
חשוב להפנים בפרוצדורות:
· פרוצדורה היא קוד בינארי בתוך קובץ ה- exeשלנו. קריאה לפרוצדורה היא הסתעפות מנקודה בקוד שלנו לנקודה אחרת בקוד שלנו.
· הסתעפות לפרוצדורה הוא מקרה פרטי של תופעה נפוצה במחשבים: עצירת תוכנית אחת, העברת שליטה לתוכנית אחרת, תוך כוונה לחדש את התוכנית שנעצרה.
· התמיכה ברמת החומרה לפרוצדורות הן פקודות המכונה CALL ו-RET. הפקודה CALL מבצעת, מלבד ההסתעפות, חישוב כתובת חידוש התוכנית הנעצרת ושמירה שלה, ופקודת המכונה RET משתמשת בכתובת הזאת לביצוע החזרה.

פרמטרים
· החומרה לא תומכת ישירות בפרמטרים.
· במהלך ההיסטוריה של מחשבים היו מספר דרכים להעביר פרמטרים.
· השפות המודרניות מעבירות פרמטרים דרך המחסנית.

מוסכמות העברת פרמטרים של טורבו C
(בינתיים מודל small)
· דוגמא לסכמה של העברת פרמטרים דרך המחסנית
· הסכמה כללית, בדוקה ואמינה
· יאפשר לנו לכתוב תוכניות אסמבלי הנקראות מתוך שפה עילית.

כתיבת פרוצדורה הניתנת לקריאה מתוך קוד טורבו C:
· על מנת שלא לשבש את התוכנית הקוראת, התוכנית הנקראית חייבת לשמר/לשחזר את כל האוגרים למעט: AX,BX,CX,DX ואוגר הדגלים FLAGS.
· לפחות היסטורית, תוכניות במעבד הזה שימרו ושיחזרו רק אוגרים שהם בפועל השתמשו.
· העברת פרמטרים: קוד טורבו C שקורא לפרוצדורה דוחף את הפרמטרים למחסנית בסדר של ימין לשמאל. סדר הדחיפה מימין לשמאל נובעת מן הצורך לתמוך בפרוצדורות עם מספר לא קבוע של פרמטרים (כמו printf, scanf).
· שחרור שטח הפרמטרים באחריות התוכנית הקוראת.
· תוצאות פונקציה: שלמים ופוינטרים עד 16 ביט בתוך AX
· שלמים ופוינטרים עד 32 ביט בתוך DX:AX.
· במודל small (מוד ברירת מחדל) כל הפוינטרים 16 ביט וכל ההסתעפיות הם NEAR.
· עבור כל פרוצדורה יש צורך לחשב בנפרד את מיקום הפוינטרים תוך התחשבות בגודל הפרמטרים.
קוד מעורב – עבודה עם TD.EXE:

tcc -v call_id2.c idiv_mo6.asm > errs
td CALL_ID1.EXE
tcc -v call_id1.c idiv_mo5.asm > errs
td CALL_ID2.EXE

איך עובדים עם אסמבלי מתוך C:
· משתמשים במה שנקרא ה-Standard Prolog:
PUSH BP
MOV BP,SP

· במהלך הריצה של קוד הפרוצדורה האוגר BP ימשיך להצביע על הנקודה הזו. האוגר BP מצביע לנקודת מרכז זמנית של המחסנית.
· לפני החזרה נעשה
POP BP
RET
על מנת לשחזר את BP, לפני החזרה.
· עבור כל פרוצדורה וכל רשימת פרמטרים נצטרך לחשב ידנית את מיקום. הדבר תלוי בהכרזות הפרמטרים ולפי מוד קומפילציה.
· מקובל לשמר/לשחזר אוגרים ע"י דחיפה למחסנית אחרי פקודת ה-
MOV BP,SP
ולשחזר לפני פקודת ה-
POP BP
· שם הרוטינה חייבת להיות "_" לפני שם המזהה ב-C.
· צריך להכריז על שם הרוטינה כ-PUBLIC.
· תחילת התוכנית, ההבדל היחיד לא מגדירים .STACK x אין צורך.
· בסיום התוכנית אין להוסיף מזהה ליד ה-END.

טורבו C: מודלים של זיכרון
קומפילר חייב להיות עקבי.
דילמה:
· האם להשתמש בהסתעפויות NEAR או FAR?
· האם להשתמש בפוינטרים 16 ביט (היסט בלבד) או 32 ביט (היסט + סגמנט)?

יש כאן Tradeoff בין קוד מהיר לקוד "כללי" (היכול לנצל יותר משאבים).

· שימוש בהסתעפויות NEAR בלבד מגביל את המרכיב הביצועי של הקוד ל-64K.
· שימוש בפוינטרים 16 ביט מגביל את מרכיב המידע של הקוד ל-64K.
· לעומת זאת הקוד יותר מהיר ב-16 ביט בשני המקרים.
· הוחלט בסופו של דבר להעמיד לרשות המתכנים סידרה של אפשרויות, המתכנת בוחר את האפשרות המאולצת/יעילה ביותר שהוא יכול להרשות לעצמו.
· האפשרויות הללו נקראים מודלים של זיכרון.

ההבדלים בין המודלים
יש בעצם 4 סוגי שימושים של תוכנית זיכרון:
· זיכרון לקוד ביצועי
· משתנים גלובליים/ סטטיים
· זיכרון דינמי
· מחסנית.
גודל שטח הקוד והמשתנים גלובליים/ סטטיים ידועים ברגע הקומפילציה.
גודל השטח הדינמי והמחסנית הנחוצים נקבעים בזמן ריצה.
קומפילרים מתמודדים עם הבעיה חוסר הידיעה הזו ע"י כך שהן מבקשים שטח בגודל סטנדרטי.

המודלים של זיכרון נבדלים בהיכן ממשים את 4 השימושים של זיכרון, במגבלות עליהן שמהם נגזר סוג ההסתעפות וגודל הפוינטרים למידע.

מתי אני צריך הסתעפויות FAR?
אם אני צריך להסתעף מסגמנט קוד אחד לאחר.

מתי אני צריך פוינטרים 32 ביט?
אם יש לי יותר מסגמנט מידע אחד. למשל אם המחסנית ושטח הגלובלי סטטי בסגמנטים נפרדים.

מודל tiny
כל שיטות המימוש בסגמנט אחד.
לפיכך הקוד יכול להיות היעיל ביותר – הסתעפויות NEAR ופוינטרים למידע 16 ביט.
כל שימושי הזיכרון יחד לכל היותר 64K.

מודל tiny חלק מההגבלות אינן מחויבות המציאות, אפשר לקבל את יעילות בדיוק במודל קצת פחות מאולץ: מודל ברירת המחדל small.

מודל small
עדיין כל ההסתעפויות NEAR וכל הפוינטרים 16 ביט. אופי הפעולה מכתיב איזה אוגר סגמנט מדובר.
החלק הביצועי עד 64K
חלק המידע עד 64K

מודל Large
הסתעפויות FAR והפוינטרים 32 ביט
מרכיב הקוד – כמה זיכרון שיש
מרכיב המידע –
עד 64K לגלובלי סטטי
עד 64K למחסנית ודינמי.

מודל Huge
הורידו את המגבלה על החלק הגלובלי / סטטי אבל לא על המחסנית.
קוד – כמה זיכרון שיש
גלובלי/סטטי כמה זיכרון שיש
מחסנית ושטח דינמי – עד 64k.

קוד C – לא תלוי במודל שבו מדובר.
קוד אסמבלי – מתאים אך ורק למודל שהוא תוכנת עבורו.
בדרך כלל נממש קודם גרסה למודל Small ונסב למודל Large.

איך מסבים רוטינת אסמבלי שנכתבה למודל Small למודל Large:
1. לשנות את הנחיית ה-.MODEL מ-SMALL ל-LARGE
2. הסבת סוג הפרוצדורות מ-NEAR ל-FAR

3. לחשב מחדש את מיקום הפרמטרים:
1. הפרמטר הראשון ב-LARGE נמצא ב-[BP+6]
2. כל הפוינטרים 32 ביט ב-LARGE להבדיל מ- 16 ביט ב-Small.

4. צריך להסב את כל הגישות לזיכרון באמצעות פוינטרים תוך שימוש באוגר סגמנט. כל פוינטר ב-Large הוא זוג:
Offset
 Segment
ואפשר להשתמש בנתון השני רק באמצעות אוגרי הסגמנטים החופשיים (ES, FS, GS). כתובת תחילת הפוינטר הוא היכן שה-offset נמצא, ה-segment 2 בתים אחריו. כמו כן יש צורך ב-segment override בשביל לכתוב לזיכרון.

5. [bookmark: _GoBack]לשמר ולשחזר את אוגרי הסגמנטים שאנחנו משתמשים בהם.

