
חשוב להפנים בפרוצדורות:
· פרוצדורה היא קוד בינארי בתוך קובץ ה- exeשלנו. קריאה לפרוצדורה היא הסתעפות מנקודה בקוד שלנו לנקודה אחרת בקוד שלנו.
· הסתעפות לפרוצדורה הוא מקרה פרטי של תופעה נפוצה במחשבים: עצירת תוכנית אחת, העברת שליטה לתוכנית אחרת, תוך כוונה לחדש את התוכנית שנעצרה.
· התמיכה ברמת החומרה לפרוצדורות הן פקודות המכונה CALL ו-RET. הפקודה CALL מבצעת, מלבד ההסתעפות, חישוב כתובת חידוש התוכנית הנעצרת ושמירה שלה, ופקודת המכונה RET משתמשת בכתובת הזאת לביצוע החזרה.

פרמטרים
· החומרה לא תומכת ישירות בפרמטרים.
· במהלך ההיסטוריה של מחשבים היו מספר דרכים להעביר פרמטרים.
· השפות המודרניות מעבירות פרמטרים דרך המחסנית.

מוסכמות העברת פרמטרים של טורבו C
(בינתיים מודל small)
· דוגמא לסכמה של העברת פרמטרים דרך המחסנית
· הסכמה כללית, בדוקה ואמינה
· יאפשר לנו לכתוב תוכניות אסמבלי הנקראות מתוך שפה עילית.

כתיבת פרוצדורה הניתנת לקריאה מתוך קוד טורבו C:
· על מנת שלא לשבש את התוכנית הקוראת, התוכנית הנקראית חייבת לשמר/לשחזר את כל האוגרים למעט: AX,BX,CX,DX ואוגר הדגלים FLAGS.
· לפחות היסטורית, תוכניות במעבד הזה שימרו ושיחזרו רק אוגרים שהם בפועל השתמשו.
· העברת פרמטרים: קוד טורבו C שקורא לפרוצדורה דוחף את הפרמטרים למחסנית בסדר של ימין לשמאל. סדר הדחיפה מימין לשמאל נובעת מן הצורך לתמוך בפרוצדורות עם מספר לא קבוע של פרמטרים (כמו printf, scanf).
· שחרור שטח הפרמטרים באחריות התוכנית הקוראת.
· תוצאות פונקציה: שלמים ופוינטרים עד 16 ביט בתוך AX
· שלמים ופוינטרים עד 32 ביט בתוך DX:AX.
· במוד small (מוד ברירת מחדל) כל הפוינטרים 16 ביט וההסתעפיות הם near.

איך עובדים עם אסמבלי מתוך C:
· משתמשים במה שנקרא ה-Standard Prolog:
PUSH BP
MOV BP,SP

· במהלך הריצה של קוד הפרוצדורה האוגר BP ימשיך להצביע על הנקודה הזו. האוגר BP מצביע לנקודת מרכז זמנית של המחסנית.
· לפני החזרה נעשה
POP BP
RET
על מנת לשחזר את BP, לפני החזרה.
· עבור כל פרוצדורה וכל רשימת פרמטרים נצטרך לחשב ידנית את מיקום. הדבר תלוי בהכרזות הפרמטרים ולפי מוד קומפילציה.
· מקובל לשמר/לשחזר אוגרים ע"י דחיפה למחסנית אחרי פקודת ה-
MOV BP,SP
ולשחזר לפני פקודת ה-
POP BP
· שם הרוטינה חייבת להיות "_" לפני שם המזהה ב-C.
· צריך להכריז על שם הרוטינה כ-PUBLIC.
· תחילת התוכנית, ההבדל היחיד לא מגדירים .STACK x אין צורך.
· בסיום התוכנית אין להוסיף מזהה ליד ה-END.

טורבו C: מודלים של זיכרון
קומפילר חייב להיות עקבי.
דילמה:
· האם להשתמש בהסתעפויות NEAR או FAR?
· האם להשתמש בפוינטרים 16 ביט (היסט בלבד) או 32 ביט (היסט + סגמנט)?

יש כאן Tradeoff בין קוד מהיר לקוד "כללי" (היכול לנצל יותר משאבים).

· שימוש בהסתעפויות NEAR בלבד מגביל את המרכיב הביצועי של הקוד ל-64K.
· שימוש בפוינטרים 16 ביט מגביל את מרכיב המידע של הקוד ל-64K.
· לעומת זאת הקוד יותר מהיר ב-16 ביט בשני המקרים.
· הוחלט בסופו של דבר להעמיד לרשות המתכנים סידרה של אפשרויות, המתכנת בוחר את האפשרות המאולצת/יעילה ביותר שהוא יכול להרשות לעצמו.
· האפשרויות הללו נקראים מודלים של זיכרון.

ההבדלים בין המודלים
יש בעצם 4 שימושים של זיכרון:
· זיכרון לקוד ביצועי
· משתנים גלובליים/ סטטיים
· זיכרון דינמי
· מחסנית.
גודל שטח הקוד והמשתנים גלובליים/ סטטיים ידועים ברגע הקומפילציה.

המודלים נבדלים בהיכן ממשים את השימושים הללו, במגבלות עליהן שמהם נגזר סוג ההסתעפות וגודל הפוינטרים למידע.

מתי אני צריך הסתעפויות FAR?
אם אני צריך להסתעף מסגמנט קוד אחד לשני

מתי אני צריך פוינטרים 32 ביט?
אם יש לי יותר מסגמנט מידע אחד. למשל אם המחסנית ושטח הגלובלי סטטי בסגמנטים נפרדים.

מודל tiny
כל שיטות המימוש בסגמנט אחד.
לפיכך הקוד יכול להיות היעיל ביותר – הסתעפויות NEAR ופוינטרים למידע 16 ביט.
כל שימושי הזיכרון יחד לכל היותר 64K.

מודל tiny חלק מההגבלות אינן מחויבות המציאות, אפשר לקבל את יעילות בדיוק במודל קצת פחות מאולץ: מודל ברירת המחדל small.

מודל small
עדיין כל ההסתעפויות NEAR וכל הפוינטרים 16 ביט. אופי הפעולה מכתיב איזה אוגר סגמנט מדובר.
החלק הביצועי עד 64K
חלק המידע עד 64K

מודל Large
הסתעפויות FAR והפוינטרים 32 ביט
מרכיב הקוד – כמה זיכרון שיש
מרכיב המידע –
עד 64K לגלובלי סטטי
עד 64K למחסנית ודינמי.

מודל Huge
הורידו את המגבלה על החלק הגלובלי / סטטי אבל לא על המחסנית.

[bookmark: _GoBack]

