סיכום תרגול 2
1. INT 21h
INT 21h הינו פנייה לספריית תוכניות שירות של מערכת ההפעלה DOS. בקורס "מערכות הפעלה" נראה שלסוג כזה של תוכניות יש את השם "קריאות מערכת" ושסיפוק תוכניות שירות כגון אלו הן אחת מעיקרי תפקידיו של מערכת הפעלה. מבחינה מעשית, יישום שרץ תחת מערכת הפעלה (בחייחוד היום), מוציא לפועל את רצונו בעיקר דרך תוכניות שירות כגון אלו. קוד של יישומים עושים בעיקר קבלת החלטות מה הם רוצים שיתבצע, אבל ברגע שהיישום רוצה לתת ביטוי חיצוני למה שהוא עשה למשל במובן של קלט מהמשתמש או פלט למסך/דיסקים הוא חייב לפנות למערכת.
פקודת המכונה INT היא פקודת הסתעפות מסוג מיוחד שנקרא "פסיקת תוכנה". כשנבדר על פסיקות נקראה כיצד היא פועלת. מה שמיוחד בה היא שהמסתעפת מחוץ לקוד של התוכנית הנוכחית. אגב, Linux משתמש לאותה מטרה ש-DOS מממש ב-INT 21h בפקודה INT 80h.

כאשר אנחנו מסתעפים ל-INT 21h אנחנו מגיעים לקוד סדרן שמפנה את המעבד לרוטינת שירות לפי הערך שהוא מוצא באוגר AH. יש שם מספר לא מבוטל של רוטינות, בין השאר לפתיחה/קריאה/כתיבה של קבצים, שינוי הספרייה הנוכחית וכו'.
בקורס מספיק שתכירו 3 מהם:
· אופציה AH=9 שזה הדפס תוכן הזיכרון מהנקודה המוצבעת ע"י DS:DX עד ל-‘$’ הראשון
· אופציה AH=1 שזה קרא מקש ascii בודד מהמקלדת (עם echo) והחזר אותו ב-AL
· אופציה AH=2 שזה הדפס את תו שקוד ה-ascii שלו ב-DL

2. המלצה לשיטת עבודה בתכנות באסמבלי
תכנות אלגורתם מורכב באסמבלי אינו פיקניק ושיטת עבודה שתחסוך לכם הסתבכויות שניתנות למניעה היא כדלקמן:
· תפתחו את התוכנית בכמה שלבים
· בשלב ראשון תממשו אותו בשפת עילית, רצוי C.
· תתרגמו ידנית את התוכנית ב-C לאסמבלי במודל small:
1. תבנו את המסגרת של התוכנית.
2. תממשו ב-.DATA את כל המשתנים של השפה העילית באותם שמות (כולל הפרמטרים).
3. תאתחלו את הפרמטרים ע"י העתקה מהמחסנית של הערכים.
4. תאתחלו את המשתנים המקומיים
5. תממשו את הקוד הביצועי של התוכנית לפי המבנים שנלמדו בקורס, מומלץ לפי המימושים האינטואטיביים.
6. אחרי הפיתוח והדיבוג של התוכנית, אפשר להכניס יעול, כמו ביטול משתנים לטובת אוגרים או מימושים יעילים של לולאות.
7. הסבה למודל Large אם נדרש.
דוגמא,
נניח שברצונינו לממש bublesort באסמבלי.
ננמש את האלגוריתם בשפה עיךית (C במקרה הזה):
void bublesort(int vec[], int n) /*****/
{
 int i, j, flag = 1;

 for (i = 0; (i < n) && flag; i++)
 {
 flag = 0;
 for(j = n-1; j > i; j--)
	if (vec[j] < vec[j-1]) /******/
	 {
	 flag = 1;
	 swap(&vec[j], &vec[j-1]); /*****/
	 }
 }
}

עכשיו נממש אותו באסמבלי:

1. תבנו את המסגרת של התוכנית:
;
; abubs.asm
;
 .MODEL SMALL
 .DATA
 .CODE
PUBLIC _bublesort
 .386
;
; extern void bublesort(int vec[], int n);
; [BP+4] [BP+6]
_bublesort PROC NEAR
 PUSH BP
 MOV BP,SP
 PUSH SI
 PUSH DI
;

;

 POP DI
 POP SI
 POP BP
 RET
_bublesort ENDP

 END

2. מימוש ב-DATA של כל המשתנים:
 .DATA
vec DW ?
n DW ?
i DW ?
j DW ?
flag DW ?

3. אתחול משתני הפרמטר:

 MOV AX,[BP+4]
 MOV vec,AX
 MOV AX,[BP+6]
 MOV n,AX
;
4. אתחול משתנים אוטומטיים:
MOV flag,1

5. תרגום ידני אל יתר הקוד:
 MOV i,0
For1:
 MOV AX,i
 CMP AX,n
 JNL Endfor1
 CMP flag,1
 JNE Endfor1
;
 MOV flag,0

 MOV AX,n
 DEC AX
 MOV j,AX
For2:
 MOV AX,j
 CMP AX,i
 JNG Endfor2
If1:
 MOV SI,j
 ADD SI,SI ; si =2*j
 ADD SI,vec ; SI = &vec[j]
 MOV AX,[SI]
 CMP AX,[SI-2]
 JNL Skip1
 MOV flag,1
 XCHG AX,[SI-2]
 MOV [SI],AX
Skip1:

 DEC j
 JMP For2
Endfor2:

 INC i
 JMP For1
Endfor1:

התוכנית המלאה:
;
; abubs.asm
;
 .MODEL SMALL
 .DATA
vec DW ?
n DW ?
i DW ?
j DW ?
flag DW ?

 .CODE
PUBLIC _bublesort
 .386
;
; extern void bublesort(int vec[], int n);
; [BP+4] [BP+6]
_bublesort PROC NEAR
 PUSH BP
 MOV BP,SP
 PUSH SI
 PUSH DI
;
 MOV AX,[BP+4]
 MOV vec,AX
 MOV AX,[BP+6]
 MOV n,AX
;
 MOV flag,1
 MOV i,0
For1:
 MOV AX,i
 CMP AX,n
 JNL Endfor1
 CMP flag,1
 JNE Endfor1
;
 MOV flag,0

 MOV AX,n
 DEC AX
 MOV j,AX
For2:
 MOV AX,j
 CMP AX,i
 JNG Endfor2
If1:
 MOV SI,j
 ADD SI,SI ; si =2*j
 ADD SI,vec ; SI = &vec[j]
 MOV AX,[SI]
 CMP AX,[SI-2]
 JNL Skip1
 MOV flag,1
 XCHG AX,[SI-2]
 MOV [SI],AX
Skip1:

 DEC j
 JMP For2
Endfor2:
 INC i
 JMP For1
Endfor1:
;
 POP DI
 POP SI
 POP BP
 RET
_bublesort ENDP

 END
[bookmark: _GoBack]
