מחסנית המערכת
במחשב הזה, במעבד הזה, יש תמיכה במבנה נתונים של מחסנית (Stack) ברמת החומרה.
זה למעשה נכון לגבי כל ארכיטקטורה שהומצאה החל מסוף שנות החמישים.
מחסנית המערכת היא מבנה נתונים בעלת חשיבות עצומה: רוב הרעיונות המתקדמים במחשבים מערבים אותה.
רעיונות כמו זרימה של קריאות לרוטינות, רקורסיה, פרמטרים משתנים לוקליים, הסתעפיות מיוחדות מערבות את מחסנית המערכת.
הסיבה שאנחנו לומדים עכשיו את מחסנית המערכת היא שהיא רקע הכרחי להסתעפויות לפרוצדורות.

המחסנית היא מבנה הנתונים המרכזי לשימור ושחזור ערכי אוגרים, הן ברמת החומרה והן ברמת התוכנה.

מהו מחסנית?
מחסנית הוא מבנה נתונים שבו הכנסה והוצאה של נתונים הוא בסדר של נאי"ר: "נכנס אחרון יוצא ראשון".
LIFO: Last In First Out
אגב, מחסנית המערכת לא משמשת אך ורק כמחסנית.
הפקודות הבסיסיות של מחסנית נקראות:
PUSH
הוספת נתון למחסנית
POP
הוצא את הנתון עם הכי פחות ותק שעדיין שם.

בעקרון יש שני מימושים אפשריים של מחסנית:
· מימוש מקושר
· מימוש רציף

מחסנית המערכת ממומשת בשיטת המימוש הרציף, היא מתמלאת מהסוף להתחלה.

מחסנית חנוקה לגמרי SP==0
מחסנית ריקה מנתונים, SP מכיל את הערך המקורי (גודל המחסנית).

מחסנית המערכת לא משמשת אך ורק כמחסנית.
בשביל לעשות זאת צריך להיות
קריאה / כתיבה למחסנית המערכת שלא במסגרת דחיפה / שליפה (שלא במסגרת PUSH ו-POP):

אנחנו נפעל סכמה סטנדרטית:
PUSH BP
MOV BP,SP

ובשלב יותר מאוחר
פקודות כמו
MOV [BP+k],AX
MOV AX,[BP+k]

האוגר BP הוא מעין "ראשית" מעין מצביע לנקודת מרכז פעילה של המחסנית.
מימוש פרוצדורות (פונקציות, רוטינות, מתודות ...)

מהי פרוצדורה?
פרוצדורה היא קוד בתוך קובץ ה-exe שאנחנו מסתעפים וחוזרים ממנה מספר פעמים בתוכנית.
[bookmark: _GoBack]זה נכון גם כשמדובר בקוד ספריה כמו למשל sin.

התמיכה ברמת החומרה לפרוצדורות:
· מחסנית המערכת
· פקודות מכונה CALL ו-RET.

פקודת המכונה CALL:
לפקודה מספר וריאנטים, נתייחס כאן לפקודה:
CALL dest
כאשר dest הוא יעד בזיכרון המוגדר ע"י PROC.

פקודת המכונה CALL:
· היא פקודת הסתעפות בלתי מותנית
· היא משנה את כתובת הפקודה הבאה לביצוע ל-dest
· היא דוחפת מצביע לכתובת העוקבת של קידוד הפקודה למחסנית.
הפקודה RET:
· היא פקודת הסתעפות בלתי מותנית
· שולפת את יעד ההסתעפות מראש המחסנית (POP).

ההנחה היא שכאשר פרוצדורת היעד עושה RET, ראש המחסנית (SP) מצביע לבדיוק אותו מקום שהצביע עם תום ביצוע ה-CALL.
סוגי CALL:
· CALL מסוג NEAR שומר/משנה רק את IP
· CALL מסוג FAR שומר/משנה גם את IP וגם את CS.
סוגי RET:
· RET מסוג NEAR השולף ומשנה רק את IP
· RET מסוג FAR השולף ומשנה גפ את IP וגם את CS.
איכשהו צריך לתאם בין שיטת ההסתעפות ליעד לבין שיטת החזרה.

הנחיית ה-PROC
הוא כמו נקודותיים (:)
הוא מצביע לנקודת זיכרון בקוד, אין לו מימוש בינארי.
הנחיית ה-PROC מגדירה את סוג הפרוצדורה, וזה גורם לתאום אוטומטי של כל פקודת ה-CALL אליו וכל פקודות ה-RET בתוכו.

מימוש פרמטרים
1. העברת פרמטרים באמצעות אוגרים (כמו ל-INT 21h).
2. העברת פרמטרים דרך שטחי זיכרון קבועים.
3. העברת פרמטרים דרך המחסנית.

אנחנו נראה את מוסכמות העברת פרמטרים של Turbo C

מה שזה יאפשר לנו:
· נבין איך שפות עליות עובדות
· נוכל לכתוב תוכניות אסמבלי הנקראות מתוך תוכניות C.
· בהמשך, נוכל להשאיר את ק/פ לשפת C.

