מימוש תת-תוכניות
(פונקציות, פרוצדורות, מתודות, שגרות ...)
באסמבלי נושא כבד הדורש לא מעט רקע.
עקרונות המימוש הם מקרה פרטי של רעיונות מורכבים עוד יותר.

נושא הראשון:
 מחסנית המערכת.

מחסנית - מבנה נתונים הצובר ומספק נתונים בסדר של נאי"ר – נכנס אחרון יוצא ראשון LIFO – Last In First Out

נהוג להגדיר מחסנית ע"י 2 הפעולות:
PUSH נתון
מוסיפה נתון למאגר
POP יעד
מעתיק ליעד את הנתון הכי פחות ותיק שעדיין שם וגורע את הנתון מהמאגר.

באופן כללי, יש 2 מימושים אפשריים למחסנית:
· מימוש מקושר
· מימוש רציף.

במעבדי אינטל X86:
מחסנית המערכת היא מחסנית הממומשת במימוש רציף כאשר המילוי של הנתונים הוא מהסוף להתחלה.

מחסנית המערכת ממומשת בזיכרון האלקטרוני הרגיל של המחשב.

התמיכה ברמת החומרה למחסנית:
אוגר סגמנט SS
אוגר "מצביע" SP
אוגר מצביע BP
וכן סדרה של פקודות מכונה, בעיקר:
PUSH
POP
PUSHF
POPF

באופן כללי, מחסנית המערכת ממומשת בשילוב של חומרה ותוכנה.
האוגר SP קובע היכן נכתב נתון ב-PUSH ומהיכן נקרא נתון ב-POP.
השימוש במחסנית המערכת היא לא רק כמחסנית קלאסית
(קרי: לא נשתמש רק ב-PUSH ו-POP).

רוב הזמן ניגש לתוך החלק הפעיל של המחסנית באמצעות האוגר BP.
שיטת העבודה:
PUSH BP
MOV BP,SP
……
ים-PUSH למיניהם
SUB SP,k
….
והרבה פקודות נוסך
MOV [BP-c],AX
MOV [BP+c],AX
וכמובן גם בכיוונים ההפוכים:
MOV AX,[BP-c]
MOV AX,[BP+c]
בסופו של דבר נראה משהו כמו
MOV SP,BP
POP BP

מימוש פרוצדורות
שילוב של חומרה ותוכנה
התמיכה בחומרה לפרצדורות:
· מחסנית המערכת
· פקודות מכונה:
CALL
RET
מהי בעצם פרוצדורה?
פרוצדורה היא קוד ביצועי בתוך קובץ ה-exe שלנו.

פקודת המכונה CALL:
· פקודת הסתעפות בלתי מותנית
· באופן אוטומטי שומרת את כתובת הפקודה העוקבת בזיכרון במחסנית.
פקודת המכונה RET:
· פקודת הסתעפות בלתי מותנית
· שולפת את יעד ההסתעפות מראש המחסנית.

אחד השימושים העיקריים של מחסנית המערכת היא לשמש יעד סטנדרטי לשימור ושיחזור ערכי אוגרים.

בשלב זה נתייחס לפקודות
CALL label
הסתעפות ליעד קבוע בחלק הביצועי של התוכנית.

פרמטרים
פרמטרים אינם נתמכים ישירות בחומרה, הם ממומשים ברמת התוכנה.

