 ∈ A1. In view of a−1
1 A2 ∪ · · · ∪ a−1

1 An ⊆ Q \H
and (6),

|Q| ≥ |H|+ (|A2|+ · · ·+ |An|) > |A|+
(
1− 1

n

)
|A| =

(
2− 1

n

)
|A|.

Since |Q| < 5
3
|A|, we conclude that n = 1 or n = 2. If n = 1, then A resides in a single

H-coset; moreover, |A| > 3
5
|Q| > 3

5
|H|, showing that A satisfies condition (i).

Suppose now that n = 2. Fix a1 ∈ A1 and a2 ∈ A2. Then

5

3
|A| > |Q| = |H|+ |Q \H| ≥ |H|+ |a−1

1 A2| = |H|+ (|A| − |A1|)

whence |A1| > |H| − 2
3
|A| ≥ 1

3
|A|. Similarly, from

5

3
|A| > |Q| = |H|+ |Q \H| ≥ |H|+ |a−1

1 A2| = |H|+ |A2|

we obtain |A2| < 2
3
|A|. Therefore,

1

3
|H| < |A1| ≤

1

2
|A| ≤ |A2| <

2

3
|A|. (7)

Consider the set S := (A1 × A2) ∪ (A2 × A1) and the mapping φ : S → Q defined by

φ(a, b) := a−1b. Since the image Im(φ) is disjoint from H, we have Im(φ) ⊆ Q \Q1. By

the definition of the set Q1, every element of Im(φ) has at most 1
2
|A| inverse images in

S. As a result,

|Q| − |Q1| ≥ Im(φ) ≥ |S|
|A|/2

= 4
|A1||A2|

|A|
.

Comparing this estimate with (5) and with the assumption |Q| < 5
3
|A|, we obtain |A|2 >

6|A1||A2|. This leads to |A2| > (2 +
√
3)|A1|, contradicting (7).

Case 2: There is a finite subgroup H ≤ G such that Q1 meets exactly two left H-

cosets and |Q1| > 9
5
|H|. Since 1 ∈ Q1, we can write Q1 = B0 ∪ B1 where B0 ⊆ H

and B1 ⊆ gH with some g ∈ G \ H. From B1 = Q1 \ H and Q−1
1 = Q1 we get

B−1
1 = Q−1

1 \ H = Q1 \ H = B1 ⊆ gH. Thus, B1 ⊆ gH ∩ Hg−1. By Lemma 2, and in

view of

|B1| = |Q1| − |B0| ≥ |Q1| − |H| > 4

5
|H|

we have gH = Hg−1; that is, H = gHg, and it is easily seen that H ∪ gH is a subgroup.

Moreover, Q1 = B0 ∪ B1 ⊆ H ∪ gH and |Q1| > 9
5
|H| > 3

5
|H ∪ gH|. This takes us back

to the Case 1 considered above.
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5. Concluding remarks

What is the structure of a finite set A with 5
3
|A| < |A−1A| < 2|A|? We make the

following conjecture.

Conjecture 1. Let A be a finite subset of a group G, and let n be a positive integer. If

|A−1A| <
(
2− 1

n+ 1

)
|A|,

then there are a finite subgroup H ≤ G and a subset A0 ⊆ A of size |A0| ≤ n con-

tained in a single left N(H)-coset such that A ⊆ A0H, |A0H| = |A0||H|, and |A| >(
2− 1

n+1

)−1
(2|A0| − 1)|H|.

Moreover, A−1A = A−1
0 A0H and |A−1A| = (2|A0| − 1)H.

The inequality |A| >
(
2− 1

n+1

)−1
(2|A0| − 1)|H| is worth commenting on. It can be

shown that, along with other conclusions of the conjecture, it implies |A| ≤ |A0H| <
|A|+ n

2n+1
|H|. Thus, this inequality ensures that A is a dense subset of the set A0H.

The particular case n = 1 of the conjecture follows from Olson’s theorem, while the

case n = 2 is the main result of this paper.

As the following proposition shows, in the appropriate range, Conjecture 1 gives a

necessary and sufficient condition for A to satisfy |A−1A| <
(
2− 1

n+1

)
|A|.

Proposition 2. Let A be a finite subset of a group G, and let n be a positive integer.

Suppose that there are a finite subgroup H ≤ G and a subset A0 ⊆ A of size |A0| ≤
n contained in a single left N(H)-coset such that A ⊆ A0H, |A0H| = |A0||H|, and

|A| >
(
2− 1

n+1

)−1
(2|A0| − 1)|H|. If, in addition, |A−1A| < 2|A| then, indeed, |A−1A| <(

2− 1
n+1

)
|A|.

We omit the proof since, anyway, Proposition 2 is not of much importance as long as

Conjecture 1 remains open.
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