פוינטרים לפונקציה וגרסאות מיוחדות של פקודת המכונה CALL
פוינטר לפונקציה, למשל ב-C:

 int (*fp)(int);

fp הינה פוינטר לפונקציה המקבלת פרמטר שלם ומחזירה שלם, קרי:
· fp הוא משתנה מידע
· הוא משתנה המכיל כתובת לזיכרון (נקודה בזיכרון בחלק הביצועי)
· פוינטר לפונקציה משמשת להסתעפות עקיפה לפונקציה.

· לדוגמא
y = (*fp)(x);
או
y = fp(x);

פירושו "הסתעף להיכן fp מצביע"
int sqr(int x)
{
 return x*x;
} /* sqr */

הפקודה
fp = sqr;
גורמת ל-fp להצביע לפונקציה sqr.

שימוש בפוינטר לפונקציה (כמו בשימוש בפוינטר בכלל) נבדלים מגישה ישירה:
· גישה נוספת לזיכרון (לקרוא את הכתובת)
· שבהזדמנויות שונות הפקודה שמשתמשת בפוינטר תיגש ליעדים שונים.

ההסתעפות של פוינטרים לפונקציה ממומשת ע"י גרסאות מיוחדות של פקודת המכונה CALL:
· CALL Reg16 הסתעפויות NEAR בלבד,מימוש פוינטר לפונקציה, למשל:
MOV CX,_fp
CALL CX
· CALL Mem16 הסתעפויות NEAR
· CALL Mem32 הסתעפויות FAR

אחד האספקטים של ניהול משתנים של טורבו C:
התמיכה ברקורסיה היא אוטומטית, קרי:
· פונקציה רקורסיבית ממומשת כמו כל פונקציה אחרת.
· סכמת המשתנים המשמשת את כל הפונקציות גם תומכת ברקורסיה.
· לצורך מימוש רקורסיה:
1. קריאה רקורסיבית מחייבת הקצאה מחדש של שטחי פרמטרים ומשתנים לוקליים, ושימור כתובת חזרה
2. חזרה מרקורסיה מחייבת שחרור השטח המשתנים הלוקליים, הפרמטרים ושליפת כתובת החזרה האחרונה.
כל זה נעשה ממילא ע"י הסכמה במחסנית.
[bookmark: _GoBack]מצב אחד שבו תוכניתני אסמבלי חייבים לאמץ את מוסכמות מימוש משתנים של הקומפילרים הוא אם הם מעונינים לממש אלגוריתם רקורסיבי באסמבלי.

מימוש מספרים "ממשיים" ברמת החומרה.
מספרים ממשיים מיוצגים אחרת משלמים, בשיטת "הנקודה הצפה" (מספרים פיזיקליים או מדעיים):

ביט סימן * מספר מנורמל * בסיס סדר גודל
לדוגמא:
· * 5.874 * 10 43

המחשב משתמש בפורמט בינארי:
המספר הנורמל הוא:
 בין 1.0 ...1.999
הבסיס 2

