התייחסות לזיכרון ברמת התוכנית
ברמת התוכנית הגישה לזיכרון היא תמיד יחסית לאוגר סגמנט.

2 סוגי גישות לזיכרון:
· לקריאת קידוד של פקודת מכונה
· למידע

גישה לזיכרון לקריאת פקודה תמיד CS:IP.
גישה לזיכרון למידע – יש צורות רבות נראה סקירה.

היכן בדיוק מצביע אוגר הסגמנט?

ב-8086: תוכן אוגר הסגמנט * 16.
במחשבים של היום המציאות הרבה יותר מורכבת (ארכיטקטורה, מערכות הפעלה).

התייחסויות לזיכרון לקריאת קידוד של פקודה תמיד CS:IP.

איזה סוגי התייחסויות לזיכרון כמידע יש?

אוגר סגמנט: כל אחד מאוגרי הסגמנטים: CS,DS, SS, ES, FS,GS.
היסטים:
16 ביט
32 ביט

היסטים 16 ביט:
BX או BP (או אף אחד משניהם), SI או DI (או אף אחד משניהם) וקבוע (או בלעדיו).

בחירת אוגר הסגמנט (לגישה למידע).

אם אנחנו רוצים, אפשר לציין את אוגר הסגמנט במפורש:
למשל:
MOV AX,ES:[BX+SI]

אם אוגר הסגמנט לא מצוין בפקודה, הוא נבחר למענינו לפי כללי ברירת מחדל.
הכללים הללו הם טובים מספיק בכדי שנוכל סמוך עליהם רוב הזמן.
גם אם אין ציון אוגר סגמנט, הגישה היא עדיין לפי אוגר כזה.
בכל מקרה כל גישה לזיכרון ברמת התוכנית היא לפי אוגר סגמנט.

רקע לכללי ברירות מחדל לאוגרי סגמנט.

ליבלים labels:
קבועי כתובות יחסיים (קבועי היסטים) בעצם קבועים סמליים.

כללי בחירת אוגר סגמנט

1. ציון מפורש – לפי מה שנכתב בפקודה.
כללי ברירת מחדל:
2. האם BP מופיע בסוגריים המרובעות. במידה וכן יבחר אוגר הסגמנט SS.

3. האם יש label בפקודה? אם כן אז: אם מוגדר תחת .CODE יבחר CS, אם תחת .DATA יבחר DS.

4. בכל מקרה שנותר נבחר DS.

מעבר למעבד 386 ואילך.

אוגרי סגמנטים: נוספו האוגרים FS ו-GS.
היסטים:
16 ביט – אותם כללים כמו ב-8086.

נוסף היסטים 32 ביט:

r32 + n*r32p + 32קבוע

כאשר
r32 – אוגר כללי 32 ביט
r32p – ESPאוגר כללי 32 ביט למעט n – {1, 2, 4, 8}

מספרים בינאריים:
מקדמים של פולינום חזקות של 2.
2 צורות התייחסות למספרים שלמים:
· חסרי סימן
· עם סימן

כל מעבד – גודל האוגרים הכלליים קבוע (8086 – 16 ביט, 386 -32 ביט) תחומי המספרים קבועים מראש ותמיד יש בעיה אפשרית של גלישה אריתמטית.
גלישה של חסרי סימן נקרא carry
גלישה של עם סימן נקרא overflow.

[bookmark: _GoBack]

