supnpT TIYN] §YRbw orapon bw frd ¥io) i

"aaan™ sumnnn Tavn (L'a 80-31 32, 64) 2vvwsn DvIDDRI AdTHAAR 1I9n
Ds9DOPI Navmnn 386-7 TR® .3 64-3 16, 32 oonbw ooabbn Bw mpsuBnYIRD

mosnn vea 64 pvapb® T3y barg L awn 19 Y5 kY VIR vea 32-1 16 orabw
NIV XOTOIRD

Sw 271%'T LIND D10 (3983 NI CUBNPT Tayna 8vnhbw DU1Ddpa "hovpn'h
oempdh Tavan bW n3cnnT LIMh - wmm 7em»n Xan ST(i)-n vMaIR2 0vpdn
(N19% w3 w3 T X2 Db

BRIR TmAYY BS YBYIPA 117573 DUIEIR RIWH vIic Tavmn ipaen L)
LHTIDM TIWT 7N A5 VEIIBA 111272 00T39DK 3IN0% o3 y1vv R, vwend
LTIV VRN BT

o 9pon %Y nybavp namTen Tavsn Jan2 73391 NTTIED Pw (Jup) Toon asws L2

,FRNDINT, FPREM on 9% noxmasT .wnnwn 129070 *Uppn up1idl oob?w
.FPREM1

b o5 pom XYIPA TP 3IN0Y wDRM TIYHN LRYR R .1 370m n3en
.1 o3 .obw apoms 199319 PR¥INN DR 301377 cwsn qpomd 10HY 21ve% |, Tavnn
L22TR R twemd abw eon Yw asxshw gT2Ivn Yy mwenb ooomhon L2 oM
Tiwa L 'a91 23.0001 xby 22.9999 x4 ,23.0 xim 23 pbwn wpomn Yw v avyen
M3°ND ,NI°NY3 nIws abayd LRIBUR LR T2YNT TIN? 0'nPW 0°IDDBn DRUIpY
nyea% vIWY NIsnmTy L 9monT 233tva 719995 havnb ey 117310 wen non v
AR Y11 YY OR ,13 (r39m RITW A10am 210y T b aaRTP 1vve 2¥ma
b .oumnna T3aven Sw Control Word-m bw meYapran AR vxn bw nnnon [/
Jvwmp b - 7ayma 7902 30w L 111312 TIMLIR YY nibyan avon niTapon

-» r1anb) FILD xap3 obw vm91d3 Mpdm 119378 TIVHT JINY DRIIPT TTIpON
TpDn 119519 N1anIsT nYTIEEn L (CWnen upaIp3 BUIBDn (1IdTAR NP FLD
vATY83 apo» naantow FST, FSTP-» %vqanb) FIST, FISTP ovxpa pbw uminz
noomnak nabayp veab oa nva vea 16 -32 13T YW prIapax qvay L (vomn
X1 (72%32 ARUOp T395IR WY LY RY LTIP2 PR TITRAR) DUTINDIRG CTMRY
.FIADD, FISUB, FISUBR, FIMUL, FIDIV, FIDIVR :»wmm umid2 1597212 TbOn
JFISTP-9 FILD natapba 291 X @°omny v'a 64 *33 @ombw 13737 *13793R
.1a%a vr3 32-9 16 11751 *TITDAR2 P ONIORAN NIRRT N

gao® ,mv33 ,mxan vaxky Vard-y ,Varl, Var2 owa ooamwn 3 0% wo ox 3780

S F

,Var3-a o5 vpnepa axeann nx 20xaby o wsaipa ovaoons Var2-v Varl R
(X7 DRT nawy? 7n

(b3 32 9% 16 1132 oo Var3-a Varl, Var2 ox

FILD varl
FIADD Var?2
FISTP Var3

'v3 64 %1933 on oX

FILD Varl

FILD Var2

FADD

FISTP Var3

Lvwms 090 R0 FADD-w 2% v

IR NN DY 1590 nabaypaw owwm 7798 AnwRa 3ane? jnta YB3y 0N

bw napna Lbwnd pavvna 30 23°Rw Y37 ,wen avxva bebY peasomd oriponn
.33771 Tne asnn p1ven

PN

call_idl.c, idiv_mo2.asm, idiv_mo3.asm R@a13 N1~323N

wan e nR KW call_idl.c measinn DwowIn wantks RN OIRD W M

DR TRTI ORI .0°YATT TIVAM STAIRI DEBNULT Y2320K 13010 NATya 1w

NY733I0 DU L SURRAT 29BN NNTYE avebwn YW NptuBneIRn Sv wadnn
L vuBnEE T39M3 0OnSW SR RptLBNtIR Whnnn? XA OIPPN RPN

nvarw kOY apabnm bw Yaacvyiw DYIvIIvE IMIRY A033 ,RBAITT N0

o ¥3pa idiv mod Yw gvwamsmn vaw 13 S7200 LRI0IKR DIIMY TRD AN

*5%5 D135y nxTIn mo¥plIdMw 7M1%n xn idiv_mo3.asm -v idiv_mo2.asm

-3 a%x1 0.499999 Yw nnnon "y xon Paavyn idiv_mo2.asm -3 .;aum
.1avnn 5w Control Word-aw RC-% 01 9iwyn v nagn »nar idiv_mo3.asm

idiv_mo3.asm ya1pa Control Word-m 935+

YIIpER 199y navaw v by eyl idiv_mo3.asm-2 Control Word-nm %aiv2
nagn .onn v3eb avn Sw o qatnowy Save CW 2% v namem Tt
»1v 5y Control Word-m %w >movam qvn a0 by mowl RC-% 01 Twm
-5 T nateRy 1°bY nyvwea nabayp yyxva New CW Tap) manwnb ynasn
n7ippa mwy3s Control Word-m %w v nvwn .Control Word

FSTCW Save CW

TTIPET 'Y WYY TVIRWY 13Y0IA NP AN

FLDCW Save CW

nyTapon "y mwyy Control Word-3 +amrta »viwn

FSTCW New CW
AND New CW,1111001111111111B
OR New_CW,0000010000000000B
FLDCW New CW

nTIpE v 5y abw vnovia qavn 0ipeR "y 01 77wn px RC-n Yy fmaon
.OR-7 n73pp *"w RC-n Sw 7man vra% 1 n2vndy AND-n

-

D@IRTHI _TIW] TGRCURANIRG wWInR

*23k% oenbwn 0vTDonT YUY T By Dnpown DR DUYEIAD OOWIRTHT S
TPoURNYINT TIYRR 703 .FIDIVR »"y npabns FILD m7apen "y Tavnn
nexw 2wen LFISTP m3spea "y nowyl AR3INN Daana IR DUwBd XA

-FPREM i1yppa winswy 7avnb 0voomn 2 navwo 'y Moy apaonn

o RtLh

FILD WORD PTR [BP+6]

ATAPET ,05K3 PPN IDM 137ADAY Y153 L7a3BE DRV

FTST
NYTIPEN LDDR QY DO DR MIUN

FSTSW AX
SAHF

-2 D OYIWED VIMAR Own .0*PATT IAIRY ARIIWAT NIREIN R NI
P IND YINIR 1v3¥m 1ow) DOHRA pavna Pipvvy Ywwpn P32 idiv_mol.asm
oYY @0 vTon 192 P7a3 1R OIRDY L, 11RO R IR DB DY OY 11D

N @i-id-

"'y ooapabhm pIRSa NI ToRNA 05R2 PYAY 1IWTTI R? 1w (UpNN mpna
ph Rfrd-b

FIDVR WORD PTR [BP+4]

nyTIpen M"Y L,nownn OR¥INA 7T 25wl

MOV BX, [BP+8]
FISTP WORD PTR [BX]

-3 ,0%WY7TT PR TOWRN ¥I¥T3 1IN Y03 AR3INA DR 73731 NYa0na
. JpYmm ST

97¥n NR Yaps ST(0)-w 9§52 xvanm Ay I7and nv13'nn w e nmaaT2

ST{0)}-5 2 obwn -ooma 2n33 Tv°Y% ,2.38636-2 nbmn 1am kY ,44.0
. P 1mnn

30

NYTIPER Yy MEYI ARpIPNT NYIRY 2Wen

FILD WORD PTR [BP+6]
FILD WORD PTR [BP+4]
FPREM

YR nvaRwn ®EBy ST(0)-3 y'woy .awn ov-FILD-7 Yw 1tonw 2% ow
N17IPDI YI¥°3 nYIpya Yhwoy Lmaonm Remy ST(1)-3

MOV BX, [BP+10]
FISTP WORD PTR [BX]

ST(0)-3 9swoy Rymy maoma 1w LST(1) jprdnmt awsh nR¥In: 23
T1IpET Y'Y YA 72771 IR PP Nam

FFREE ST

g*a21y ST(1)-4 ST(O) poaasxm 72w nixex»m 119 w» a%ean nmeav1a
=% prpe1 ontaw bw 23mn DU2¥n DY

,FILD WORD PTR [BP+6] sanx , 1ywRa 3w

ST(0) 44.0
ST(1) pn

,FILD WORD PTR [BP+4] »anx ,-iw a%w
ST(0) 105.0
ST(1) 44.0

,FPREM »amx ,»webw 2%

ST(0) 17.0
ST(1) 44.0

,FISTP WORD PTR [BX] »anx ,*yv31 2%
q¥nb §°9371Y Taven Sw ovaarn a9 Ry 17 abwn 7vn axan vy

ST(0) 44.0
ST(1) P

.2 o°pra orvaww (FFREE ST »onr) swemnn 2007 1w

3

/* call_idl.c - call assembler subroutine idiv mod.asm from C program */
#include <stdio.h>
extern int idiv_mod(int Num, int Denom, int *Q, int *Rem);

void main()

{
int Num, Denom, Q, Rem, No Zero Divide;

printf("\Enter Numerator, Denominator\n:");
scanf ("%d %d4d",&Num, &Denom);
No_Zero Divide = idiv mod({Num, Denom, &Q, &Rem};
if (No_Zero Divide)
printf{"\n %d div %d = %d, mod(%d,%d) = %d\n",
Num, Dencom, Q, Num, Denom, Rem);
alse
printf("\nError: Zero Divide.\n"):;

} /7* main */

E:\>tce call_idl.c idiv_mo2.asm
Turbo C++ Version 3.00 Copyright (c) 1992 Borland International
call_idl.c:

idiv_mo2.asm:
Turbo Assembler Version 3.1 Copyright (c) 1988, 1992 Borland International

Assembling file: idiv_mo2.ASM

Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 418k

Turbe Link Version 5.0 Copyright {c) 1992 Borland Internaticnal
Available memory 4136272

E:\>call_idl.exe

Enter Numerator, Denominator
:105 44

105 div 44 = 2, mod(105,44) = 17

E:\>

‘N30~

; idiv mo2.asm - Assembler implementation of C-callable function

: idiv_mod.

.MODEL SMALL
;: Static Variables

-.DATA

Half DQ 0.4999999999999
.CODE
.386
.387
; Implementation of C callable function ...
; Compute Q := |_ Num / Denom _| ,Rem := MOD{(Num, Denom)
; function idiv mod returns 0 if Denom = 0 (illegal ..
;i ... division by zero), 1 otherwise
PUBLIC _idiv mod
_idiv mod PROC NEAR
PUSH BP ; Preserve BP
MOV BP, SP ; Set BP to point to Parameter area
FILD WORD PTR [BP+€] ; ST(0) := Denom
FTST ; Denom = 0 ?
FSTSW AX ; AX = Status word
SAHF ; Copy to flags register
JNZ Cont ; No, continue regular operation
; Yes, Denom = 0
FFREE ST
MOV AX,0 ; Return value := 0
JMP Done ; 8S8kip following code
Cont: : Denom <> 0

int idiv mod(int Num, int Denom, int *Q, dint *Rem)
[BP+4] [BP+6] [BP+8] [BP+10]

FIDIVR WORD PTR [BP+4] ; ST = Num / ST, ST = Num / Denom

FSUB Half ; Subtract 1/2 to ensure rounding down

MOV BX, (BP+8] ; BX := Offset Q

FISTP WORD PTR [BX] ;3 *Q := ST

FILD WORD PTR [BP+6] ; ST = Denom

FILD WORD PTR [BP+4] : ST Num, ST(l) = Denom
!

|

FPREM ST = ST mod ST(1)
MOV BX, [BP+10] BX := Offset Rem
FISTP WORD PTR [BX] ; *Rem := ST

FFREE ST :
MOV AX,1 ; Ensure return value = 1

Done:
POP BP ; Restore BP register

RET
_idiv mod ENDP

»
r

L]

»
'

END

A3

idiv_mo3.asm — Assembler implementation of C-callable function idiv_mod.

Control Word

; 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D e e B e e e B B et
;i |RIR|IR|I|] RC|PC JR|R|PM|UM| OM | ZM | DM | IM |
D s T S e e e Sttt sttt St e p————t

.MODEL SMALL

; Static Variables
.DATA

Save CW DW ?
New_ CW DW ?
.CODE
.386
.387
Implementation of C callable function
int idiv_mod (int Num, int Denom, int *Q, int *Rem)
[BP+4] [BP+6] [BP+8] [BP+10]
Compute Q := |[_ Num / Denom _| ,Rem := MOD(Num, Denom)
function idiv mod returns 0 if Denom = 0 (illegal
division by zero), 1 otherwise

a M e s W wma wa

PUBLIC _idiv_mod
_idiv_mod PROC NEAR

PUSH BP ; Preserve BP

MOV BP, SP ; Set BP to point to Parameter area
FSTCW Save_CW ; Store status in Memlé6
FSTCW New_CW : Store status in Memlé

AND New CW,1111001111111111B ; Erase existing RC

OR New_CW,0000010000000000B ; Set RC to 01
; (Round towards -infinity)

FLDCW New_ CW ; Set New CW
FILD WORD PTR [BP+€6] ; ST(0) := Denom
FTST ; Denom = 0 ?
FSTSW AX ; Transfer SW to AX
SAHF ; Copy to flags register
JNZ Cont ; Demon != 0
; Yes, Denom = 0

FFREE ST

MOV AX, 0 ; Return value := 0

JMP Done ; Skip following code

Cont: ; Denom != 0

L34

FIDIVR WORD PTR [BP+4] ; 8T = Num / ST, ST = Num / Denom

MOV BX, [BP+8] ; BX := Offset Q
FISTP WORD PTR [BX] ; *Q := 8T
FILD WORD PTR [BP+6] ; ST = Denom
FILD WORD PTR [BP+4] ; 8T = Num, ST(1l) = Denom
FPREM ; ST = ST mod ST (1)
MOV BX, [BP+10] ; BX := Offset Rem
FISTP WORD PTR [BX] ; *Rem := ST
FFREE ST ; Free ST({0)
MOV AX,1 ; Ensure return value = 1
Done:
’
FLDCW Save CW ; Restore control word to original value
POFP BP ; Restore BP register
RET

_idiv _mod ENDP
‘

END

238

call id2.c, idiv mo9.asm X»a17 n1v331N

, Wva 32-1 no32 idiv_mod nx nwmpn idiv_mo9.asm n+id>ind
.idiv_mo2.asm-% 173 CLBNBT TaYR2 MPWR APTLBENTIRA WIRSH N
,0%3 32 o abwa 737 INR®

:w o3 idiv_mo2.asm-» n%133 idiv_mo9.asm 2w nvidann
.WORD PTR acypna DWORD PTR x3m n-ionmn 7in? casting-n -
Denom ,ov%13 Num wyn® ovqumps 23 S neaonmsa 9in2 oswonn -
.idiv_mo7.asm-2 Im> pyv13 ,4-3 Rem-5 Q-1 2-2

idiv mo2.asm-% anr idiv_mo9.asm-2 nv33107 1P Yw naamn

-1 16 1973719 nyvswe yayen oy oemdbwa navivn vyab nvaw own
.9Pn3 Y3°R AT 2 64-2 po v 32

33¢

/* call_id2.c - call assembler subroutine idiv_mod.asm from C program */

#include <stdio.h>

extern int idiv_mod(long int Num, long int Denom, long int *Q, long
int *Rem);

void main ()

{

long int Num, Denecm, Q, Rem;
int No_Zero_Divide;

printf ("\Enter Numerator, Denominator\n:");
scanf ("%$1ld %1d", &Num, &Denom);
No_Zero_Divide = idiv_mod (Num, Denom, &Q, &Rem)} ;
if (No_Zero_Divide)
printf ("\n %ld div %ld = %14, mod(%1d, %$1d} = %ld\n",
Num, Denom, Q, Num, Denom, Rem);
else
printf ("\nError: Zero Divide.\n");

} /* main */

E:\>tce -v call_i1d2.¢ idiv _mo9.asm
Turbo C++ Version 3.00 Copyright {c¢) 1992 Borland International

call id2.c:
idiv mo9.asm:
Turbo Assembler Version 3.1 Copyright (c) 1988, 1992 Borland

International

Assembling file: idiv_mo9.ASM
Error messages: None

Warning messages: None

Passes: 1

Remaining memory: 429k

Turbo Link Version 5.0 Copyright (c¢) 1992 Berland International
Available memory 4149256

E:\>CALL ID2.EXE

Enter Numerator, Denominator
: 700065 55000

700065 div 55000 = 12, mod(700065,55000) = 40065

E:\>

LS H

; idiv_mo9.asm - Assenmbler implementation of C-callable function idiv_mod.
.MODEL SMALL
; Statiec Variables

.DATA

Half DQ 0.498%9999999599
.CODE
.386
.387
Implementation of C callable function
... int idiv mod(long int Num, long int Denom,

[BP+4] [BP+8]
int *Q, int *Rem)
[BP+12] [BP+14]
Compute Q := |_ Num / Denom _| ,Rem := MOD(Num, Denom)

function idiv_mod returns 0 if Denom = 0 (illegal ..
.. division by zeroc), 1 otherwise

e e M ML Ny M4 We Wma wa

PUBLIC _idiv mod
_idiv_mod PROC NEAR

PUSH BP ; Preserve BP
MOV BP, SP ; Set BP to peoint to Parameter area
FILD DWORD PTR [BP+8] ; ST(0) := Dencm
FTST ; Denom = 0 ?
FSTSW AX ; AX = Status word
SAHF ; Copy to flags register
JNZ Cont ; No, continue regular operation
; Yes, Denom = 0

FFREE ST

MOV AX, 0 ; Return value := 0

JMP Done ; Skip following code

Cont: ; Denom <> 0
FIDIVR DWORD PTR [BP+4] ; ST = Num / ST, ST = Num / Denom
FSUB Half ; Subtract 1/2 to ensure rounding down
MOV BX, [BP+12] ; BX := Offset Q
FISTP DWORD PTR [BX] ; *Q := ST
FILD DWORD PTR [BP+8] ; ST = Denom
FILD DWORD PTR [BP+4] ; ST = Num, ST(l) = Denom
FPREM ; ST = ST mod ST(1l)
MOV BX, [BP+14] ; BX := Offset Rem
FISTP DWORD PTR [BX] ; *Rem := ST
FFREE ST ;
MOV AX,1 ; Ensure return value = 1
Done:

POP BP ; Restore BP register
RET

_idiv_mod ENDP
;
;

END

*FIK

fderivl.c, fderiv2a.c, fdl.asm 8»3497 D31*391N0

Tw3tIDa wwT DX wemeay 3R abba nivasann Se o vapeyn Tepeni
Q%5 113 BY3WSN2 TATIMNI PIDI 2T L, IWHIDI ACXPIINY

NIWYY 0UXYT YINIR LM2IWCA TR TR UMY AYA) O MIIN) 0 ACIPIID NN
DY9TYY WK WRAONMW ©YI0N T LNTIPAR APW NTTIAN Bw o Cmhl 2177
bwnb ,nvweebaR ORT3 RIT PR QYT naona RY YAk nevion nvxpass aen?

IR CIWII DWW IR WY [DIRI MW TRIWN YR 190D R

bw Ph2an R DITAINR 92 DY DoYan MM 297%pR awen

f'(x) = Lim (f(x+h) - f(x-h))/(2h)
h->0
:{*) anbran 'Y NITTAIY 297°pR NRIWAI DX PIPS
f1(x) = (f(x+h) - f(x-h))/(2h) (*)

.7 na% honrexr Ry onbRwn LDATaaY% 291hp Yaps , qop proon h vy
BR BYIR nouLshm TIMAM 1933 AN AN 2N Nyt jup h-w Yo
nava? aven h ,mme pam . 9T 17238 Y navva? oyvat v jop hoans
K7 *qwex 1vnp .ovvbRum DUARIBa TP Kp11T IRYY x-P nvony qup
yoaaw 1y 2.0-2 npadn 0"y h nx propaY i Yoa h = x/2 ok Yennnb
(*) nnoYan Bw brapiy 02w R 2 wIvd ,0adna? pvPinnn oUIwene o7
a3y a%%h hevasana Lana: beobxn Jop vPmInh bOTYI DRviY3 WIBTR
P1%732 %8 pvawenT Yvox .16384.0 phn f(x) Yw vbamn qaws 1iboox
ANy oYponm 13v0n fleat-»n m133 anve

2N P10 SY 0eRWIIY 0°7WP TR BNYIIAPRT YIARD OYIHYIT D2 Ipen
.OvIpY DIpn XD ROW

nabyonn nsownn .C nowa onvanabxn wansn xen fderivl.c nrassnn
L*bamoRa tmaan antaabrn nx o ovenn fdl.asm-3 fderiv2a.c

339

fderiv2b.c, fderiv2c.c, fd?.asm, fd3.asm ny>33%nn

peson T3y fdl.asm-1 fderiv2a.c Sw mbsapen 1 %P0 nyvaoann
.long double-4 double

g I 50n M3y DM Tavya ocwenn fd2.asm-v fderivZb.c przapn
.double

D*9Bom Ay N Avvra otween fd3.asm-y fderivide.c pv¥3pn
.long double

YIMIR AP 0BXR 23wena ,0%P9T3 NN BRI KD DYTIIY INIRT CINRD
q92y 2097152.0-% double =972y 131072.0 ,o°%343 =0y p*oaya orpbm
.long double

A 40

/* fderivl.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

float approx_fderiv(float (*f) (float), float x)
{
float h, £d0, £dl, eps;

h = fabs(x/2.0);

fdl = ((*£f) (x+h) - (*f) (x-h))/(2*%h);
eps = x/8192.0;
do {
£fdo = £fdl;
h = h/2.0;
£dl = ((*f) (x+h) - (*f) (x-h))/(2*h};
} while (fabs (£40 - £dl1l) > eps);
return f£dil;

} /* approx_deriv */

float £{float x)
{

return x*x*x — 2.0*x*x + 3.0*x — 8.0;

} /* £ */

float real_ fderiv(float x)
{

return 3.0*x*x — 4.0*x + 3.0;
} /* real fderiv */

int main()

{
printf ("approx_deriv(5.0) = %f\n", approx fderiv(f, 5.0));
printf ("real fderiv({5.0) = %f\n", real fderiv(5.0});

return 0;
} /* main */

E:\>tcec -v fderivl.c
Turbo C++ Version 3.00 Copyright (c) 1992 Borland International

fderivl.c:
Turbo Link Version 5.0 Copyright (c) 1992 Borland International

Available memory 4103660
E:\>FDERIV1.EXE

approx_deriv(5.0) = 58.001526
real_fderiv(5.0) = 58.000000

et

/* fderiv2a.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern float approx fderiv(float (*f) (float), float x);

float f£(float x)
{

return x*x*x - 2.0*x*x + 3.0*x - 8.0;
Yy /* £ */

float real_ fderiv(float x)
{

return 3.0*x*x - 4.0*x + 3.0;
} /% real fderiv */

int main()

{
printf ("approx_deriv(5.0) = %f\n", approx fderiv(f, 5.0)});
printf{"real fderiv(5.0) = %f\n", real_fderiv(5.0)):;

return 0;
} /% main */

E:\>tcc fderiv2a.c fdl.asm

Turbo C++ Version 3.00 Copvright {(c) 1992 Borland International
fderiv2a.c:

fdl.asm:

Turbo Assembler Version 3.1 Copyright (c) 1988, 1992 Borland

International

Assembling file: fdl.asm

Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 429k

Turbo Link Version 5.0 Copyvright (c¢) 1992 Borland International
Available memory 4141520

E:\>FDERIV2Z2A.EXE

approx_deriv(5.0) = 58.001526

real fderiv(5.0) = 58.000000

E:\>

b

fdl.asm - implement numerical differentiation

e Wy

s W

+MODEL SMALL
+DATA
h DD ?
two DD 2.0
£40 DD 0.0
eps_const DD 16384.0
eps DD 0.0
temp DD 0.0

.CODE
f) float approx_fderiv (float (*f)(float), float x)
H [BP+4] [BP+6]
.386
.387
PUBLIC _approx_fderiv
_approx_fderiv PROC NEAR
PUSH BP
MOV BP, SP
FLD DWORD PTR [BP+6]
FDIV two
FARBS
FSTP h

compute (*f) (x+h) -(*f) (x-h))}/ (2*h);

e Ms wa

FLD DWORD PTR [BP+6]

FADD h

FSTP temp

PUSH temp ; Push x+h

CALL WORD PTR [BP+4] ; ST(0) = £(x+h)

ADD SP.,4 ; Free Parameter

FLD DWORD PTR [BP+6]

FSUB h

FSTP temp

PUSH temp : Push x-h

CALL WORD PTR [BP+4] ; 8ST(0) = £(x-h), ST(1l) = f£{x+h)
ADD sp,4d ; Free Parameter

FSUB ; ST(0) = f(x+h)- £f(x-h), 8ST(1l) = Empty
FLD h ; 8T(0) = h, 8T(l) = £(x+h)- f(x-h)

FMUL two : ST(0) = 2h, ST(1) = £{(x+h)- £({x-h)

FDIV ; ST(0) = (£(x+h)- £(x-h))/2h

FSTP £40

PUSH DWORD PTR [BP+6]
CALL WORD PTR [BP+4]
ADD SP,4

FDIV eps_const

FABS

FSTP eps

X3

Dol:
FLD h
FDIV two
FSTP h

compute (*f) (x+h) -(*f)(x-h))}/ (2*h);

e e ma

FLD DWORD PTR [BP+6]

FADD h

FSTP temp

PUSH temp : Push x+h

CALL WORD PTR [BP+4] ; ST(0) = f(x+h)

ADD SP,4 23 Free Parameter

FLD DWORD PTR [BP+6]

FSUB h

FSTP temp

PUSH temp 3 Push x-h

CALL WORD PTR [BP+4] ; ST(0) = £(x-h), ST(1l) = £{(x+h)
ADD SP,4 ;s Free Parameter

FSUB ; 87{(0) = f{(x+h)- £f(x-h), ST(l) = Empty
FLD h ; ST(0) = h, ST(1l) = £(x+h)- £(x-h)

FMUL two ; ST(0) = 2h, 8ST(l) = f(x+h)- £f(x-h)

FDIV : ST(0) = (f(x+h)- f(x-h))}/2h

FLD 8T ; ST(0) = (f{x+h)- £(x-h))/2h, ST(l) = (f(x+h)- £(x-h))/2h
FLD £d40

FSUB ;s 8T(0) = current - £d0

FABS ; ST(0) = | current - £40 |

FCOMP eps

FSTSW AX

SAHF

FSTP £d40

JAE Dol

FLD £d40

MOV SP,BP

POP BP

RET

_approx_fderiv ENDP

.
r

END

/* fderiv2b.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern double approx_fderiv(double (*f) {double), double x);

double f(double x)
{

return x*x*x - 2.0*x*x + 3.0*x - 8.0;
Y /*x £ */

double real_fderiv(double x)
{

return 3.0*x*x -~ 4.0*x + 3.0;
} /* real_fderiv */

int main()

(
printf("approx_deriv(5.0) = %lf\n", approx_fderiv(f, 5.0));
printf("real_fderiv(5.0) = %l1f\n", real_ fderiv(5.0));

return 0;
} /* main */

E:\>tcc fderiv2b.c fd2.asm
Turbo C++ Version 3.00 Copyright (c) 1992 Borland International

fderiv2b.c:

fd2.asm:
Turbo Assembler Version 3.1 Copyright (c) 1988, 1992 Borland

International

Assembling file: £d2 .ASM

Error messages: None
Warning messages: None
Pagses: 1

Remaining memory: 429k

Turbo Link Version 5.0 Copyright {(c) 1992 Borland International
Available memory 4141520

E:\>FDERIV2B.EXE

approx_deriv{(5.0) = 58.000095

real_ fderiv(5.0) = 58.000000

E:\>

LGS

fd2.asm - implement numerical differentiation

g W4 W Wy

.MODEL SMALIL
+DATA
h DQ ?
two DD 2.0
£f40 DQ 0.0
eps_const DQ 131072.0
eps DQ 0.0
temp DQ 0.0
.CODE

double approx_fderiv (double (*f){(double), double x)
[BP+4] [BP+6]

g e ma Wy

.386

.387
PUBLIC _approx_fderiv

_approx_fderiv PROC NEAR

PUSH BP

MOV BP,SP

FLD QWORD PTR [BP+6]
FDIV two

FABS

FSTP h

compute (*f) (x+h) -(*f)(x-h))}/ (2*h);

s W s

FLD QWORD PTR [BP+6]

FADD h

FSTP temp

PUSH DWORD PTR temp+4 : Push x+h
PUSH DWORD PTR temp

CALL WORD PTR [BP+4] ; 8T(0) = f£(x+h)
ADD sp,8 ; Free Parameter

FLD QWORD PTR [BP+6]

FSUB h

FSTP temp

PUSH DWORD PTR temp+4; Push x-h
PUSH DWORD PTR temp

CALL WORD PTR [BP+4] : ST(0)}) = £{x-h), ST(1l) = £(x+h)

ADD Sp,8 ; Free Parameter

FSUB ; ST(0) = £f£(x+h)- £(x-h), ST(l) = Empty
FLD h ; ST(0) = h, 8T{(l) = £(x+h)- £(x-h)

FMUI two ; ST(0) = 2h, ST(1l) = £(x+h)- £ (x-h)

FDIV : ST(0) = (f(x+h)- f({(x-h))/2h

FSTP £40

PUSH DWORD PTR [BP+10]
PUSH DWORD PTR [BP+6]
CALL WORD PTR [BP+4]
ADD SP,8

FDIV eps_const

FABS

FSTP eps

* &b

Dol:
FLD h
FDIV two
FSTP h

LU T T

compute (*f) (x+h)

-(*f) (x-h))/ (2*h);

FLD QWORD PTR [BP+6]

FADD h

FSTP temp

PUSH DWORD PTR temp+4 ; Push x+h

PUSH DWORD PTR temp

CALL WORD PTR [BP+4] ; ST(0) = £{x+h)

ADD sp,8 3} Free Parameter

FLD QWORD PTR [BP+6])

F'SUB h

FSTP temp

PUSH DWORD PTR temp+4; Push x-h

PUSH DWORD PTR temp

CALL WORD PTR [BP+4] ; ST(0) = £(x-h), ST(1l) = f£{(x+h)
ADD sp,8 ;7 Free Parameter

FSUB : ST(0) = f(x+h)- £(x-h), ST(l) = Empty
FLD h ; ST(0) = h, ST(l) = £(x+h)- £f(x-h)
FMUL two : ST(0) = 2h, ST(l) = f£(x+h)- £(x-h)
FDIV ; ST(0) = (£(x+h)- £f(x-h))/2h

FLD ST ; ST(0) = (f(x+h)- £(x-h))/2h, ST(l) = (f£f(x+h)- £(x-h))}/2h
FLD £40

FSUB ; ST(0) = current - £d40

FABS ; ST(0) = | current - £40 |

FCOMP eps

FSTSW AX

SAHF

FsTp £d40

JAE Dol

FLD £40

MOV SP,BP

POP BP

RET

_approx_fderiv ENDP

r

END

A4L7

/* fderiv2c.c - approximate derivative function */

#include <stdio.h>
#include <math.h>

extern long double approx fderiv(long double (*f){(long double),
long double x);

long double f£(long double x)
{

return x*x*x - 2,0*x*x + 3.0%x - 8.0;
}/*f*,

long double real_ fderiv{(long double x)
{

return 3.0*x*x - 4.0*x + 3.0;
} /* real_fderiv */

int main()

{
printf("approx deriv(5.0) = %Lf\n", approx fderiv(f, 5.0));:
printf("real_fderiv(5.0) = %Lf\n", real_ fderiv(5.0)):

return 0;
} /* main */

E:\>tcc fderiv2ce.c fdi.asm
Turbo C++ Version 3.00 Copyright (c) 1992 Borland International

fderiv2c.c:

fd3i.asm:
Turbo Assembler Version 3.1 Copyright (¢) 1988, 1992 Borland

International

Assembling file: £43.asM

Error messages: None
Warning messages: None
Passes: 1

Remaining memory: 429k

Turbo Link Version 5.0 Copyright (c)} 1992 Borland International
Available memory 4141520

E:\>FDERIV2C.EXE

approx_deriv(5.0) = 58.000006

real_fderiv(5.0) = 58.000000

E:\>

&8

LY TR TR Y

-MODEL SMALL

.DATA
h DT ?
two DD 2.0
£40 DT 0.0
eps_const DT 209
eps DT 0.0
temp DT 0.0
.CODE

My We wa W

7152.0

long double approx_fderiv (long double (*f) (double),

fdl.asm - implement numerical differentiation

long double x)

[BP+4] [BP+6]

.386

.387
PUBLIC _approx_fderiv

_approx_fderiv PROC NEAR

PUSH BP

MOV BP,SP

FLD TBYTE PTR [BP+6]

FDIV two

FABS

FSTP h

H compute (*f) (x+h) -(*f){(x-h))/ (2*h);

FLD TBYTE PTR [BP+6]

FLD h

FADD

FSTP temp

PUSH DWORD PTR temp+6 ; Push x+h

PUSH DWORD PTR temp+2

PUSH WORD PTR temp

CALL WORD PTR [BP+4] ; ST(0) = f£({(x+h)

ADD Sp,10 : Free Parameter

FLD TBYTE PTR [BP+6]

FLD h

FSUB

FSTP temp

PUSH DWORD PTR temp+6 ; Push x-h

PUSH DWORD PTR temp+2

PUSH WORD PTR temp

CALL WORD PTR [BP+4] ; ST(0) = £(x-h), ST{(l) = f£(x+h)
ADD SP,10 ; Free Parameter

FSUB ; ST(0) = f(x+h)- f(x-h), ST(1l) = Empty
FLD h : ST(0) = h, 8T(1) = £(x+h)- £f(x-h)
FMUL two : ST(0) = 2h, S8T(1l) = f(x+h)- £(x-h)
FDIV ; 8T(0) = (£E(x+h)- f£(x~h))/2h

FSTP £40

pPEY

PUSH DWORD PTR [BP+12]
PUSH DWORD PTR [BP+8]
PUSH WORD PTR [BP+6]
CALL WORD PTR [BP+4]
ADD SP,10

FLD eps_const

FDIV

FABS

FSTP eps

Dol:
FLD h
FDIV two
FSTP h

compute (*f) (x+h) -~ (*£) (x-h))/ (2*h);

e we we

FLD TBYTE PTR [BP+6]

FLD h

FADD

FSTP temp

PUSH DWORD PTR temp+6 ; Push x-h

PUSH DWORD PTR temp+2

PUSH WORD PTR temp

CALL WORD PTR [BP+4] ; 8ST{(0) = £(x+h)

ADD SP,10 ; Free Parameter

FLD TBYTE PTR [BP+6]

FLD h

FSUB

FSTP temp

PUSH DWORD PTR temp+6 ; Push x-h

PUSH DWORD PTR temp+2

PUSH WORD PTR temp

CALL WORD PTR [BP+4] ;3 ST(0) = E(x-h), ST{(1l) = £(x+h)
ADD SP,10 ; Free Parameter

FSUB : ST(0) = f£(x+h)- £{(x-h), ST(1) = Empty
FLD h ; ST(0) = h, ST(1) = f(x+h)- £(x-h)
FMUL two ; 8T(0) = 2h, ST(1l) = £(x+h)- £{x-h)
FDIV ; ST(0) = (f(x+h)- £(x-h))/2h

FLD ST ; ST(0)}) = (£{(x+h)- £(x-h))/2h, ST(1l) = (£(x+h)- £(x-h))/2h
FLD f£d0

FSUB ; ST(0) = current - £d40

FABS ; ST(0) = | curreant - £40 |

FLD eps

FCOMPP

FSTSW AX

SAHF

FSTP £d40

JNAE Dol ; Reversed logic

bl

FLD £40

MOV SP, BP
POP BP
RET

_approx_fderiv ENDP

-
r

END

ISV

