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Abstract

For a graph H with at most n vertices and a weighing of the edges of Kn with integers, we

seek a copy of H in Kn whose weight is minimal, possibly even zero. Of a particular interest

are the cases where H is a spanning subgraph (or an almost spanning subgraph) and the case

where H is a fixed graph. In particular, we show that relatively balanced weighings of Kn with

{−r, . . . , r} guarantee almost zero-sum copies of spanning graphs with small maximum degree,

guarantee zero-sum almost H-factors, and guarantee zero-sum copies of certain fixed graphs.
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1 Introduction

All graphs considered in this paper are finite, simple, and undirected. Graph theory notation

follows [4].

For positive reals r, q, an (r, q)-weighting of the edges of the complete graph Kn is a function

f : E(Kn)→ [−r, r] such that |
∑

e∈E(Kn) f(e)| ≤ q. We call w(f) =
∑

e∈E(Kn) f(e) the total weight

of f . We say that an (r, q)-weighting is integral if f : E(Kn)→ {−r, . . . , r}.
Our main objective in this paper is to study such (r, q)-weightings with the goal of finding

nontrivial conditions that guarantee the existence of certain bounded weight subgraphs and even

zero weighted subgraphs (also called zero-sum subgraphs). Our main source of motivation is zero-

sum Ramsey theory, a well-studied topic in graph theory, as well as some results about balanced

colorings of integers. In zero-sum Ramsey theory we have a function f : E(Kn) → X where X is

usually the cyclic group Zk or (less often) an arbitrary finite abelian group. The goal is to show

that under some necessary divisibility conditions imposed on the number of the edges e(G) of a

graph G and for sufficiently large n, there is always a zero-sum copy of G. For some results in this

direction that are also related to results that shall be proved here see [1, 2, 5, 6, 8, 13].

Our first result has no counterpart in zero-sum Ramsey theory as it states that every (r, q)-

weighting of Kn where q and r are relatively small, has an almost zero-sum copy of any spanning

subgraph with relatively small maximum degree.
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Theorem 1.1 Let H be a graph with n vertices and maximum degree ∆. Let f : E(Kn)→ [−r, r]
be an edge weighing with |w(f)| ≤ 2(n−1)r. Then, there is a copy of H in Kn with absolute weight

at most 2∆r. Furthermore, if H is connected and |w(f)| ≤ 2(n− 1)r(1− 1
∆), then there is a copy

of H in Kn with absolute weight at most 2(∆− 1)r.

The dependence on ∆ in Theorem 1.1 is essential. For example, it is easy to see that there are

integral (1, 0)-weighings of Kn such that any spanning star has absolute weight roughly n/2. Indeed,

say, for simplicity, that n is a multiple of 4. Take two vertex-disjoint cliques A and B on n/2 vertices

each. Label the edges of A with 1 and the edges of B with −1. Label n/4 disjoint perfect matchings

between A and B with 1 and label the remaining edges between A and B with −1. The absolute

weight of any spanning star in this example is n/2− 1.

We note that one of the corollaries of theorem 1.1, given as Proposition 2.2, is the existence of

a zero-sum path on at least n− 2 vertices in any integral (1, n− 1)-weighting (namely, a zero-sum

almost Hamilton path).

Our next result is about zero-sum large matchings and zero-sum graphs of the form tH , where

H is a fixed graph. The main distinction here is that in zero-sum Ramsey theory we cannot get a

zero-sum matching of size t ≈ n/2 neither t ≈ n/|H| for tH, rather a fraction smaller than these

magnitudes, see [3]. On the other hand, as the following result shows, this is possible to achieve for

integral (r, q)-weighings. Recall that an H-factor of a graph G is a set of pairwise vertex-disjoint

copies of H that cover all the vertices of G. For example, a perfect matching is just a K2-factor.

Theorem 1.1 guarantees the existence of an H-factor of Kn (under the assumption that the number

of vertices of H divides n) with relatively small total weight (here H is a fixed graph and n is

large). However, if we settle for an almost H-factor, we can do much better, and obtain nontrivial

conditions which do guarantee zero-sum. More formally, define an (H, c)-factor of G to be a set of

pairwise vertex-disjoint copies of H that cover all but at most c vertices of G. Our second main

result concerns zero-sum (H, c)-factors where c is bounded as a function of H alone (independent

of n).

Theorem 1.2 Let H be a graph with h vertices, m edges, and maximum degree ∆. Let f :

E(Kn) → {−r, . . . , r} be an edge weighing with |w(f)| ≤ 2(n − 1)r. Then Kn contains a zero-

sum (H, c)-factor where

c < max{h(2rm− 1), h(2∆r + rm)} .

We next show that as in zero-sum Ramsey theory, zero-sum copies of the complete bipartite

graphs Ks,t as well as many other bipartite graphs do exist once certain divisibility conditions

hold. But on the other hand, quite distinct from Ramsey theory and zero-sum Ramsey theory,

no zero-sum copies of a complete graph Km necessarily exist already for integral (1, 0)-weightings,

unless m = 4k2. In fact, the only complete graph for which we can show zero-sum existence given

any integral (1, 0)-weighting and large n is K4 and the proof of the latter is somewhat involved.

Let us state our results more formally.
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For a positive integer r, consider the set of integers

Br =

{
a+ b

gcd(a, b)
| 1 ≤ a ≤ r , 1 ≤ b ≤ r

}
.

Specifically, B1 = {2}, B2 = {2, 3}, B3 = {2, 3, 4, 5}, B4 = {2, 3, 4, 5, 7}. Observe that Br ⊂ Br+1.

We say that the complete bipartite graph Ks,t is r-good if each element of Br divides at least one of

s or t (in Section 4 we extend the notion of r-goodness to bipartite graphs that are not necessarily

complete). For example, K2,2 is 1-good, K2,3 is 2-good, and K5,12 is 3-good. Our next result gives

a sufficient condition for the existence of zero-sum complete bipartite graphs.

Theorem 1.3 For a positive integer r, an r-good complete bipartite graph Ks,t and a real ε > 0

the following holds. For all n sufficiently large, any weighing f : E(Kn) → {−r, . . . , r} with

|w(f)| ≤ n2(1
2 − ε) contains a zero-sum copy of Ks,t.

Notice that the requirement |w(f)| ≤ n2(1
2 − ε) is essentially tight as one can label

(
n
2

)
− ex(n,Ks,t)

edges of Kn with 1 and ex(n,Ks,t) edges with 0 where ex(n,Ks,t) is the Turán number of Ks,t in

Kn, and obtain a labeling where any copy of Ks,t has nonzero weight.

Theorem 1.4 For a real ε > 0 the following holds. For all n sufficiently large, any weighing

f : E(Kn) → {−1, 0, 1} with |w(f)| ≤ (1 − ε)n2/6 contains a zero-sum copy of K4. On the other

hand, for any positive integer k which is not of the form k = 4d2, there are infinitely many n and

weighings f : E(Kn)→ {−1, 0, 1} with |w(f)| = 0 that do not contain a zero-sum copy of Kk.

Again, notice that requirement |w(f)| ≤ (1− ε)n2/6 is essentially tight as the Turán number of K4

is bn2/3c. Hence, one can label bn2/3c edges with 0 and the remaining edges with 1 and obtain a

labeling where any copy of K4 has nonzero weight.

Our final main result concerns the existence of zero-sum spanning trees in integral (1, n − 2)-

weighings.

Theorem 1.5 For n = 1 mod 2, any integral (1, n − 2)-weighing of Kn has a zero-sum spanning

tree.

The result is tight as one can weigh all n − 1 edges incident with the same vertex with 1 and the

remaining edges with zero, and there is no zero sum tree. The requirement that n is odd is necessary

as trivially, any weighing that only uses the weights −1 and 1 has no zero sum tree when n is even.

We note that the highly nontrivial problem concerning the existence of zero-sum spanning trees in

the context of zero-sum Ramsey theory was completely solved in [8, 13].

The rest of this paper is organized as follows. In Section 2 we consider almost zero-sum spanning

graphs and prove Theorem 1.1. Section 3 considers almost H-factors and consists of the proof of

Theorem 1.2 preceded by a lemma regarding the existence of a relatively short zero-sum subsequence

of a sequence of integers. Section 4 is about zero-sum fixed graphs and contains the proofs of

Theorem 1.3 and Theorem 1.4. Section 5 is about zero sum trees and contains the proof of Theorem

1.5. Section 6 contains some concluding remarks and open problems.
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2 Almost zero-sum spanning subgraphs

Proof (Theorem 1.1): Consider a labeling of H with {1, . . . , n} and a labeling of Kn with

{1, . . . , n}. Each copy of H in Kn therefore corresponds to a permutation π ∈ Sn. Notice that

|Aut(H)| distinct permutations produce the same (non-labeled) copy of H where Aut(H) denotes

the automorphism group of H. However, for convenience, we consider all n! labeled copies and

denote by Hπ the copy of H corresponding to π. Let m denote the number of edges of H. As any

copy Hπ occupies a fraction of m/
(
n
2

)
of the edges of Kn, we have that each edge of Kn appears in

n!m/
(
n
2

)
distinct Hπ. Let f : E(Kn)→ [−r, r] be an edge weighing of Kn with total weight w(f).

We therefore have: ∑
π∈Sn

w(Hπ) =
n!m(
n
2

) w(f) .

It follows that the average weight of a copy of H is m

(n2)
w(f).

For the rest of the proof assume that w(f) ≥ 0. This may be assumed as otherwise we can

multiply each weight by −1 without affecting the statement of the theorem. Let Hmax be a copy

with maximum weight and let Hmin be a copy with minimum weight. We therefore have:

w(Hmax) ≥ m(
n
2

)w(f) ≥ 0 , w(Hmin) ≤ m(
n
2

)w(f) .

Consider first the case w(Hmin) ≥ 0. The theorem follows in this case since we have

|w(Hmin)| = w(Hmin) ≤ m(
n
2

)w(f) ≤ ∆

n− 1
w(f) ≤ ∆

n− 1
2(n− 1)r = 2∆r

where we have used that 2m ≤ n∆ and the stated assumption that w(f) ≤ 2(n − 1)r. Observe

that if w(f) ≤ 2(n − 1)r(1 − 1
∆) as assumed in the second part of the theorem, then, in fact,

|w(Hmin)| ≤ 2∆r(1− 1
∆) = 2(∆− 1)r so the second part of the theorem holds as well in this case.

We may now assume that w(Hmin) < 0. We start by proving the first part of the theorem where

H is not assumed to be connected. Let P be the graph whose vertices are all the n! copies of H

in Kn. We connect vertex Hπ of P with vertex Hσ of P if π and σ differ in a single transposition.

Clearly, P is connected as any permutation can be obtained from any other permutation by a

sequence of transpositions. Consider some edge (Hπ, Hσ) of P and let (uv) be the transposition

connecting π and σ. The symmetric difference between the edge set of Hπ and the edge set of Hσ

consists only of edges that are incident with u in Hπ or Hσ or edges that are incident with v in

Hπ or Hσ. As the number of such edges is at most 4∆, it follows that |w(Hπ) − w(Hσ)| ≤ 4∆r.

Consider a path of P connecting Hmax and Hmin. As w(Hmax) ≥ 0 and w(Hmin) < 0, there must

be some edge (Hπ, Hσ) on this path such that w(Hπ) ≥ 0 and w(Hσ) ≤ 0. It follows that

min{w(Hπ) , −w(Hσ)} ≤ 2∆r

as required.
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Consider next the case where H is connected. Let Q be the spanning subgraph of P where

(Hπ, Hσ) is an edge if and only if π and σ differ in a single transposition (uv) and, furthermore,

uv is an edge in both Hπ and Hσ (notice that uv is either an edge in both of them or in none of

them). We claim that Q is connected. Since P is connected, it suffices to show that for any two

permutations π and σ that differ in a single transposition (uv), there is a path in Q connecting Hπ

and Hσ. We prove it by induction on the length of a shortest path connecting u and v in H (which

is finite as H is connected). For shortest paths of length 1 this is true as Hπ and Hσ are adjacent

in Q, by its definition. For shortest paths of length k > 1, consider a path u = x0, x1, . . . , xk = v

connecting u and v in H. Then Hπ is connected to Hϕ where ϕ is obtained from π by the

transposition (x0, x1). Now, as the length of a shortest path from x1 to v = xk is only k − 1, we

have by induction that Hϕ and Hσ are connected in Q. Thus Hπ and Hσ are connected in Q as

well.

Now, for an edge (Hπ, Hσ) of Q, the symmetric difference between the edge set of Hπ and

the edge set of Hσ consists only of edges that are incident with u in Hπ or Hσ or edges that are

incident with v in Hπ or Hσ, but this symmetric difference does not include the edge uv which

appears in both Hπ and Hσ. The number of such edges is therefore at most 4(∆−1). It follows that

|w(Hπ)−w(Hσ)| ≤ 4(∆− 1)r. Consider a path of Q connecting Hmax and Hmin. As w(Hmax) ≥ 0

and w(Hmin) < 0, there must be some edge (Hπ, Hσ) on this path such that w(Hπ) ≥ 0 and

w(Hσ) ≤ 0. It follows that

min{w(Hπ) , −w(Hσ)} ≤ 2(∆− 1)r

as required.

Two graphs H1 and H2 with the same vertex set are k-edge switchable if H2 can be obtained

from H1 by replacing at most k edges of H1 with edges of H2. Call a family of graphs with

the same vertex set k-edge switchable if any graph in the family can be obtained from any other

by a sequence of k-edge switches. For example, results of Havel [10] and Hakimi [9] (sometimes

attributed to Berge) show, in particular, that the family of spanning k-regular subgraphs of Kn is

2-edge switchable. Also, the family of spanning trees is 1-edge switchable (see also Lemma 5.1).

The proof of Theorem 1.1 uses the fact that the family of labeled copies of a given spanning graph

H of Kn is 2∆-edge switchable. A similar proof can thus be obtained for any other family of k-edge

switchable graphs, as long as one can guarantee that the average weight of a graph in the family is

small. We summarize this in the following corollary.

Corollary 2.1 Let H be a family of graphs with n vertices that is k-edge switchable, such that each

graph in H has m edges. Let f : E(Kn) → [−r, r] be an edge weighing with |w(f)| ≤ kr
(
n
2

)
/m.

Then, there is a copy of H in Kn with absolute weight at most kr.

One simple consequence of Theorem 1.1 is that, for even n, in any weighing of Kn with weights

in [−1, 1] where the total sum of the weights is at most 2(n− 1), there is a perfect matching whose

total absolute weight is at most 2 (apply the case ∆ = 1 and r = 1 in Theorem 1.1). This is
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tight for, say, K8, as we can label seven edges incident with the same vertex with −1 and label the

remaining edges with 1, having w(f) = 21 − 7 = 14 = 2 · (8 − 1), and yet any perfect matching

of this weighing of K8 has weight 2. The same extremal example is true for the weight interval

[−r, r] by multiplying each edge weight by r. Observe, however that for the special case of weights

in {−1, 0, 1} one may delete at most two edges from a perfect matching of absolute total weight at

most 2 and obtain a zero-sum matching. A more illustrative application is given in the following

proposition.

Proposition 2.2 Let f : E(Kn) → {−1, 0, 1} be an edge weighing with |w(f)| ≤ n − 1. Then,

there is a zero-sum path with at least n− 2 vertices.

Proof: We use Theorem 1.1 where H is a cycle of length n (hence the connected case where

∆ = 2), r = 1, and observe that the assumption |w(f)| ≤ n− 1 satisfies the stated condition in the

theorem. The theorem guarantees that if C is a Hamilton cycle of minimum total absolute weight,

then |w(C)| ≤ 2.

If w(C) = 0 (a zero-sum Hamilton cycle), then either C contains a zero edge, which, once

removed, show that there is a zero-sum Hamilton path, or else n must be even and exactly half of

the edges of C have weight 1 and the other half have weight −1. We may remove a vertex incident

with one positive and one negative edge and obtain a zero-sum path with n− 1 vertices.

If |w(C)| = 1, then we can remove an edge with weight 1 if w(C) = 1 or an edge with weight

−1 if w(C) = −1 and obtain a zero-sum Hamilton path.

We remain with the case |w(C)| = 2. We prove the case w(C) = 2 as the negative case is

symmetric. The proof of Theorem 1.1 shows that either all Hamilton cycles have weight 2 or else

there must be both a positive and a negative weight Hamilton cycle (since the average weight of a

Hamilton cycle is at most 2, we cannot have that all Hamilton cycles have nonnegative weight, as

otherwise at least one cycle has nonnegative weight smaller than 2 and the proposition holds by one

of the previous cases). If all Hamilton cycles have weight 2, then we must have w(f) = n− 1 and

hence there must be two edges with weight 1 incident with the same vertex u. Taking any Hamilton

cycle that contains these two edges consecutively and then deleting u, we obtain a zero-sum path

with n−1 vertices. We remain with the case where there are both a positive weight Hamilton cycle

and a negative weight Hamilton cycle. The proof of Theorem 1.1 shows that there are two Hamilton

cycles Cπ and Cσ with w(Cπ) = 2, w(Cσ) = −2 and π differs from σ in a single transposition (uv)

where uv is an edge of both Cπ and Cσ. Hence, if x is the other neighbor of u in Cπ and y is the

other neighbor of v in Cπ (which implies that xv and yu are both edges of Cσ), then we must have

that the weights of xu and yv are 1 and the weights of xv and yu are −1. Now, if the weight of

uv is zero, we can delete u and v from Cπ and obtain a zero-sum path with n − 2 vertices. If the

weight of uv is 1 we can delete u from Cπ and obtain a zero-sum path with n − 1 vertices. If the

weight of uv is −1 we can delete u from Cσ and obtain a zero-sum path with n− 1 vertices.
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3 Zero-sum almost H-factors

Theorem 1.2 is based on the following lemma.

Lemma 3.1 For a positive integer r ≥ 2 and an integer q, any sequence of n ≥ max{2r−1, |q|+r}
elements from {−r, . . . , r} whose sum is q, has a nonempty subsequence of size at most 2r−1 whose

sum is zero.

Proof: Denote the sequence by S. We may assume that S has no zero element, as in this case

we are done. We further assume that S does not contain an element and its negation, otherwise

we are done since 2r − 1 > 2. In particular we may assume that −r and r are not both in S. As

we can multiply the whole sequence by −1, without affecting the statement or the result, we may

assume that −r is not in S.

A prefix sum ck is the sum of the first k elements of S. As the lemma is oblivious to reordering the

elements, we can consider the ordering of the elements that maximizes k for which −r ≤ cj ≤ r− 1

for all 1 ≤ j ≤ k. Observe that k ≥ 1, as otherwise all elements of S are equal to r and thus q = nr

and n = q/r < q + r contradicting the assumption.

Assume first that k ≥ 2r − 1. If some cj = 0 for j ≤ 2r − 1, we are done. Else c1, . . . , c2r−1 are

non-zero. Suppose that c2r−1 > 0 and let m ≤ 2r − 2 be the largest integer such that cm < 0. If

no such m exists, then all the c1, . . . , c2r−1 are each in the range {1, . . . , r − 1} so already among

c1, . . . , cr there are i < j such that ci = cj and we are done as the subsequence between locations

i + 1 and j has zero-sum. So we may assume 2r − 2 ≥ m ≥ 1. Write b = cm+1 − cm and observe

that b > 0 and b is the element of S in location m + 1 ≤ 2r − 1. This forces that for j ≤ m no

cj = −b for otherwise cj + b = 0. Also for 2r−1 ≥ j ≥ m+1 no cj = −b as all these cj are positive.

So none of c1, . . . , c2r−1 are equal to −b, none are equal to 0 and none are equal to r (because of

the definition of k). So, there are only at most 2r − 2 possible values for the c1, . . . , c2r−1, and

hence there are 1 ≤ i < j ≤ 2r − 1 such that ci = cj and we are done as the subsequence between

locations i+ 1 and j has zero-sum.

Suppose now that c2r−1 < 0 and let m ≤ 2r − 2 be the largest integer such that cm > 0. If

no such m exists, then all the c1, . . . , c2r−1 are each in the range {−r, . . . ,−1} so already among

c1, . . . , cr+1 there are i < j such that ci = cj and we are done as the subsequence between locations

i+1 and j has zero-sum. So we may assume 2r−2 ≥ m ≥ 1. Write b = cm+1−cm and observe that

b < 0 and b is the element of S in location m+ 1 ≤ 2r − 1. This forces that for j ≤ m no cj = −b
for otherwise cj + b = 0. Also for 2r − 1 ≥ j ≥ m + 1 no cj = −b as all these cj are negative. So

none of c1, . . . , c2r−1 are equal to −b, none are equal to 0, and none are equal to r. Observe that

−b 6= r since we assumed that −r is not in S. So, there are only at most 2r− 2 possible values for

the c1, . . . , c2r−1, and hence there are 1 ≤ i < j ≤ 2r − 1 such that ci = cj and we are done as the

subsequence between locations i+ 1 and j has zero-sum.

Suppose next that k ≤ 2r− 2. If some cj = 0 for j ≤ k we are done. Otherwise we are left with

at least max{2r−1, |q|+r}−(2r−2) = max{1, |q|−r+2} elements at location k+1 . . . , n. If ck < 0,

7



then by the maximality of k all remaining elements of S are negative of order at most −r−ck−1. So

the sum of the whole sequence S is at most ck+(−r−ck−1) max{1, |q|−r+2}. If |q| ≥ r−1, then

we have ck+(−r−ck−1)(|q|−r+2) = −ck(|q|−r+1)− (r+1)(|q|−r+2) which gets maximum at

ck = −r, as ck ≥ −r. Thus, we get a sum of at most r(|q|−r+1)−(r+1)(|q|−r+2) = −|q|−2 < q,

which is impossible. If |q| ≤ r− 2, then we have a sum of at most ck + (−r− ck − 1) = −r− 1 < q

which is impossible.

If ck > 0, then by the maximality of k all remaining elements are positive and of order at least

r− ck. So the sum of the whole sequence S is at least ck +(r− ck) max{1, |q|− r+2}. If |q| ≥ r−1,

then we have ck + (r − ck)(|q| − r + 2) = −ck(|q| − r + 1) + r(|q| − r + 2) which gets minimum at

ck = r−1, as ck ≤ r−1. Thus, we get a sum of at least −(r−1)(|q|−r+1)+r(|q|−r+2) = |q|+1 > q,

which is impossible. If |q| ≤ r − 2, then we have a sum of at least ck + (r − ck) = r > q which is

impossible.

Proof (Theorem 1.2): Let H be a given graph with h vertices, m edges, and maximum degree ∆.

We may assume that m > 1 or r > 1 as the case of matchings with a {−1, 0, 1}-weighing trivially

satisfies the theorem by the comment following the proof of Theorem 1.1. For a positive integer n,

let Hn be the n-vertex graph consisting of t = bn/hc vertex-disjoint copies of H and n − ht < h

isolated vertices. Let f : E(Kn) → {−r, . . . , r} be an edge weighing with |w(f)| ≤ 2(n − 1)r. By

Theorem 1.1, Kn with this weighing has a copy of Hn with |w(Hn)| ≤ 2∆r. Let X1, X2, . . . , Xt be

the copies of H comprising such a copy of Hn. Thus,

|
t∑
i=1

w(Xi)| ≤ 2∆r .

Consider the sequence of integers w(X1), w(X2), . . . , w(Xt). It is a sequence of length t whose

sum, call it q, satisfies |q| ≤ 2∆r. Furthermore, each element in this sequence is an integer in

{−rm, . . . , rm} as H has m edges each having weight in {−r, . . . , r}. Hence, by Lemma 3.1, as

long as t ≥ max{2rm − 1 , 2∆r + rm}, we can find a nonempty subsequence of {X1, . . . , Xt} of

length at most 2rm− 1, whose sum of weights is zero (here we use the assumption that rm > 1).

Removing such a subsequence we again obtain a leftover sequence whose sum is still q, but now

with less than t elements. We can repeat this process as long as we remain with a leftover sequence

containing at least max{2rm − 1 , 2∆r + rm} elements. Once we arrive at a smaller leftover

sequence we halt. We have constructed a set of vertex-disjoint copies of H that cover all vertices

of Kn but at most

h · (max{2rm− 1 , 2∆r + rm} − 1) + (n− ht)
≤ h · (max{2rm− 1 , 2∆r + rm} − 1) + h− 1

< max{h(2rm− 1) , h(2∆r + rm)}

vertices.

The case where H = Kk is of particular interest. Plugging in the parameters m =
(
k
2

)
, h = k,

and ∆ = k − 1 we obtain the following corollary.
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Corollary 3.2 Let f : E(Kn) → {−r, . . . , r} be an edge weighing with |w(f)| ≤ 2(n − 1)r. Then

Kn contains a zero-sum (Kk, c)-factor where, for k ≥ 5 we have c ≤ k2(k − 1)r − k − 1, for k = 4

we have c ≤ 48r − 1 and for k = 3 we have c ≤ 21r − 1.

4 Zero-sum fixed graphs

We recall first the theorem of Kövári-Sós-Turán [11] regarding the value of Za,b(m,n), which is the

smallest integer k such that any bipartite graph with vertex classes A and B where |A| = m and

|B| = n and k edges has Ks,t as a subgraph with the s vertices being in A and the t vertices being

in B.

Lemma 4.1 [Kövári-Sós-Turán [11]]

Za,b(m,n) < (a− 1)1/b(n− b+ 1)m1−1/b + (b− 1)m .

Proof (Theorem 1.3): Fix ε > 0, a positive integer r and a complete bipartite graph Ks,t which

is r-good. Throughout this proof we assume, wherever necessary, that n is sufficiently large as a

function of r, s, t, ε. Consider a weighing f : E(Kn) → {−r, . . . , r} with |w(f)| ≤ n2(1
2 − ε). We

assume that w(f) ≥ 0 as the proof of the negative case is symmetric.

We may assume that the number of edges having zero weight is at most, say, (ε2/4r)n2. Oth-

erwise, since the Turán number of Ks,t is o(n2), we would have a copy of Ks,t all of whose edges

are zero, hence zero-sum, and we are done.

Since w(f) ≤ n2(1
2−ε), there must be at least (ε/4r)n2 negative weight edges. Indeed, otherwise,

we would have at least
(
n
2

)
− (ε/4r)n2 − (ε2/4r)n2 positive weights and thus

w(f) ≥ 1 ·
((

n

2

)
− ε

4r
n2 − ε2

4r
n2

)
− r · ε

4r
n2 > n2

(
1

2
− ε
)

contradicting the assumption. As w(f) ≥ 0 we infer that there must be (much more than) (ε/4r)n2

positive weight edges.

Consider the degree sequence d1 ≥ d2 · · · ≥ dn of any graph with n vertices and with δn2 edges

(say, δ < 1/16). By a theorem of Erdős and Gallai [7] we infer that for any 3δn ≤ x ≤ 4δn,

n− δn ≥ dx ≥
δ

2
n .

As a direct argument, notice that if dx > n − δn, then the sum of the degrees of the graph is at

least x(n − δn) ≥ 3δn(n − δn) which contradicts the fact that the graph only has δn2 edges. If,

on the other hand, dx < (δ/2)n, then the number of edges is only at most (δ/2)n2 +
(
x
2

)
< δn2 for

x ≤ 4δn, again, a contradiction.

It follows from the above discussion that our weighing of Kn has a set of vertices X with, say,

|X| ≥ (ε/100r)n that are each incident with at least (ε/10r)n positive weight edges and at least

(ε/10r)n negative weight edges.
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We say that a vertex u ∈ X is of type (a,−b) if a is the most common positive weight of an

edge incident with u in V (Kn) \X and −b is the most common negative weight of an edge incident

with u in V (Kn) \X. As there are at most r2 possible types, we have that there is a set X∗ ⊂ X

with |X∗| ≥ (ε/100r3)n such that all vertices of X∗ have same type (a,−b) and every u ∈ X∗ is

incident with at least (ε/20r2)n edges of weight a in V (Kn) \X∗ and at least (ε/20r2)n edges of

weight −b in V (Kn) \X∗.
As (a + b)/gcd(a, b) ∈ Br, and since Ks,t is r-good we have, without loss of generality, that

s = q(a+ b)/gcd(a, b) for some positive integer q. Let sa = qa/gcd(a, b) and sb = qb/gcd(a, b). We

will prove that there are three vertex-disjoint subsets T ⊂ X∗, Sa and Sb with |T | = t, |Sa| = sa,

|Sb| = sb such that all edges between T and Sa have weight −b and all edges between T and Sb
have weight a. Hence, the complete bipartite graph with one side consisting of T and the other

side S = Sa ∪ Sb is a copy of Ks,t whose total weight is atsb − btsa = 0.

Consider the bipartite graph Ba whose vertex classes are X∗ and V (Kn) \X∗ consisting of all

the edges between X∗ and V (Kn)\X∗ having weight a. As |X∗| = Θ(n), |V (Kn)\X∗| = Θ(n) and

|E(Ba)| = Θ(n2) we have, by Lemma 4.1, that Ba contains a copy of KΘ(logn),sb with vertex classes

T ∗ ⊂ X∗ having |T ∗| = Θ(log n) vertices and Sb ⊂ V (Kn) \ X∗ having |Sb| = sb vertices. Next,

consider the bipartite graph Bb whose vertex classes are T ∗ and V (Kn) \ (X∗ ∪Sb) consisting of all

the edges between T ∗ and V (Kn) \ (X∗ ∪ Sb) having weight −b. As any vertex of T ∗ has at least

(ε/20r2)n−O(1) neighbors in V (Kn) \ (X∗ ∪ Sb) we have, again by Lemma 4.1, that Bb contains

a copy of Kt,sa with vertex classes T ⊂ T ∗ having |T | = t vertices and Sa ⊂ V (Kn) \ (X∗ ∪ Sb)
having |Sa| = sa vertices. We have therefore found a zero-sum copy of Ks,t.

One can extend the notion of r-goodness to bipartite graphs that are not necessarily complete

bipartite as follows. We say that a bipartite graph H with vertex classes X and Y and m edges

is r-good if for every 1 ≤ a ≤ r and 1 ≤ b ≤ r, there is X ′ ⊂ X such that the sum of the degrees

of the vertices of X ′ is ma/(a+ b). Thus, for example, any k-regular bipartite graph with sides of

even cardinality is 1-good. The proof of Theorem 1.3 stays intact for this more general definition

of r-good graphs.

Corollary 4.2 For a positive integer r, an r-good bipartite graph H and a real ε > 0 the following

holds. For all n sufficiently large, any weighing f : E(Kn) → {−r, . . . , r} with |w(f)| ≤ n2(1
2 − ε)

contains a zero-sum copy of H.

Proof (Theorem 1.4): The proof of the first part of the theorem resembles the proof of Theorem

1.3, but with some necessary nontrivial modifications. Throughout this part of the proof we assume,

wherever necessary, that n is sufficiently large as a function of ε. Consider a weighing f : E(Kn)→
{−1, 0, 1} with |w(f)| ≤ (1− ε)n2/6. We assume that w(f) ≥ 0 as the proof of the negative case is

symmetric.

We may assume that the number of edges having zero weight is at most n2/3. Otherwise, since

the Turán number of K4 is at most n2/3, we would have a copy of K4 all of whose edges are zero,

hence zero-sum, and we are done. Thus, there are at least
(
n
2

)
− n2/3 ≥ (1− ε/2)n2/6 edges with
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nonzero weight. As w(f) ≤ (1 − ε)n2/6 we must therefore have at least εn2/24 edges with weight

−1. As w(f) ≥ 0 we have at least (1 − ε/2)n2/12 ≥ n2/24 edges with weight 1. We call a vertex

positive if it is incident with at least (ε/1000)n positive edges and negative if it is incident with

least (ε/1000)n negative edges. Let P denote the set of positive vertices and N denote the set of

negative vertices.

Consider first the case |P ∩ N | ≥ εn/1000. As in the proof of Theorem 1.3 (namely, applying

the Kövári-Sós-Turán Theorem twice) we can obtain a copy of K2,31 whose vertex classes are A

and B with A = {u, v}, B = {x1, . . . , x31} and all the 31 edges incident with u have weight 1 while

all the 31 edges incident with v have weight −1. Consider the complete graph induced by B. As

the Ramsey number R(4, 3, 3) = 31 (see [12]) we have that B either induces a copy of K4 all of

whose edges are zero, in which case we are done, or else it induces are triangle {xi, xj , xk} all of

whose edges have weight 1 or all of whose edges have weight −1. Hence, either {u, xi, xj , xk} is a

zero-sum copy of K4 or else {v, xi, xj , xk} is a zero-sum copy of K4.

Consider next the case |P ∩ N | ≤ εn/1000. Observe that by the definition of P and the fact

that there are at least n2/24 positive weight edges, we have that |P | ≥ n/24. Likewise, by the

definition of N and the fact that there are at least εn2/24 negative weight edges we have that

|N | ≥ εn/24. Let X = N \ P and Y = P \N and observe that |X| ≥ εn/50 and |Y | ≥ n/50. We

claim that most edges between X and Y have weight 0. Indeed, the number of edges between X

and Y with positive weight cannot be more than |X|(ε/1000)n as otherwise some vertex of X would

belong to P , contradicting its definition. Likewise, the number of edges between X and Y with

negative weight cannot be more than |Y |(ε/1000)n as otherwise some vertex of Y would belong

to N , contradicting its definition. Since (|X| + |Y |)(ε/1000)n ≤ |X||Y |/10 we have that at least

90 percent of the edges between X and Y have weight 0 and hence, at least half of the vertices

of X are each incident to at least (2/3)|Y | neighbors of Y via zero weight edges. Let X ′ denote

such a set of vertices of X and notice that |X ′| ≥ εn/100. Consider the complete graph induced by

X ′. We may assume that X ′ contains less than |X ′|2/3 edges with weight 0 otherwise, by Turán’s

Theorem, we would have a K4 in X ′ all of whose edges are zero and we are done. Hence X ′ has

at least
(|X′|

2

)
− |X ′|2/3 edges with nonzero weight. They cannot all be positive as otherwise X ′

would contain vertices of P contradicting its definition. Hence, there is an edge (u, v) with weight

−1 such that u, v ∈ X ′. Let Y ′ ⊂ Y be the set of vertices such that each y ∈ Y ′ is connected to

both u and v via zero weight edges. By the definition of X ′ we have that |Y ′| ≥ |Y |/3 ≥ n/200.

Consider the complete graph induced by Y ′. We may assume that Y ′ contains less than |Y ′|2/3
edges with weight 0 otherwise, by Turán’s Theorem, we would have a K4 in Y ′ all of whose edges

are zero and we are done. Hence Y ′ has at least
(|Y ′|

2

)
− |Y ′|2/3 edges with nonzero weight. They

cannot all be negative as otherwise Y ′ would contain vertices of N contradicting the definition of

Y . Hence, there is an edge (y, w) with weight 1 such that y, w ∈ Y ′. Now, {u, v, y, w} induce a

zero-sum copy of K4.

We now proceed to the second part of the theorem. When k ≡ 2, 3 mod 4, the number of edges

of Kk is odd, hence any coloring of Kn with weights −1 and 1 only does not have a zero-sum copy
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of Kn. If k ≡ 1 mod 4, then consider any weighing of Kn obtained by taking two vertex-disjoint

cliques of size n/2 (assume n is even), labeling the edges of the first with 1, the edges of the second

with −1 and the edges between them with zero. The total weight of the coloring is 0 yet is does

not contain any zero-sum copy of Kk. Finally, if k ≡ 2 mod 4, then let n = 16t2 and consider the

following weighing of Kn. Take two vertex-disjoint cliques on sizes n/2 − 2t and n/2 + 2t. Label

the edges inside both cliques with 1 and the edges between them with −1. It is easy to verify that

the total weight of this coloring is 0. Now, any copy of Kk has k/2 + d vertices in the first clique

and k/2− d vertices in the second clique for some integer d so its weight is(
k/2 + d

2

)
+

(
k/2− d

2

)
− (k/2 + d)(k/2− d) = 2d2 − k/2 .

The only way that 2d2 − k/2 = 0 is if k = 4d2.

5 Zero-sum spanning trees

Consider the graph S whose vertices are all the nn−2 labeled spanning trees of Kn. Two trees T1

and T2 are connected in S if they differ in a single edge, namely they are 1-edge switchable.

Lemma 5.1 The family of labeled spanning trees of Kn is 1-edge switchable. Namely, S is con-

nected.

Proof: The lemma follows from the well-known fact that the spanning trees form a matroid. For

completeness, we prove the lemma directly. We need to show that any two trees T1 and T2 are

connected in S via a path. The proof is by downwards induction on |E(T1) ∩ E(T2)| where the

base case n− 2 follows from the definition of S. Assume that |E(T1)∩E(T2)| < n− 2 and consider

the forest F induced by E(T1) ∩ E(T2) which has more than two components. F can thus be

completed into a tree T3 by adding to F at least one edge of E(T1) \ E(T2) and at least one edge

of E(T2) \E(T1). As |E(T1)∩E(T3)| > |E(T1)∩E(T2)| and |E(T2)∩E(T3)| > |E(T1)∩E(T2)| we

have by the induction hypothesis that T3 and T1 are connected in S via a path and T3 and T2 are

connected in S via a path, thus T1 and T2 are connected in S via a path.

Proof (Theorem 1.5): Let n be odd and let f : {−1, 0, 1} → E(Kn) with |w(f)| ≤ n−2. We may

assume w(f) ≥ 0 as the negative case is symmetric. We first observe that there is some spanning

tree T with w(T ) ≤ 0. Consider a partition of Kn into (n − 1)/2 pairwise edge-disjoint Hamilton

cycles. If all of these Hamilton cycles have positive weight, then since w(f) ≤ n− 2, at least one of

them has weight 1. By deleting some edge with weight 1 on this Hamilton we obtain a zero-sum

Hamilton path.

Let therefore Tmax and Tmin be two spanning trees with maximum total weight and minimum

total weight respectively. As w(Tmax) ≥ 0 and w(Tmin) ≤ 0 we have by Lemma 5.1 that there are

two spanning trees T1 and T2 with w(T1) ≥ 0, w(T2) ≤ 0 and w(T1) − w(T2) ≤ 2. Hence, we can

assume that w(T1) = 1 and w(T2) = −1 otherwise we are done.
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Consider some edge e = (x, y) of T1 with weight 0 (notice that there must be such an edge since

n is odd and w(T1) = 1) and consider the two disconnected components of T1− e. Denote them by

X and Y where x ∈ X and y ∈ Y .

If there is some edge f with weight −1 connecting X and Y , then we are done since the spanning

tree whose edge set is (E(T1)−e)∪f has weight zero. Also notice that not all |X|·|Y | edges between

X and Y have weight 0 otherwise there is a spanning tree all of whose edges are zero. Hence there

is some edge f between X and Y having weight 1.

Recall that E(T2) = (E(T1) − r) ∪ s where r is an edge with weight 1 and s is an edge with

weight −1. Without loss of generality, the two endpoints of r are both in X (otherwise the two

endpoints are both in Y ). Now, either the two endpoints of s are both in X and then the tree

whose edge set is (E(T2)− e) ∪ f has weight zero. Else, one endpoint of s is in X and the other is

in Y , but this case (of an edge with weight −1 between X and Y ) was already ruled out.

The following proposition shows that in any balanced {−1, 0, 1}-weighing of a tree one can still

find a relatively large zero-sum subtree, although far from spanning.

Proposition 5.2 Let T be a tree and f : E(T ) → {−1, 0, 1} such that |w(f)| ≤ q. Then, there is

a subtree T ∗ with e(T ∗) ≥ (e(T )− q)/(q + 1) which is zero-sum, and this is best possible.

Proof: We prove the proposition by induction of q. If q = 0 the statement is trivially true.

Assume we proved it for q and let’s prove it for q + 1. We may assume without loss of generality

that w(f) = q+1 as the negative case is symmetric. A branch in T rooted at a vertex z is obtained

by taking an edge (z, u) and all the subtree rooted at u. For a vertex v ∈ T and a branch B with

v as its root, let e(B) denote the number of edges in B. Let B∗ be a branch with root z with the

property that e(B∗) is minimal among all branches B of T with w(B) > 0.

If B∗ consists of a single edge (z, v), then v is a leaf and by the definition of B∗ the weight of

(u, v) is 1. Thus, T ∗ = T − v is a tree with w(T ∗) = q. Hence by induction, there is a zero-sum

subtree T ∗∗ of T ∗ with e(T ∗∗) ≥ (e(T ∗)−q)/(q+1) = (e(T )−(q+1))/(q+1) > (e(T )−(q+1))/(q+2).

So we may assume that B∗ is not a single edge. Let e = (z, w) be the unique edge of B∗ incident

with w and notice that since w is not a leaf, each additional neighbor of w other than z defines a

sub-branch of B∗. Denote them by B1, . . . , Br. Now, w(Bi) cannot be positive as this contradicts

the minimality of B∗. If w(e) ≤ 0, then since w(B∗) > 0, this implies that there is some positive

branch Bi again contradicting the minimality of B∗. Hence, it follows that w(e) = 1. If there is

a negative branch Bi, then again as w(B∗) > 0 and w(e) = 1, the sum of weights of all branches

B1, . . . , Br is non-negative, so there must be another branch Bj which is positive, contradicting the

minimality of B∗. So, w(Bi) ≤ 0 for i = 1, . . . , r. Hence we conclude that
∑r

i=1w(Bi) = 0 as there

is no negative and no positive branches at w. So write B∗∗ for the tree consisting of the union of

B1, . . . , Br and observe that B∗∗ is a zero-sum subtree. If e(B∗∗) ≥ (e(T )− (q+ 1))/(q+ 2) we are

done. Else set T ∗ = T \ V (B∗∗). From the above we infer that sum w(T ∗) = q (we lost just 1 for

the edge (z, w)), and that e(T ∗) = e(T ) − e(B∗∗) − 1. By induction there is a zero-sum tree T ∗∗
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with

e(T ∗∗) ≥ (e(T ∗)− q)/(q + 1)

= (e(T )− e(B∗∗)− q − 1)/(q + 1)

> (e(T )− (e(T )− (q + 1))/(q + 2)− (q + 1))/(q + 1)

= (e(T )− (q + 1))/(q + 2) .

To see that the result is best possible consider the following example. Let Pn denote the path on

n edges. Label the edges of Pn as follows. First take n such that n−q = 0 mod q+1. Label the first

(n−q)/(q+1) edges on the path with zero and then take q blocks of the form 1 following (n−q)/(q+1)

zeros. The sum of the weights of the edges is q. the longest zero-sum path is (n−q)/(q+1) and the

total number of elements edges is (n−q)/(q+1)+q((n−q)/(q+1)+1) = (q+1)(n−q)/(q+1)+q = n.

6 Concluding remarks and open problems

The proof of Theorem 1.4 almost settles the question of existence or nonexistence of zero-sum copies

of Kk for weighings with {−1, 0, 1} with total weight zero. The only remaining cases left open are

values of k of the form k = 4d2 where d ≥ 2 (so K16 is the first open case).

Problem 6.1 For k = 4d2, is it true that for all n sufficiently large, any weighing f : E(Kn) →
{−1, 0, 1} with w(f) = 0 contains a zero-sum copy of Kk.

Another open problem is to determine precisely all bipartite graphs that satisfy Corollary 4.2 for

a given r. Many bipartite graphs fail to do so for simple divisibility reasons. For example, any

bipartite graph with an odd number of edges fails already for r = 1. However, the set of bipartite

graphs that potentially satisfy Corollary 4.2 may be strictly larger than the set of r-good bipartite

graphs.

In this paper we considered weighings of Kn which are close to balanced, trying to find sub-

graphs that are zero-sum or close to zero-sum. It would be interesting to consider weighing of other

combinatorial structures that guarantee the existence of zero-sum or close to zero-sum substruc-

tures. For weighings of complete k-uniform hypergraphs, the results of Section 2 and 3 remain

almost intact. In fact, the exact same proof of Theorem 1.1 can be reused to prove the following

statement which generalizes it.

Proposition 6.2 Let H be a k-uniform hypergraph with n vertices and maximum degree ∆. Let

f : E(Kk
n)→ [−r, r] be an edge weighing with |w(f)| ≤ 2r

(
n−1
k−1

)
. Then, there is a copy of H in Kk

n

with absolute weight at most 2∆r. Furthermore, if H is connected and |w(f)| ≤ 2r
(
n−1
k−1

)
(1 − 1

∆),

then there is a copy of H in Kk
n with absolute weight at most 2(∆− 1)r.

As Lemma 3.1 is only about integers, the proof of Theorem 1.2 can be analogously phrased for

almost H-factors of complete hypergraphs, with some adjustments to the constants. We omit
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the obvious details. Conversely, one may also wish to look at total balanced weighing of sparse

structures.
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[11] T. Kövari, V. Sós, and P. Turán. On a problem of k. zarankiewicz. Colloquium Math., 3:50–57,

1954.

[12] P. Radziszowski. Small ramsey numbers. The Electronic Journal of Combinatorics, DS1:1–50,

2011.

[13] A. Schrijver and P.D. Seymour. A simpler proof and a generalization of the zero-trees theorem.

Journal of Combinatorial Theory, Series A, 58(2):301–305, 1991.

15


