המכללה האקדמית אורט בראודה
המחלקה להנדסת תוכנה
ארגון ותכנות המחשב 61210

בחינה סופית – מועד ב'

תאריך 2.3.2008

מרצה: איתן רון

מתרגלת: מיכל מהלר
מותר כל חומר עזר.

זמן הבחינה 3 שעות.

התשובות לשאלות 1,2,3 הן קוד אסמבלי.
יש להחזיר את השאלון. אין להעתיק אותו.

טיוטא יש לרשום רק במחברות בחינה, לסמן "טיוטא" ולהגיש עם הבחינה.
שאלה מספר 1 (33 נקודות)
עליך לממש סידרת רוטינות אסמבלי הניתנות לקריאה מתוך תוכנית C שמצד אחד יבצעו סכום של מספרים שלמים ומצד שני גם יחזירו דגל המעיד על גלישה אריתמטית במידה וקרה מהסוג המתאים למספרים שבו מדובר.
 סידרת הרוטינות שעליך לממש הם:

extern int carefull_iadd(int a, int b, int *flag);

extern unsigned int carefull_add(unsigned int a, unsigned int b,

 int *flag);

extern long int carefull_liadd(long int a, long int b, int *flag);

extern unsigned long carefull_ladd(unsigned long a, unsigned long b, int

*flag);
כל אחד מהרוטינות הללו מחזירה את תוצאת הסכום כתוצאת פונקציה כאשר דרך הפוינטר מוחזר 1 אם הייתה גלישה אריתמטית (מהסוג הרלוונטי) בחישוב ו-0 אם תוצאת החישוב תקינה או משקפת את הסכום.

הפונקציה carefull_iadd מבצעת סכום של מספרים שלמים עם סימן. הפונקציה carefull_add מבצעת סכום של מספרים שלמים חסרי סימן.
 הפונקציה carefull_liadd מבצעת סכום של מספרים שלמים ארוכים עם סימן. הפונקציה carefull_ladd מבצעת סכום של מספרים שלמים ארוכים חסרי סימן.
 לדוגמא, הפלט של התוכנית הבאה:
int main()

{
 int a, b, c;

 unsigned int d, e, f;

 long int g, h, i;

 unsigned long int j, k, l;

 int problem_flag;

 a = 70;

 b = 80;

 c = carefull_iadd(a, b, &problem_flag);

 printf("%d + %d = %d, flag = %d\n", a, b, c, problem_flag);

 a = 32700;
a = 32700;

 b = 80;

 c = carefull_iadd(a, b, &problem_flag);

 printf("%d + %d = %d, flag = %d\n", a, b, c, problem_flag);

 d = 70;

 e = 80;

 f = carefull_add(d, e, &problem_flag);

 printf("%u + %u = %u, flag = %d\n", d, e, f, problem_flag);

 d = 2147483647;

 e = 80;

 f = carefull_add(d, e, &problem_flag);

 printf("%u + %u = %u, flag = %d\n", d, e, f, problem_flag);

 g = 70;

 h = 80;

 i = carefull_liadd(g, h, &problem_flag);

 printf("%ld + %ld = %ld, flag = %d\n", g, h, i, problem_flag);

 g = 2147483647;

 h = 80;

i = carefull_liadd(g, h, &problem_flag);

printf("%ld + %ld = %ld, flag = %d\n", g, h, i, problem_flag);

j = 70;

k = 80;

l = carefull_ladd(j, k, &problem_flag);

 printf("%lu + %lu = %lu, flag = %d\n", j, k, l, problem_flag);

 j = 4294967295;

 k = 80;

 l = carefull_ladd(j, k, &problem_flag);

 printf("%lu + %lu = %lu, flag = %d\n", j, k, l, problem_flag);

} /* main */

יהיה:
70 + 80 = 150, flag = 0

32700 + 80 = -32756, flag = 1

70 + 80 = 150, flag = 0

65535 + 80 = 79, flag = 1

70 + 80 = 150, flag = 0

2147483647 + 80 = -2147483569, flag = 1

70 + 80 = 150, flag = 0

4294967295 + 80 = 79, flag = 1

שאלה מספר 2 (33 נקודות)
נניח שעומדת בפנינו התסריט הבא:
 יש לנו מערך של מספרים שלמים ארוכים, אבל כל הערכים שלהם נמצאים בתחום של ערכים קרובים. ההפרש בין כל שני מספרים אינו עולה על 255. במצב כזה ניתן "לדחוס" את ייצוג המערך למספר שלם שיכיל את המספר הממוצע (סכום חלקי מספר המספרים, ערך שלם תחתון) של המספרים ומערך של מספרים של בית אחד כל אחד שיכיל עבור כל מספר את ההפרש שלו מהממוצע.
הכותרת של הפונקציה שעליך לממש הינו
extern void compress(long int arr[], int n,

 long int *base, signed char diff_array[]);
1. ממש את הרוטינה compress במודל small.
2. ממש את הרוטינה compress במודל large.
 לדוגמא, הפלט של התוכנית הבאה:

void main()
{
 long int arr[] = {100203, 100209, 100197, 100202, 100220 };
 signed char diff_arr[5];
 long int base;
 int i, n = 5;
 printf("Original array:\n");
 for(i=0; i < n; i++)
 printf("%ld\n", arr[i]);
 compress(arr, n, &base, diff_arr);
 printf("The compressed array:\n");
 printf("Base = %ld\n", base);
 for(i=0; i < n; i++)
 printf("%d\n", (int) diff_arr[i]);
} /* main */
יהיה:

Original array:
100203
100209
100197
100202
100220
The compressed array:
Base = 100206
-3
3
-9
-4
14

שאלה מספר 3 (34 נקודות)
בשאלה זו עליך לממש רוטינות אסמבלי הניתנות לקריאה מתוך תוכנית C המקבלות ומחזירות ערכים ממשיים. עליך לממש רוטינות המקבלות מערך x של מספרים ממשיים ומחשבת את האורך של המערך לפי הנוסחה

L = (x02 + x12 + … + xn-12)1/2
הינך רשאי לחשב שורש ריבועי בעזרת פקודת המכונה FSQRT.
ההכרזה על הרוטינות שלך יהיו:

float vector_length(float arr[], int n);

double vector_length(double arr[], int n);

long double vector_length(long double arr[], int n);

כאשר arr מצביע למערך של מספרים שלמים לפי הגודל המצוין ו-n אורך המערך.

 לדוגמא הקריאה

float x, arr[4] = {1.0, 2.0, 3.0, 4.0};

x = vector_length(arr, 4);

 תציב ל-x את הערך 301/2 = 5.4772256.

