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/* call_idl.c - call assembler subroutine idiv mod.asm from C program */
#include <stdio.h>
extern int idiv_mod(int Num, int Denom, int *Q, int *Rem);

void main()

{
int Num, Denom, Q, Rem, No Zero Divide;

printf("\Enter Numerator, Denominator\n:");
scanf ("%d %d4d",&Num, &Denom);
No_Zero Divide = idiv mod({Num, Denom, &Q, &Rem};
if (No_Zero Divide)
printf{"\n %d div %d = %d, mod(%d,%d) = %d\n",
Num, Dencom, Q, Num, Denom, Rem);
alse
printf("\nError: Zero Divide.\n"):;

} /7* main */

E:\>tce call_idl.c idiv_mo2.asm
Turbo C++ Version 3.00 Copyright (c) 1992 Borland International
call_idl.c:

idiv_mo2.asm:
Turbo Assembler Version 3.1 Copyright (c) 1988, 1992 Borland International

Assembling file: idiv_mo2.ASM

Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 418k

Turbe Link Version 5.0 Copyright {c) 1992 Borland Internaticnal
Available memory 4136272

E:\>call_idl.exe

Enter Numerator, Denominator
:105 44

105 div 44 = 2, mod(105,44) = 17

E:\>
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; idiv mo2.asm - Assembler implementation of C-callable function

: idiv_mod.

.MODEL SMALL
;: Static Variables

-.DATA

Half DQ 0.4999999999999
.CODE
.386
.387
; Implementation of C callable function ...
; Compute Q := |_ Num / Denom _| ,Rem := MOD{(Num, Denom)
; function idiv mod returns 0 if Denom = 0 (illegal ..
;i ... division by zero), 1 otherwise
PUBLIC _idiv mod
_idiv mod PROC NEAR
PUSH BP ; Preserve BP
MOV BP, SP ; Set BP to point to Parameter area
FILD WORD PTR [BP+€] ; ST(0) := Denom
FTST ; Denom = 0 ?
FSTSW AX ; AX = Status word
SAHF ; Copy to flags register
JNZ Cont ; No, continue regular operation
; Yes, Denom = 0
FFREE ST
MOV AX,0 ; Return value := 0
JMP Done ; 8S8kip following code
Cont: : Denom <> 0

int idiv mod(int Num, int Denom, int *Q, dint *Rem)
[BP+4] [BP+6] [BP+8] [BP+10]

FIDIVR WORD PTR [BP+4] ; ST = Num / ST, ST = Num / Denom

FSUB Half ; Subtract 1/2 to ensure rounding down

MOV BX, (BP+8] ; BX := Offset Q

FISTP WORD PTR [BX] ;3 *Q := ST

FILD WORD PTR [BP+6] ; ST = Denom

FILD WORD PTR [BP+4] : ST Num, ST(l) = Denom
!

|

FPREM ST = ST mod ST(1)
MOV BX, [BP+10] BX := Offset Rem
FISTP WORD PTR [BX] ; *Rem := ST

FFREE ST :
MOV AX,1 ; Ensure return value = 1

Done:
POP BP ; Restore BP register

RET
_idiv mod ENDP

»
r

L]

»
'

END
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idiv_mo3.asm — Assembler implementation of C-callable function idiv_mod.

Control Word

; 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D e e B e e e B B et
;i |RIR|IR|I|] RC|PC JR|R|PM|UM| OM | ZM | DM | IM |
D s T S e e e Sttt sttt St e p————t

.MODEL SMALL

; Static Variables
.DATA

Save CW DW ?
New_ CW DW ?
.CODE
.386
.387
Implementation of C callable function
int idiv_mod (int Num, int Denom, int *Q, int *Rem)
[BP+4] [BP+6] [BP+8] [BP+10]
Compute Q := |[_ Num / Denom _| ,Rem := MOD(Num, Denom)
function idiv mod returns 0 if Denom = 0 (illegal
division by zero), 1 otherwise

a M e s W wma wa

PUBLIC _idiv_mod
_idiv_mod PROC NEAR

PUSH BP ; Preserve BP

MOV BP, SP ; Set BP to point to Parameter area
FSTCW Save_CW ; Store status in Memlé6
FSTCW New_CW : Store status in Memlé

AND New CW,1111001111111111B ; Erase existing RC

OR New_CW,0000010000000000B ; Set RC to 01
; (Round towards -infinity)

FLDCW New_ CW ; Set New CW
FILD WORD PTR [BP+€6] ; ST(0) := Denom
FTST ; Denom = 0 ?
FSTSW AX ; Transfer SW to AX
SAHF ; Copy to flags register
JNZ Cont ; Demon != 0
; Yes, Denom = 0

FFREE ST

MOV AX, 0 ; Return value := 0

JMP Done ; Skip following code

Cont: ; Denom != 0

L34



FIDIVR WORD PTR [BP+4] ; 8T = Num / ST, ST = Num / Denom

MOV BX, [BP+8] ; BX := Offset Q
FISTP WORD PTR [BX] ; *Q := 8T
FILD WORD PTR [BP+6] ; ST = Denom
FILD WORD PTR [BP+4] ; 8T = Num, ST(1l) = Denom
FPREM ; ST = ST mod ST (1)
MOV BX, [BP+10] ; BX := Offset Rem
FISTP WORD PTR [BX] ; *Rem := ST
FFREE ST ; Free ST({0)
MOV AX,1 ; Ensure return value = 1
Done:
’
FLDCW Save CW ; Restore control word to original value
POFP BP ; Restore BP register
RET

_idiv _mod ENDP
‘

END
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/* call_id2.c - call assembler subroutine idiv_mod.asm from C program */

#include <stdio.h>

extern int idiv_mod(long int Num, long int Denom, long int *Q, long
int *Rem);

void main ()

{

long int Num, Denecm, Q, Rem;
int No_Zero_Divide;

printf ("\Enter Numerator, Denominator\n:");
scanf ("%$1ld %1d", &Num, &Denom);
No_Zero_Divide = idiv_mod (Num, Denom, &Q, &Rem)} ;
if (No_Zero_Divide)
printf ("\n %ld div %ld = %14, mod(%1d, %$1d} = %ld\n",
Num, Denom, Q, Num, Denom, Rem);
else
printf ("\nError: Zero Divide.\n");

} /* main */

E:\>tce -v call_i1d2.¢ idiv _mo9.asm
Turbo C++ Version 3.00 Copyright {c¢) 1992 Borland International

call id2.c:
idiv mo9.asm:
Turbo Assembler Version 3.1 Copyright (c) 1988, 1992 Borland

International

Assembling file: idiv_mo9.ASM
Error messages: None

Warning messages: None

Passes: 1

Remaining memory: 429k

Turbo Link Version 5.0 Copyright (c¢) 1992 Berland International
Available memory 4149256

E:\>CALL ID2.EXE

Enter Numerator, Denominator
: 700065 55000

700065 div 55000 = 12, mod(700065,55000) = 40065

E:\>
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; idiv_mo9.asm - Assenmbler implementation of C-callable function idiv_mod.
.MODEL SMALL
; Statiec Variables

.DATA

Half DQ 0.498%9999999599
.CODE
.386
.387
Implementation of C callable function
... int idiv mod(long int Num, long int Denom,

[BP+4] [BP+8]
int *Q, int *Rem)
[BP+12] [BP+14]
Compute Q := |_ Num / Denom _| ,Rem := MOD(Num, Denom)

function idiv_mod returns 0 if Denom = 0 (illegal ..
.. division by zeroc), 1 otherwise

e e M ML Ny M4 We Wma wa

PUBLIC _idiv mod
_idiv_mod PROC NEAR

PUSH BP ; Preserve BP
MOV BP, SP ; Set BP to peoint to Parameter area
FILD DWORD PTR [BP+8] ; ST(0) := Dencm
FTST ; Denom = 0 ?
FSTSW AX ; AX = Status word
SAHF ; Copy to flags register
JNZ Cont ; No, continue regular operation
; Yes, Denom = 0

FFREE ST

MOV AX, 0 ; Return value := 0

JMP Done ; Skip following code

Cont: ; Denom <> 0
FIDIVR DWORD PTR [BP+4] ; ST = Num / ST, ST = Num / Denom
FSUB Half ; Subtract 1/2 to ensure rounding down
MOV BX, [BP+12] ; BX := Offset Q
FISTP DWORD PTR [BX] ; *Q := ST
FILD DWORD PTR [BP+8] ; ST = Denom
FILD DWORD PTR [BP+4] ; ST = Num, ST(l) = Denom
FPREM ; ST = ST mod ST(1l)
MOV BX, [BP+14] ; BX := Offset Rem
FISTP DWORD PTR [BX] ; *Rem := ST
FFREE ST ;
MOV AX,1 ; Ensure return value = 1
Done:

POP BP ; Restore BP register
RET

_idiv_mod ENDP
;
;

END
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fderivl.c, fderiv2a.c, fdl.asm 8»3497 D31*391N0

Tw3tIDa wwT DX wemeay 3R abba nivasann Se o vapeyn Tepeni
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bw Ph2an R DITAINR 92 DY DoYan MM 297%pR awen
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h->0
:{*) anbran 'Y NITTAIY 297°pR NRIWAI DX PIPS
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.long double-4 double
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.double
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.long double
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/* fderivl.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

float approx_fderiv(float (*f) (float), float x)
{
float h, £d0, £dl, eps;

h = fabs(x/2.0);

fdl = ((*£f) (x+h) - (*f) (x-h))/(2*%h);
eps = x/8192.0;
do {
£fdo = £fdl;
h = h/2.0;
£dl = ((*f) (x+h) - (*f) (x-h))/(2*h};
} while (fabs (£40 - £dl1l) > eps );
return f£dil;

} /* approx_deriv */

float £{float x)
{

return x*x*x — 2.0*x*x + 3.0*x — 8.0;

} /* £ */

float real_ fderiv(float x)
{

return 3.0*x*x — 4.0*x + 3.0;
} /* real fderiv */

int main()

{
printf ("approx_deriv(5.0) = %f\n", approx fderiv(f, 5.0));
printf ("real fderiv({5.0) = %f\n", real fderiv(5.0});

return 0;
} /* main */

E:\>tcec -v fderivl.c
Turbo C++ Version 3.00 Copyright (c) 1992 Borland International

fderivl.c:
Turbo Link Version 5.0 Copyright (c) 1992 Borland International

Available memory 4103660
E:\>FDERIV1.EXE

approx_deriv(5.0) = 58.001526
real_fderiv(5.0) = 58.000000

et



/* fderiv2a.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern float approx fderiv(float (*f) (float), float x);

float f£(float x)
{

return x*x*x - 2.0*x*x + 3.0*x - 8.0;
Yy /* £ */

float real_ fderiv(float x)
{

return 3.0*x*x - 4.0*x + 3.0;
} /% real fderiv */

int main()

{
printf ("approx_deriv(5.0) = %f\n", approx fderiv(f, 5.0)});
printf{"real fderiv(5.0) = %f\n", real_fderiv(5.0)):;

return 0;
} /% main */

E:\>tcc fderiv2a.c fdl.asm

Turbo C++ Version 3.00 Copvright {(c) 1992 Borland International
fderiv2a.c:

fdl.asm:

Turbo Assembler Version 3.1 Copyright (c) 1988, 1992 Borland

International

Assembling file: fdl.asm

Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 429k

Turbo Link Version 5.0 Copyvright (c¢) 1992 Borland International
Available memory 4141520

E:\>FDERIV2Z2A.EXE

approx_deriv(5.0) = 58.001526

real fderiv(5.0) = 58.000000

E:\>
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fdl.asm - implement numerical differentiation

e Wy

s W

+MODEL SMALL
+DATA
h DD ?
two DD 2.0
£40 DD 0.0
eps_const DD 16384.0
eps DD 0.0
temp DD 0.0

.CODE
f) float approx_fderiv (float (*f)(float), float x)
H [BP+4] [BP+6]
.386
.387
PUBLIC _approx_fderiv
_approx_fderiv PROC NEAR
PUSH BP
MOV BP, SP
FLD DWORD PTR [BP+6]
FDIV two
FARBS
FSTP h

compute (*f) (x+h) -(*f) (x-h) )}/ (2*h);

e Ms wa

FLD DWORD PTR [BP+6]

FADD h

FSTP temp

PUSH temp ; Push x+h

CALL WORD PTR [BP+4] ; ST(0) = £(x+h)

ADD SP.,4 ; Free Parameter

FLD DWORD PTR [BP+6]

FSUB h

FSTP temp

PUSH temp : Push x-h

CALL WORD PTR [BP+4] ; 8ST(0) = £(x-h), ST(1l) = f£{x+h)
ADD sp,4d ; Free Parameter

FSUB ; ST(0) = f(x+h)- £f(x-h), 8ST(1l) = Empty
FLD h ; 8T(0) = h, 8T(l) = £(x+h)- f(x-h)

FMUL two : ST(0) = 2h, ST(1) = £{(x+h)- £({x-h)

FDIV ; ST(0) = (£(x+h)- £(x-h))/2h

FSTP £40

PUSH DWORD PTR [BP+6]
CALL WORD PTR [BP+4]
ADD SP,4

FDIV eps_const

FABS

FSTP eps

X3



Dol:
FLD h
FDIV two
FSTP h

compute (*f) (x+h) -(*f)(x-h) )}/ (2*h);

e e ma

FLD DWORD PTR [BP+6]

FADD h

FSTP temp

PUSH temp : Push x+h

CALL WORD PTR [BP+4] ; ST(0) = f(x+h)

ADD SP,4 23 Free Parameter

FLD DWORD PTR [BP+6]

FSUB h

FSTP temp

PUSH temp 3 Push x-h

CALL WORD PTR [BP+4] ; ST(0) = £(x-h), ST(1l) = £{(x+h)
ADD SP,4 ;s Free Parameter

FSUB ; 87{(0) = f{(x+h)- £f(x-h), ST(l) = Empty
FLD h ; ST(0) = h, ST(1l) = £(x+h)- £(x-h)

FMUL two ; ST(0) = 2h, 8ST(l) = f(x+h)- £f(x-h)

FDIV : ST(0) = (f(x+h)- f(x-h))}/2h

FLD 8T ; ST(0) = (f{x+h)- £(x-h))/2h, ST(l) = (f(x+h)- £(x-h))/2h
FLD £d40

FSUB ;s 8T(0) = current - £d0

FABS ; ST(0) = | current - £40 |

FCOMP eps

FSTSW AX

SAHF

FSTP £d40

JAE Dol

FLD £d40

MOV SP,BP

POP BP

RET

_approx_fderiv ENDP

.
r

END



/* fderiv2b.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern double approx_fderiv(double (*f) {double), double x);

double f(double x)
{

return x*x*x - 2.0*x*x + 3.0*x - 8.0;
Y /*x £ */

double real_fderiv(double x)
{

return 3.0*x*x -~ 4.0*x + 3.0;
} /* real_fderiv */

int main()

(
printf("approx_deriv(5.0) = %lf\n", approx_fderiv(f, 5.0));
printf("real_fderiv(5.0) = %l1f\n", real_ fderiv(5.0));

return 0;
} /* main */

E:\>tcc fderiv2b.c fd2.asm
Turbo C++ Version 3.00 Copyright (c) 1992 Borland International

fderiv2b.c:

fd2.asm:
Turbo Assembler Version 3.1 Copyright (c) 1988, 1992 Borland

International

Assembling file: £d2 .ASM

Error messages: None
Warning messages: None
Pagses: 1

Remaining memory: 429k

Turbo Link Version 5.0 Copyright {(c) 1992 Borland International
Available memory 4141520

E:\>FDERIV2B.EXE

approx_deriv{(5.0) = 58.000095

real_ fderiv(5.0) = 58.000000

E:\>

LGS



fd2.asm - implement numerical differentiation

g W4 W Wy

.MODEL SMALIL
+DATA
h DQ ?
two DD 2.0
£f40 DQ 0.0
eps_const DQ 131072.0
eps DQ 0.0
temp DQ 0.0
.CODE

double approx_fderiv (double (*f){(double), double x)
[BP+4] [BP+6]

g e ma Wy

.386

.387
PUBLIC _approx_fderiv

_approx_fderiv PROC NEAR

PUSH BP

MOV BP,SP

FLD QWORD PTR [BP+6]
FDIV two

FABS

FSTP h

compute (*f) (x+h) -(*f)(x-h) )}/ (2*h);

s W s

FLD QWORD PTR [BP+6]

FADD h

FSTP temp

PUSH DWORD PTR temp+4 : Push x+h
PUSH DWORD PTR temp

CALL WORD PTR [BP+4] ; 8T(0) = f£(x+h)
ADD sp,8 ; Free Parameter

FLD QWORD PTR [BP+6]

FSUB h

FSTP temp

PUSH DWORD PTR temp+4; Push x-h
PUSH DWORD PTR temp

CALL WORD PTR [BP+4] : ST(0)}) = £{x-h), ST(1l) = £(x+h)

ADD Sp,8 ; Free Parameter

FSUB ; ST(0) = £f£(x+h)- £(x-h), ST(l) = Empty
FLD h ; ST(0) = h, 8T{(l) = £(x+h)- £(x-h)

FMUI two ; ST(0) = 2h, ST(1l) = £(x+h)- £ (x-h)

FDIV : ST(0) = (f(x+h)- f({(x-h))/2h

FSTP £40

PUSH DWORD PTR [BP+10]
PUSH DWORD PTR [BP+6]
CALL WORD PTR [BP+4]
ADD SP,8

FDIV eps_const

FABS

FSTP eps

* &b



Dol:
FLD h
FDIV two
FSTP h

LU T T

compute (*f) (x+h)

-(*f) (x-h) )/ (2*h);

FLD QWORD PTR [BP+6]

FADD h

FSTP temp

PUSH DWORD PTR temp+4 ; Push x+h

PUSH DWORD PTR temp

CALL WORD PTR [BP+4] ; ST(0) = £{x+h)

ADD sp,8 3} Free Parameter

FLD QWORD PTR [BP+6])

F'SUB h

FSTP temp

PUSH DWORD PTR temp+4; Push x-h

PUSH DWORD PTR temp

CALL WORD PTR [BP+4] ; ST(0) = £(x-h), ST(1l) = f£{(x+h)
ADD sp,8 ;7 Free Parameter

FSUB : ST(0) = f(x+h)- £(x-h), ST(l) = Empty
FLD h ; ST(0) = h, ST(l) = £(x+h)- £f(x-h)
FMUL two : ST(0) = 2h, ST(l) = f£(x+h)- £(x-h)
FDIV ; ST(0) = (£(x+h)- £f(x-h))/2h

FLD ST ; ST(0) = (f(x+h)- £(x-h))/2h, ST(l) = (f£f(x+h)- £(x-h))}/2h
FLD £40

FSUB ; ST(0) = current - £d40

FABS ; ST(0) = | current - £40 |

FCOMP eps

FSTSW AX

SAHF

FsTp £d40

JAE Dol

FLD £40

MOV SP,BP

POP BP

RET

_approx_fderiv ENDP

r

END

A4L7



/* fderiv2c.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern long double approx fderiv(long double (*f){(long double),
long double x);

long double f£(long double x)
{

return x*x*x - 2,0*x*x + 3.0%x - 8.0;
}/*f*,

long double real_ fderiv{(long double x)
{

return 3.0*x*x - 4.0*x + 3.0;
} /* real_fderiv */

int main()

{
printf("approx deriv(5.0) = %Lf\n", approx fderiv(f, 5.0));:
printf("real_fderiv(5.0) = %Lf\n", real_ fderiv(5.0)):

return 0;
} /* main */

E:\>tcc fderiv2ce.c fdi.asm
Turbo C++ Version 3.00 Copyright (c) 1992 Borland International

fderiv2c.c:

fd3i.asm:
Turbo Assembler Version 3.1 Copyright (¢) 1988, 1992 Borland

International

Assembling file: £43.asM

Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 429k

Turbo Link Version 5.0 Copyright (c)} 1992 Borland International
Available memory 4141520

E:\>FDERIV2C.EXE

approx_deriv(5.0) = 58.000006

real_fderiv(5.0) = 58.000000

E:\>

&8



LY TR TR Y

-MODEL SMALL

.DATA
h DT ?
two DD 2.0
£40 DT 0.0
eps_const DT 209
eps DT 0.0
temp DT 0.0
.CODE

My We wa W

7152.0

long double approx_fderiv (long double (*f) (double),

fdl.asm - implement numerical differentiation

long double x)

[BP+4] [BP+6]

.386

.387
PUBLIC _approx_fderiv

_approx_fderiv PROC NEAR

PUSH BP

MOV BP,SP

FLD TBYTE PTR [BP+6]

FDIV two

FABS

FSTP h

H compute (*f) (x+h) -(*f){(x-h) )/ (2*h);

FLD TBYTE PTR [BP+6]

FLD h

FADD

FSTP temp

PUSH DWORD PTR temp+6 ; Push x+h

PUSH DWORD PTR temp+2

PUSH WORD PTR temp

CALL WORD PTR [BP+4] ; ST(0) = f£({(x+h)

ADD Sp,10 : Free Parameter

FLD TBYTE PTR [BP+6]

FLD h

FSUB

FSTP temp

PUSH DWORD PTR temp+6 ; Push x-h

PUSH DWORD PTR temp+2

PUSH WORD PTR temp

CALL WORD PTR [BP+4] ; ST(0) = £(x-h), ST{(l) = f£(x+h)
ADD SP,10 ; Free Parameter

FSUB ; ST(0) = f(x+h)- f(x-h), ST(1l) = Empty
FLD h : ST(0) = h, 8T(1) = £(x+h)- £f(x-h)
FMUL two : ST(0) = 2h, S8T(1l) = f(x+h)- £(x-h)
FDIV ; 8T(0) = (£E(x+h)- f£(x~h))/2h

FSTP £40

pPEY



PUSH DWORD PTR [BP+12]
PUSH DWORD PTR [BP+8]
PUSH WORD PTR [BP+6]
CALL WORD PTR [BP+4]
ADD SP,10

FLD eps_const

FDIV

FABS

FSTP eps

Dol:
FLD h
FDIV two
FSTP h

compute (*f) (x+h) -~ (*£) (x-h) )/ (2*h);

e we we

FLD TBYTE PTR [BP+6]

FLD h

FADD

FSTP temp

PUSH DWORD PTR temp+6 ; Push x-h

PUSH DWORD PTR temp+2

PUSH WORD PTR temp

CALL WORD PTR [BP+4] ; 8ST{(0) = £(x+h)

ADD SP,10 ; Free Parameter

FLD TBYTE PTR [BP+6]

FLD h

FSUB

FSTP temp

PUSH DWORD PTR temp+6 ; Push x-h

PUSH DWORD PTR temp+2

PUSH WORD PTR temp

CALL WORD PTR [BP+4] ;3 ST(0) = E(x-h), ST{(1l) = £(x+h)
ADD SP,10 ; Free Parameter

FSUB : ST(0) = f£(x+h)- £{(x-h), ST(1) = Empty
FLD h ; ST(0) = h, ST(1) = f(x+h)- £(x-h)
FMUL two ; 8T(0) = 2h, ST(1l) = £(x+h)- £{x-h)
FDIV ; ST(0) = (f(x+h)- £(x-h))/2h

FLD ST ; ST(0)}) = (£{(x+h)- £(x-h))/2h, ST(1l) = (£(x+h)- £(x-h))/2h
FLD f£d0

FSUB ; ST(0) = current - £d40

FABS ; ST(0) = | curreant - £40 |

FLD eps

FCOMPP

FSTSW AX

SAHF

FSTP £d40

JNAE Dol ; Reversed logic

bl

FLD £40

MOV SP, BP
POP BP
RET

_approx_fderiv ENDP

-
r

END

ISV



