SUNNAT T3YRI 0'R%W DUIDLn Yu fairAd e!o)1 hdatst

"eaan” cuanpn 72¥s (v B0-y 32, 64) ovcwpn BvIdbna ovAnT Tadh

D°T90M] Nyvonn 386-n TR .vva 64-1 16, 32 monbw odabon bw mprumnvIRd

moemAn vY3 64 ovIEom Ty Yax ,awm 93 Yo}V vhax wvea 32-4 16 betw
LTTIVEUE RYOIRD

U 31¥UN LIRD 00D (313 RYTOvumnEn Tavea avebw DU popa "asvan'n
gympbR Tayan bSw o ndvmnn L Yveh - wmE Tamn R ST{i)}-1 v9aIRa oranon
(NI hwa vaeva b R ovebw

BRIk 2emaby BYW URTID2 (a00T3 £UTtbIR RIMPD Ty Tavmn cmyama L)
LETIDM T 7N 2% LPYIBS 1iNaTh BYTDIR 31N5Y D3 ¥1Ic RNTY, vwnnb
LTIV WBIRY OnRT

B 750 %Y nI%ayd NanTsn T2YBR I 13158 NITIRD YU (Jop) bom owr .2
,FRNDINT, FPREM on 9o% nixmasT .whnon 3980w *omsh 7193 DYh%w
. FPREM]

% oY Tpon RY9PR TP 2% WERM TaYBR L pYR R .1 330m n3onn
.1 oa .obw pomy 11aovh mreana ik 30105 cwmn pors 1HY Hiveh ,avmn
22170 KY0 YWens abY Yoo Yu asxenw a129vn 9y mwvmb otomhom .2 oA
793 L'y 23.0001 X9 22.9999 x4+ ,23.0 i 23 vbon wsomn Yw bw axen
MITAS ,NYTNY3 NIV AYIYD LRIDSR LROT 2B N7 ovdw ovisor DRYIpU
nIvAY YWY NISNMAY L T8OME Y13°P3 N91M2 navA? AWy 110Th vwmn dnon v
7DD *7% YY OR L33 172I9R NIW a0am 23y 7w P 3R1Y 1vhvw 2¥nd
bs .sutemon vayet Sw Control Word-m Yw mdxbapran x »¥n bw nnnon /
Jwwmn b - Tayst Ina (ow L, 111313 TINDIR YY nidyap a%Pa nitapen

-» Y 7anb) FILD xap3 obw wme3p3 75dm 119377 TIVBR 1INY DRIIPR ATiR0N
190 19791 nN1ansn pITIpeR L (Cwonm LT3 BUaBER TR nepw FLD
paTYEa pEn naantow FST, FSTP-» Ysanb) FIST, FISTP avxvpa obw wsmiba
nYLERAR Naayn v¥ab oa nty vea 16 -32 1asr v pvmavma tvay L (Cemw
X (19%3 nRvp T390k YD Lupe RY,72%3 97pB T29PIR) DYTINBIRT TR
.FIADD, FISUB, FISUBR, FIMUL, FIDIV, FIDIVR :=wms wvmmip2 197272 “non
JFISTP-1 FILD natapsa 59 R ooomhd v 2 64 +33 ovebw 15T *13709R
.Taba vr2 3Z-% 16 1105y YTINBIRT PO DASRID NITIRET N

g3oh ,mv33 ,m¥y vaxy Var3-s ,Varl, VarZ owa oeanen 3 Y wr ox ,7000Y

pee

,Var3-3 o%v umvipa nR¥Inn nr 20%nby oYY ueaip3 ovunomd Var?-1 Varl nN
IR ONRY DWYS TR

:vv2 32 'x 16 H79a2 an Var3d-s Varl, Var2 ox

FILD Varl
FIADD Var?
FISTP Var3

;U3 64 %1933 of DRy

FILD Varl

FILD Var?

FADD

FISTP Var3

.umm 830 X1 FADD-w 2% o
YDA DR NYIAM ab%n pabaypmw o aMs¥ ANk A1np? s YB3y Shen

Yo mpna Jbwnb pabiRa 79 2°ND Y37 ,SUmm A1XC3 DONPY DUIB0RD 0°IDYnn
.3971 SN 2xnn pYvn

RN

call_idl.c, idiv mo2.asm, idiv_mo3.as$m Kb Nn3v3an

v el R 110K call_idl.c nvioanm Yw wan wantn R OIRD wU B

DR PRI OIRD.@YY AT TI9BT CT3R2 mwmhwnn YH3IB0K NI1YLYY MNTYS Y

NYvIoAN NANUR L cuEnRA TaVER NNTYa oenben YU npunntaRn YU vt s
L YURNBT TIYRa DRt Sw apsupn R whann® XA PP RBat T

e KPY apabnm bw Yharyaw DrIviayn YIMIRQ MYl L, RHANTT D
g>¥2pa idiv_med Sw ovwws e vIw §v3 Y7120 .9I01°K ©IIAY TR TN
YoP3 13°Y DRI O¥pIIDw Avyn Kan idiv_mod.asm -1 idiv_moe2.asm
-3 bRy 0.499999 bw nnnon "y xon biasyn idiv _moZ.asm -1 .oum
~Taven bw Control Word-aw RC-% 01 qawn Sw nagn »ayvr idiv_mo3.asm

idiv_mo3.asm y31p2 Control Word-an %3v3%)

Y9pBR 139 m1vaw vy Yy mev) idiv_mo3.asm-3 Contrel Word-m Zana
na¥n .rAn vas% Twn Yw o harnews Save CW o ab vatm mimem anb
*1> 5y Control Word-n v >mavan qwn o by mwys RC-% 01 T
-5 At amatyey 1vhY nyvwea mbave vixra New CW 7703 nanwn® anasn
m1ippa eyl Control Word-n »w qwswwn .Control Word

FSTCH Save CW

a9apen v'y eyl T1IRMERY 71vwaTn nbenna

FLDCW Save (W

nytippn "y ey Control Word-3 “amva »iowm

FSTCW New CW

AND New CW,1111001111111111B
OR New CW,0000010000000G00B
FLDCW New CW

n1Ips 30 5y 2w cmavan Tvn papsr 'y 01 wm nk RC-n »» 7p12an
.OR-n n7app *"v RC-n Sw 72 vra% 1 nasndy AND-n

A

D*@IRYRA VW3 DRCURNYIRG Unn

387 0PN ©TIDORN NISYY 2T BY Dnmom DR DUYYIN DUWINIBA M

Aprupn*IR 3vymn 7 CFIDIVR "y npadna FILD nTpon 'y taven

Ny 3w LFISTP mgapdi +"y nowyy nR¥INT nomnR IR Dowmn XN
-FPREM n7ipoa winvwy 7avnb ovaoomn 2 nivwwe "y mwv) apabnn

nhatel-hi
FILD WORD PTR [BP+6]

ATIPON L,0BRI APAPR YABM 131ANAY *I53 .NIOMT DR YL

FTST
NITIPON LODR BY “DORN DX T W

FSTSW AX
SAHF

-3 WM BYIYWER 1INIR DER .5°P3T0 MARY ARYIWAN NIRXIN AR Ao
PY N2 1INk 1haym 1ow) obxa npabna Yisevd wpn o3 idiv_mol.asm
oy? 120 *Ton 172 B33 1R OIRDY L]GRO R W VDR DY OV]INIYR
Q-
*"Y O AptAn ¥Ixt3 XA TERAN bBR2 PRAY 12W0T1 R? 12w (Opnn mpba
aTpon

FIDVR WORD PTR [BP+4]

naTIpen MY L, mwan AR¥IND At abes

MOV BX, [BP+8]
FISTP WORD PTR [BX]

-1 ,0w1T BIatyny qomnn YI¥T3 AN It AR¥INA DR T3P N3N
. Jpyona ST

TR nR papn ST(0)-w a3 Rwana ATn “%nmn nva39Nn Yw nxea AmaTa
ST(0)-1 2 obwn +Tooma an3y b ,2.38636-3 ndnmm pom kY L 44.0
B Ag)s]

30

MTIpDR "y moya apabna nraxe 2wen
FILD WORD PTR [BP+6]
FILD WORD PTR [BP+4]
FPREM

179RY neaRwn ’¥n3 ST(0)-3 1'woy .3wn o-FILD-7 v 1tome 2% ow
NYTIFDT VIXYD DI3pya Yoy Lnionn Remy ST(I1)-3

MOV BX, [BP+10]
FISTP WORD PTR [BX]

ST(0)-3 1oway R¥ma fsoma 7w LST(1) pyammy b ax¥Inn oxap
TTRDT MY OV 3THY AR PP M3
FFREE ST

8*931y ST(1)-1 ST(0) Bvaasxy 2w RIX*3n 912 @ "y noatia
-% o pra omvaw Yw 3¥e» Y33 DRw

LFILD WORD PTR [BP+6] »snx , 1ywxa abw

ST(0) 44.0
ST{(L) p"
,FILD WORD PTR [BP+4] *mnx ,~w 2%
ST(0) 105.0
ST(1) 44.0
,FPREM »amx , s bw o5
ST(0) 17.0
ST(1) 44.0

,FISTP WORD PTR [BX] »"mx ,>yv37 3%
. N 0131y Taven e oraaiRn a2 17 obwn Tvn axam vy
ST(0) 44.0
ST{1} "

2w ovpes pnvawe (FFREE ST »3nr) swann 2%0? W

23]

/* call_idl.c - call assembler subroutine idiv_mod.asm from C program */

#include <stdio.h>

extern int i1div_mod(int Num, int Dencm, int *Q, int *Rem);

void main()
{
int Num, Denom, Q, Rem, No_Zero_Divida;

printf("\Enter Numerator, Denominator\n:");

scanf ("%d %d",&Num, &Dencm);

No_Zero_Divide = idiv_mod (Num, Denom, &Q, &Rem) ;

if (No_Zero_Divide)

printf("\n %4 div %d = %d, mod(%d,%d) = %d\n",

Num, Dencm, Q, Num, Denom, Rem):;

else

printf{"\nError: Zero Divide.\n");

} /* main */

E:\>tcc call_idl.c idiv_mo2.asm

Turbo C++ Version 3.00 Copyright (c) 1992 Borland International

call_idl.c: '

idiv mo2.apm:

Turbo Assembler Version 3.1 Copyright (c) 1988, 1992 Borland International

Assambling file: 1div_mo2.ASM

Error messagos: None
Warning messages: None
Pasaes: 1

Ramaining memory: 418k
Turbo Link Version 5.0 Copyright (e¢) 1992 Borland International
Avajlable memory 4136272
Ei:\>call_idl.exe
Enter Numerator, Dencaminator
105 44
105 div 44 = 2, mod(105,44) = 17

B:\>

‘3o~

idiv_mod.

wa we W

.MODEL SMALL
Static Variables

Wy wma

-DATA

Half DQ 0.4995999999999

.
¥

.CODE
.386
.387

. int idiv_mod(

| _ Num
idiv_mod

Compute Q
function

L L TR TR TS

PUBLIC _idiv_mod
_idiv mod PROC NEAR
PUSH BF
MOV BP, SP :
FILD WORD PTR [BP+6]
FTS8T Denom (¢ I
FSTSW AX aAxX
SAHF
JNZ Cont

: Yes,
FFREE ST
MOV AX,O0
JMP Done
; Denom <> 0
FIDIVR WORD PTR [BP+4]
FTST
FSTSW AX
SAHF
JNAE Negl
FSUB Half
JMP ToStore
Negl:

FADD Half
ToStore:

MOV BX, [BP+8]

FISTP WORD PTR [BX]

FILD WORD PTR [BP+6]

FILD WORD PTR [BP+4]

FPREM

-
r
-

f

r

-
¥

; No,
Denom

-
r

Cont:

™ e W e M e

L1}

LY

MOV BX, [BP+10] }
FISTP WORD PTR [BX]
FFREE ST H
MOV AX,1 ;

Done:
POP BP i
RET

idiv_mod ENDP

[-n|

END

.es division by zero),

Return value

Ensure return value

idiv_mo2.asm - Assembler implementation of C-callable function

Implementation of C callable function ...

int Num, int Denom, int *Q, int *Rem)
[BP+4] [BP+6] [BP+8] [BP+10]
/ Denom _| ,Rem := MOD(Num, Denom)
returns 0 if Denom = 0 (illegal ..

1 otherwise

Preserve BP
Set BP to point to Parameter area

; ST(0) Denom

=
.

Status word

Copy to flags register

continue regular operation
0

0
8kip following code

.
r

3 ST = Num / ST, ST = Num / Denom
Compare with zero
Standard
Negative?

No:Subtract 1/2 to ensure rounding down
Avoid Negl code

Negative Yes: Add 1/2

Denom
Num, ST(1)
ST mod ST(1)
ff£gset Rem
*Rem

T
ST Denom
T

H
H
H

BX := O

8T

1

Restore BP register

33

idiv_mo3.asm - Assembler implementation of C-callable function idiv_mod.

Control Word

e e e e wy wa

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
D e e e s oY RN —" 4 + =t +————+
i ITRJR|IR|I]| RC|PC |R|R|PM|UM| OM | ZM | DM | IM |
P A S B Rt S T Y SN N S S — + S a3
.MODEL SMALL

; Static Variables
.DATA

f
Save CH DW 7
New CW DH ?
¥
.CODE
.386
.387
Implementation of C callable function ...
int idiv mod(int Num, int Denom, int *Q, int *Rem)
[BP+4] [BP+6] {BP+8] [BP+10}
Compute Q := [_ Num / Denom _| ,Rem := MOD(Num, Denom)
function idiv mod returns 0 if Denom = 0 (illegal
division by zerc), 1 otherwise

Ma M e w4 wy e we

PUBLIC _idiv_mod
_idiv_med PROC NEAR

PUSH RP ; Prasarve BP

MOV BP, SP ; Set BP to peint to Parameter area
FSTCW Save_CW ; Store status in Memlé
FSTCW New_CW ; Store status in Meamlé

AND New_CW,1111001111111111B ; Erase existing RC
OR New_CW,60000010000000000B ; Set RC to 01
; (Round towards -infinity)

FLDCW New_CW ; Set New CW
FILD WORD PTR [BP+6] ; ST(0) := Denom
FTST ; Denom = 0 ?
FSTSW AX ; Transfer SW to AX
SAHF ; Copy to flags register
JNZ Cont ; Damon != €
; Yas, Denom = 0

FFREE ST

MOV AX, O ; Return wvalue := 0

JMP Done ; Skip following code

Cont: ; Denem != 0

L3

FIDIVR WORD PTR [BP+4] ; ST = Num / ST, ST = Num / Denom

MOV BX, [BP+8] ; BX := Offset Q
FISTP WORD PTR ([BX] ; *Q := 87
FILD WORD PTR [BP+6] ; ST = Denom
FILD WORD PTR [BP+4] ; ST = Num, ST(1l) = Denom
FPREM ; ST = ST mod ST(l)
MOV BX, [BP+10] ; BX := QOffset Rem
FISTP WORD PTR [BX] ; *Rem := ST
FFREE ST ; Free ST(0)
MOV AX,1 ; Ensure return value = 1
Done:
F
FLDCW Save CW ; Restore control word to original wvalue
POP BP ; Rastore BP register
RET

idiv mod ENDP
;
;

END

238

call id2.c, idiv_mo9.asm R»317T niv331n

» ©"3 32-1 nona2 idiv_mod nx pwmnn idiv_mo%.asm nvisinn
Jidiv_mo2.asm-% mm113 svanen 1ayn3 amben ApSLBRYIRG A 9N
,0¥3 32 o nbwa 131101 NNy

2w 9a idiv_me2.asm-2 nb73) idiv_mo9.asm bw n>33nn

.WORD PTR oypma DWORD PTR x3m nwionan 1% casting-n -
Denom ,o+%73 Num vynb oraumapn %5 bw nviomwn an2 gwonn -
.idiv_mo7.asm-2 w3 pyv1a ,4-3 Rem-5 Q-v 2-3

idiv_moZ.asm-% v idiv_mo9.asm-3 Nv331n7 minipd Hv hiomn

=1 16 1973°1% nyvver Tavsn oy ovpbwa mabivs y¥ab v own
LBNY 2Kt w2 64-2 po Luva 32

136

/* call_id2.c - call assembler subroutine idiv_mod.asm from C program */
#include <stdio.h>

extern int idiv_mod(long int Num, long int Dencm, long int *Q, leng
int *Rem);

void main ()
{
long int Num, Denom, Q, Rem;
int No_Zero_Divide;

printf ("\Enter Numerator, Denominator\n:");

scanf ("%1ld %1d",&Num, &Denom);

No_Zero_Divide = idiv_mod (Num, Denom, &Q, &Rem) ;

if (No_Zero Divide)

Printf("\n %ld div %ld = %1d, mod(%1d, ¥1d) = %ld\n",

Num, Denom, Q, Num, Dencm, Rem):;

else

Printf ("\nError: Zero Divide.\n");

} /* main */

E:\>tcec -v call_id2.c idiv_mo9.asm

Turbo C++ Version 3.00 Copyright (c) 1992 Borland International
call_idZ.c:

idiv_mo9.asm:

Turbo Agssembler Version 3.1 Copyright (c) 1988, 1992 Borland
International

Assembling file: idiv_mo9._ASM

Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 429k
Turbo Link Version 5.0 Copyright (¢) 1992 Borland International
Available memory 4149256
E:\>CALL_ID2.EXE
Enter Numerator, Denominator
: 700065 55000
700065 div 55000 = 12, mod(700065,55000) = 40065

E:\>

~3SH

; idiv_mo9.asm ~ Assembler implementation of C-callable function idiv_mod.
.MODEL SMALL
;i Static Variables

.DATA

Half DQ (.4999999999999
.CODE
.3B6
.387
Implementation of C callable function ...
int idiv mod({long int Num, long int Denom,

[BP+4] [BP+8]
int *Q, int *Rem)
Compute Q := | _Num / Denom _| ,Rem := MOD(Num, Denom)

i
h
; [BP+12) [BP+14])
; function idiv_mod returns 0 if Denom = 0 (illegal ..
; ... division by zero), 1 otherwise
PUBLIC _idiv_mod
idiv._mod PROC NEAR

PUSH BP ; Preserve BP
MOV BP, SP ; Set BP to point to Parameter area
FILD DWORD PTR [BP+8! ; ST(D) := Denom
FTST ; Danom = 0 ?
FSTSW AX ; AX = Status woxd
SAHF ; ©Copy to flags register
JNZ Cont ; No, continue regular operation
; Yes, Denom = 0

FFREE ST

MOV AX, 0 ; Return value := 0

JMP Done ; Skip following code

Cont: ; Danom <> O
FIDIVR DWORD PTR [BP+4] ; 8T = Rum / ST, ST = Num / Denom
FSUB Half ; Subtract 1/2 to ensure rounding down
MOV BX, [BP+12] ; BX := Offset Q
FISTP DWORD PTR [BX] ; *Q := ST
FILD DWORD PTR [BP+8] ; 8T = Denom
FILD DWORD PTR [BP+4] ; 8T = Num, ST(l) = Denom
FPREM ; ST = ST mod ST({l)
MOV BX, [BP+14] ; BX := Offset Rem
FISTP DWORD PTR [BX] ; *Ram := ST
FFREE ST H
MOV AX,1 ; Ensure return valua = 1
Done:

POP BP ; Restore BP register
RET

_idiv_mod ENDP
;
;

END

3K

fderivl.c, fderivza.c, fdl.asm ®»393 pi*3s51n

IV WINET AR WMt 1300 %hn nvvaoann Swovapsyn 1vpbnn
.0%398Y) BY3IPOAI TR PIDI 3T L, TUHIDD O¥pInd

nIDYY DYXYT NINAK L P]IWR TIP TR Y RIS HIMA NNERPIWD jnIna
DYF1YY WRD WRGNRY BII0N MY LATIPI PR DUTAIN YW vawad 317y
Yomd ,nvebIR ORI RN PR BUYTIY A2 XY Yak nvion nhxpatn ownd

IR TIVIY TN IR YIRTI IDIND hAwINAT TRYWR YW 11D RN

v 21237 K7 pAraanw P DY DDI3AM YMNIR 31%pR 2N

f'(x) = Lim (f(x+h) - f{x-h))/(2h)
h->0

:(*) mmoran oMY PITTAAY 21T DRIWMI OR M?D

Fr(x) = (f{x+h) - F(x-h))/(2h) (*)

.na% hoarter Ry oabren Lnoraab 39vp bapy ,qwp proow h vy
DX O7IK DowRm RICMA® 1103 MY A 2w My jop h-w Yo
nivaY 3v s hoLam pan . padT 11K Swonaoyab bymao vme jop h o
K9 *wBR 11D .ovubnan ovawsa Jop XpIa1T kDY x-% nvont jop
$¥230 1 2.0-2 apabn "y h nx yrepn? I Yo b o= x/2 ox Yonnnb
(*} anoran Sw orapay or3ween 2 wIva L0130 oYlnnm ot nme av
an33 abbn o pavaswna Lonoa abtosRm qup vhmann oony3 oRrava v
PI°73 20 peavesnan YR L16384.0 pbi f(x) bv vhamn qaws jihhoox
.anyea oopbnn v3ven float-n miaa ana

*290 0 P17 DY B RwAIY @YIIWR IR BRTIIAPRA INRD OYIRYIN DY R R
.OUIDY DIpBT IRD KW

na®ywona nradinn LC newa onvavabxa wanen xon fderivl.c nraoann
L9BOMORI YR SnvYYaRRn DR ovemn fdl.asm-n fderiv2a.c

39

fderiv2b.c, fderivZc.c. fd2.asm, fd3.asm ny*33snn

g»apon 193y fdl.asm-1 fderiv2a.c v mabeapon g1 a%%n nirasann
.long double-v double

0vIBon TM3Y pUwmy wvYs ownnn fd2.asm-y fderiv2b.c osyapn
.double

DYIDDH M2Y R MIvray ovemmn fd3.asm-y fderiv2e.c oeyapn
.long double

Y3MIR]'I‘?'ODR 2RI L,0°29Ta TN BY¥PY°72 RO DT3P 1IRNIRY INRD

M3y 2097152.0-1 double =72y 131072.0 ,o°%11a any> pronya ovpomn
.long double

A 40

/* fderivl.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

float approx fderiv(float (*f£)(float), float x)
{
float h, £40, £41, eps;

h = %/2.0;
fdi ((*£) (x+h) - (*£)(x-h))/(2*%h);
eps fabs((*f) (x)/8192,0);

do {

4ao £41;

= h/2.0;

dal ((*£) (x+h) - (*£)(x-h))}/{(2*h);
} while(fabs(fd0 - £41) > eps);

£
h
£

ngn

return £41;

} /* approx_deriv */

float f£(float =x)
{

return x*x*x - 2.0*x*x + 3.0*x - 8.0;
Y /* £ *;

float real_fderiv(float x)
{

return 3.0*x*x - 4.0%x + 3.0;
Yy /* £ */

int main()

{
printf("approx_deriv(5.0) = %£f\n", approx_fderiv(f, 5.0));
printf("real_fderiv(5.0) = %f\n", real fderiv(5.0));

} /* main */

B:\>tce -v fderivl.c

Turbo C++ Version 3.00 Copyvright (c¢) 1992 Borland International
fderivi.c:

Turbo Link Version 5.0 Copyright (c¢) 1992 Borland International

Available memory 4103660
E:\>FDERIV1.EXFE
approx_deriv(5.0) = 58.001564
real_fderiv(5.0) = 58.000000

E:\>

oL

/* fderiv2a.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern float approx_ fderiv (float (*£) (float), float x);

float f£(float x)
{

return x*x*x - 2.0%x*%x + 3.0%x -~ 8.0;
Y /x £ %/

float real_fderiv(float x)
{

return 3.0%*x*x - 4.0*x + 3.0;
} /* real_fderiv */

int main()

{
printf (~approx_deriv(5.0) = %f\n", approx_fderiv(E, 5.0));
printf("real_fderiv(5.0) = %f\n", real_ fderiv(5.0));

raturn 0;
} /* main */

E:\>tcc fderiv2a.c fdl.asm

Turbo C++ Version 3.00 Copyright (c) 1992 Borland International
fderivia.c:

fdl.asm:

Turbo Assembler Versiom 3.1 Copyright (c) 1988, 1992 Borland
International

Apgembling file: fdl.asm

Error messages: None
Warning messagee: MNone
Passeg: 1

Remalning memory: 429k

Turbo Link Version 5.0 Copyright (¢) 1992 Borland International
Available memory 4141520

E:\>FDERIV2A,.EXE

approx_deriv(5.0) = 58.001526

real_ fderiv(5.0) = S58.000000

E:\>

L b

fdl.asm - implement numerical differentiation

- W Wa Wy

+MODEL SMALL
+DATA
h Db ?
two DD 2.0
£40 DD 0.0
eps_const DD 16384.0
eps DD 0.0
temp DD 0.0
.CODE

float approx_fderiv (float (*£) (float), float x)
[BP+4] [BP+6]

s W W Wy

.386

-387
PUBLIC _approx_fderiv

—approx_fderiv PROC NEAR

PUSH BP

MOV BP,SP

FLD DWORD PTR [BP+6]
FDIV two

FABS

FSTP h

compute (*f) (x+h) -(*f)({x-h))/ (2*h);

™e wa g

FLD DWORD PTR [BP+6]

FADD h

FSTP temp

PUSH temp : Push x+h

CALL WORD PTR [BP+4] ; 8T{0) = £({x+h)

ADD 8P, 4 ;7 Free Parameter

FLD DWORD PTR [BP+6]

FSUB h

FSTP tamp

PUSH temp ; Push x-h

CALL WORD PTR [BP+4] ; 8T(0) a f(x~h), ST(1l) = f£{x+h)
ADD spP,4 : Free Parameter

FSUB ; ST(0) = f(x+h)- f(x-h), ST(1l) = Empty
FLD h $ S8T(0) = h, ST(1) = £(x+h)- £(x-h)

FMUL two ; ST(0) = 2h, ST(1l) = £(x+h)- £{x-h)

FDIV ;i ST(0)} = (£(x+h)- £f(x-h))/2h

FSTP £430

PUSH DWORD PTR [BP+6]
CALL WORD PTR [BP+4]
ADD Sp.4

FDIV eps_const

FABS

FSTP eps

L3

Jol:

Ny wE wme

L1}

FLD h
FDIV two
FSTP h

compute (*f) (x+h) -(*f)(x-h))/ (2*h);
FLD DWORD PTR [BP+6]

FADD h
FSTP temp

PUSH temp ; Push x+h

CALL WORD PTR [BP+4] : ST(0) = f(x+h)

ADD SP,4 ; Free Parameter

FLD DWORD PTR [BP+6]

FSUB h

FSTP temp

PUSH temp 7 Push x-h

CALL WORD PTR [BP+4] i ST(0) = £(x-h), ST(1l) = £(x+h)
ADD Sp,4 ; Free Parameter

FSUB i 8T(0) = £(x+h)- £(x-h), ST(1) = Empty
FLD h ; ST(0) = h, ST(1) = £(x+h)- £(x-h)

FMUL two ; ST(0) = 2h, ST(1) = f(x+h)- f£(x-h)

FDIV 7 ST(0) = (f(x+h)- £(x-h))/2h

FLD ST ; ST(0) = (£(x+h)- £(x-h))/2h, ST(1l) = (E(x+h)- f(x-h))/2h
FLD £40
FSUB s ST(0) = current - f£dp

FABS ; ST(0) = | current - £40 |
FCOMP eps

FSTSW AX

SAHF

FSTP £d4d0

JAE Dol

FLD £40

POP BP

RET

approx_fderiv ENDP

END

14

/* fderiv2b.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern double approx_fderiv(double (*f) (double), double x):

double f£(double x)
{

return x*x*x - 2.0*%*x*x + 3,.0*x - 8.0;
Y /* £ %}

double real_fderiv(double x)

{
return 3.0*x*x - 4.0%x + 3.0;
} /* real_fderiv =*;/

int main()

{
printf("approx_deriv(5.0) = %1lf\n", approx fderiv(f, 5.0));
printf("real_fderiv(5.0) = %1f\n", real_ fderiv(5.0});

raeturn 0;
} /7% main *;/

E:\>»tcc fderiv2b.c f£4a2.asm

Turbo C++ Version 3.00 Copyright (¢) 1992 Borland Internmational
fderivib.c:

£fA42.asm:

Turbo Assembler Verglon 3.1 Copyright (c¢) 1988, 1992 Borland
International

Assembling fille: £d2.ASM

Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 429k

Turbo Link Version 5.0 Copyright {(c¢) 1952 Borland International
Available memory 4141520

E:\>FDERIV2B.EXE

approx_deriv(5.0) = 58,000095

real fderiv(5.0) = 58.,000000

E:\>

ANy

fd2.aem - implement numerical differentiation

DL S

.DATA
h pQ ?
two DD 2.0
£40 DQ 0.0
epsa_const DQ 131072.0
eps I 0.0
temp DG 0.0
+CODE

- %W W W

double approx_fderiv (double (*f) (double), double x)
[BP+4] [BP+6]

- W wa Wy

.386
.387

PUBLIC ~approx_ fderiv
-approx_fderiv proc NEAR

PUSH BP

MOV BFP,SP

FLD QWORD PTR [BP+6)
FDIV two

FABS

FSTP h

compute (*f) (x+h) ={*£) (x~h))}/ (2*h);

" Wy Ny

FLD QWORD PTR [BP+6]
FADD h

F8Tp temp
PUSH DWORD PTR temp+4 ¢ Push x+h
PUSH DWORD PTR temp

CALL WORD PTR [BP+4] 7 8T(0) = £({x+h)
ADD Sp,8 7 Free Parameter

FLD QWORD PTR [BP+6]

FSUB h

FSTP temp
PUSH DWORD PTR temp+4; Push x-h
PUSH DWORD PTR temp

CALL WORD PTR [BP+4] } ST(0) = £(x-h), ST(1l) = £ (x+h)

ADD Sp,8 ; Free Parameter

F8UB ? ST(0) = f(x+h)- f£(x-h), 8T(l) = Empty
FLD h 7 ST(0) = h, 8T(1) = f(x+h)- £(x-h)

FMUL two 7 ST(0) = 2h, ST(1) = f(x+h)~- £(x-h)

FDIV
FSTP £40
PUSH DWORD PTR [BP+10]
PUSH DWORD PTR [BP+6]
CALL WORD PTR [BP+4]
ADD SP,.8

FDIV eps_const

PABS

FSTP eps

8T(0) = (£(x+h)- f(x-h))/2h

-y

*Gb

FLD h
FDIV two
FSTP h

compute (*f)(x+h) -(*f)(x-h))/ (2*h);

e Wmg Wy

FLD QWORD PTR [BP+6]

FADD h

FSTP temp

PUSH DWORD PTR temp+4 ; Push x+h

PUSH DWORD PTR temp

CALL WORD PTR [BP+4] ;7 8T(0) = £ (x+h)

ADD sSp,8 ; Free Parameter

FLD QWORD PTR [BP+6]

FSUB h

FSTP temp

PUSH DWORD PTR temp+4; Push x-h

PUSH DWORD PTR temp

CALL WORD PTR [BP+4] ; ST(0) = £(x-h), ST(1) = f(x+h)
ADD SP,8 ; Free Parameter

FSUB $ ST(0) = f£(x+h)- £(x-h), ST(1l) = Empty
FLD h ; ST(0) = h, 8ST(1) = £{(x+h)- f(x-h)

FMUL two ; ST(0) = 2h, ST(1) = £{(x+h)~ £(x-h)

FDIV ; ST(0) = (f(x+h)~ £(x-h))/2h

FLD ST ; ST(0) = (f(x+h)- £(x-h))/2h, ST(1) = (f(x+h)- f(x-h))/2h
FLD fdo

FSUB i ST(0) = current - £40

FABS ; ST(0) = | current - £d0 |

FCOMP eps

FSTSW AX

SAHF

FSTP f£d0

JAE Dol

FLD £40

POP BP

RET

_approx_fderiv ENDP

-
f

END

LG F

/* fderiv2c.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern long double approx_fderiv(long double (*f)(long double},
long double x);

long double f(long double x)
{

return x*x*x - 2,0%*x*x%x + 3.0%x - 8.0;
y /£~

long double real_fderiv(long double x)
{

return 3.0*x*x - 4.0*x + 3.0;
} /* real_ fderiv ¥/

int main()

{
printf("approx_deriv(5.0) = %LE\n", approx_fderiv(E, 5.0));
printf("real_fderiv(5.0) = %Lf\n", real_fderiv{5.0));

return 0;
) /* main =/

E:\>tcec fderiv2c.c fd3.asm

Turbo C++ Version 3.00 Copyright (c) 1992 Borland International
fderivic.c:

fa3.asm;

Turbo Assembler Version 3.1 Copyright (e¢) 1988, 1992 Borland
International

Assembling file: £43 .ASM

Error messages: None
Warning messages: None
Passes 1

Remaining memory: 429k

Turbo Link Version 5.0 Copyright (c¢) 1992 Borland International
Available memory 4141520

E:\>FDERIV3ZC.EXE

approx_deriv(5.0) = 58.000006

real_fderiv(5.0) = 58.000000

E:\>

BN

fd3.asm ~ implement numerical differentiation

- W W Wy

-MODEL SMALL

+DATA
h pr ?
two DD 2.0
£40 DT 0.0
aeps_cconst DT 2097152.0
aps DT 0.0
temp DT 0.0
CODE
H
; long double approx_fderiv (long double (*£) (double), long double x)
H [BP+4] [BP+6]
.386
.387
PUBLIC _approx_fderiv
_approx_fderiv PROC NEAR
PUSH BP
MOV BpP,SP
FLD TBYTE PTR [BP+6]
FDIV two
FABR
FSTP h
;
2 compute (*f) (x+h) -(*£){x-h))/ (2*h);
FLD TBYTE PTR [BP+6]
FLD h
FADD
FSTP temp
PUSH DWORD PTR temp+6 7 Push x+h
PUSH DWORD PTR temp+2
PUSH WORD PTR temp
F
CALL WORD PTR [BP+4] : 8ST(0) = f£(x+h)
ADD sP,10 ¢ Free Parameter
FLD TBYTE PTR [BP+6]
FLD h
FSUB
FSTP temp
PUSH DWORD PTR temp+6 3 Push x-h
PUSH DWORD PTR temp+2
PUSH WORD PTR temp
CALL WORD PTR [BP+4] i ST(0) = £{x-h), ST{(l1) = f£(x+h)
ADD SP,10 ¢+ Free Parameter
FSUB ¢ 8T(0) = f£(x+h)- £(x-h), ST(1) = Empty
FLD h # ST(0) = h, ST(1l) = f(x+h)- f(x-h)
FMUL two 7 8T(Q0) = 2h, S8T(1) = E£(x+h)- £{x-h)
FDIV 7 ST(0) = (£(mx+h)- £(x-h))/2h
FSTP £49

249

PUSH DWORD PTR [BP+12]
PUSH DWORD PTR [BP+8]
PUSH WORD PTR [BP+6]
CALL WORD PTR [BP+4]
ADD SP,10

FLD eps_const

FDIV

FABS

FSTP eps

Dol:
Fi.D h
FDIV two
FSTP h

compute (*f) (x+h) -(*f)(x-h))/ (2*h);

™ “a Wms

FLD TBYTE PTR [BP+6]

FLD h

FADD

FSTP temp

PUSH DWORD PTR temp+6 ; Push x-h

PUSH DWORD PTR temp+2
PUSH WQORD PTR temp

CALL WORD PTR [BP+4] i ST(Q0) = f£(x+h)

ADD 8SP,10 ; Free Parameter

FLD TBYTE PTR [BP+6]

FLD h

FSUB

FSTP temp

PUSH DWORD PTR temp+6 ; Push x-h

PUSH DWORD PTR temp+2

PUSH WORD PTR temp

CALL WORD PTR [BP+4] ; ST(0) = £{x-h)}, ST(1l) = £{x+h)
ADD SP,10 ; Free Parameter

FSUB ; 8T(0) = f£(x+h)- £(x-h), ST(1l) = Empty
FLD h : ST(0) = h, 8sT(1l) = £(x+h)- £(x-h)

FMUL two 3 ST(0) = 2h, 8ST(l) = £{(x+h)- £(x-h)

FDIV ;s ST(0) = (f£f(x+h)- f(x-h})/2h

FLD ST ; 8T(0) = (f£f(x+h)- £f(x-h))/2h, ST(1l) = (f{x+h)- f(x-h))/2h
FLD £40

FSUB i ST(0) = current -~ £40

FABS ; ST(0) = | current - £40 |

FLD eps

FCOMPP

FSTSW AX

SAHF

FSTP £fd4o0

JNAE Dol ; Reversed logic

FLD fdo

POP BP

RET
_approx_fderiv ENDP

-
r

END

LS

