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1. Roth’s problem on three-term progressions

In 1953 K. F. Roth [37] proved that the largest subset of [N ] :=

{1, 2, ..., N} containing no three-term arithmetic progression x, x +

d, x + 2d has size o(N). Working through his proof (suitably inter-

preted) one can even get a quantitative bound of the formO(N/ log logN).

This then naturally leads to the following question.

Roth’s Problem. What is the size of the largest subset S ⊆ [N ]

containing no three-term arithmetic progressions?

Most of the progress on this problem since Roth’s seminal work

makes heavy use of a “density increment argument” pioneered by him.

The idea is that if one assumes S ⊆ [N ] has no three-term progression,

and if |S| = αN and N > N0(α), then one can show that there exists

an arithmetic progression P := {a, a+d, a+2d, ..., a+kd} ⊆ [N ], where

k > N1/2−o(1), such that |S ∩ P | ≥ α(1 + cα)|P | for some c > 0. By

translating and rescaling, one then has a progression-free set S ′ ⊆ [N ′],

|N ′| > N1/2−o(1), |S ′| ≥ α(1+cα)|N ′|. Iterating this (staying above the

N0(α) threshold for the interval length), eventually one reaches a con-

tradiction if α > c′/ log logN , because if α is this big, one of the sets S ′′
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so constructed would have to have density 1, yet also is progression-free.

Thus, if the original S is progression-free, then |S| ≪ N/ log logN .

Further refinements on the idea included achieving a greater den-

sity increment per iteration relative to the length of the interval [26,

42], resulting in bounds for progression-free sets of the type |S| <

N(logN)−δ, for some 0 < δ < 1/2. Replacing density-increments

on sub-progressions (as in Roth’s method) with density-increments on

so-called Bohr-neighborhoods, Bourgain [10] achieved a bound of the

form |S| ≪ N
√

log logN
logN

. Then in a series of papers by himself [11] and

Sanders [38, 39] the bound was improved to |S| < N(logN)−1+o(1). Im-

proving this bound even a little bit (lowering the −1 to −1− ε) would

establish the special case k = 3 of the following famous conjecture [19],

which if proved would give a far-reaching generalization of Szemerédi’s

Theorem [43].

Erdős-Turán Conjecture on k-term arithmetic progressions.

If A is a set of positive integers such that
∑

a∈A 1/a diverges, then for

every k ≥ 2, the set A contains a k-term arithmetic progression.

The best quantitative bounds in the direction of addressing this the-

orem in the general case (for all values of k) are due to Leng, Sah, and

Sawhney [28], who recently proved that for every k ≥ 5 there exists

ck > 0 such that the largest subset S of [N ] having no k-term arithmetic

progressions has size |S| ≪ N exp(−(log logN)ck). This improved

upon Gowers’s bounds [21] that |S| ≪ N(log logN)−2−2k+9

. In the case

k = 4, Green and Tao [24, 25] established the bound |S| ≪ N(logN)−c

for some 0 < c < 1.

Bloom and Sisask [7] were the first to prove the above conjecture

for k = 3, building on the work of Bateman and Katz [5], by show-

ing that for N > N0 the largest progression-free set S ⊆ [N ] has size

|S| < N(logN)−1−ε (for some explicit ε > 0). Then, in a remark-

able breakthrough, Kelley and Meka [27, 8] improved this to |S| <

N exp(−c(logN)1/12), which Bloom and Sisask [9] refined to give |S| <
N exp(−c′(logN)1/9). These bounds are not far off from the best possi-

ble, since from the work of Behrend [6] it was known that there exists a

three-term progression-free set S ⊆ [N ] satisfying |S| > N exp(−(2
√
log 4+
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o(1))
√
logN). This was improved by Elkin [17] by a small factor tend-

ing to infinity, and then recently Elsholtz, Hunter, Proske, and Sauer-

mann [18] gave a substantial further improvement |S| > N exp(−(C +

o(1))
√
logN), where C = 2

√
log(24/7) log(2) < 2

√
log 4.

2. Finite field settings

As we saw, the main difficulty in Roth’s original approach was getting

a high enough density increment of the set along progressions, relative

to their (the progressions) size. Meshulam [31] considered what this

argument gives in the case where instead of working with subsets of

intervals in the integers, one works with subsets of the finite field vector

space Fn
p . The case p = 3 is known as the cap set problem.

In Meshulam’s treatment of the general case Fn
p , rather than getting

a density increment inside a sub-progression at each iteration (of Roth’s

argument), one gets a density increment on affine subspaces (translates

of subspaces) t+V where dim(V ) = n−1. Since these affine subspaces

are pn−1 in size, one can run the density increment argument for more

steps than if one’s sets S were drawn from integer intervals [N ] when

N ≈ pn; and, furthermore, the whole argument is more elegant and

simpler than the integer case, while also containing many of the same,

or analogous, difficulties. In fact, this is true of many additive combi-

natorial problems [22, 48, 34]. Thus, it is often fruitful when trying to

solve a problem over Z, say, to first see what one can prove for an Fn
p

analogue of that problem.

In the end, Meshulam proved that the largest subset S ⊆ Fn
p without

three-term progressions (or solutions to x+ y = 2z) satisfies

|S| <
cpp

n

n
.

Meshulam’s proof uses Fourier methods, but in [30] Lev developed a

purely combinatorial approach to achieve the same bounds.

Significantly improving upon Meshulam’s bound was considered a

major challenge, and Terry Tao [44] even once referred to the overall

problem of understanding the size of sets without three-term progres-

sions in Fn
3 as “perhaps my favorite open question”.

Bateman and Katz were the first to make major progress on it,

proving that there exists ε > 0 such that in the case p = 3 one has

|S| ≪ 3n/n1+ε. Then Ellenberg and Gijswijt [16], building on our work
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in [13], used algebraic methods to prove that for every prime p ≥ 3

there exists δp > 0 such that |S| ≪p (p− δp)
n. Further algebraic gener-

alizations of the method were given by Tao, Sawin [45, 46], and Petrov

[35].

More recently, Kelley and Meka [27] have developed a combinatorial

argument (one ingredient of which being [14]) to prove weaker bounds,

but still much stronger than other combinatorial and Fourier-analytic

approaches, achieving |S| ≪ 2−κpn1/9
pn.

Lower bounds were proved by Edel [15] for p = 3 giving the exis-

tence of a set S without three-term progressions that satisfies |S| >
(2.217389)n. This then was improved upon by Tyrrell [47] to |S| >
(2.218)n, by Romera-Paredes et al [36] to |S| > (2.2202)n, and by

Naslund [33] to |S| > (2.2208)n. Recently, Elsholtz, Hunter, Proske,

and Sauermann [18] achieved a general lower bound of the shape |S| >
(cp)n for some c > 1/2 for all primes p ≥ 3.

3. The rise of algebraic methods

Algebraic methods have been used in several ways in the fields of

finite geometries, additive combinatorics, and additive number theory.

For example, the Chevalley-Warning theorem can be used to quickly

prove a special case of Olson’s theorem [1] (among many other uses of

it); and Stepanov’s method [41] can be used to count points on curves

over a finite field.

More relevant to our discussion is perhaps Alon’s Combinatorial

Nullstellensatz [2], one version of which is:

Theorem 1. Suppose F is a field and let f(x1, ..., xn) ∈ F [x1, ..., xn].

Suppose the degree deg(f) of f is
∑n

i=1 ti, where each ti is a non-

negative integer, and suppose the coefficient of
∏n

i=1 x
ti
i in f is nonzero.

Then if S1, ..., Sn are subsets of F with |Si| ≥ ti + 1, there are s1 ∈ S1,

s2 ∈ S2, . . . , sn ∈ Sn so that f(s1, ..., sn) ̸= 0.

To apply this sort of result, one needs to encode the combinatorial

problem under consideration in terms of vanishing of some low-degree

polynomial, and then show that the properties of the polynomial (re-

flecting the original combinatorial problem) are inconsistent with the

low-degree condition.
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This style of reasoning was used in our paper [13] on three-term

progressions in Zn
4 , as we will now discuss.

In [29] Lev had generalized Meshulam’s result to arbitrary finite

additive abelian groups G, showing that if S ⊆ G has no three-term

progressions then |S| < 2|G|/rank(2G). Here, 2G = {2g : g ∈ G},
and rank(H) denotes the unique number r in a decomposition H ∼=
Zd1 ⊕ · · · ⊕ Zdr , d1|d2| · · · |dr. Note that in the case G = Zn

4 we have

that rank(2G) = n, so |S| < 2 · 4n/n. Using Fourier methods, Tom

Sanders [40] gave a stronger bound |S| = o(4n/n). And in our work

[13] we used algebraic methods to prove

|S| < 4cn, where c ≈ 0.926,

thus giving an “exponential improvement” over previous results.

A key lemma in our work was the following.

Lemma 1. Let F be a field. Suppose n ≥ 1 and d ≥ 0 are integers, and

let f ∈ F[x1, ..., xn] be a multilinear polynomial (that is, all monomials

are square-free) of degree at most d. Suppose A ⊆ Fn satisfies |A| >
2
∑

0≤i≤d/2

(
n
i

)
. If f(a − b) = 0 for every a, b ∈ A with a ̸= b, then

f(0) = 0.

The way this lemma can be used to deduce strong bounds on progression-

free sets in Zn
4 is as follows. (We will not give here an optimized version

of the argument with the bounds claimed above, but rather just an

easy-to-follow one.)

First, let Fn ≤ Zn
4 be the subgroup of the 2n elements of {0, 2}n, and

for a subset A ⊆ Zn
4 we let At denote the set Fn ∩ (A − t). We note

that At, At + At and 2 ∗ A = {2a : a ∈ A} all are subsets of Fn.

As an additive group we have that Fn is isomorphic to Fn
2 ; and so we

can treat these three sets as subsets of Fn
2 . In fact, if ρ : Fn → Fn

2 is

the obvious group isomorphism, we can define A′ = ρ(2∗A) and define

A′
t = ρ(At).

Now we suppose we have a set S ⊆ Zn
4 having no three-term pro-

gressions. And let us suppose, for simplicity of discussion, that each of

the sets St either has 0 elements or has N elements, for some N (one

could imagine removing some elements from S until this “either empty

or N elements” condition holds, without much shrinking the size of S).

So, |S ′| = |ρ(2 ∗ S)| = |S|/N .
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The set S having no three-term progressions implies that all the

restricted sumsets St+̂St + 2t = {s1 + s2 + 2t : s1, s2 ∈ St, s1 ̸= s2}
are disjoint from 2 ∗ S. The same will be true of S ′

t+̂S ′
t + ρ(2t) ⊆ Fn

2

and S ′ = ρ(2 ∗ S) ⊆ Fn
2 .

The idea now is to let f(x1, ..., xn) ∈ F2[x1, ..., xn] be a multilinear

polynomial of as low a degree as possible that vanishes on S ′ = Fn
2 \S ′.

Given a degree d we know there are
∑d

i=0

(
n
i

)
square-free monomials

in x1, ..., xn of degree at most d; and an easy degrees-of-freedom or

dimension-counting argument shows that if this sum exceeds |S ′| =

2n − |S|/N , then there exists such a polynomial (that vanishes on S ′)

of degree at most d. Furthermore, this polynomial f will be non-zero

and does not vanish on all Fn
2 .

We will assume d is minimal such that this holds.

Now, for every t such that S ′
t ̸= ∅, since S ′

t+̂S ′
t+ρ(2t) ⊆ S ′, we would

have the polynomial g(x1, ..., xn) = f((x1, ..., xn) + ρ(2t)) vanishes on

S ′
t+̂S ′

t. By Lemma 1 if |S ′
t| = N > 2

∑
0≤i≤d/2

(
n
i

)
, then we would also

have that g((0, ..., 0)) = 0, which means f(ρ(2t)) = 0. Since this holds

for all those t with S ′
t ̸= ∅ it would follow that f also vanishes on

S ′. Since f vanishes on S ′ and S ′, f vanishes on all of Fn
2 , which is a

contradiction.

If one now considers the possibilities for |S| and N > |S|/2n so that

both N ≤ 2
∑

0≤i≤d/2

(
n
i

)
and

∑d
i=0

(
n
i

)
> 2n − |S|/N hold, one will see

this forces |S| < 4cn for some c > 0.

Ellenberg and Gijswijt [16] adapted the algebraic argument in the

Zn
4 case to prove similar bounds for Fn

p . Their proof turned out to be

simpler, partly because they didn’t have to deal with an analogue of

cosets of Fn.

They proved that for every prime p ≥ 3 there exists 0 < cp < 1 such

that if S ⊆ Fn
p contains no three-term progressions, then

|S| ≪ pcpn.

Taking inspiration from these papers, Terry Tao [45, 46] introduced

what he called a “symmetric formulation” of the methods from [13] and

[16]. He and Will Sawin [46] introduced the so-called slice-rank, which

for the case of 3 variables x, y, z (the case of interest to proving bounds

on sets without three-term progressions) can be defined as follows.
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Slice-Rank. Suppose that F is a field, A ⊆ F is a finite set, and f is

an F-valued function on the cross product A × A × A. The slice-rank

of f is the minimum number d ≥ 1 such that one can write f as a

linear combination (over F) of d functions of the forms g1(x)h1(y, z),

g2(y)h2(x, z), and g3(z)h3(x, y).

And one of the results he proved about this is the following.

Lemma 2. Suppose A is a finite subset of a field F and suppose that

f(x, y, z) : A×A×A → F is the “diagonal map” – that is, f(x, y, z) = 1

if x = y = z, and is 0 otherwise. Then the slice-rank of f is |A|.

The idea for how to apply this is to assume S ⊆ Fn
3 , say, has no

three-term progressions. Then, f(x⃗, y⃗, z⃗) =
∏n

i=1(1− (xi + yi + zi)
2) is

the diagonal map on S × S × S, because first note that f takes either

the value 0 or 1 (it cannot take the value −1); and then in order to

be 1 we would have to have all xi + yi + zi = 0, which would mean

x+y+ z = 0. Then, since S has no three-term progressions, this could

only happen if x = y = z.

Next, we expand f into monomials xi1
1 · · ·xin

n yj11 · · · yjnn zk11 · · · zknn , where

the exponents are in {0, 1, 2} and have sum ≤ 2n (since the degree

of f is 2n). And now the idea is to write this linear combination of

monomials as a linear combination of functions of the form f(x)g(y, z),

f(y)g(x, z), and of the form f(z)g(x, y). For each choice of i1, ..., in with

i1 + · · · + in ≤ 2n/3 we group all the yℓ’s and zm’s together that ap-

pear and call that g(y, z), and then f(x) = xi1
1 · · ·xin

n . We do a similar

grouping for each choice of j1, ..., jn when j1 + · · · + jn ≤ 2n/3 for all

the remaining terms (after excluding those where i1 + · · ·+ in ≤ 2n/3

we already counted) in the monomial expansion of f , except we get

functions of the form f(y)g(x, z); and then the remaining terms will all

have k1+ · · ·+kn ≤ 2n/3, and we get functions of the form f(z)g(x, y).

If one counts up the number of different functions of each of the

three types (f(x)g(y, z) or f(y)g(x, z) or f(z)g(x, y)), one gets a linear

combination involving at most

3
∑

a+b+c=n, b+2c≤2n/3
a,b,c≥0

n!

a!b!c!
.
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terms. Since this is an upper-bound on the slice-rank of f , Lemma 2

above tells us it is also an upper bound on |S|. And now it is not hard

to see that this upper bound has the form 3κn for some 0 < κ < 1.

4. Further applications

One of the early applications of the various methods [13, 16, 46]

from the previous section was the work of Naslund and Sawin [32] on

upper bounds for 3-sunflower-free sets. That is, suppose F is a family

of subsets of {1, 2, ..., n} that does not contain a triple of sets A,B,C

with the property A ∩B = A ∩ C = B ∩ C.

Erdős and Szemerédi [20] proved that that any such family F must

satisfy |F| < 2n exp(−c
√
n). Then, Alon, Shpilka, and Umans [3]

showed that upper bounds on the size of capsets (progression-free sets

in Fn
3 ) translate into upper bounds on the size of 3-sunflower-free sets;

and then using the capset bounds from [16] one obtains a bound of

the shape |F| < cn, for some c =
√
1 + 2.7552 = 1.9378.... However,

Naslund and Sawin [32] further strengthened this by applying the poly-

nomial method directly to the problem (rather than passing through

capset bounds) to obtain the stronger bound |F| < (2/22/3)n(1+o(1)) ≈
1.889881574n(1+o(1)).

In [4] Blasiak, Cohn, Grochow, Naslund, Sawin, and Umans used

these algebraic methods to rule out the existence of a certain type

of fast matrix-multiplication algorithm that could multiply two n × n

matrices in time n2+o(1). This type of algorithm had been conjectured

to exist by Cohn, Kleinberg, Szegedy, and Umans [12].

5. Directions

Here we list a few questions worthy of consideration.

• Can algebraic methods be used to estimate the size of the largest

set S without a k-term progression in Fn
p , for k ≥ 4?

• Can one use the algebraic methods in the restricted difference

settings? For example, how large can a subset S ⊂ Fn
3 be given

that S does not contain any three-term arithmetic progression

with the difference in {0, 1}n?
• Along the same lines – but more general – is the question of

addressing exactly which problems can be solved by the kinds
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of algebraic methods in this paper. The work [35] is perhaps a

path towards addressing this.

• Can these methods be extended somehow to address questions

in the integers? Progress on three-term progressions in subsets

of integer intervals is already fairly advanced, thanks to the

recent work of Kelley and Meka [27]; however, it would be nice

to have other approaches.

• Is there a way to unify all the different algebraic methods for

proving combinatorial statements, such as uses of Chevalley-

Warning, Stepanov’s method, Alon’s Nullstellensatz, and now

the methods for proving strong bounds on sets without three-

term arithmetic progressions? Are they all really “the same

method” in some sense?
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