התייחסות לזיכרון

כל ביצוע של פקודת מכונה כרוך בלפחות גישה אחת לזיכרון – זו של קריאת הקידוד של פקודת מכונה.
יכול להיות שהפקודה עצמה מכתיבה פעולת גישה נוספת לזיכרון לקריאה או כתיבה של מידע.

שאלה:
איך בדיוק מחושב הכתובת שניגשים אליה מתוך הזוג אוגר סגמנט + היסט?

במודל ה-DOS הכתובת שיגשים אליה הינו:
(16*תוכן אוגר הסגמנט) + ההיסט

היסטים 16 ביט – עד 65536 ((64k בתים.
במערכות 32 ביט של היום עדיין עובדים עם אוגרי סגמנטים + היסט, אבל תוכן אוגר הסגמנט מפורש לגמרי אחרת.
היסטים היום יכולים להיות 32 ביט – עד 4GB.

גישה לזיכרון:
לקריאת קידוד של פקודה:
אוגר הסגמנט תמיד CS ההיסט תמיד IP.
לגישה למידע:
אוגר נסגמנט יכול להיות כל אחד מהשישה: CS, DS,SS, ES, FS,GS
ההיסטים (מה שבסוגריים המרובעות) יכולים להיות או 16 ביט או 32.

היסט 16 יכול להיות מהצורה הבאה:
BX SI
 או + או + קבוע
BP DI

שימוש ב-label-ים
ליבלים הם למעשה קבועים סמליים שהאסמבלר (תוכנת התרגום) מחשב למענינו.
דוגמא:
.DATA
Var1 DD ? ; 4 בתים
Var2 DW ? ; 2 בתים
Var3 DB ? ; 1 בית
Var4 DW ? ; 2 בתים
למעשה
Var1 מגדיר היסט 0
Var2 מגדיר היסט 4
Var3 מגדיר היסט 6
Var4 מגדיר היסט 7

כלומר אם נכתוב
MOV Var4,AX
האסמבלר יממש את הפקודה
MOV [7],AX

בגישה לזיכרון ברמת התוכנית, הגישה היא תמיד יחסית לאוגר סגמנט.
גם כאשר אוגר הסגמנט לא מצוין בפקודה.
לפיכך, בגישה לזיכרון למידע איך נבחר אוגר הסגמנט?

1. אם אוגר מצוין בקודה (למשל
MOV ES:[BX],AX
תמיד נבחר האוגר שמצוין.

2. במידה ולא, נבדק אם הביטוי מכיל את האוגר BP, למשל
MOV [BP+SI],AX
אוגר הסגמנט יהיה תמיד SS.

3. במידה ולא, נבדק אם יש ליבל. במידה ויש ליבל, תלוי איפה הליבל מוגדר.
אם מוגדר תחת .DATA אוגר הסגמנט יהיה DS.
אם מוגדר תחת .CODE אוגר הסגמנט יהיה CS.

4. כל מקרה אחר נבחר DS.
למשל
MOV [SI+6],AX

386 ואילך:
· יש 2 אוגרי סגמנטים נוספים FS, GS
· בתנאים מסוימים פרשנות אוגר הסגמנט היא שונה.
· בנוסף להיסטים 16 ביט, יש היסטים 32 ביט. היסט יכול להיות עד 4GB.

היסטים 32 ביט הם מהצורה:

r32 + n*r32p + קבוע32

לכל מעבד יש את "גודל המילה" שלו:
הגודל של האוגרים הכלליים (הצוברים).

8086 גודל המילה 16 ביט
386 גודל המילה 32 ביט
X86_64 גודל המילה 64 ביט.

המשמעות של זה הוא אם אני ממש פעולות חיבור חיסור ברמת החומרה (המעבד) באיזה ערכים מתרחש גלישה אריתמטית.

יש בעצם 2 סוגי גלישה אריתמטית: Carry (חסר סימן) ו-Overflow (עם סימן).

ציון של גלישה נעשה באוגר הדגלים:

CF | חסרי סימן
ZF | }
SF }
OF } עם סימן

איך משתמשים בדגלים?
ע"י פקודות הסתעפות מותנות.

פקודת המכונה CMP
ממומשת כמו הפקודה SUB אך לא שומרת את ההפרש, משפיעה רק על אוגר הדגלים.

תכנות מבני באסמבלי
שיטת העבודה:
כל קוד שאולי צריך להתבצע בהתאם לתנאים מושם היכן שצריך להתבצע.
מסביב לקוד הזה שמים פקודות השוואה ופקודות הסתעפות מותנות הדאגות לכך שנגיע לקוד שצריך להתבצע ונעקוף את הקוד צריך לא להתבצע בהתאם לתנאים.

הפקודה LOOP

פקודת המכונה LOOP הוא "2 פקודות מכונה במחיר אחד":

הפקודה
LOOP label

אפשר לממש
DEC CX
JNZ label

הפקודה LOOP מייצגת גישה מיושנת.
היא פקודה שימושית עבור מתכנתי אסמבלי, אבל לא מעשית עובר ממשי מהדרים (קומפילרים).
הפקודה LOOP היא דוגמא למה שנקרא "פקודת מכונה מורכבת" Complex Machine Instruction.
כאשר קוד נכתב באסמבלי קל יחסית לנצל אותה אבל עבור ממשי קומפילרים היא מאולצת מדי.

ההקשר:
מהדר (קומפילר) הוא תוכנת תרגום לאסמבלי. מי שממש קומפילר הוא בעצם "מתכנת" קטעי קוד באסמבלי המהווים את תוצאת התרגום.
פקודות כמו LOOP אינן שימושיות בקטעי הקוד הללו, בתוכניות אסמבלי שהם תוצאת התרגום. הן מאולצות מדי.
זה נובע בעיקר שמהדרים מתרגמים די מכנית קוד בשפה עילית לאסמבלי.

כיום כמעט כל קוד שרץ במחשב כלשהו הוא קוד מקומפל (קוד שהוא תוצאה של קומפילציה).
פקודות מכונה הנוחות למתכנתי אסמבלי אבל לא למפתחי קומפילרים כמעט ואינן מתבצעות. התרומה שלהן ליעילות אפסית.
בשלב מסוים התגבשה מתודולוגיה של פיתוח ארכיטקטורות הממשות רק פקודות הנוחות למפתחי קומפילרים, מתוך הנחה שזה יקל לממש אותם יותר ביעילות.
המתודולגיה הזאת נקראית RISC
Reduced Instruction Set Computer
להבדיל מהארכיטקטורה שלנו הנקראית CISC
Complex Instruction Set Computer
במונח
Reduced Instruction Set Computer
הכוונה "מחשב של פקודות מכונה מצומצמות".
ההנחה היא שרק פקודות מצומצמות הן שימושיות למפתחי קומפילרים.
מה שקורה היום בארכיטקטורות הישנות הוא שמממשים את הפקודות המורכבות בסדר עדיפות נמוך.
משמעות הדבר שהיום
לדוגמא הפקודה
LOOP label
[bookmark: _GoBack]עשויה להיות איטית יותר מאשר
DEC CX
JNZ label

