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Abstract

Let A be a matrix over the integers, and let p be a positive integer. A submatrix B of A is

zero-sum mod p if the sum of each row of B and the sum of each column of B is a multiple of p.

Let M(p, k) denote the least integer m for which every square matrix of order at least m has a

square submatrix of order k which is zero-sum mod p. In this paper we supply upper and lower

bounds for M(p, k). In particular, we prove that lim supM(2, k)/k ≤ 4, lim inf M(3, k)/k ≤ 20,

and that M(p, k) ≥ k
√
2

2e exp(1/e)p/2. Some nontrivial explicit values are also computed.

1 Introduction

Let A be a matrix over the integers, and let p be a positive integer. A submatrix B of A is called

zero-sum mod p if the sum of each row of B and the sum of each column of B is a multiple of p.

Let M(p, k) denote the least integer m for which every integer square matrix of order at least

m has a square submatrix of order k which is zero-sum mod p. As usual in zero-sum problems,

we assume that k is a multiple of p, since otherwise M(p, k) may not exist, as any matrix whose

elements all equal one has no square submatrix of order k which is zero-sum mod p. On the other

hand, if k is a multiple of p, then M(p, k) is finite by the following standard Ramsey-type argument:

We may consider the elements of our matrices as taken from Z+
p , thus, we have a coloring of an

m×m grid with p colors, so, for sufficiently largem, there is a k×k sub-grid which is monochromatic.

This translates to a (very specialized) submatrix of order k that is zero-sum mod p.

The case p = 2 has an interesting graph-theoretic interpretation. A zero-one m×n matrix A can

be interpreted as the adjacency matrix of a bipartite graph G = (X∪Y,E), where X = {x1, . . . , xm}
and Y = {y1, . . . , yn}. In this interpretation, A(i, j) = 1 if and only if xi is adjacent to yj . Hence,

M(2, k) is the least integer m which guarantees that every bipartite graph with equal vertex classes
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having cardinality m, has an induced subgraph with equal vertex classes (one subclass from each

original class) having cardinality k, such that all degrees are even. By the Ramsey-type argument

mentioned above, it is obvious that M(2, k) ≤ B(k) where B(k) is the bipartite Ramsey number,

namely, the least integer m which guarantees that in any two-coloring of the edges of Km,m there

exists a monochromatic copy of Kk,k. The best upper bound [6] and lower bound [4] for B(k) are

currently: √
2e−1k2k/2 < B(k) ≤ 2k(k − 1) + 1. (1)

Thus, in particular, we obviously get M(2, k) ≤ 2k(k − 1) + 1.

In this paper we determine several upper and lower bounds for M(p, k). We begin with the

specific cases p = 2 and p = 3. Unlike the exponential lower bound for B(k), we can show that

M(2, k) is linear in k. We can also show that M(3, k) is linear in k for infinitely many values of k.

Theorem 1.1

1. lim supM(2, k)/k ≤ 4.

2. lim inf M(3, k)/k ≤ 20. In particular, for every positive integer s, M(3, 3s) ≤ 20 ·3s(1+o(1)).

The proof of Theorem 1.1 is based partly on a theorem of Olson [5] concerning the Davenport

constant of certain abelian groups, another theorem of Enomoto et al [3], together with a tricky

counting argument. In light of Theorem 1.1, the following conjecture seems plausible:

Conjecture 1.2 For every positive integer p, there exists a constant cp such that

lim supM(p, k)/k ≤ cp.

Theorem 1.1 implies Conjecture 1.2 for p = 2 with c2 ≤ 4. It is not difficult to construct

examples showing M(2, k) ≥ 2k+1 for all even k. A construction showing this appears in the proof

of Theorem 1.4. Thus, we cannot have c2 < 2.

It seems extremely difficult to compute M(2, k) (moreover M(p, k) for p > 2) even for relatively

small values of k. It is an easy exercise to show that M(2, 2) = 5. In fact, 5 ≤M(2, 2) ≤ B(2) ≤ 5

from (1) and from the fact that M(2, k) ≥ 2k+ 1. A naive approach for computing M(2, 4) with a

computer program which generates all possible 0-1 matrices and testing them would fail. By using,

once again, the fact that M(2, k) ≥ 2k + 1, we know that M(2, 4) ≥ 9. Even generating all 0-1

matrices of order 9 is not feasible as there are 281 such matrices (and even then, maybe the correct

value is larger than 9). Using a sophisticated computer search that enables us to narrow down the

checks considerably we can show:

Proposition 1.3 M(2, 4) = 10. A binary matrix of order 9 which demonstrates M(2, 4) > 9 is

the following:
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1 1 1 0 0 0 1 0 0
1 1 1 0 0 0 0 1 0
1 1 1 0 0 0 0 0 1
1 0 0 1 1 1 0 0 0
0 1 0 1 1 1 0 0 0
0 0 1 1 1 1 0 0 0
0 0 0 1 0 0 1 1 1
0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 1 1 1


In fact, this matrix and its complement are the only matrices of order 9 with the desired property,

up to permutations of rows and columns.

The exact value of M(2, k) for k ≥ 6 is an open problem. A description of the computer search

that leads to Proposition 1.3 is available upon request from the authors.

For general p, we can show that M(p, k)/k grows exponentially with p. For fixed p, our lower

bound only supplies a growth which is linear w.r.t. k; this is consistent with Conjecture 1.2. More

precisely, we show the following:

Theorem 1.4

1. M(p, p) ≥ B(p) >
√

2e−1p2p/2.

2. M(p, k) ≥ k
√
2

2e exp(1/e)p/2. For p = 2 we have M(2, k) ≥ 2k + 1.

The rest of this paper is organized as follows. In Section 2 we present the proof of Theorem

1.1. The proof of Theorem 1.4 is given in Section 3.

2 Upper and lower bounds for M(2, k)

In order to prove the first part of Theorem 1.1 we need the following special case of the main

theorem in [3] proved by Enomoto et al. Recall that a linear binary code of length t contains the

distance k if it contains as a codeword a vector with k ones and t− k zeroes.

Lemma 2.1 ([3]) Let k be even, and let A be a binary matrix with k − 1 rows and 2k columns.

Then, A is a parity-check matrix of a (linear) code which contains the distance k. �

In order to prove the second part of Theorem 1.1 we need to state a theorem of Olson concerning

the Davenport constant of certain abelian p-groups. Let G be a finite abelian group. The Davenport

constant of G, denoted D(G), is the least positive integer t such that in any sequence of t elements

of G there is a (nonempty) subsequence whose sum is zero. Now, let p be a prime, and let G be a

p-group. Then, G = Zpα1 × . . .× Zpαk . Olson [5] proved the following:
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Lemma 2.2 If G = Zpα1 × . . .× Zpαk then D(G) = 1 +
∑k

i=1(p
αi − 1). �

An even vector is a binary vector whose number of nonzero coordinates is even. More generally,

a p-divisible vector is a vector from (Zp)
k whose sum of coordinates is divisible by p. We use

Lemmas 2.1 and 2.2 to prove the following two lemmas:

Lemma 2.3 Let k be an even positive integer. Then, every sequence of 2k even vectors of length k

each, contains a subsequence of exactly k vectors whose sum mod 2 is the zero vector. Moreover, if

k is a power of 2, then every sequence of 2k−1 even vectors of length k each contains a subsequence

of exactly k vectors whose sum mod 2 is the zero vector.

Proof: Consider the matrix A whose columns are the elements of the sequence of 2k even vectors

of length k. Ignoring the last row of A, we have, by Lemma 2.1, a parity check matrix of a linear

code that contains the distance k. By the definition of a parity check matrix, this means that we

can choose k columns whose sum mod 2 is zero. Adding back the last coordinate to these columns

still gives a zero sum mod 2, since the columns of A are even vectors.

Now, let k be a power of 2, and let a1, . . . , a2k−1 be a sequence of even binary vectors, where

ai ∈ (Z2)
k. Let bi be the same as ai, except that the last coordinate of bi is always one. Note that

bi may not be even any more. We consider the bi as elements of G = (Z2)
k−1×Zk. Since k is a power

of 2, G is a p-group for p = 2. According to Lemma 2.2, D(G) = 1+(k−1)+(k−1) = 2k−1. Hence,

there is a nonempty subsequence of {b1, . . . , b2k−1} whose sum is zero. Since the last coordinate of

bi is the element 1 of Zk, such a subsequence must contain exactly k elements. Thus, if bi1 , . . . , bik
are the elements of such a subsequence we have bi1 + . . . + bik = 0. Now, since the ai’s are even

vectors we immediately get ai1 + . . .+ aik = 0. �

Lemma 2.4 Let k be a power of 3. Every sequence of 5k − 2 vectors of length k each that are

3-divisible, contains a subsequence of exactly k vectors whose sum is the zero vector (in (Z3)
k).

Proof: Let a1, . . . , a5k−2 be a sequence of 3-divisible vectors, where ai ∈ (Z3)
k. Let bi be the

same as ai, except that the last coordinate of bi is always one. Note that bi may not be 3-divisible

any more. We consider the bi as elements of G = (Z3)
k−1 × Z3k. Since k is a power of 3, G is a

p-group for p = 3. According to Lemma 2.2, D(G) = 1 + 2(k − 1) + (3k − 1) = 5k − 2. Hence,

there is a nonempty subsequence of {b1, . . . , b5k−2} whose sum is zero. Since the last coordinate

of bi is the element 1 of Z3k, such a subsequence must contain exactly 3k elements. Thus, if

bi1 , . . . , bi3k are the elements of such a subsequence we have bi1 + . . .+ bi3k = 0. Now let us consider

bi1 , . . . , bi3k as elements of G′ = (Z3)
k−1 × Zk. Again, G′ is a p-group for p = 3, so by Lemma 2.1,

D(G′) = 1 + 2(k− 1) + (k− 1) = 3k− 2. Hence, there is a nonempty subsequence of {bi1 , . . . , bi3k}
whose sum is zero. Since the last coordinate of bi is the element 1 of Zk, such a subsequence

must contain either exactly k or 2k elements. In case it contains 2k elements, then the sum of the
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remaining k vectors not in the subsequence is also zero, since the sum of all 3k vectors is zero.

Thus, we have proved there is always a subsequence of k elements bj1 , . . . , bjk whose sum is zero in

G′. Now, since the ai’s are 3-divisible vectors we immediately get aj1 + . . .+ ajk = 0. �

Let x be a vector. A k-subset of x is taken by selecting k coordinates of x. Clearly, if x ∈
(Zp)

t then the vector corresponding to a k-subset is a member of (Zp)
k, and x has exactly

(
t
k

)
k-subsets. Let ek(x) denote the number of p-divisible k-subsets of x (a k-subset is p-divisible if

the vector corresponding to it is p-divisible). We shall always assume that k is divisible by p. If

x = (1, . . . , 1) ∈ (Zp)
t then ek(x) =

(
t
k

)
, but, in general, ek(x) may be a lot smaller. For example,

if x = (1, 1, 1, 0, 0) ∈ (Z2)
5 then e2(x) = 4 < 10 =

(
5
2

)
. Now, put

f(p, k, t) = min
x∈(Zp)t

ek(x).

Lemma 2.5

1. Let k be an even positive integer, and let t satisfy

f(2, k, t) >

(
t

k

)
2k − 1

t

Then, M(2, k) ≤ t.

2. Let k be a power of 2, and let t satisfy

f(2, k, t) >

(
t

k

)
2k − 2

t

Then, M(2, k) ≤ t.

3. Let k be a power of 3, and let t satisfy

f(3, k, t) >

(
t

k

)
5k − 3

t

Then, M(3, k) ≤ t.

Proof: We prove the first part. Let A be a square 0-1 matrix of order t. We must show that A

has a square submatrix A′ of order k, such that all rows and all columns of A′ are even vectors.

The condition f(2, k, t) >
(
t
k

)
2k−1
t implies that the rows of A contain more than

(
t
k

)
(2k − 1) even

k-subsets, counting multiplicity. Thus, there exists a set X = {i1, . . . , ik} of k columns of A, such

that the set of vectors aj = (Aj,i1 , . . . , Aj,ik) for j = 1, . . . t contains more than 2k− 1 even vectors.

Let Y = {j1, . . . , j2k} be a set such that ajq is even for q = 1, . . . , 2k. According to the first part of

Lemma 2.3, there exists Y ′ ⊂ Y such that |Y ′| = k and
∑

s∈Y ′ as = 0. Thus, the submatrix A′ of

A restricted to the columns X and the rows Y ′ is the required one. The proof of the second part
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of the lemma is identical, except that we use the second part of Lemma 2.3, and the proof of the

third part uses Lemma 2.4 where A is a square matrix of order t over GF (3). �

It is not difficult to compute explicit small values of f(p, k, t). Clearly, if x and y are two binary

vectors having the same length, and the same number of zero coordinates, then ek(x) = ek(y).

More generally, if r denotes the number of zeroes in a binary vector of length t then,

f(2, k, t) =
t

min
r=0


k/2∑
j=0

(
r

k − 2j

)(
t− r
2j

) .

Similarly, for the case p = 3, if r denotes the number of zeroes and s denotes the number of ones

in a 3-ary vector of length t then,

f(3, k, t) =
t

min
r=0

t−r
min
s=0


k∑
j=0

∑
a+b=j a+2b≡0 mod 3

(
r

k − j

)(
s

a

)(
t− r − s

b

) .

Example: f(2, 4, 13) = 343. The minimum is obtained when r = 9 (or r = 4). We can use the

second part of Lemma 2.5 and see that 343 >
(
13
4

)
6
13 . Thus, we immediately get M(2, 4) ≤ 13.

Computing lower bounds for f(p, k, t) in the general case is a more complicated task. The next

two lemmas give a bound for every p ≥ 2, in case k = O(t) and t→∞.

Before we state the lemma, we need to define a particular constant. For a sequence of integers

a1, . . . , am let wp(a1, . . . , am) be the complex number defined as

wp(a1, . . . , am) = 2−m
∑
ζp=1

m∏
j=1

(1 + ζaj )

where the sum is over the p distinct pth roots ζ of 1.

It is easy to see that this number is a real (indeed rational) number. Now, define zp =

inf wp(a1, . . . , am) where the infimum is taken over all finite sequences a1, . . . , am of all lengths

m ≥ 0. If all ai = 1 and ζ 6= 1 then |(1 + ζaj )/2| ≤ cos(π/p) = η < 1 and so wp ≤ 1 + (p − 1)ηm.

Letting m→∞ we see that zp ≤ 1.

Lemma 2.6 For all integers p ≥ 1, zp = p21−p.

Proof: The sum
∑

ζp=1 ζ
j is p if p | j and 0 otherwise, hence wp(a1, . . . , am) is just p2−m times

the number of subsets X of {1, . . . ,m} such that
∑

i∈X ai ≡ 0 mod p. If m = p − 1 and all

ai = 1 then the only such subset X is X = ∅. Hence zp ≤ p21−p and the result will follow if

we can show the number of subsets X is always at least 2m+1−p. We prove this by induction on

m. Let Sm be the set of residue classes mod p that can be written in the form
∑

i∈X ai for some

X ⊆ {1, . . . ,m} and assume that for each element of Sm there are at least 2sm such subsets X.

Now Sm = Sm−1 ∪ (Sm−1 + am). We consider two cases.
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1) Sm 6= Sm−1. Then |Sm| > |Sm−1| and sm ≥ sm−1.
2) Sm = Sm−1. Then Sm−1 + am = Sm−1 and so if x ∈ Sm then both x and x − am lie in Sm−1.

Thus x can be written as a sum of the ai’s in at least 2sm−1 ways which do not involve am and

2sm−1 ways that do involve am. Thus sm ≥ sm−1 + 1.

In all cases |Sm|+ sm ≥ |Sm−1|+ sm−1 + 1. Now S0 = {0} and s0 = 0, so by induction |Sm|+ sm ≥
m+ 1. Since |Sm| ≤ p we have sm ≥ m+ 1− p. Thus 0 ∈ Sm can be written as a sum of ai mod p

in at least 2m+1−p ways. �

Lemma 2.7 Let k ≤ t/2. Then for any fixed prime p,

f(p, k, t) ≥ zp
p

(
t

k

)
(1− ok(1)) = 21−p

(
t

k

)
(1− ok(1)).

In particular,

f(2, k, t) ≥ 1

2

(
t

k

)
(1− ok(1)),

f(3, k, t) ≥ 1

4

(
t

k

)
(1− ok(1)).

Proof: Let T = {1, . . . , t} and let x = (x1, . . . , xt) ∈ (Zp)
t be a fixed vector for which ek(x) =

f(p, k, t). Assume p | k and k ≤ t/2. We wish to estimate the number f(p, k, t) of sets K ⊆ T ,

|K| = k, with
∑

i∈K xi ≡ 0 mod p. Fix the k-element subset K = {1, . . . , k} of T and instead

count the number pk of permutations σ ∈ St such that
∑k

i=1 xσ(i) ≡ 0 mod p. It is clear that

pk = f(p, k, t)k!(t− k)!, so that f(p, k, t)/
(
t
k

)
= pk/t!. Define

p̂k(ζ) =
1

t!

∑
σ

k∏
i=1

ζxσ(i) (2)

where ζ is any pth root of 1. Then p̂k(1) = 1, |p̂k(ζ)| ≤ 1, and pk/t! = 1
p

∑
ζp=1 p̂k(ζ).

Let π be a partition of T into k pairs Si = {ai, bi}, i = 1, . . . , k, and a remaining set S0 of

t − 2k numbers. We also regard π as the set of permutations σ such that {σ(i), σ(i + k)} = Si

for all i = 1, . . . , k. For each π there are exactly 2k(t − 2k)! choices for σ ∈ π given by a choice

of (σ(i), σ(i+ k)) = (ai, bi) or (bi, ai) for each i and a choice for the permutation of the remaining

t−2k elements of T . Let p̂k(ζ, π) =
∏k
i=1(ζ

xai +ζxbi )/2 and let Eπ[p̂k(ζ, π)] denote the expectation

of p̂k(ζ, π) taken over a uniform random choice of π. Then,

p̂k(ζ) =
1

t!

∑
π

∑
σ∈π

k∏
i=1

ζxσ(i) =
(t− 2k)!

t!

∑
π

k∏
i=1

(ζxai + ζxbi ) = Eπ[p̂k(ζ, π)].

In the last equality we use (2) and the fact that there are exactly t!/(2k(t− 2k)!) choices for π.
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Assume now ζp = 1, ζ 6= 1. If a 6≡ b mod p then |(ζa + ζb)/2| ≤ cosπ/p = η < 1. Thus

|p̂k(ζ, π)| ≤ ηnπ where nπ is the number of i = 1, . . . , k such that xai 6≡ xbi mod p. Hence |p̂k(ζ)| ≤
Eπ[ηnπ ].

Let rs be the number of coordinates with xi ≡ s mod p. Then Eπ[nπ] = µ = k
∑

i<j
2rirj
t(t−1) . It is

not hard to show that Varπ[nπ] = O(µ). Indeed, note that nπ =
∑k

j=1 n
(j)
π where n

(j)
π are indicator

random variables that are equal to 1 in case xaj 6≡ xbj mod p. Since Cov[n
(j1)
π , n

(j2)
π ] = O(µ2/(k2t))

and since µ ≤ k < t we have

Varπ[nπ] ≤ µ+ k2O(µ2/(k2t)) = O(µ).

Hence, by Tchebychev’s Inequality, if µ→∞ then nπ is almost surely large as well and p̂k(ζ) = o(1).

In this case
f(p, k, t)(

t
k

) =
1

p

∑
ζp=1

p̂k(ζ) =
1

p
p̂k(1)− o(1) ≥ zp

p
− o(1).

Now assume µ is bounded and k →∞. Let r = t−max ri be the number of coordinates of x not

equal to the most common value. Then µ ≥ k 2r(t/p)
t2

, so r = O(t/k) and kr2/t2 = ok(1). By adding a

constant vector to x and using p | k we can assume the most common coefficient in x is 0. Let mπ be

the number of Si with both xai and xbi non-zero. Then, Pr[mπ > 0] ≤ Eπ[mπ] = O(kr2/t2) = o(1).

If mπ = 0 then p̂k(ζ, π) is a product of nπ terms of the form (1 + ζai)/2. Hence, the sum over all

roots of unity of p̂k(ζ, π) is at least zp. It follows that

f(p, k, t)(
t
k

) =
1

p

∑
ζp=1

p̂k(ζ) ≥ zp
p
− o(1).

�

Concluding the proof of Theorem 1.1: Let δ > 0. Let 0 < ε < δ/(1 + δ). Let k be an

even integer sufficiently large such that f(2, k, 4k(1 + δ)) ≥ 0.5
(4k(1+δ)

k

)
(1 − ε). This holds for all

sufficiently large k by Lemma 2.7 (we assume, w.l.o.g., that 4k(1 + δ) is an integer). Now, since

0.5(1 − ε) > (2k − 1)/(4k(1 + δ)) we get by Lemma 2.5 that M(2, k) ≤ 4k(1 + δ). Similarly, by

using the third part of Lemma 2.5 and Lemma 2.7 we get that for k sufficiently large which is a

power of 3, f(3, k, 20k(1 + δ)) ≥
(20k(1+δ)

k

)
5k−3

20k(1+δ) , and so M(3, k) ≤ 20k(1 + δ). �

In case k is not a power of 3, the proof of Theorem 1.1 does not supply a linear O(k) upper

bound for M(3, k). We can, however, use the following idea to supply an O(k) upper bound when

k is only slightly larger than a power of three. This is an immediate consequence of the next

proposition. Recall that Br(p), the bipartite Ramsey number with r colors, is the minimum integer

s for which in every r-coloring of the edges of Ks,s there is a monochromatic Kp,p.

Proposition 2.8 Let k ≥ Bp(p2 − p+ 1). Then,

M(p, k + p) ≤
(
p2 − p+ 1

p

)
p(M(p, k)− 1) + p2 − p.
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Proof: Let t =
(
p2−p+1

p

)
p(M(p, k)−1) +p2−p. Clearly, t ≥ k ≥ Bp(p2−p+ 1). Let A be a square

matrix of order t over GF (p). Hence, A has a monochromatic square submatrix of order p2−p+ 1.

Since permuting columns and rows does not change the set of submatrices of A (up to permutations

of columns and rows), we may assume that A(i, j) = A(i′, j′) for all i, j, i′, j′ = 1, . . . , p2 − p + 1.

Consider the set of t−p2+p−1 vectors ai = (A1,i, A2,i, . . . , Ap2−p+1,i) for i = p2−p+2, . . . , t. Each

ai contains some element of Zp at least p times. Since (t−p2+p−1)/(
(
p2−p+1

p

)
p) > M(p, k)−1, there

exists a subset of s = M(p, k) vectors, ai1 , . . . , ais , and an element q ∈ Zp, where each aix contains

q at least p times, in the same coordinates. The same idea can be applied on the t − p2 + p − 1

partial row vectors bj = (Aj,1, Aj,2, . . . , Aj,p2−p+1) for j = p2 − p+ 2, . . . , t. Again, we obtain that

there is a subset of s vectors bj1 , . . . , bjs , and an element q′ ∈ Zp, where each bjy contains q′ at least

p times, in the same coordinates. Consider the square submatrix of order s which is defined by

taking the columns i1, . . . , is and the rows j1, . . . , js. By definition of s = M(p, k) this submatrix

contains another square submatrix of order k that is zero sum. Denote this submatrix by R and

assume, w.l.o.g, that the columns of R are i1, . . . , ik and the rows are j1, . . . , jk. Now, add the p

rows corresponding to p common coordinates of the aix which contain q, and add the p columns

corresponding to the p common coordinates of the bjy which contain q′. The new matrix is a square

matrix of order k+ p and is easily seen to be zero sum, since we added p identical elements to each

previous row or column, and the 2p new rows and columns are also p-divisible. �

3 Lower bounds for M(p, k)

Proof of Theorem 1.4: We first show that M(p, p) ≥ B(p). Consider any square matrix of order

t over GF (p) whose entries are only zeroes and ones. Notice that in this case, any square submatrix

of order p that is zero-sum mod p must be monochromatic. As mentioned in the introduction, there

is a one-to-one correspondence between 0-1 square matrices and red-blue colorings of the edges of

Kt,t, and thus, a square submatrix of order p is equivalent to a monochromatic copy of Kp,p in the

corresponding coloring of Kt,t. Thus, if t ≥ B(p), this implies the existence of such a submatrix.

Hence, M(p, p) ≥ B(p). By (1) we have B(p) >
√

2e−1p2p/2.

We now show that M(2, k) ≥ 2k+1 for every positive even integer k. Consider the square binary

matrix A of order 2k which is defined as follows: A(i, i) = 1 for i = 1, . . . , 2k and A(i, i + 1) = 1

for i = 1, . . . , 2k − 1 and A(2k, 1) = 1. All other entries are zero. It is an easy exercise to check

that A has no square submatrix of order k all of whose rows and columns are even vectors.

Finally, we show that M(p, k) ≥ k
√
2

2e exp(1/e)p/2. We shall need the following simplified form

of the Chernoff bound (cf. [1] Appendix A): if X is a random variable with Bernoulli distribution

B(k, q) and µ ≥ 1, then

Pr[X ≥ µkq] <
(

eµ−1

µµ

)kq
.
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Let A be a random 0-1 matrix of order t over GF (p), where Pr[aij = 1] = p/ke independently for

each element aij . If I is a set of k elements (i, j) ∈ [n]× [n], then X =
∑

I aij is a random variable

with Bernoulli distribution B(k, p/ke). It follows that Pr[X = 0] = (1− p/ke)k < exp(−p/e), and

by the Chernoff bound mentioned above (with µ = e), Pr[X ≥ p] < exp(−p/e). If X ≡ 0 (mod p)

then either X = 0 or X ≥ p. Hence Pr[X ≡ 0 (mod p)] ≤ 2 exp(−p/e). Thus for any fixed choice

of k rows and k columns of A, the probability that each row sum is divisible by p in the resulting

k × k submatrix is less than (2 exp(−p/e))k. If A has a k × k submatrix that is zero-sum mod p,

then it also has a submatrix in which each row sum is divisible by p. It follows that the probability

Pr[E] that A has a k × k submatrix that is zero-sum mod p satisfies

Pr[E] <

(
t

k

)2

(2 exp(−p/e))k <

((
te

k

)2

2 exp(−p/e)

)k
.

Hence Pr[E] < 1 provided
te

k

√
2 exp(−1/e)p/2 ≤ 1,

and this gives the desired result. �
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