call_idl.c., idiv _mo?.asm, idiy mo3.asm ®M333 N3y»33IN0

wwnTEn R YRw call_idl.c nriswnn Dw wan wantn KO ND w0 D

DR ORI OIND .0V RANT TIVIT CTAARD nwmnwnn *YIBOR NIYLYY Nty hY

N1733I0 M Lobeannd J29nn RTYa ovnben v aptunntaRa Yoo waseen
L UBNAT T3¥RD OH%W DR Mprbnnv IR venea? R PR kpay

R KPY apabnn bw Yaacynw oviviivm 2IMIRY NY11 L, RRAT st
0v¥3pa idiv_mod bw ovwapdn vaw (*3 TR0 L103°K 932187 Tph TR
*0%2 9930y NRT n¥pIIDAR My xan idiv_mo3.asm -1 idiv_mo2.asm
-3 %%y 0.499999 bw mnnon o'y xvi Yaavvn idiv_meZ.asm -3 oow
.1avmn Yw Control Word-aw RC-% 01 yayn Y@ nayn »iay idiv_mod.asm

idiv_mo3.asm yaip2 Control Werd-a %)

YIIpBR 1999 mave v by nwyy idiv_mo3.asm-3 Control Word-nm it
na¥n  LovAn vash TR Sw o arnowy Save CW b aem namen in®
v1» 5y Control Mord-nm %w >n>iam R a0 by mwyd RC-% 01 Twvm
-% ot anaeyer 1Yy nasvsa nabays yixea ,New CW 99y mamemb ynoxn
m1ppa mwya Control Word-a »w v mewn .Control Word

FSTCW Save CW

ATIPET YUY Y3 TR 13 03 abnnma

FLDCW Save CW

ny1ipon "y oy Control Word-3 »amrn v3ivwm

FSTCW New CW
AND New CW,1111001111111111B
OR  New_CW,0000010000000000B
FLDCW New CW

nTIpE 1 by 1bw cnavan 7I9n o3k o'y 01 7R nx RC-n by neaon
.OR-7 n13pp *"wv RC-n 5w 7117 v*3% 1 navndy AND-n

A4



DYRIR YT W3 QP CLRAYIRG vnh

*92I8% pvabwn oo tBEEn NAYYL YT by onmewum DX DUV DOWIRHR Smp
npsunh IRy yaywn w2 CFIDIVR +%y npsabmy FILD nmipon 'y 13vmn
hvaww gwen (FLISTP nTapdn *"y nvwwd AR¥INAN DD IR neomn Ren

.FPREM n1ipo3 wamswy aynb ovaponn 2 navyw "y mevy apabnn

PN

FILD WORD PTR [BP+6]

ATWPDN ,bbRA ApIPn YIBB 1333ANA7 YD .MIOBT DR OYIL

FTST
N TIPdN LODR QY TDOBT DR M wn

FSTSW AX
SAHF

-3 WD TYIWHH IR OTH .0YPATT IRY ARIIWAN NIRYIN NR 479N
P71 TRD 1IDIR (raym 1ow) boNa npavna Padvwh Twpn Y53 idiv_mel.asm

ay% 0 von 102 P21 1R IRIY L, 11MINVR R IR ODR @Y OY  ]1M1v0
(1m0

*"¥  apabnn ¥ixca XN Temna baR3 pYRY 11T RY 19w 1YRRR mpRd
nTIpEn

FIDYR WORD PTR [BP+4}

naTIpEN Y'Y ,nowmEn aRYINT Nt abea

MOV BX, [BP+8]
FISTP WORD PTR [BX]

-1 ,0°017T YAy min ¥I3¥T3 I YR ARZINT AR 72vEh DY I0nn
. Jpyne ST

T nx bape ST(0)-v 93 Rwanm AYR YonnT NYIMN Sw n¥va AmatTs

ST(0)-v 2 obwn Aopomn  an3y Tv*? ,2.38636-3 qbnam 1on kY L4400
BT AR

30



MITIpER My TEY) paRn nraxe 2wen

FILD WORD PTR [BP+6]
FILD WORD PTR [BP+4]
FPREM

15 Ry nvawws w¥ny ST(0)-3 'wsy .aywn o -FILD-7 bw tomw 3% ovw
NYTIPDT ¥I¥YI NI3pY3 1YwOY .0Ionn Rem) ST{1)-3

MOV BX,[BP+10)
FISTP WORD PTR [BX]

ST(0)-3 ooy w¥my maomn 1y LST(1) Jpyimmy 9% mxyanT 2%
TTIPET M"Y APl 3771 MR Pt nasn
FFREE ST

gv739% ST(1)-1 ST{0) B*9a9%" 13w n3IR*2» 1% @ 0¥ nNoatTa
-% o prn o aw br a¥on DUI¥n N

,FILD WORD PTR [BP+6] »anx ,1yww1 abw

ST(D) 44.0
ST(1) p*
,FILD WORD PTR [BP+4] - nx v 3%
ST(0) 105.0
§T(1) 44.0
,FPREM *anx ,*w>%w 2bw
ST(0) 17.0
ST(1l} 44.0

,FISTP WORD PTR [BX} *nnx ,*¥>37 3w
a¥nb 0°121Y Taven Yo prarn avery 17 abwn vn azan ved

§T(0) 44.0
ST{1}) P

.23 o*pon pavaww  (FFREE ST »unx) sweann 2%0b W

33



/* call _idl.c - call assembler subroutine idiv _mod.asm from C program */

#include <stdio.h>

extern int idiv_mod(int Num, int Denom, int *Q, int *Rem);

void main()

{
int Num, Denom, Q, Rem, No Zero Divide;

printf("\Enter Numerator, Denominator\n:");
scanf("%d %d",&Num, &Denom);
No_Zero_Divide = jidiv_mod{Num,Denom,&Q,&Rem};
if (No_Zexro_Divida)

printf{*\n %d div %d = %d, mod(%d,%d) = %d\n",

Num, Denom, Q, Num, Dencom, Rem);

alse

printf("\nError: Zero Divide.\n"):;

} /* main */

E:\>tcc call_idl.c idiv_mo2.asm

Turbo C++ Version 3.00 Copyright (c) 1992 Borland International
call idi.c:

idiv_mo2.asm:

Turbo Assembler Versien 3.1 Copyright {c) 1988, 1992 Borland Internatiomal -

Assambling file: idiv mo2.ASM

Error messages: None
Warning messages: None
Pasaas: 1

Remaining memory: 418k

Turbo Link Version 5.0 Copyright (¢} 1992 Borland Internatiocnal
Available memory 4136272

E:\>call_idl.exe

Enter Numerator, Dencminator
:105 44

105 div 44 = 2, mod{105,44) = 17

Ei\>»

LGP



idiv_mo2.asm - Assembler implementation of C-callable function
idiv med.

.MODEL SMALL
; Static Variables
.DATA

Half DQ 0.4999999999999

2

. CODE
.386
.387
Implementation of C callable function ...
«+. int idiv mod(int Num, int Penom, int *Q, dint *Rem)
[BP+4] [BP+6] [BP+8] {BP+10]
Compute Q := | Num / Denom _| ,Rem := MOD{Num, Denom)

function idiv mod returns 0 if Denom = 0 (illegal ..
... division by zero), 1 otherwise

mE me M2 Mg Mg My Wa

PUBLIC _idiv_mod
_idiv_mod PROC NEAR
PUSE BP ; Preserve BP
MOV BP, SP : Set BP to point to Parameter area
FILD WORD PTR [BP+6] ; 8ST(0) := Denom
FTST : Denom = 0 ?
FSTSW AX ; AX = Status word
SAHF ; Copy to flags register
JNZ Cont : No, continue regular operation
; Yes, Denocm = 0
FFREE ST
MOV AX,0 ; Return value := 0
JMP Done ; Skip following code
Cont: ; Denom <> 0
FIDIVR WORD PTR [BP+4] 3 8T = Num / ST, ST = Num / Denom
FSUB Half ; Subtract 1/2 to ensure rounding down
MOV BX, [BP+8] ; BX := Offget Q
FISTP WORD PTR [BX] 7 *Q := 8T
FILD WORD PTR [BP+6] : 85T = Dencm
FILD WORD PTR [BP+4] : ST = Num, ST(l) = Denom
FPREM : 8T = ST mod ST(1l)
MOV BX, [BP+10] ; BX := Offset Rem
FISTP WORD PTR [BX]) ;} *Rem := 8T
FFREE ST - :
MOV AX,1 ; Ensure return value = 1

Done:
POP BP ; Restore BP regiater

RET
_idiv med ENDP

END

‘33



idiv_mo3.asm - Assembler implementation of C-callable function idiv_mod.

W
L]
ol
o

15 14 13 12 1110 9 8 7 6 5 4

;
;
H
; Control Word
H
H
‘
h

s A B e e Bt K A 4 + + + +
I R| R]JR|I]|] RC|]PC |R}JR|PM|UM| OM| ZM | DM | IM |

. 'y } 3 -4 1 i 4 N ko i 1 ___:_ : I _%. %
.MODEL SMALL

; Static Variables
.DATA

[
Save CH DW ?
New CW DW ?
.CODE
.386
.387
Implementation of C callable function ...
int idiv_mod(int Num, int Denom, int *Q, int *Rem)
[BP+4] [BP+6] [BP+8] [BP+10]
Compute Q := |_ Num / Denom _| ,Rem := MOD(Num, Denom)
function idiv_mod returns 0 if Denom = 0 (illegal
division by zero), 1 otherwise

ME WE wa M My Wy

PUBLIC _idiv_mod
_idiv_mod PROC NEAR

PUSH BP ; Praserve BP
MOV BP, SP ; Set BP to point to Parameter area
FSTCW Save_CW ; Store status in Memlé
FSTCW Neaw_CW ; Store status in Memlé6

AND New CW,1111001111111111B ; Erase existing RC

OR New_CW,0000010000000000B ; Set RC to 01
; {Round towards -infinity)

FLDCW New_CW ; Set New CW
FILD WORD PTR [BP+6] ; ST(0} := Denom
FTST ; Denom = 0 ?
FSTSW AX ; Transfer SW to AX
SAHF ; Copy to flags register
JNZ Cont ; Damon != 0
: Yas, Denom = 0

FFREE ST

MOV AX,O0 ; Raturn value := 0

JMP Done ; Skip following code

Cont: ; Denom != 0

L3¢



FIDIVR WORD PTR [BP+4] ; ST = Num / ST, ST = Num / Denom

MOV BX, [BP+8] ; BX := QOffset Q
FISTP WORD PTR {BX] ; *Q := ST
FILD WORD PTR [BP+6] ; ST = Denom
FILD WORD PTR [BP+4] ; ST = Num, ST(1l) = Denom
FPREM ; 8T = ST mod ST({1)
MOV BX, [BP+10] ; BX := Offset Rem
FISTP WORD PTR [BX] ; *Rem := ST
FFREE ST ; Free ST(Q)
MOV AX,1 ; Ensure return value = 1
Dona:
’
FLDCW Save CW ; Restore control word to original wvalue
POP BP ; Restore BP ragister
RET

_idiv_mod ENDP
;

END

235



call_id2.c, idiv mo9.asm ®»317 n1*339n

» Y3 32-7 noma2 idiv_mod nx memnn idiv_mo9.asm n*isnn
-1div_mo2.asm-% ms112 svpmen Tavea meben opuantTiRn vnen N
,072 32 05w 927119 RRR

:w 703 idiv_mo2.asm-» nb713) idiv_mo9.asm Pw nvi2inh
.WORD PTR oipna DMORD PTR x3n nvionmi 7wn?  casting-n -
Denom ,o%%93 Num wvynb oraeepa 23 P nvaomm a2 gwwend -
.idiv_me7.asm-2 15 py*13 ,4-2 Rem-1 Q-1 2-2

idiv_mo2.asm-> any idiv_mo9.asm-2 n*33wm7 mamipd Yo nasen

-1 16 Jv301% nyvvwe aven oy ovwbwa mviyp $33% v own
LqBnd YaoR AY vea 64-1 P L vra 32

336



/* call_id2.c - call assembler subroutine idiv_mod.asm from C program %/

#include <stdio.h>

extern int idiv mod(long int Num, long int Denom, long int *Q, leong
int *Rem};

void main ()

{
long int Num, Denom, Q, Rem;

int No_Zero_Divide;

printf ("\Enter Numerator, Denominator\n:");
scanf ("%1d %1d", &Num, &Denom} ;
No_Zero Divide = idiv_mod (Num, Denom, &Q, &Rem} ;

if (No_Zero_Divide)
printf("\n %1d div %1d = %1d, mod{%1d, $1d} = %1ld\n",

Num, Denom, Q, Num, Denom, Rem);

else
printf("\nError: Zero Divide.\n");

} /* main */

E:\>tec -v call id2.¢ idiv_mo9.asm
Turbo C++ Version 3.00 Copyright (c¢) 1992 Borland International

call _id2.c:
idiv_mo9%.asm:
Turbo Assembler Version 3.1 Copyright (c} 1988, 1992 Borland

International

Assembling file: idiv_mo%.ASM

Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 429k

Turbo Link Version $.0 Copyright (¢) 1992 Borland International
Available memory 4149256

E:\>CALL_ID2.EXE

Enter Numerator, Denominator
: 700065 55000

700065 div 55000 = 12, mod{700065,55000} = 40065

E:\>

LS H



; ddiv_mo9.asm - Assembler implementation of C-callable function idiv _mod.
.MODEL SMALL
; Static Variables

.DATA

Half DQ 0.4999999999999
r
.CODE
.386
.387
Implementation of C callable function
.+. int idiv_mod{long int Num, long int Denom,

[BP+4] [BP+8]
int *Q, int *Rem)
[BP+12) [BP+14]
Compute Q := |_ Num / Denom _| ,Rem := MOD(Num, Denom)

function idiv_mod returns 0 if Denom = 0 (illegal ..
.. division by zero), 1 ctherwise

e Ma W4 MM W wa me ms wma

PUBLIC _idiv_mod
_idiv_mod PROC NEAR

PUSH 3P ; Preserve BP
MOV BP, SP ; Set BP to peint te Parameter area
FILD DWORD PTR [BP+8] ; ST{0) := Denom
FTST ; Danom = Q0 ?
FSTSW AX ; AX = Status word
SAHF ; Copy to flags register
JNZ Cont : No, continue regular operation
; Yes, Denom = D

FFREE ST

MOV AX, O ; Return value := 0

JMPF Done ; Skip following code

Cont ; Denom <> 0
FIDIVR DWORD PTR [BP+4] ; ST = Num / ST, ST = Num / Denom
FSUB Half ; Subtract 1/2 to ensure rounding down
MOV BX, [BP+12] ; BX := Offset Q
FISTF DWORD PTR [BX] : *Q := ST
FILD DWORD PTR [BP+8] ; ST = Denom
FILD DWORD PTR [BP+4] ; ST = Num, ST(l) = Denom
FPREM ; ST = ST mod ST({1)
MOV BX, [BP+14] ; BX := Offset Rem
FISTP DWORD PTR [BX] : *Rem := ST
FFREE ST ;
MOV AX,1 ; Ensure return value = 1
Done:

POP BP ; Restore BP register
RET

_idiv mod ENDP
;
;

END

3K



fderivl.c, fderiv2a.c, fdl.asm ®m»a971 n1*3370

0P YR DR whARRY 13 1ben mivaswnn Sw o capcyn TvpEnd
.0%7I1%) DY3IWPPN3 TRAYIRI PIDI 73T ,UHIDI ATXpIIY

NMWY? DYXIT NIMIR L, VIIWOM TP ATIR OUY A3 NN IEPAID Jnana
0*9TYY  WRS PR ©UIOD INT LATIPIR AP RNTAIT Dw v 31y
Yem? ,nucbar AXTI K PR 0UYTI naR2 NP YaR nsviom meypatd dwny

SR PWII IV IR TIWII DIRD NADINBE ARVIE Y 110D KA

v Y330 R pATAITR 93 PY DOIIM YWIIA 317N 2w

f'{x) = Lim {f(x+h) - f(x-h))/(2h)
h->0
:(*) mmoram "y marTaa? 2979pR NRIWR oX eI
f1{x) = (f(x+h) - f(x-h)}/(2h) (*)

»1n3% hoareg xvn ovbkwm L mvab 29vp baps L 1op proon h oy
DR B?IR nYeanm  [Ivhan (I3 WYY R 2%wnA m qup h-w a3
nyay 2vn h LA pan . pavT 172K Y@ onyveal oy w qop h na
RI11 wpR 0D .avvbnan  0vIwamd (o Kp113 aRYY x-7 onsomc (wp
¥e 33w 1y 2.0-2 opatn "y h nx Jropnd I Yov h = x/2 oy Yvnnab
{*) mnovaT Pw orapay DY3wen 2 WIYD ,010nA? oY nnm DYIWNTE DY
3y 9T DIvassna Lana3 17PY0ERD JUp BYNINR B3IV OY3Ya whaan
#3173 17 pyawwenn aver L 16384.0 pbn f(x) v vyimn ws  pbooox
.on1%a prpbns v3vea float-m avaax anyv

*2wvn T Y avRe1ab @ Iwp BTR BNTIAYRR CnRn DYIovIn avbipum
.ov% opnn JRD R

na%aemn ntiosnn € npws  onevaben winen wen fderivl.c neaann
LYhanpRa »1n onvaavRn oy ovwmn fdl.asm-1 fderiv2a.c

-39



fderiv2b.c, fderiv2c.c, fd2.asm, fd3.asm nis3dann

pryapon Y13y fdl.asm-1 fderiv2a.c Yw m?rapmn 1 1990 pavioann
.long double-3 double

B°9bon MY Nl Ay ooy fd2.asm-y fderiv2b.c oryapn
.double

000D AY nvawt) ey ovemmn  fd3.asm-y  fderivZe.c oryapn
.long double

1IN3K 1A2°0DR 2R3 L,0%P T3 N BYPYIYIT RS DT 1IAIRT KD

T2y 2097152.0-% double vvay 131072.0 ,o°%113 <01 p>5vva pepbme
.long double

A40



/* fderivl.c - approximate derivative function */

f#finclude <stdio.h>
#include <math.h>

fleat approx_fderiv(float (*f)} (float), flecat x)
{
float h, f£d0, fdl, eps;

h = fabs(x/2.0);

fdl = ((*f) (x+h) - (*£)(x-h))/{2*h);
eps = x/8192.0;
do {
£fdo = £d41;
h = h/2.0;
£dl = ((*f) (x+h) = (*f) (x-h)}/(2*h);

} while(fabs (fd0 - £dl) > eps );
return fdl;

} /* approx_deriv */

float f£({float x)
{

return x*x*x - 2,0%*x*x + 3.0*x - 8.0;

} /O£ x/

float real fderiv(float x)
{

return 3.0%x*x — 4.0*x + 3.0;
} /* real_ fderiv */

int main{)

{
printf("approx_deriv({5.0) = %f\n", approx_fderiv(f, 5.0));
printf("real_fderiv(5.0) = %f\n", real_fderiv(5.0});

return 0;
} /* main */

E:\>tcc —v fderivl.c
Turbo C++ Version 3.00 Copyright (c) 1992 Borland International

fderivl.c:
Turbe Link Version 5.0 Ceopyright (c) 1992 Borland International

Available memory 4103660
E:\>FDERIV1.EXE

approx_deriv(5.0) = 58.001526
real_fderiv(5.0) = 58.000000

= >4l



/* fderiv2a.c¢ - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern float approx_fderiv{float (*f)(float)., float =x);

float f{float x)
{

return x*x*x - 2.0*x*x + 3.0*x - 8.0;
} /* £ */

float real_fderiv(float x)
{

return 3.0*x*x ~ 4£4.0*x + 2.0;
} /* real_fderiv */

int main()

{
printf(~approx_deriv(5.0) = %£\n", approx_fderiv(f, 5.0)});

printf("real_fderiv(5.0) = %f\n", real_fderiv(5.0));

return 0;
} /% main */

E:\>t¢e fderivZa.c fdl.asm
Turbo C++ Vergion 3.00 Copyright {(c)} 1992 Borland Intexrmaticnal

fdariv2a.c:

fdl.asnm:
Turbo Asgembler Version 3.1 Copyright {(c) 1988, 1992 Borland

International

Assembling file: fdl.ASM

Error messages: None
Warning messages: Nona
Passes: 1

Remaining memory: 42%k

Turbo Link Version 5.0 Copyright (¢) 1992 Borland International
Available memory 4141520

E:\>FDERIVZA.EXE

approx_deriv(5.0) = 58.001526

real_fderiv(5.0) = S8.0000090

EB:\>

& bk



fdl.asm - implement numerical differentiation

W g Wy

+MODEL SMALL
+-DATA
h DD ?
two DD 2.0
£4d0 Db 0.0
eps_const DD 16384.0
eps DD 0.0
temp DD 0.0
. CODE

float approx fderiv (float (*f){(float}, float
[BP+41 [BP+6]

e WMs W Wy

.386

387
PUBLIC _approx_fderiv

_approx_fderiv PROC NEAR

PUSH BP

MOV BP,SP

FLD DWORD PTR [BP+6]
FDIV two

FARS

FSTP h

compute (*f£f) (x+h) -(*f) {(zx-h)} )/ (2*h);

LU T T

FLD DWORD PTR [BP+6]

FADD h

FSTP temp

PUSH temp ; Push x+h

CALL WORD PTR [BP+4] ; ST(0) = £{x+h)
ADD Sp,4 ; Free Paraneter

FLD DWORD PTR [BP+6]

FSUB h

F3TP temp

POSH temp : Pueh x-h

CALL WORD PTR [BP+4] ; 8T(0) = £(x-h),
ADD sp,4 ; Free Parameter

FSUB ; ST(0) = f(x+h)-
FLD h } 8T(0) = h, 8T(l1l) = £(x+h)~-
FMUL two ;3 ST(0) = 2h, ST(1l) = £(x+h)-
FDIV ; ST{0} = (f(x+h)- £(x-h))/2h
FSTp £40

PUSH DWORD PTR [BP+6]
CALL WORD PTR [BP+4]
ADD Sp.4

FDIV eps_const

FABS

FSTP eps

ENK

x)

8T(1) = f£(x+h}

f(x-h), ST(1l) = Empty

f(x-h)
£{x~-h)



Dol :
FLD h
FDIV two
FSTP h

compute (*f)(x+h) ~(*f)(x-h} )/ (2*h);

W Sy me

FLD DWORD PTR [BP+6]

FADD h

FSTP temp

PUSH temp ; Push x+h

CALL WORD PTR [BP+4] : ST(0) = £(x+h)

ADD SP,4 7 Free Parameter

FLD DWORD PTR [BP+6]

FSUB h

FSTP temp

PUSH temp : Push x-h

CALL WORD PTR [BP+4] ; 8T{(0) = £(x-h), 83T(1) = £ (x+h)
ADD SP,.4 ;7 Frea Parameter

FSUB ; ST(0) = f(x+h)- £(x~-h), ST(1l) = Empty
FLD h 7 8T{(0) = h, 8T(1) = £(x+h)}- £ (x-h)

FMUL two ; 8T(0) = 2h, ST(l) = £{x+h)~ £(x-h)

FDIV : 8T(0) = (£(x+h)- £f(x-h))/2h

FLD 8T ; ST(0) = (f(x+h)- f£(x-h))/2h, ST(1)
FLD £do

FSUB 7 ST(0) = current - £40

FABS ; 8ST(0) = | current - £40 |

FCOMP eps
FSTSW AX
SAHF
FSTF £d40
JAE Dol

r
FLD £d0
MOV SP,BP
POP BP
RET

_approx_£fderiv ENDP

H
END

= (f{x+h)- £(x-h))/2h



/* fderiv2b.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern double approx_fderiv(double (*f) (double), double x);

double f(double x)
{

return x*x*x - 2.0*x*x + 3,.0*x - 8.0;
Y /> £ %

double real_fderiv{(double x)
{

return 3.0%x*x - 4.0%x + 3.0;
} /* real_£fderiv */

int main{)

{
printf{"approx_deriv(5.0) = %1f\n", approx_£fderiv(f, 5.0));
printf({"real_fderiv(5.0) = %lf\n", real_fderiv(5.0));

return 0;
} /* main %/

E:\>tcc fderiv2b.c f£d42.asm
Turbo C++ Version 3.00 Copyright {(c¢) 1992 Borland International

fderiv2b.c:

f£dz2.asm:
Turbo Assembler Version 3.1 Copyright {(c) 1988, 1992 Borland

International

Agsembling file: £d2.ASM

Error messages: None
Warning messages: HNone
Pasgses: 1

Remaining memory: 429k

Turbo Link Versiomn 5.0 Copyright (c} 1952 Borland International
Available memory 4141520

E:\>FDERIV2B.EXE

approx_deriv(5.0) = 58.000095

real_ fderiv(5.0) = 58.000000

E:\>

LGS



fd2.asm - implement numerical differentiation

% W W

.MODEL SMALL

« DATA
h g ?
two DD 2.0
£d40 pQ 0.0
eps_const DQ 131072.0
eps DQ 0.0
temp DQ 0.0
.CODE
F) double approx_fderiv {double (*f) (double), double x)
H [BP+4] [BP+6]
H
.386
. 387

PUBLIC _approx fderiv

_approx_fderiv PROC NEAR

PUSH BP

MOV BF,SP

FLD QWORD PTR [BP+6])

FDIV two

FABS

FSTP h

compute (*f) (x+h) -{*f)(x~-h) )/ (2*h);

- Wy

FLD QWORD PTR ([BP+6]
FADD h

FSTPp tenmp
PUSH DWORD PTR temp+4 : Push x+h
PUSH DWORD PTR temp

CALL WORD PTR [BP+4] t 8T(0) = £(x+h)
ADD sSp,.8 7 Free Parameter

FLD QWORD PTR [BP+6]

FSUB h

FSTP temp
PUSH DWORD PTR temp+4; Push x-h
PUSH DWORD PTR temp

CALL WORD PTR [BP+4] : ST{(0) = £(x-h), ST(1) = £(x+h)

ADD sp.8 ; Free Parameter

FSUB 3 ST(G) = f(x+h)- £(x-h), ST(1l) = Empty
FLD h ; ST(0) = h, 8ST{(1l) = £{x+h)- f{x-h)

FMUL two ;3 ST{0) = 2h, 8T(1l) = £{x+h)~- £(x-h)

FDIV ; 8T(0) = {(£f{x+h)- f(x-h))/2h

FSTP £40

PUSH DWORD PTR [BP+10]
PUSH DWORD PTR [BF+6]
CALL WORD PTR [BP+4]
ADD SP,8

FDIV eps_const

FABS

FSTP eps

*ab



FLD h
FDIV two
FSTP h

compute (*f) (x+h) -(*£)(x-h) )/ (2*h);

g W s

FLD QWORD PTR [BP+6]

FADD h

FSTP temp

PUSH DWORD PTR temp+4 ; Push x+h
PUSH DWORD PTR temp

CALL WORD PTR [BP+4] ; ST(0) = £{x+h)
ADD Sp,8 3 Free Parameter

FLD QWORD PTR [BP+6]

FSUB h

FSTP temp
PUSH DWORD PTR temp+4; Push x-h
PUSH DWORD PTR temp

CALL WORD PTR [BP+4] 7 8T(0) = £(x-h), ST(1l) = £{x+h)
ADD sp, 8 ;s Fres Parameter

FSUB s 8T(0) = f(x+h)~ £(x-h), ST(1)
FLD h 7 8ST(0) = h, ST(l) = £(x+h)- £({x-h)

FMUL two 7 ST(0) = 2h, ST(1l) = £(x+h)- £{x~h)

FDIV 3 ST(0) = (f(x+h)- f(x-h))/2h

FLD ST ; ST(0) = (f(x+h}- f(x-h))/2h, ST(1) = (£(x+h)- £(x-h))/2h

FLD £40
FSUB ; ST(0) = current - f£do
FABE ; S8ST(0) = | current - £40 |

FCOMP eps
FSTSW AX
SAHF
FSTP £40
JAE Dol

I 4
FLD £40
MOV SP,BP
POP BP
RET

_approx_fderiv ENDP

I

END

LU



/* fderiv2c.c - approximate derivative function */

#include <stdic.h>
#include <math.h>

extern long double approx_fderiv(long double (*f)(lomng double),
long double x);

long double f(long double x)
{

return x*x*x - 2.0*x*x + 3.0%*x - 8.0;
} /£ %/

long double real_fderiv{(long double x)
{

return 3.0%x*x - 4,.0*x + 3.0;
} /* real_fderiv v/

int main()

{
printf("approx_deriv(5.0) = %Lf\n", approx_fderiv(f, 5.0));
printf("real_fderiv({5.0) = %Lf\n", real_fderiv(5.0));:

return 0;
} /% main */

E:\>tcc fderiv2c.c fd3l.asm
Turbo C++ Version 3.00 Copyright (c) 1992 Borland International

fderlvic.c:

£4d3.asm:
Turbo Assembler Version 3.1 Copyrlight (¢) 1988, 1992 Borland

International

Assembling file: £43 ,ASM

Error messages: None
Warning messages: HNone
Passes: 1

Remaining memory: 429k

Turbo Link vVersion 5.0 Copyright (c) 1392 Borland International
Available memory 4141520

E:\>FDERIVIC.EXE
approx_deriv(5.0) = 58.000006
real_ fderiv(5.0) = 58.000000

E:\>

BN



e Wy wg Mg

£d3.asm - implement numerical differentiation

-MODEL SMALL

«DATA

h Dr ?

two DD 2.0
£4p oT 0.0
eps_const DT 2097152.0
eps DT 0.0
temp DT 0.0

LT TR

L1}

-CODE

long double approx_fderiv {long double (*f){(double), long double x)

[BP+4]

.386
.387
PUBLIC _approx_fderivw

_approx_fderiv PROC NEAR

PUSH BP

MOV BP,SP

FLD TBYTE PTR [BP+6]

FDIV two

FABS

FSTP h

LU U

compute (*f) (x+h)

FLD TBYTE PTR [BP+6]

FLD h

FADD

FSTP temp

PUSH DWORD PTR temp+6 ; Push
PUSH DWORD PTR temp+2

PUSH WORD PTR temp

CALL WORD PTR [BP+4] : 8T(0)
ADD SP,10 3 Pree Parameter
FLD TBYTE PTR [BP+6]

FLD h

FSUB

FETP temp

PUSH DWORD PTR temp+6 3 Push
PUSH DWORD PTR temp+2

PUSH WORD PTR temp

CALI WORD PTR [BP+4] : 8ST(0)
ADD SP,10 3 Free Parameter
FSUB : ST(0) =
FLD h ; ST(0) = h, ST(1)
FMUL two : ST{(0) = 2h, ST(1)
FDIV ; ST(0) = (£{x+h)-
FsSTP £40

249

-{(*£)} (x-h) )/ (2*h);

x+h

= f£({x+h)

x-h

[BP+6]

= £{x-h), ST(1) = £(x+h)

f(x+h)- f£(x-h), ST(l) = Empty

= f{x+h)-
= f{x+h)-
£(x-h))/2h

f{x-h)
£ (x-h}



PUSH DWORD PTR [BP+12]
PUSH DWORD PTR [BP+8]
PUSH WORD PTR [BP+6]
CALL WORD PTR [BP+4)
ADD SP,10

FLD eps_const

FDIV

FABS

FSTP eps

FLD b
FDIV two
FSTP h

e "W e

compute (*f) (x+h)} -(*£){x-h) )/ (2*h);

FLD TBYTE PTR [BP+6]
FLD h
FADD
PSTP temp
PUSH DWORD PTR temp+6 + Push x-h
PUSH DWORD PTR temp+2
PUSH WORD PTR temp
CALL WORD PTR [BP+4] 3 8T(0) = £({x+h)
ADD SP,10 7 Free Parameter
FLD TBYTE PTR [BP+&]
FLD h
FSUB
FSTP temp
PUSH DWORD PTR temp+b ¢ Push x-h
PUSH DWORD FTR temp+z
PUSH WORD PTR temp
CALL WORD PTR [BP+4] 7 ST(0) = £{x-h), ST(1l) = £{x+h)
ADD SP,10 ; Free Parameter
FSUB : ST{0) = £{mx+h)- £(x-h), ST(l)} = Empty
FLD h ; 8T(0) = h, ST{1l) = £{(x+h)~- £(x-h)
FMUL two ;3 8T(0) = 2h, ST(l) = £{(x+h)~ £{x-h)
FDIV ;3 ST(0) = (£f(x+h)- £{(=x-h))/2h
FLD ST ; 8T(0) = (£f{x+h)- £(x-h))}/2h, ST(1) = (£(x+h)- £(x-h)}/2h
FLD f£d40
FSUB ;3 8T(0) = curreant - £d0
FABS ; ST(0) = | curreat - £40 |
FLD eps
FCOMPP
FSTSEW AX
SAHF
PSTP £40
JNAE Dol ; Reversed logic
H
FLD £40
MOV SP,BP
POP BP
RET

_approx_fderiv ENDP

-
L

250



