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/* call_idl.c - call assembler subroutine idiv_mod.asm from C program */

#include <stdio.h>

extern int i1div_mod(int Num, int Dencm, int *Q, int *Rem);

void main()
{
int Num, Denom, Q, Rem, No_Zero_Divida;

printf("\Enter Numerator, Denominator\n:");

scanf ("%d %d",&Num, &Dencm);

No_Zero_Divide = idiv_mod (Num, Denom, &Q, &Rem) ;

if (No_Zero_Divide)

printf("\n %4 div %d = %d, mod(%d,%d) = %d\n",

Num, Dencm, Q, Num, Denom, Rem):;

else

printf{"\nError: Zero Divide.\n");

} /* main */

E:\>tcc call_idl.c idiv_mo2.asm

Turbo C++ Version 3.00 Copyright (c) 1992 Borland International

call_idl.c: '

idiv mo2.apm:

Turbo Assembler Version 3.1 Copyright (c) 1988, 1992 Borland International

Assambling file: 1div_mo2.ASM

Error messagos: None
Warning messages: None
Pasaes: 1

Ramaining memory: 418k
Turbo Link Version 5.0 Copyright (e¢) 1992 Borland International
Avajlable memory 4136272
Ei:\>call_idl.exe
Enter Numerator, Dencaminator
105 44
105 div 44 = 2, mod(105,44) = 17

B:\>
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idiv_mod.

wa we W

.MODEL SMALL
Static Variables

Wy wma

-DATA

Half DQ 0.4995999999999

.
¥

.CODE
.386
.387

. int idiv_mod(

| _ Num
idiv_mod

Compute Q
function

L L TR TR TS

PUBLIC _idiv_mod
_idiv mod PROC NEAR
PUSH BF
MOV BP, SP :
FILD WORD PTR [BP+6]
FTS8T Denom (¢ I
FSTSW AX aAxX
SAHF
JNZ Cont

: Yes,
FFREE ST
MOV AX,O0
JMP Done
; Denom <> 0
FIDIVR WORD PTR [BP+4]
FTST
FSTSW AX
SAHF
JNAE Negl
FSUB Half
JMP ToStore
Negl:

FADD Half
ToStore:

MOV BX, [BP+8]

FISTP WORD PTR [BX]

FILD WORD PTR [BP+6]

FILD WORD PTR [BP+4]

FPREM

-
r
-

f

r

-
¥

; No,
Denom

-
r

Cont:

™ e W e M e

L1}

LY

MOV BX, [BP+10] }
FISTP WORD PTR [BX]
FFREE ST H
MOV AX,1 ;

Done:
POP BP i
RET

idiv_mod ENDP

[ -n|

END

.es division by zero),

Return value

Ensure return value

idiv_mo2.asm - Assembler implementation of C-callable function

Implementation of C callable function ...

int Num, int Denom, int *Q, int *Rem)
[BP+4] [BP+6] [BP+8] [BP+10]
/ Denom _| ,Rem := MOD(Num, Denom)
returns 0 if Denom = 0 (illegal ..

1 otherwise

Preserve BP
Set BP to point to Parameter area

; ST(0) Denom

=
.

Status word

Copy to flags register

continue regular operation
0

0
8kip following code

.
r

3 ST = Num / ST, ST = Num / Denom
Compare with zero
Standard
Negative?

No:Subtract 1/2 to ensure rounding down
Avoid Negl code

Negative Yes: Add 1/2

Denom
Num, ST(1)
ST mod ST(1)
ff£gset Rem
*Rem

T
ST Denom
T

H
H
H

BX := O

8T

1

Restore BP register

33




idiv_mo3.asm - Assembler implementation of C-callable function idiv_mod.

Control Word

e e e e wy wa

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
D e e e s oY RN —" 4 + =t +————+
i ITRJR|IR|I]| RC|PC |R|R|PM|UM| OM | ZM | DM | IM |
P A S B Rt S T Y SN N S S — + S a3
.MODEL SMALL

; Static Variables
.DATA

f
Save CH DW 7
New CW DH ?
¥
.CODE
.386
.387
Implementation of C callable function ...
int idiv mod(int Num, int Denom, int *Q, int *Rem)
[BP+4] [BP+6] {BP+8] [BP+10}
Compute Q := [_ Num / Denom _| ,Rem := MOD(Num, Denom)
function idiv mod returns 0 if Denom = 0 (illegal
division by zerc), 1 otherwise

Ma M e w4 wy e we

PUBLIC _idiv_mod
_idiv_med PROC NEAR

PUSH RP ; Prasarve BP

MOV BP, SP ; Set BP to peint to Parameter area
FSTCW Save_CW ; Store status in Memlé
FSTCW New_CW ; Store status in Meamlé

AND New_CW,1111001111111111B ; Erase existing RC
OR New_CW,60000010000000000B ; Set RC to 01
; (Round towards -infinity)

FLDCW New_CW ; Set New CW
FILD WORD PTR [BP+6] ; ST(0) := Denom
FTST ; Denom = 0 ?
FSTSW AX ; Transfer SW to AX
SAHF ; Copy to flags register
JNZ Cont ; Damon != €
; Yas, Denom = 0

FFREE ST

MOV AX, O ; Return wvalue := 0

JMP Done ; Skip following code

Cont: ; Denem != 0

L3




FIDIVR WORD PTR [BP+4] ; ST = Num / ST, ST = Num / Denom

MOV BX, [BP+8] ; BX := Offset Q
FISTP WORD PTR ([BX] ; *Q := 87
FILD WORD PTR [BP+6] ; ST = Denom
FILD WORD PTR [BP+4] ; ST = Num, ST(1l) = Denom
FPREM ; ST = ST mod ST(l)
MOV BX, [BP+10] ; BX := QOffset Rem
FISTP WORD PTR [BX] ; *Rem := ST
FFREE ST ; Free ST(0)
MOV AX,1 ; Ensure return value = 1
Done:
F
FLDCW Save CW ; Restore control word to original wvalue
POP BP ; Rastore BP register
RET

idiv mod ENDP
;
;

END

238




call id2.c, idiv_mo9.asm R»317T niv331n
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.idiv_mo7.asm-2 w3 pyv1a ,4-3 Rem-5 Q-v 2-3

idiv_moZ.asm-% v idiv_mo9.asm-3 Nv331n7 minipd Hv hiomn
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/* call_id2.c - call assembler subroutine idiv_mod.asm from C program */
#include <stdio.h>

extern int idiv_mod(long int Num, long int Dencm, long int *Q, leng
int *Rem);

void main ()
{
long int Num, Denom, Q, Rem;
int No_Zero_Divide;

printf ("\Enter Numerator, Denominator\n:");

scanf ("%1ld %1d",&Num, &Denom);

No_Zero_Divide = idiv_mod (Num, Denom, &Q, &Rem) ;

if (No_Zero Divide)

Printf("\n %ld div %ld = %1d, mod(%1d, ¥1d) = %ld\n",

Num, Denom, Q, Num, Dencm, Rem):;

else

Printf ("\nError: Zero Divide.\n");

} /* main */

E:\>tcec -v call_id2.c idiv_mo9.asm

Turbo C++ Version 3.00 Copyright (c) 1992 Borland International
call_idZ.c:

idiv_mo9.asm:

Turbo Agssembler Version 3.1 Copyright (c) 1988, 1992 Borland
International

Assembling file: idiv_mo9._ASM

Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 429k
Turbo Link Version 5.0 Copyright (¢) 1992 Borland International
Available memory 4149256
E:\>CALL_ID2.EXE
Enter Numerator, Denominator
: 700065 55000
700065 div 55000 = 12, mod(700065,55000) = 40065

E:\>
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; idiv_mo9.asm ~ Assembler implementation of C-callable function idiv_mod.
.MODEL SMALL
;i Static Variables

.DATA

Half DQ (.4999999999999
.CODE
.3B6
.387
Implementation of C callable function ...
int idiv mod({long int Num, long int Denom,

[BP+4] [BP+8]
int *Q, int *Rem)
Compute Q := | _Num / Denom _| ,Rem := MOD(Num, Denom)

i
h
; [BP+12) [BP+14])
; function idiv_mod returns 0 if Denom = 0 (illegal ..
; ... division by zero), 1 otherwise
PUBLIC _idiv_mod
_idiv_._mod PROC NEAR

PUSH BP ; Preserve BP
MOV BP, SP ; Set BP to point to Parameter area
FILD DWORD PTR [BP+8! ; ST(D) := Denom
FTST ; Danom = 0 ?
FSTSW AX ; AX = Status woxd
SAHF ; ©Copy to flags register
JNZ Cont ; No, continue regular operation
; Yes, Denom = 0

FFREE ST

MOV AX, 0 ; Return value := 0

JMP Done ; Skip following code

Cont: ; Danom <> O
FIDIVR DWORD PTR [BP+4] ; 8T = Rum / ST, ST = Num / Denom
FSUB Half ; Subtract 1/2 to ensure rounding down
MOV BX, [BP+12] ; BX := Offset Q
FISTP DWORD PTR [BX] ; *Q := ST
FILD DWORD PTR [BP+8] ; 8T = Denom
FILD DWORD PTR [BP+4] ; 8T = Num, ST(l) = Denom
FPREM ; ST = ST mod ST({l)
MOV BX, [BP+14] ; BX := Offset Rem
FISTP DWORD PTR [BX] ; *Ram := ST
FFREE ST H
MOV AX,1 ; Ensure return valua = 1
Done:

POP BP ; Restore BP register
RET

_idiv_mod ENDP
;
;

END
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fderivl.c, fderivza.c, fdl.asm ®»393 pi*3s51n

IV WINET AR WMt 1300 %hn nvvaoann Swovapsyn 1vpbnn
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nIDYY DYXYT NINAK L P]IWR TIP TR Y RIS HIMA NNERPIWD jnIna
DYF1YY  WRD  WRGNRY BII0N MY LATIPI PR DUTAIN YW vawad 317y
Yomd ,nvebIR ORI RN PR BUYTIY A2 XY Yak nvion nhxpatn ownd
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f'(x) = Lim (f(x+h) - f{x-h))/(2h)
h->0

:(*) mmoran oMY PITTAAY 21T DRIWMI OR M?D

Fr(x) = (f{x+h) - F(x-h))/(2h) (*)

.na% hoarter Ry oabren Lnoraab 39vp bapy ,qwp proow h vy
DX O7IK  DowRm RICMA® 1103 MY A 2w My jop h-w Yo
nivaY 3v s hoLam pan . padT 11K Swonaoyab bymao vme jop h o
K9 *wBR 11D .ovubnan ovawsa Jop XpIa1T kDY x-% nvont jop
$¥230 1 2.0-2 apabn "y h nx yrepn? I Yo b o= x/2 ox Yonnnb
(*} anoran Sw orapay or3ween 2 wIva L0130 oYlnnm ot nme av
an33  abbn o pavaswna Lonoa abtosRm qup vhmann oony3 oRrava v
PI°73 20 peavesnan YR L16384.0 pbi f(x) bv vhamn qaws  jihhoox
.anyea oopbnn v3ven float-n miaa ana

*290 0 P17 DY B RwAIY @YIIWR IR BRTIIAPRA INRD OYIRYIN DY R R
.OUIDY DIpBT IRD KW

na®ywona nradinn LC newa onvavabxa wanen  xon fderivl.c nraoann
L9BOMORI YR SnvYYaRRn DR ovemn fdl.asm-n fderiv2a.c
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fderiv2b.c, fderivZc.c. fd2.asm, fd3.asm ny*33snn

g»apon 193y fdl.asm-1 fderiv2a.c v mabeapon g1 a%%n nirasann
.long double-v double

0vIBon  TM3Y  pUwmy wvYs ownnn fd2.asm-y fderiv2b.c osyapn
.double

DYIDDH M2Y R MIvray ovemmn  fd3.asm-y fderiv2e.c oeyapn
.long double

Y3MIR ]'I‘?'ODR 2RI L,0°29Ta TN BY¥PY°72 RO DT3P 1IRNIRY INRD

M3y 2097152.0-1 double =72y 131072.0 ,o°%11a any> pronya ovpomn
.long double
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/* fderivl.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

float approx fderiv(float (*f£)(float), float x)
{
float h, £40, £41, eps;

h = %/2.0;
fdi ((*£) (x+h) - (*£)(x-h))/(2*%h);
eps fabs((*f) (x)/8192,0);

do {

4ao £41;

= h/2.0;

dal ((*£) (x+h) - (*£)(x-h))}/{(2*h);
} while(fabs(fd0 - £41) > eps );

£
h
£

ngn

return £41;

} /* approx_deriv */

float f£(float =x)
{

return x*x*x - 2.0*x*x + 3.0*x - 8.0;
Y /* £ *;

float real_fderiv(float x)
{

return 3.0*x*x - 4.0%x + 3.0;
Yy /* £ */

int main()

{
printf("approx_deriv(5.0) = %£f\n", approx_fderiv(f, 5.0));
printf("real_fderiv(5.0) = %f\n", real fderiv(5.0));

} /* main */

B:\>tce -v fderivl.c

Turbo C++ Version 3.00 Copyvright (c¢) 1992 Borland International
fderivi.c:

Turbo Link Version 5.0 Copyright (c¢) 1992 Borland International

Available memory 4103660
E:\>FDERIV1.EXFE
approx_deriv(5.0) = 58.001564
real_fderiv(5.0) = 58.000000

E:\>
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/* fderiv2a.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern float approx_ fderiv (float (*£) (float), float x);

float f£(float x)
{

return x*x*x - 2.0%x*%x + 3.0%x -~ 8.0;
Y /x £ %/

float real_fderiv(float x)
{

return 3.0%*x*x - 4.0*x + 3.0;
} /* real_fderiv */

int main()

{
printf (~approx_deriv(5.0) = %f\n", approx_fderiv(E, 5.0));
printf("real_fderiv(5.0) = %f\n", real_ fderiv(5.0));

raturn 0;
} /* main */

E:\>tcc fderiv2a.c fdl.asm

Turbo C++ Version 3.00 Copyright (c) 1992 Borland International
fderivia.c:

fdl.asm:

Turbo Assembler Versiom 3.1 Copyright (c) 1988, 1992 Borland
International

Apgembling file: fdl.asm

Error messages: None
Warning messagee: MNone
Passeg: 1

Remalning memory: 429k

Turbo Link Version 5.0 Copyright (¢) 1992 Borland International
Available memory 4141520

E:\>FDERIV2A,.EXE

approx_deriv(5.0) = 58.001526

real_ fderiv(5.0) = S58.000000

E:\>
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fdl.asm - implement numerical differentiation

- W Wa Wy

+MODEL SMALL
+DATA
h Db ?
two DD 2.0
£40 DD 0.0
eps_const DD 16384.0
eps DD 0.0
temp DD 0.0
.CODE

float approx_fderiv (float (*£) (float), float x)
[BP+4] [BP+6]

s W W Wy

.386

-387
PUBLIC _approx_fderiv

—approx_fderiv PROC NEAR

PUSH BP

MOV BP,SP

FLD DWORD PTR [BP+6]
FDIV two

FABS

FSTP h

compute (*f) (x+h) -(*f)({x-h) )/ (2*h);

™e wa g

FLD DWORD PTR [BP+6]

FADD h

FSTP temp

PUSH temp : Push x+h

CALL WORD PTR [BP+4] ; 8T{0) = £({x+h)

ADD 8P, 4 ;7 Free Parameter

FLD DWORD PTR [BP+6]

FSUB h

FSTP tamp

PUSH temp ; Push x-h

CALL WORD PTR [BP+4] ; 8T(0) a f(x~h), ST(1l) = f£{x+h)
ADD spP,4 : Free Parameter

FSUB ; ST(0) = f(x+h)- f(x-h), ST(1l) = Empty
FLD h $ S8T(0) = h, ST(1) = £(x+h)- £(x-h)

FMUL two ; ST(0) = 2h, ST(1l) = £(x+h)- £{x-h)

FDIV ;i ST(0)} = (£(x+h)- £f(x-h))/2h

FSTP £430

PUSH DWORD PTR [BP+6]
CALL WORD PTR [BP+4]
ADD Sp.4

FDIV eps_const

FABS

FSTP eps

L3




Jol:

Ny wE wme

L1}

FLD h
FDIV two
FSTP h

compute (*f) (x+h) -(*f)(x-h) )/ (2*h);
FLD DWORD PTR [BP+6]

FADD h
FSTP temp

PUSH temp ; Push x+h

CALL WORD PTR [BP+4] : ST(0) = f(x+h)

ADD SP,4 ; Free Parameter

FLD DWORD PTR [BP+6]

FSUB h

FSTP temp

PUSH temp 7 Push x-h

CALL WORD PTR [BP+4] i ST(0) = £(x-h), ST(1l) = £(x+h)
ADD Sp,4 ; Free Parameter

FSUB i 8T(0) = £(x+h)- £(x-h), ST(1) = Empty
FLD h ; ST(0) = h, ST(1) = £(x+h)- £(x-h)

FMUL two ; ST(0) = 2h, ST(1) = f(x+h)- f£(x-h)

FDIV 7 ST(0) = (f(x+h)- £(x-h))/2h

FLD ST ; ST(0) = (£(x+h)- £(x-h))/2h, ST(1l) = (E(x+h)- f(x-h))/2h
FLD £40
FSUB s ST(0) = current - f£dp

FABS ; ST(0) = | current - £40 |
FCOMP eps

FSTSW AX

SAHF

FSTP £d4d0

JAE Dol

FLD £40

POP BP

RET

approx_fderiv ENDP

END
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/* fderiv2b.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern double approx_fderiv(double (*f) (double), double x):

double f£(double x)
{

return x*x*x - 2.0*%*x*x + 3,.0*x - 8.0;
Y /* £ %}

double real_fderiv(double x)

{
return 3.0*x*x - 4.0%x + 3.0;
} /* real_fderiv =*;/

int main()

{
printf("approx_deriv(5.0) = %1lf\n", approx fderiv(f, 5.0));
printf("real_fderiv(5.0) = %1f\n", real_ fderiv(5.0});

raeturn 0;
} /7% main *;/

E:\>»tcc fderiv2b.c f£4a2.asm

Turbo C++ Version 3.00 Copyright (¢) 1992 Borland Internmational
fderivib.c:

£fA42.asm:

Turbo Assembler Verglon 3.1 Copyright (c¢) 1988, 1992 Borland
International

Assembling fille: £d2.ASM

Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 429k

Turbo Link Version 5.0 Copyright {(c¢) 1952 Borland International
Available memory 4141520

E:\>FDERIV2B.EXE

approx_deriv(5.0) = 58,000095

real fderiv(5.0) = 58.,000000

E:\>

ANy




fd2.aem - implement numerical differentiation

DL S

.DATA
h pQ ?
two DD 2.0
£40 DQ 0.0
epsa_const DQ 131072.0
eps I 0.0
temp DG 0.0
+CODE

- %W W W

double approx_fderiv (double (*f) (double), double x)
[BP+4] [BP+6]

- W wa Wy

.386
.387

PUBLIC ~approx_ fderiv
-approx_fderiv proc NEAR

PUSH BP

MOV BFP,SP

FLD QWORD PTR [BP+6)
FDIV two

FABS

FSTP h

compute (*f) (x+h) ={*£) (x~h) )}/ (2*h);

" Wy Ny

FLD QWORD PTR [BP+6]
FADD h

F8Tp temp
PUSH DWORD PTR temp+4 ¢ Push x+h
PUSH DWORD PTR temp

CALL WORD PTR [BP+4] 7 8T(0) = £({x+h)
ADD Sp,8 7 Free Parameter

FLD QWORD PTR [BP+6]

FSUB h

FSTP temp
PUSH DWORD PTR temp+4; Push x-h
PUSH DWORD PTR temp

CALL WORD PTR [BP+4] } ST(0) = £(x-h), ST(1l) = £ (x+h)

ADD Sp,8 ; Free Parameter

F8UB ? ST(0) = f(x+h)- f£(x-h), 8T(l) = Empty
FLD h 7 ST(0) = h, 8T(1) = f(x+h)- £(x-h)

FMUL two 7 ST(0) = 2h, ST(1) = f(x+h)~- £(x-h)

FDIV
FSTP £40
PUSH DWORD PTR [BP+10]
PUSH DWORD PTR [BP+6]
CALL WORD PTR [BP+4]
ADD SP,.8

FDIV eps_const

PABS

FSTP eps

8T(0) = (£(x+h)- f(x-h))/2h

-y

*Gb




FLD h
FDIV two
FSTP h

compute (*f)(x+h) -(*f)(x-h) )/ (2*h);

e Wmg Wy

FLD QWORD PTR [BP+6]

FADD h

FSTP temp

PUSH DWORD PTR temp+4 ; Push x+h

PUSH DWORD PTR temp

CALL WORD PTR [BP+4] ;7 8T(0) = £ (x+h)

ADD sSp,8 ; Free Parameter

FLD QWORD PTR [BP+6]

FSUB h

FSTP temp

PUSH DWORD PTR temp+4; Push x-h

PUSH DWORD PTR temp

CALL WORD PTR [BP+4] ; ST(0) = £(x-h), ST(1) = f(x+h)
ADD SP,8 ; Free Parameter

FSUB $ ST(0) = f£(x+h)- £(x-h), ST(1l) = Empty
FLD h ; ST(0) = h, 8ST(1) = £{(x+h)- f(x-h)

FMUL two ; ST(0) = 2h, ST(1) = £{(x+h)~ £(x-h)

FDIV ; ST(0) = (f(x+h)~ £(x-h))/2h

FLD ST ; ST(0) = (f(x+h)- £(x-h))/2h, ST(1) = (f(x+h)- f(x-h))/2h
FLD fdo

FSUB i ST(0) = current - £40

FABS ; ST(0) = | current - £d0 |

FCOMP eps

FSTSW AX

SAHF

FSTP f£d0

JAE Dol

FLD £40

POP BP

RET

_approx_fderiv ENDP

-
f

END

LG F




/* fderiv2c.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern long double approx_fderiv(long double (*f)(long double},
long double x);

long double f(long double x)
{

return x*x*x - 2,0%*x*x%x + 3.0%x - 8.0;
y /£~

long double real_fderiv(long double x)
{

return 3.0*x*x - 4.0*x + 3.0;
} /* real_ fderiv ¥/

int main()

{
printf("approx_deriv(5.0) = %LE\n", approx_fderiv(E, 5.0));
printf("real_fderiv(5.0) = %Lf\n", real_fderiv{5.0));

return 0;
) /* main =/

E:\>tcec fderiv2c.c fd3.asm

Turbo C++ Version 3.00 Copyright (c) 1992 Borland International
fderivic.c:

fa3.asm;

Turbo Assembler Version 3.1 Copyright (e¢) 1988, 1992 Borland
International

Assembling file: £43 .ASM

Error messages: None
Warning messages: None
Passes 1

Remaining memory: 429k

Turbo Link Version 5.0 Copyright (c¢) 1992 Borland International
Available memory 4141520

E:\>FDERIV3ZC.EXE

approx_deriv(5.0) = 58.000006

real_fderiv(5.0) = 58.000000

E:\>

BN




fd3.asm ~ implement numerical differentiation

- W W Wy

-MODEL SMALL

+DATA
h pr ?
two DD 2.0
£40 DT 0.0
aeps_cconst DT 2097152.0
aps DT 0.0
temp DT 0.0
CODE
H
; long double approx_fderiv (long double (*£) (double), long double x)
H [BP+4] [BP+6]
.386
.387
PUBLIC _approx_fderiv
_approx_fderiv PROC NEAR
PUSH BP
MOV BpP,SP
FLD TBYTE PTR [BP+6]
FDIV two
FABR
FSTP h
;
2 compute (*f) (x+h) -(*£){x-h) )/ (2*h);
FLD TBYTE PTR [BP+6]
FLD h
FADD
FSTP temp
PUSH DWORD PTR temp+6 7 Push x+h
PUSH DWORD PTR temp+2
PUSH WORD PTR temp
F
CALL WORD PTR [BP+4] : 8ST(0) = f£(x+h)
ADD sP,10 ¢ Free Parameter
FLD TBYTE PTR [BP+6]
FLD h
FSUB
FSTP temp
PUSH DWORD PTR temp+6 3 Push x-h
PUSH DWORD PTR temp+2
PUSH WORD PTR temp
CALL WORD PTR [BP+4] i ST(0) = £{x-h), ST{(l1) = f£(x+h)
ADD SP,10 ¢+ Free Parameter
FSUB ¢ 8T(0) = f£(x+h)- £(x-h), ST(1) = Empty
FLD h # ST(0) = h, ST(1l) = f(x+h)- f(x-h)
FMUL two 7 8T(Q0) = 2h, S8T(1) = E£(x+h)- £{x-h)
FDIV 7 ST(0) = (£(mx+h)- £(x-h))/2h
FSTP £49

249




PUSH DWORD PTR [BP+12]
PUSH DWORD PTR [BP+8]
PUSH WORD PTR [BP+6]
CALL WORD PTR [BP+4]
ADD SP,10

FLD eps_const

FDIV

FABS

FSTP eps

Dol:
Fi.D h
FDIV two
FSTP h

compute (*f) (x+h) -(*f)(x-h) )/ (2*h);

™ “a Wms

FLD TBYTE PTR [BP+6]

FLD h

FADD

FSTP temp

PUSH DWORD PTR temp+6 ; Push x-h

PUSH DWORD PTR temp+2
PUSH WQORD PTR temp

CALL WORD PTR [BP+4] i ST(Q0) = f£(x+h)

ADD 8SP,10 ; Free Parameter

FLD TBYTE PTR [BP+6]

FLD h

FSUB

FSTP temp

PUSH DWORD PTR temp+6 ; Push x-h

PUSH DWORD PTR temp+2

PUSH WORD PTR temp

CALL WORD PTR [BP+4] ; ST(0) = £{x-h)}, ST(1l) = £{x+h)
ADD SP,10 ; Free Parameter

FSUB ; 8T(0) = f£(x+h)- £(x-h), ST(1l) = Empty
FLD h : ST(0) = h, 8sT(1l) = £(x+h)- £(x-h)

FMUL two 3 ST(0) = 2h, 8ST(l) = £{(x+h)- £(x-h)

FDIV ;s ST(0) = (f£f(x+h)- f(x-h})/2h

FLD ST ; 8T(0) = (f£f(x+h)- £f(x-h))/2h, ST(1l) = (f{x+h)- f(x-h))/2h
FLD £40

FSUB i ST(0) = current -~ £40

FABS ; ST(0) = | current - £40 |

FLD eps

FCOMPP

FSTSW AX

SAHF

FSTP £fd4o0

JNAE Dol ; Reversed logic

FLD fdo

POP BP

RET
_approx_fderiv ENDP

-
r

END

LS




