runswapl.c, swaps.asm, swapll.asm, swaplZ2.asm R»347 N3*321N

NY35N2 B°HTaNR PY DR NOWUABR RN2YIZND KBTI NITA0AN
-v swapl6, swap32 nyvi>nn onn .Large-3 Small orP7ana vHamoxa
n35907 Sw (0v3w 0v9I32) Bhanws o7y Pw BPAm navyan swap_n

.71773Yn NURTIPT NYIDYIW 8°TvavIB *BY NR1pR

D17 9bP naRmAIT2 vawra 2T BYRan 0voTann
ooxyny Small B7ama §eawavand DYNaYINT 0YMYIYYDR MWW TIva -
gex¥»3 o7 Large 7w nivasana [BP+6]-v [BP+4] nmi3wna2

.[BP+10]-> [BP+6] n333n32

wosm® ovor hn Small $Tima DUw2vID2 DYWRRWYH TWROY 793 -
1veb awTd we Large Y12 niviana Ln3wmon 93 KA AN
WARST 132 TUYI DU TWAYIDE W BINADT 27597 DR VINAD AIRY

ES wamabin 9338 7wx> 8086 112ad2 nansy swapll.asm nva>s5nn

wantw Bw av0mm nyawa® TUMn >13DT wIRALT JAIR DIThaa avn

386-mm» Ymmw mT29vR DR NY¥am swaplZ.asm nv25inm LRYHD MWIT4b3
.GS-1 FS :D°DDY3 BAmAb "M3AIR 2 7T A0n NIILBP QTR P

/* runswapl.c - run swaps */

extern void swaplé(int *x, int *y);
extern void swap32{long int *x, long int *y);
extern void swap n(void *x, void *y, int n);

int main ()

{

int x=10, y¥=99;

long int w=333333, v=777777;

char strl[l0]="Hello", str2[l1l0]l="World!";

printf("x = %4, ¥y
swapl6é (&x, &Y);
printf ("x %d, v

%A\n", x, V);

%d\n", x, ¥)i

printf{"u = %14, v
swap32 (&u, &vV):;
printf("u = %1d, v = %1ld\a", u, Vv);

%ld\n", u, Vv);

printf("strl = %s, y = %s\n", strl, str2);
swap n(strl, strx2, 10);

printf("strl = %s, str2 = %s\n", stril, str2):
return 0;

} /* main */

E:\>tcc runswapl.c swaps.asm

Turbo C++ Version 3.00 Copyright (c¢) 1992 Borland International
runswapl.c:

swaps.asm:

Turbo Assembler Version 3.1 Copyright (c¢) 1988, 1992 Borland
International

Assembling file: swaps .ASM
Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 398k
Turbo Link Version 5.0 Copyright (c) 1992 Borland International
Available memoxry 4129872

E: \ACADEMIC\ASM>runswapl.exe

x = 10, vy = 99

x =99, y = 10

u = 333333, v = 777777
u = 777777, v = 333333
strl Hello, y = World!

strl = World!, str2 = Hello

[A

E:\>

swaps.asm - swap program model small

we w3 W

.MODEL SMALL
.CODE
.386

extern void swaplé(int *x, int *y);
[BP+4] [BP+6]

e W e

_swaplé PROC NEAR
PUBLIC _swaplé6
PUSH BP

MOV BP,SP

PUSH SI

PUSH DI

e

MOV SI, [BP+4]
MOV DI, [BP+6]
MOV AX, [SI]
XCHG AX, [DI]
MOV [SI],AX

e

POP DI
POP SI
POP BP
RET
swapl6é ENDP

extern void swap32(long int *x, long int *y);
[BP+4] [BP+6]

e we s --I

_swap32 PROC NEAR
PUBLIC _swap32
PUSH BP
MOV BP,SP
PUSH SI
PUSH DI

-e

MOV SI, [BP+4]
MOV DI, [BP+6]
MOV EAX, [SI]
XCHG BEBAX, [DI]
MOV [SI],EAX

e

POP DI
POP SI
POP BP

RET /;L’3~

_swap32 ENDP

extern void swap_n(void *x, void *y, int n);
[BP+4] [BP+61] [BP+8]

e e we s e

_swap_n PROC NEAR
PUBLIC _swap n
PUSH BP
MOV BP, SP
PUSH SI
PUSH DI
MOV SI, [BP+4]
MOV DI, [BP+6]
MOV CX, [BP+8]
JCXZ ToRetl
Aloopl:
MOV AL, [SI]
XCHG AL, [DI]
MOV [SI],AL
INC SI
INC DI

e

LOOP Aloopl

ToRetl:
POP DT
POP SI
POP BP
RET
_swap_n ENDP
END

|7

/* runswapl.c - run swaps */

extern void swaplée(int *x, int *y);
extern void swap32(long int *x, long int *y);
extern void swap n(wvoid *x, void *y, int n):;

int main ()

{

int x=10, y=99;

long int u=333333, v=777777;

char strl[10]="Hello", str2[l10]="World!";

printf("x = %4, y
swaplé (&x, &Y):
printf("x = %4, y

%Ad\n", x, v);

%d\n", x, ¥);

printf ("u = %14, v = %1ld\n", u, Vv);
swap32(&u, &Vv):

printf("u = %14, v %id\n", u, v);

printf ("strl = %s, y = %s\n", strl, str2):
swap n(strl, str2, 10);

printf("strl = %s, str2 = %s\n", strl, str2):
return 0;

} /* main */

E:\>tcc -ml runswapl.c swapll.asm

Turbo C++ Version 3.00 Copyright (c) 1992 Borland International
runswapl.c:

swapll.asm:

Turbo Assembler Version 3.1 Copyright (c¢) 1988, 1992 Borland
International

Assembling file: swapll.ASM
Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 397k
Turbo Link Version 5.0 Copyright (¢) 1992 Borland International
Available memory 4129616

E: \ACADEMIC\ASM>runswapl.exe

x = 10, y = 99
Xx =99, vy = 10
u = 333333, v = 777777
us= 777777, v = 333333

strl = Hello, y = World!l
strl World!, str2 = Hello { }L q

E:\>

swapl2.asm - swap program model large

- e we

.MODEL LARGE
.CODE
.386

extern void swaplé6(int *x, int *y);
[BP+6] [BP+10]

e We Wma we

_swapl6é PROC FAR
PUBLIC _swaplé
PUSH BP
MOV BP,SP
PUSH GS
PUSHE F8
PUSH ST
PUSH DI

L]

MOV SI, [BP+6]
MOV GS, [BP+8]
MOV DI, [BP+10]
MOV FS, [BP+12]

-

MOV AX,GS:[ST]
¥CHG AX,FS8:[DI]
MOV GS:[S8I],AX

L1}

POP DI
POP SI
POP FS
POP GS
POP BP
RET
swapl6 ENDP

extern void swap32(long int *x, long int *v};
[BP+6] [BP+10]

~a e we v]

_swap32 PROC FAR
PUBLIC _swap32
PUSH BP
MOV BP,SP
PUSH GS
PUSH FS
PUSH SI
PUSH DI

e

MOV SI, [BP+6]
MOV GS, [BP+8]
MOV DI, [BP+10]
MOV FS, [BP+12]
MOV EAX,GS: [SI]
XCHG EAX,FS:[DI]
MOV GS: [SI],EAX

L 1]

POP DI
POP SI
POP FS
POP GS

roe]t

_swap32 ENDP

[
r
v
f
-
r
»
r

.
r

extern void swap _n(wvoid *x, void *y,
[BP+£&] [BP+10]

_swap_n PROC FAR

-y

»
¥

PUBLIC _swap_n
PUSH BP
MOV BP,SP
PUSH GS
PUSH FS
PUSH SI
PUSH DI

MOV SI, [BP+6]
MOV GS, [BP+8]
MOV DI, [BP+10]
MOV FS, [BP+12]
MOV CX, [BP+14]

JCXZ ToRetl

Alcopl:

e

.
¥

MOV AL,GS: [SI]
XCHG AL,FS: [DI]
MOV GS: [SI],AL
INC SI

INC DI

LOOP Alcopl

ToRetl:

POP DI
POP SI
POP FS
POP GS
POP BP
RET

_swap_n ENDP

END

[%

int n);
[BP+14]

swapll.asm - swap program model large

wp me N

.MODEL LARGE
.CODE
.386

extern void swaplé(int *x, int *y):;
[BP+6] [BP+10]

e e W

-

_swaplé PROC FAR
PUBLIC _swaplb
PUSH BP
MOV BP,SP
PUSH ES
PUSH SI
PUSH DI

L 1]

MOV SI, [BP+6]
MOV DI, [BP+10]

-~

MOV ES, [BP+8]
MOV AX,ES: [SI]
MOV ES, [BP+12]
XCHG AX,ES:[DI]
MOV ES, [BP+8]
MOV ES:[SI],AX

-

POP DI
POP SI
POP ES
POP BP
RET
swapl6é ENDP

extern void swap32(long int *x, long int *y);
[BP+6] [BP+10]

e we we e |

_swap32 PRCC FAR
PUBLIC _swap32
PUSH BP
MOV BP,SP
PUSH ES
PUSH SI
PUSH DI

MOV SI, [BP+6]
MOV DI, [BP+10]

LT

MOV ES, [BP+8]
MOV EAX,ES:[S8I]
MOV ES, [BP+12]
. XCHG EAX,ES:[DI]
© MOV ES, [BP+8]
MOV ES:[8I],EAX

~s

POP DI
PCOP SI
POP ES
POP BP
RET

_swap32 ENDP / ;L.),

extern void swap n(void *x, wvoid *y, int n);
[BP+61 [BP+10] [BP+14]

wy ug g

- ma

¥

_swap_n PROC FAR
PUBLIC _swap_n
PUSH BP
MOV BP, SP
PUSH ES
PUSH ST
PUSH DI

L

MOV SI, [BP+6]

MOV DI, [BP+10]

MOV CX, [BP+14]
r

JCXZ ToRetl
Aloopl:

MOV ES, [BP+8]

MOV AL,ES:[SI]

MOV ES, [BP+12]

XCHG AL,ES:[DI]

MOV ES, [BP+8]

MOV ES:[SI],AL

INC SI

INC DI

LOOP Alocopl

¥

ToRetl:
POP DI
POP SI
POP ES
POP BP
RET

_swap_n ENDP
END

alues

1g the
gned)
ralues

ras an
arators

pare to
quality
sointer,

pointer,
exceed
back to
7FF, the
t1 from

er near
ointers,

n both a
they are

uch of its
;every 16
alue from

t address,
r segment

ier’'s Guide

address. For example, given the pointer 2F84:0532, we convert that to the
absolute address 2FD72, which we then normalize to 2FD7:0002. Here are a
few more pointers with their normalized equivalents:

0000:0123 (012:0003
0040:0036 0045:0006
5000:9407 594D:0007
7418:D03F 811B:0GOF

Now you know that huge pointers are always kept normalized. Why is this
important? Because it means that for any given memory address, there is
only one possible huge address—segment:offset pair—for it. And that
means that the == and != operators return correct answers for any huge
pointers.

In addition to that, the >, >=, <, and <= operators are all used on the full
32-bit value for huge pointers. Normalization guarantees that the results
there will be correct also.

Finally, because of normalization, the offset in a huge pointer automatically
wraps around every 16 values, but—unlike far pointers—the segment is
adjusted as well. For example, if you were to increment B11B:000F, the
result would be 811C:0000; likewise, if you decrement 811C:0000, you get
811B:000F. It is this aspect of huge pointers that allows you to manipulate
data structures greater than 64K in size.

There is a price for using huge pointers: additional overhead. Huge pointer
arithmetic is done with calls to special subroutines. Because of this, huge
pointer arithmetic is significantly slower than that of far or near pointers.

Turbo C’s Six Memory Models

Avoiding overhead-—except when you want it—is just what Turbo C allows
you to do. There are six different memory models you can choose from:
tiny, small, medium, compact, large, and huge. Your program requirements
determine which one you pick. Here’s a brief summary of each:

Tiny: As you might guess, this is the smallest of the memory
models. All four segment registers (CS, DS, S5, ES) are set
to the same address, so you have a total of 64K for all of
your code, data, and arrays. Near pointers are always used.
Use this when memory is at an absolute premium. Tiny
model programs can be converted to .COM format by
linking with the /t option.

Small: The code and data segments are different and don’t over-
: lap, so you have 64K of code and 64K of static data. The
stack and extra segments start at the same address as the

Chapter 12, Advanced Programming in Turbo C 339

[

data segment. Near pointers are always used. This is a
good size for average applications.

Medium: Far pointers are used for code, but not for data. As a result,
static data is limited to 64K, but code can occupy up to 1
Mb. This is best for large programs that don’t keep much
data in memory.

Compact: The inverse of medium: Far pointers are used for data, but
not for code. Code is then limited to 64K, while data has a
1-Mb range. This choice is best if your code is small but
you need to address a lot of data.

et =2 :

Large: Far pointers are used for both code and data, giving both a
1-Mb range. It is needed only for very large applications.

Huge: Far pointers are used for both code and data. Turbo C
normally limits the size of all static data to 64K; the huge
memory model sets aside that limit, allowing static data to
occupy more than 64K.

ey,
e e

=

The following illustrations (Figures 12.2 through 12.7) show how memory
in the 8086 is apportioned for the six Turbo C memory models.

Segment Registers: Segment Size:
£ C5, DS, 58
3 @ 1 _TEXT class 'CODE' T
b} code
-
_DATA class "DATA’
DGROUP initialized data
gm
N SP(TOS)— >R pace
SF
<Y Starting SP——p

Figure 12.2: Tiny Model Memory Segmeantation

Turbo C User's Guide

ssult,
vto 1
much

a, but
has a
11 but

botha

Jns.

1rbo C
e huge
data to

nemory

K byes

ace

s User's Guide

Segment Registers: Segment Size:
& g F 3 CS =
3] -TEXT class "CODE' up to 64 K bytes
: code
DS, 58
_DATA class TIATA"
initialized data
DGROUP -
_BSS class 'BSS'
upinitiatized data
- '>up to 64 K bytes
Free
SP (TOS) Space
Starting SP- »
FAR HEAP up to rest of memory
2
4
=3
nay
Figura 12.3: Small Medel Memory Segmentation
Segment Registers: Sepmeni Slze:
3 E 4 C8 ——p
- TEXT class 'CODE' each sfile
= code vp to 64 K bytes
DS, 55— .,
; (_DATA class DATA
S~ 4 initialized data
_BSS class 'BSS'
{CS points to uninitialized data
one
sﬁlzuaﬁme) Sup 1o 64 K bytes ‘
HEAP .
DGROUP é ;
g‘ree -
SP (TOS) 1 pace
STACK
Starting SP——3" A i
FAR HEAP up to rest of memory :
-55 Free i
Ty Space

apter 12, Advanced Programming in Turbo C

Figure 12.4: Medium Model Memory Segmentation

Segment Registers: Segment Slze:
5y 1\ CS, DS - -
_TEXT ¢lass '"CODE' to 64
3 g de up K bytes
P
_DATA class 'DATA’
initialized data
DGROUP up to 64 K byles
_BSS class 'BSS
uninitialized data
58 ’
Free
Space
SP (TOS)—»
STACK up to 64 K bytes
Startlng SP—=
g up to rest of memory
£ Free
Tey Space
Figure 12.5: Compact Made! Memory Segrmentation
i : {CS points 1o
only one
sfile at a time)
Ccs
Segment Reglsters: . Segment Slze:
E2 A Ccs -
=‘ 3 g { 'l'E}g‘d(gass '‘CODE' each sfile
! to 64 K byte:
5o 2 DS w bytes
! _DATA class DATA
i initialized data
o DGROUP up to 64 K bytes
H _BSS class 'BS§'
I
S .
i J § Free
i Space
SP (TOS)—
; up to 64 K bytes
i Startlng SP—3
! up to rest of memory
1
i {-‘,E Free
| E3v Space

Figure 12.6: Large Model Memory Segmentation

Turbo C User's Guide

oty

mory

lide

{CS and DS point

1o only one
sfile at a time)
cs
Segment Reglsters; Segment Slze:
§ A - i b_ each sfil
. sfile
3 @ 'I'Exc'(l)‘dclpss CODE up 1o 64 K byies
< b3 \)
DS L sfile) DATA class DATA each sfile
| initialized data up 1o 64 K bytes
—
58 Free
Space
SP (TOS) =i
STACKT up to 64 K bytes
Starting SP L
% EEAP i up to rest of memory
<2 Free
gs‘. v Space

Figure 12.7: Huge Model Memory Segmentation

Table 121 summarizes the different models and how they compare to one
another. The models are often grouped according to whether their code or
data models are small (64K) or large (1 Mb); these groups correspond to the
rows and columns in Table 12.1. So, for example, the models tiny, small,
and compact are known as small code models because, by default, code
pointers are near; likewise, compact, large, and huge are known as large
data models because, by default, data pointers are far. Note that this is also
true for the huge model—the default data pointers are far, not huge. If you
want huge data pointers, you must declare them explicitly as huge.

Chapter 12, Advanced Frogramming in Turbo C 343

[D3

