testslpl.c, mysieepl.asm ®»337 ny*asin

m213 nexpeber nraoin DOS-2 PUROnwemmp 1T N3%awmh nvasInn
NYWYY ADYDN NIIYH PR TI1IpY JDIRAY [799EY NIPUODA 11133n3 whwnn?
Pyn ,mysieep win m XI7 Y9PPT RPAITT NYvisANR ApcYR .DYUT DRY
»patavon sleep-2 > .C now v sleep mavwIn Yw o cvtD wInn
DR N9%IVY NYYIWR TATAR IHTD NWIDR R OINIR obw quntn nbapn mysleep
N>3590% nawdknt b YWIRW NYOW AT LATT RI? AP NRDPR NTaann
.(qonn 5y nvant naten bwn?) 0vanT DUwInvR wmnd

npeop) 8 mpvob DY navbnwn NIYZBRI K OIRD ATH onwn v wanenn
L0aw2 oopyd 18,2065 nwnonn npropnw Aanan 7anms (R

TS nmemvId  MIYLYT NYhap R0 nwyab nwiy mysleep bw winvmow
54DV N3°VIT N3N MaEw YIn) 8 npUoba  nbbun n1vwvian 1na Timer
182065-2 nvpom "y 1Iyw npoodh NIvIWn TBTINR T noenn , (RTapnn
P17 T LAX-2 9mw mysleep nxxann nx .10000-2  nooxw xP%  pavrm
.navaw 5w o’ 37 9pon® 7933 pitTa 290y wenb 152 pUoon

m3vpt nR oTpn Timer 7aswynn .DOR2 counter awa 7120 brnxn mysleep

T Nk oy aRPYY v mysleep-t , 1w npvod 257 nnk oy A

TWRS P9 TAmM R¥YY RIW ARYIPI A3mn Pw 9P 1w napeoba 210790
. IXD byypa yzans ata 210yR nwyab  LaRTAnT (pT hR 92 Tmn

an nRDIPN nYTIpD

MOV Counter,0
Delay:

CMP AX,Counter
JA Delay

219y IV-2 8 nova2 nx qrmen mysleep vt ARDIPAND NRYXY MR 1B
LRI TIpY

Y19 whw NIpTOD BRIRD XM 8 TPUODY 173N KOO NUIsw MRl

Sepvvn NIcwLIT RITPS R°7 Y RIRT? 02T DA APDIY RV 7MINT
x11 Timer %w 79pn 15+0% .nvaapnn 8 npeopa

o-(f



Timer PROC FAR

; PUSHF
CALL DWORD PTR Timer Offs
;NC Counter
;RET

Timer ENDP

Timer Offs »anr 7°» x¥»3 Timer Seg-w 772197 nR P¥an "IR KD
qavR Yy v5 L hApeDD WIANHI M) R0 YICH J109KRD TIPR ©IRADI Wi
.7m0% TweR Tomn CS bw

70°33 Y5 nasnon xeq 35 1y (4*8 = ) 32 nowiabidak nawnow 2% wvw
ny1ipen L 1V-2 8 Toon

MOV AX,ES:[32]

MOV Timer Offs

MOV AX,ES:[34]

MOV Timer Segq,AX

NYTIPEM APIRY NIRRT 0°107 YW IR NITIPD on
CLI
MOV WORD PTR ES:[32],0FFSET Timer
MOV ES:[341,CS
STI
R b¥am Y3ROIRD .upeDda Paprun nactwsas Timer wacvvwinh nvvap on
927 ,BIPAD MIRD MIRD 2OREN) mysleep-9 Timer-w  ¥IIv CIRG 77120

.0777D) B ¥3aP2 I°7 07 DX 193 hIana 1R YW



/* testslpl.c - test mysleep */
#include <stdio.h>
extern void mysleep( int secs )
volid main()
{
int n=20;
printf ("Before mysleep(%d):\n", n);
myslaep(n);
printf{"After mysleep(%d):\n", n);

} /% main */

C:\temprtec -ml -r- testslpl.c mysleepl.asm

Turbo C++ Version 3.00 Copyxight (¢) 1922 Borland Internatiomal
testeglpl.c:

mysleepl.asm:

M™irbo Assembler Version 3.1 Copyright (c) 1988, 1992 Borland
International

Assembling file: mysleepl.ASM

Error messages: None
Warning messages: None
Passas: 1

Remaining memory: 390k

Turbo Link Version 5.0 Copyright (c¢) 1992 Borland International
Avallable memory 4107872

C:\temp>testslpl

Bafore mysleep(20):

After mysleep(20):

C:\temp>

; mysleepl.asm - demonstrate Interrupt sexvice routine
i

.MODEL LARGE

.STACK 100h

«DATA
cie2 DD 182065
clo0 DD 10000
i
-.CODE
-.386

Timer OFffs DW 0
Timer_ Seg DW O
Counter DW 0O

-
r

; My Ctrl-Break ISR
Timer PROC FAR
H
PUSHF
CALL DWORD PTR Timer Offs

r

INC Counter
Return:

IRET H
H

Timer ENDF g—\g /



L LT

_mysleap PROC FAR
PUBLIC _mysleep

PUSH BP
MOV BP,SP
PUSH ES
H
MOV AX,0
MOV ES,AX
MOV AX,ES:[32] ; Praeserve original ISR pointers

MOV Timer Offs,AX
MOV AX,ES:[34]
MOV Timer Seg,AX

r

; Change Timer pointers

CLI

MOV WORD PTR ES:[32],0FFSET Timer
MOV ES:[34],CS

STI
MOV AX,DS
MOV ES,AX

-

- i

XOR EAX,EAX
MOV AX, [BP+6]

: Compute AX
MUL Cl82 ;

Ratrieve secsg parameter
aecs * 18.2065 to convert to ticks

I =

DIV C100
MOV Countex,0 ; Init counter
Delayl:

-
T

CMP AX,Counter
JA Delayl

wait n secs

-y

Raeturn to callex
Restore old Timer

LU T

LU

-

MOV AX,0

MOV ES,AX

MOV AX,Timer Offs ;
CLI

MOV ES:[32],AX

MOV AX, Timer_ Seag :
MOV ES:[34]1.,AX

8STI

POP ES

POP BP

RET ; return to caller
ENDP _mysleep

END

&)



Chapter 11

ROM BIOS
Keyboard Services

Accessing the Kevboard Services 216

" Service O0H {decimal 0): Read Next Kevboard Character 216
Service OlH_l (decimal 1): Report Whether Character Ready 217
Service (02H (decimal 2}; Ger Shift Status 217
Service 03H (decimal 3): Set Typematic Rate and Defay 218
Service 05H (decimal 5); Keyboard Write 219 -
Service 10H {decimal 16): Exiended Keyboard Read 220
Service 11H (decimal 17): Get Extended Keystroke Stams 220
Service 12H .(decimal 18): Get Extended Shift Status 220~

Comments and Example 221

|
|
|
|
1
|
|
|



PROGRAMMER’S GUIDE TO THE IBM PC AND PS/2

Although the ROM BIOS services for the keyboard are not as numerous or as
complicated as those for the display screen (Chapter 9) and for diskette
drives (Chapter 10), the ROM BI0S keyboard services are important enough
to warrant their own chapter. All other ROM BIOS services are gathered
together in Chapter 12

T SV

1= 1 it o | LAy W et MTAM 3t | vmd i ne e

Accessing the Keyboard Services

The keyboard services are invoked with interrupt 16H (decimal 22). As with
alt other ROM BIOS services, the keyboard services are selected according to
the value in register AH. Figure 11-I lists the ROM BIOS keyboard servicss,

patriiess

s
brr

TR IR

: Service Description
;- 0OH Read Next Keyboard Character.
1 . : 01H Report Whether Characier Ready,
: : 02H Get Shift Status.
H i l a53H - Set Typematic Rate and Delay.
: [ 05H Keyboard Write.
! 10H Extended Kayboard Read.
. i 11H Get Extended Keystroke Status,
i : 12H Get Extended Shift Starus.

Figure 13-1. The ROM BIOS keyboard services.

Service 00H (decimal 0): Read Next Keyboard Character

Service 00H (decimal 0) reports the next keyboard input character, If a char-
acter is ready in the ROM BIOS keyboard buffer, it is reported immediately, .
If mot, the service waits until one is ready. As described on page 134, each
keyboard character is reported as a pair of bytes, which we call the main
and auxiliary bytes. The main byte, returned in AL, is either 0 for special
characters (such as the function keys) or else an ASCII code for ordinary
ASCII characters. The auxiliary byte, returned in AH, is either the character
LD for special characters ar the sitandard PC-keyboard scan code that iden-
tifies which key was pressed.

If no character is waiting in the keyboard buffer when service 00H is
called, the service waits — essentiaily freezing the program that called it—
untif a character does appear. The service we’'ll discuss next allows a pro-

gram to test for keyboard input without the risk of suspending program
execution.

g _—..1 ez g

T T




Chaprer 11: ROM BIOS Keyboard Services

Contrary 1o what some versions of the /BM PC Technical Reference
Manual suggest. services 00H and 01H apply to both ordinary ASCII charac-
ters and special characters. such as function keys.

Service 01H (decimal 1): Report Whether Character Ready

Service 01H (decimal 1) reports whether a2 keyboard input character is

- ready. This is a sneak-preview or look-ahead operation: Even though the
character is reported, it remains in the keyboard input buffer of the ROM
B1OS until it is removed by service 00H. The zero flag (ZF) is used as the sig-
nal: | indicates no input is ready; 0 indicates a character is ready. Take care
not to be confused by the apparent reversal of the flag values— 1 means no
and 0 means yes. in this instance. When a character is ready {ZF = 0), it is
reported in AL and AH. just as it is with service 00H.

This service is particufarly useful for two commonly performed pro-
gram operations. One is test-and-go. where a program checks for keyboard
action but needs to continue running if there is none. Usually, this is done to
allow an ongoing process 10 be interrupted.by a keystroke. The other com-
men operation is clearing the keyboard buffer. Programs can generally
allow users to tvpe zhead, entering commands in advance; however, in
some operations (for example, ar safety-check points, such as "'OK fo
end?"”) this practice can be unwise. In these circumstances, programs need
to be able to flush the keyboard buffer, clearing it of any input. The key-
board buffer is flushed by using services 00H and 0IH, as this program
outline demonstrates:

call sarvice OIH to test whether a c¢hdractar 7s avatlable in the
keyboard buffer
WHILE (IF = 0)
BEGIN
call service 00H ta remave character from keyhoard buffer
call sarvice OIH to test for another character
END

Contrary to what some technical reference manuals suggest. services
004 and O1H apply to both ordinary ASCII characters and special characters.
such as function keys.

Service 02H (decimal 2): Get Shift Status

Service 02H (decimal 2) reports the shift status in register AL. The shift
status is taken bit by bit from the first keyboard status byte, which is kept at

PNy

PR rhe e o gt PRt




PROGRAMMER'S GUUIDE TO THE IBM PC AND PS/2

Bir
76543210 Meaning .
X0 .. : Inserr siate: | = acrive
XL CapsLock: | = acrive
XL NumLock: | = acrive
N S Scrolllock: | = active
XL I = Alt pressed
..... X. . 1 =Cirl pressed
...... X. 1 = Left Shift pressed

....... X i =Right Shift pressed

Figure 11-2, The keyboard status bits returned 1o register AL usin g keyboard service 02H,

memory location 0040:0017H. Figure 11-2 describes the settings of each bir,
(See page 137 for information about the otier keyboard status byte ar
0040:0018H.) ’

Generally, service 02H and the starus bit information are not par-
ticularly useful. If you plan to do some fancy keyboard programming, how-
ever, they can come in handy. You’ll frequently see them used in programs

that do. unconventional things, such as differentiating between the left and
right Shift keys. - .

Service 03H (decimal 3): Set Typematic Rate and Delay

Service 03H (decimal 3) was introduced with the PCjr, but has been sup-
ported in both the PC/AT (in ROM BIOS versions dated 11/13/85 and later) and
in all PS/2s. It lets you adjust the rate ar which the keyboard’s typematic
function operates; that is, the rate at which a keystroke repeats automati-
cally while you hold down a key. This service also lers you to adjust the
Iypematic delay (the amount of time you can hold down a key before the
typematic repeat function takes effect),

To use this service, call interrupt 16H with AH = 03K, and AL = 05H.
BL must contain a value between 00H and 1FH (decimal 31) that indicates
the desired typematic rate (Figure 1 1-3). The value in BH specifies the type-
matic delay (Figure 11-4). The default typematic rate for the PC/AT is 10

characters per second; for PS/2s it is 10.9 characters per second. The default
delay for both the PC/AT and PS/2s is 500 ms, ’




Chapeer [t ROM BIOS Keyboard Servicas

00H =360
OIH=267

O0BH =109
GCH=100

02H = 24.0 0DH=9.2 18H =3.7

03H=2138 OEH =8.6 I9H =33 i
048 = 20.0 OFH=8.0 LAH=30 :
05H = 18.5 0H=175 IBH =27 i
06H = 17.1 LIH=6.7 ICH=25 ;
07H = 16.0 [2H=6.0 IDH =23 i
08H = 15.0 13H=3.5 IEH=2.1 |
09H = 13.3 14H=35.0 IFH=2.0

0AH=120 . I5H=46 20H through FFH - Reserved

Figure 11-3, Viulues for regicier BL in keyboard service O3H. The rates shown are in ) .
characters per second. . ; “

" 00H =250
0EH =500
02H =750
o3H=1000  ° _ - ,
04H through FFH - Reserved

Figure 11-4. Values for register BH in keyboard service 03H. The delay values shown are
in milliseconds. ' '

Service 0SH (decimal 5): Keyboard Write
Service 05H (decimal 3) is handy because it lets you store keysiroke data in
the keyboard buffer as if a key were pressed. You must supply an ASCII
code in register CL and a keyboard scan code in CH. The ROM BIOS places
these codes into the keyboard buffer following any keystroke data that may
already be present there. _ : 4
Service 05H lets a program process input as if it were typed at the 0 '
keyboard. For exampie, if you call service 65H with the following data, the i
result is the same as if the keys R-U-N-Enter were pressed:

CH = 13H. €L =~ 5ZH, call service 05H (the R key)
CH = 16H, (L = 55H. call service 05H (the U key)
CH = 31H, CL = 4EH, call service Q5H (the N xey)
CH = ICH, CL = 0OH, call service 035M {the Enter key)

137




Chapter t1: ROM BIOS Keyboard Services

00H = 30.0 0BH =109
0iH=26.7 0CH=10.0
02H=24.0 ODH=92
03H=213 CEH=8.6
04H =200 OFH=3.0
05H=18.5 I0H=735
06H=17.1 11H=6.7
07TH=16.0 1ZH=6.0
08H=13.0 13H=53
l4H =5.0
ISH=4.6 20H through FFH - Reserved

Figure 11-3, Viddues for register BL in keyboard service 03H. The rates shown are in
characters per second,

" 00H =250
0IH =500
02H = 750
03H=1000
04H through FFH - Reserved

Figure 11-4. Values for regisier BH in keyboard service 03H. The delay values shown are
in milliseconds. ‘ '

Service 05H (decimal 5): Keyboard Write

Service 05H (decimal 5) is handy because it lets vou store keystroke data in
the keyboard buffer as if a key were pressed. You must supply an ASCII
code in register CL and a keyboard scan code in CH. The ROM BIOS places
these codes into the keyboard buffer foliowing any keystroke data that may
already be present there.

Service 05H lets a program process input as if it were typed at the
keyboard. For example, if you call service 05H with the following data, the
result is the same as if the keys R-U-N-Enter were pressed:

CH = 13H, CL S2H, cal) service 05H {the R key)
CH = 16H, CL , calt service OSH (the U key)
CH = 314, CL . €all service O5H (the N key)
CH = 1CH, CL . ¢all service 05H (the Enter key)

3 f




PROGRAMMER’S GUIDE TO THETBM PC AND pS/2

If your program did this when-it detected that the F2 function key was
pressed, the result would be the same as if the word RUN followed by the
. Enter key had been typed. (If you use BASIC. this should sound familiar)
Beware: The keyboard buffer can hold only 15 character codes, so you
can call service 05H a maximum of 15 consecutive times before the buffer
overflows and the functiog fails,

Service 10H (decimal 16): Extended Keyboard Read

Service 10H (decimal t6) performs the same function as service OOH, but fers
you take full advantage of the 101/102-key keyboard: It returns ASCI1
character codes and keyboard scan codes for keys that don't exist on the
older 84-key keyboard, For example. the extra FIt and Fia keys found on
the 101/102-key kevboard are ignored by service 00M but can be read using
service |0H. - .

Another exampie: On the 101/102-key keyboard, an extra Enter key
appears 10 the right of the numeric keypad. When this. key is pressed,
service 00H returns the same character code {(ODH) and scan code (ICH)as it
daes for the standard Enter key. Service 10H lets you differentiate between
the two Enter keys because it returns a different scan code (EQH) for the
keypad Enter key. -

~ Service 11H (decimal 17): Get Extended Keystroke Status

Service 11H (decimal 17) is analogous 1o service 01H, but i1, too, lers youuse

the 101/102-key keyboard 0 fu]l advantage. The scan codes retirned in
register AH by this service distinguish between differesit keys en the
101/t02-key keyboard.

Service 12H (decimal 18): Get Extended Shift Status

Like services 10H and 11H. service I2H (decimal 18) provides additional
support for the 101/102-key kevboard. Service IZH expands the function of
service 02H to provide information on the exira shift keys provided on the
101/102-key keyboard. This service rerurns the same value in register AL as
service 02H (Figure 11-2), but it also feturns an additional byte of flags in
register AH (Figure 11-5).

This extra byte indicates the status of each individual Ctrl and Al
key. It also indicates whether the Sys Req, Caps Lock. Num Lock, or Scro]
Lack keys are currently pressed. This information lets you detect when a
USser presses any combination of these keys at the same time.




Chaprer 11: ROM BIOS Keyboard Services

Bit
76543210 Meaning

D Svs Req pressed
D Caps Lock pressed
X.o .. .. Num Lock pressed
Scroil Lock pressed
Co Right At pressed
DXL Right Ctrl pressed
. X, Left Alt pressed
X | LeftCul pressed

Figure 11—3 Extended kemboard status bits returned in register AH by kevboard service
12A.

Comments and Example

If you are in a position to choose between the keyboard services of your
programmi_ng' language_: or the ROM BIOS keyboard services, you could
safely and wisely use’either one. Although in some’ cases there are
arguments against using the ROM BIOS services directly, as with the diskette
services, those arguments do not apply as strongly to the keyboard services.
However, as always, you should fully examine the potential of the DOS
services before resorting to the ROM BIOS services; you may find all you
need there, and the DOS services are more long-lived in the ever—changing
environments of personal computers.

Most programming languages depend on the DOS services for their
keyboard operations, a factor that has some distinct advantages. One
advantage is that the DOS services allow the use of the standard DOS editing
operations on string input (input that is not acted on until the Enter key is
pressed). Provided that you do not need input control of your own, it can
save you a great deal of programming effort (and user education) to let DOS
handle the string input, either directly through the DOS services or
indirectly through your language’s services. But if you need full control of
keyboard input, you'll probably end up vsing the ROM BIOS routines in the
long run. Either way, the choice is yours.

Another advantage 10 using the DOS keyboard services is that the DOS
services can redirect keyboard input so that characters are read from a file
instead of the keyboard. If you rely on the ROM BIOS keyboard services, you
can’t redirect keyboard input, (Chapters 16 and 17 contain information on
input/output redirection.)

120




— e mmata e

PROGRAMMER'S GUIDE TQ THE IBM PC AND PS/2

222

For our assembly-language example of the use of keyboard services,
we’'ll get a lirtle fancier than we have in previous examples and show you a
complete buffer flusher. This routine will perform the action outlined under
keyboard service 01H. the report-whether-character-ready service.

STEXT SEGHENT byte public 'CODE’
ASSUME s _TEXT

PUBLIC _kbelear

_kbciear PROC near
push bp
mowv bp.sp
Lol moy T ah.l ; test whether buffer is empty
int 16h .
iz Loz : if sa, exit
. . moy ah.Q .
int 18h ; otherwise, discard data
jmp L2l : .. and loap
LQZ: . pop bp
ret
kbeTear " Enpe
~TEXT ENDS

The routine works by using imterrupt 16H, service OIH to check
whether the keyboard buffer is empty. If no characters exist in the buffer,
service O1H sets the zero flag, and execuring the instruction JZ L02 causes
the routine to exit by branching to the instruction labeled Lo2. If the buffer
still contains characters, however, service 01H clears the zero flag, and the
JZ L2 instruction doesn't jump. In this case the routine continues to the
tnstructions that cail service 00H to read a character from the buffer. Then
the process repeats because the instruction JMP L01 transfers control back to
label LOL. Sooner or later, of course, the repeated calls to service 00H empty-
the buffer, service OIH sets the zero flag, and the routine terminates.

Ameong the new things this buffer-flusher routine iilustrates is the use
of labels and branching. When we discussed the generalities of assembly-
language interface routines in Chapter 8, we mentioned that an ASSUME CS
statement is necessary in some circumstances, and you see one in action
here.

PNy




Chaper [i: ROM RIOS Keyboard Services

The ASSUME directive in this example tells the assembler thar the
labels in the code segment (that is. labels that would normally be addressed
using the CS register) do indeed lie in the segment whose name is _TEXT.
This may seem obvious, since no other segments appear in this routine.

Nevertheless, it is possible 10 write assembly-language routines in
which labels in one segment are addressed relative to some other segment
in such a case, the ASSUME directive would not necessarily reference the
segment within which the labeis appear. In later chapters you'll see
examples of this technique, but here the only Segment [0 worry about is the
- TEXT segment, and the ASSUME directive makes this fact explicit.




