ביצוע השוואות של מספרים ממשיים
כלומר למשל האם x> y?
שיטת העבודה היא להעביר את תוצאת ההשוואה לאוגר הדגלים הרגיל,
שם אנחנו נשתמש בפקודות ההסתעפות המותנות של מספרים חסרי סימן.
מעין רדוקציה לשיטות העבודה שהשתמשנו בהם עבור מספרים שלמים (בכל הקשור לניתוח תוצאות השוואה).

שאלה: למה מספרים חסרי סימן Unsigned?
תשובה: הדגלים של ההשוואות ב-FLAGS הם:
CF
ZF
SF
OF
חסרי סימן משתמשים ב-CF, ZF ואילו עם סימן משתמשים ב-ZF, SF, ו-OF.
כלומר חוסכים ביט אם משתמשים בפקודות של חסרי סימן.

מימוש:
תוצאות של פקודות השוואה (FCOM וכו') במעבד במתמטי נשמרות בביטים C0,C2,C3 ב-STATUS WORD.
בהשוואות האופרנד הראשון הוא תמיד ST(0).
זאת בניגוד לפקודות כמו FSUB ללא אופרנדים שבו האופרנד הראשון הוא ST(1).

הפקודה
FSTSW AX
מעתיק את ה-STATUS WORD של המעבד ל-AX, הפקודה היחידה המערבת את המעבד המתמטי עם האוגרים הרגילים

הפקודה
SAHF
מעתיקה את AH לחצי התחתון של אוגר הדגלים.

הפקודה SAHF אינה פקודה מסוכנת (בניגוד ל-POPF) היא משנה רק דגלים אריתמטיים, החלק התחתון של אוגר הדגלים מכיל רק דגלים אריתמטיים.
הפקודות
FSTSW AX
SAHF
ביחד, מעתיקות את החצי העליון של ה-STATUS WORD של המעבד המתמטי לחצי התחתון של אוגר הדגלים.

אריתמטיקה של מספרים שלמים במעבד המתמטי
פקודות מסוג
FIx src
לדוגמא,
FILD src
FIADD src
FIDIV src
מדובר תמיד בפקודות עם אופרנד זיכרון,
כאשר תוכן אופרנד הזיכרון מפורש כמספר בפורמט שלם עם סימן בשיטת המשלים ל-2.
הפורמט בתוך המעבד תמיד ממשי.
גם האריתמטיקה בתוך המעבד תמיד ממשי.

המעבד פשוט תומך בהמרה מפורמט שלם בזיכרון לפורמט ממשי במעבד ומפורמט ממשי במעבד לשלם בזיכרון (תוך כדי עיגול).

המעבד תומך בהמרות של שלמים 16, 32, 64 ביט, פעולות ישירות עם הזיכרון שלמים 16, 32 ביט בלבד.
התפקיד ה(אולי) אמיתי של הפקודות הללו הוא בעצם לתמוך בקוד מעורב, למשל:

int i,j
float f,g;

g = i*f;
j = i*f;

אחד האספקטים שצריך לציין הוא שייצוג מספר שלם בפורמט ממשי הוא מדויק.
הייצוג של 17.0 למשל הוא מדויק.

ההמרה חזרה לפורמט שלם בזיכרון כרוך פוטנצאלית בעיגול.
ברירת המחדל של העיגול הוא "לקרוב ביותר".
אנחנו בדרך כלל מעוניינים בעיגול דווקא בשיטת "הקיצוץ".
זה בדרך כלל לא מה שאנחנו רוצים בשלמים:
בדרך כלל 27/7 שווה ל-3 ולא ל-4 מבחינתינו.
אפשר להתמודד עם הבעיה בשני דרכים:
· להוסיף / להחסיר 0.5
· לשנות לפני החישוב את ה-RC ב-Control Word.

שינוי ה-RC אמין יותר.

שינוי ה-RC:
כרוך בשינוי ה-Control Word (כולו)
· נרצה שבחישובים שלנו נשנה את ה-RC ב-CW בלבד ל-11
· נשחזר את ה-CW לפני שנחזור.

תוכניות הדוגמא האחרונות ממחישות:
· שימוש בפוינטר לפונקציה המועבר כפרמטר
· איך להעביר מספר ממשי כפרמטר

חישוב קירוב לנגזרת:
הגדרת גבול יכול לשמש בסיס לחישוב קירובים.
דחיפות פרמטרים בתשלומים:
קודם החלק המרוחק ואחר הקרוב:
32 ביט
PUSH temp
64 ביט:
PUSH DWORD PTR temp+4
PUSH DWORD PTR temp
80 ביט:
PUSH DWORD PTR temp+6
PUSH DWORD PTR temp+2
[bookmark: _GoBack]PUSH WORD PTR temp

