On zero-sum and almost zero-sum subgraphs over \mathbb{Z}

Yair Caro * Raphael Yuster ${ }^{\dagger}$

Abstract

For a graph H with at most n vertices and a weighing of the edges of K_{n} with integers, we seek a copy of H in K_{n} whose weight is minimal, possibly even zero. Of a particular interest are the cases where H is a spanning subgraph (or an almost spanning subgraph) and the case where H is a fixed graph. In particular, we show that relatively balanced weighings of K_{n} with $\{-r, \ldots, r\}$ guarantee almost zero-sum copies of spanning graphs with small maximum degree, guarantee zero-sum almost H-factors, and guarantee zero-sum copies of certain fixed graphs.

Keywords: zero-sum, subgraph

1 Introduction

All graphs considered in this paper are finite, simple, and undirected. Graph theory notation follows [4].

For positive reals r, q, an (r, q)-weighting of the edges of the complete graph K_{n} is a function $f: E\left(K_{n}\right) \rightarrow[-r, r]$ such that $\left|\sum_{e \in E\left(K_{n}\right)} f(e)\right| \leq q$. We call $w(f)=\sum_{e \in E\left(K_{n}\right)} f(e)$ the total weight of f. We say that an (r, q)-weighting is integral if $f: E\left(K_{n}\right) \rightarrow\{-r, \ldots, r\}$.

Our main objective in this paper is to study such (r, q)-weightings with the goal of finding nontrivial conditions that guarantee the existence of certain bounded weight subgraphs and even zero weighted subgraphs (also called zero-sum subgraphs). Our main source of motivation is zerosum Ramsey theory, a well-studied topic in graph theory, as well as some results about balanced colorings of integers. In zero-sum Ramsey theory we have a function $f: E\left(K_{n}\right) \rightarrow X$ where X is usually the cyclic group Z_{k} or (less often) an arbitrary finite abelian group. The goal is to show that under some necessary divisibility conditions imposed on the number of the edges $e(G)$ of a graph G and for sufficiently large n, there is always a zero-sum copy of G. For some results in this direction that are also related to results that shall be proved here see $[1,2,5,6,8,13]$.

Our first result has no counterpart in zero-sum Ramsey theory as it states that every (r, q) weighting of K_{n} where q and r are relatively small, has an almost zero-sum copy of any spanning subgraph with relatively small maximum degree.

[^0]Theorem 1.1 Let H be a graph with n vertices and maximum degree Δ. Let $f: E\left(K_{n}\right) \rightarrow[-r, r]$ be an edge weighing with $|w(f)| \leq 2(n-1) r$. Then, there is a copy of H in K_{n} with absolute weight at most $2 \Delta r$. Furthermore, if H is connected and $|w(f)| \leq 2(n-1) r\left(1-\frac{1}{\Delta}\right)$, then there is a copy of H in K_{n} with absolute weight at most $2(\Delta-1) r$.

The dependence on Δ in Theorem 1.1 is essential. For example, it is easy to see that there are integral (1, 0)-weighings of K_{n} such that any spanning star has absolute weight roughly $n / 2$. Indeed, say, for simplicity, that n is a multiple of 4 . Take two vertex-disjoint cliques A and B on $n / 2$ vertices each. Label the edges of A with 1 and the edges of B with -1 . Label $n / 4$ disjoint perfect matchings between A and B with 1 and label the remaining edges between A and B with -1 . The absolute weight of any spanning star in this example is $n / 2-1$.

We note that one of the corollaries of theorem 1.1, given as Proposition 2.2 , is the existence of a zero-sum path on at least $n-2$ vertices in any integral ($1, n-1$)-weighting (namely, a zero-sum almost Hamilton path).

Our next result is about zero-sum large matchings and zero-sum graphs of the form $t H$, where H is a fixed graph. The main distinction here is that in zero-sum Ramsey theory we cannot get a zero-sum matching of size $t \approx n / 2$ neither $t \approx n /|H|$ for $t H$, rather a fraction smaller than these magnitudes, see [3]. On the other hand, as the following result shows, this is possible to achieve for integral (r, q)-weighings. Recall that an H-factor of a graph G is a set of pairwise vertex-disjoint copies of H that cover all the vertices of G. For example, a perfect matching is just a K_{2}-factor. Theorem 1.1 guarantees the existence of an H-factor of K_{n} (under the assumption that the number of vertices of H divides n) with relatively small total weight (here H is a fixed graph and n is large). However, if we settle for an almost H-factor, we can do much better, and obtain nontrivial conditions which do guarantee zero-sum. More formally, define an (H, c)-factor of G to be a set of pairwise vertex-disjoint copies of H that cover all but at most c vertices of G. Our second main result concerns zero-sum (H, c)-factors where c is bounded as a function of H alone (independent of n).

Theorem 1.2 Let H be a graph with h vertices, m edges, and maximum degree Δ. Let f : $E\left(K_{n}\right) \rightarrow\{-r, \ldots, r\}$ be an edge weighing with $|w(f)| \leq 2(n-1) r$. Then K_{n} contains a zerosum (H, c)-factor where

$$
c<\max \{h(2 r m-1), h(2 \Delta r+r m)\}
$$

We next show that as in zero-sum Ramsey theory, zero-sum copies of the complete bipartite graphs $K_{s, t}$ as well as many other bipartite graphs do exist once certain divisibility conditions hold. But on the other hand, quite distinct from Ramsey theory and zero-sum Ramsey theory, no zero-sum copies of a complete graph K_{m} necessarily exist already for integral (1,0)-weightings, unless $m=4 k^{2}$. In fact, the only complete graph for which we can show zero-sum existence given any integral $(1,0)$-weighting and large n is K_{4} and the proof of the latter is somewhat involved. Let us state our results more formally.

For a positive integer r, consider the set of integers

$$
B_{r}=\left\{\left.\frac{a+b}{\operatorname{gcd}(a, b)} \right\rvert\, 1 \leq a \leq r, 1 \leq b \leq r\right\}
$$

Specifically, $B_{1}=\{2\}, B_{2}=\{2,3\}, B_{3}=\{2,3,4,5\}, B_{4}=\{2,3,4,5,7\}$. Observe that $B_{r} \subset B_{r+1}$. We say that the complete bipartite graph $K_{s, t}$ is r-good if each element of B_{r} divides at least one of s or t (in Section 4 we extend the notion of r-goodness to bipartite graphs that are not necessarily complete). For example, $K_{2,2}$ is 1 -good, $K_{2,3}$ is 2 -good, and $K_{5,12}$ is 3 -good. Our next result gives a sufficient condition for the existence of zero-sum complete bipartite graphs.

Theorem 1.3 For a positive integer r, an r-good complete bipartite graph $K_{s, t}$ and a real $\epsilon>0$ the following holds. For all n sufficiently large, any weighing $f: E\left(K_{n}\right) \rightarrow\{-r, \ldots, r\}$ with $|w(f)| \leq n^{2}\left(\frac{1}{2}-\epsilon\right)$ contains a zero-sum copy of $K_{s, t}$.

Notice that the requirement $|w(f)| \leq n^{2}\left(\frac{1}{2}-\epsilon\right)$ is essentially tight as one can label $\binom{n}{2}-e x\left(n, K_{s, t}\right)$ edges of K_{n} with 1 and $e x\left(n, K_{s, t}\right)$ edges with 0 where $e x\left(n, K_{s, t}\right)$ is the Turán number of $K_{s, t}$ in K_{n}, and obtain a labeling where any copy of $K_{s, t}$ has nonzero weight.

Theorem 1.4 For a real $\epsilon>0$ the following holds. For all n sufficiently large, any weighing $f: E\left(K_{n}\right) \rightarrow\{-1,0,1\}$ with $|w(f)| \leq(1-\epsilon) n^{2} / 6$ contains a zero-sum copy of K_{4}. On the other hand, for any positive integer k which is not of the form $k=4 d^{2}$, there are infinitely many n and weighings $f: E\left(K_{n}\right) \rightarrow\{-1,0,1\}$ with $|w(f)|=0$ that do not contain a zero-sum copy of K_{k}.

Again, notice that requirement $|w(f)| \leq(1-\epsilon) n^{2} / 6$ is essentially tight as the Turán number of K_{4} is $\left\lfloor n^{2} / 3\right\rfloor$. Hence, one can label $\left\lfloor n^{2} / 3\right\rfloor$ edges with 0 and the remaining edges with 1 and obtain a labeling where any copy of K_{4} has nonzero weight.

Our final main result concerns the existence of zero-sum spanning trees in integral ($1, n-2$)weighings.

Theorem 1.5 For $n=1 \bmod 2$, any integral $(1, n-2)$-weighing of K_{n} has a zero-sum spanning tree.

The result is tight as one can weigh all $n-1$ edges incident with the same vertex with 1 and the remaining edges with zero, and there is no zero sum tree. The requirement that n is odd is necessary as trivially, any weighing that only uses the weights -1 and 1 has no zero sum tree when n is even. We note that the highly nontrivial problem concerning the existence of zero-sum spanning trees in the context of zero-sum Ramsey theory was completely solved in $[8,13]$.

The rest of this paper is organized as follows. In Section 2 we consider almost zero-sum spanning graphs and prove Theorem 1.1. Section 3 considers almost H-factors and consists of the proof of Theorem 1.2 preceded by a lemma regarding the existence of a relatively short zero-sum subsequence of a sequence of integers. Section 4 is about zero-sum fixed graphs and contains the proofs of Theorem 1.3 and Theorem 1.4. Section 5 is about zero sum trees and contains the proof of Theorem 1.5. Section 6 contains some concluding remarks and open problems.

2 Almost zero-sum spanning subgraphs

Proof (Theorem 1.1): Consider a labeling of H with $\{1, \ldots, n\}$ and a labeling of K_{n} with $\{1, \ldots, n\}$. Each copy of H in K_{n} therefore corresponds to a permutation $\pi \in S_{n}$. Notice that $|A u t(H)|$ distinct permutations produce the same (non-labeled) copy of H where $\operatorname{Aut}(H)$ denotes the automorphism group of H. However, for convenience, we consider all n ! labeled copies and denote by H_{π} the copy of H corresponding to π. Let m denote the number of edges of H. As any copy H_{π} occupies a fraction of $m /\binom{n}{2}$ of the edges of K_{n}, we have that each edge of K_{n} appears in $n!m /\binom{n}{2}$ distinct H_{π}. Let $f: E\left(K_{n}\right) \rightarrow[-r, r]$ be an edge weighing of K_{n} with total weight $w(f)$. We therefore have:

$$
\sum_{\pi \in S_{n}} w\left(H_{\pi}\right)=\frac{n!m}{\binom{n}{2}} w(f)
$$

It follows that the average weight of a copy of H is $\frac{m}{\binom{n}{2}} w(f)$.
For the rest of the proof assume that $w(f) \geq 0$. This may be assumed as otherwise we can multiply each weight by -1 without affecting the statement of the theorem. Let $H_{\text {max }}$ be a copy with maximum weight and let $H_{\min }$ be a copy with minimum weight. We therefore have:

$$
w\left(H_{\max }\right) \geq \frac{m}{\binom{n}{2}} w(f) \geq 0, \quad w\left(H_{\min }\right) \leq \frac{m}{\binom{n}{2}} w(f) .
$$

Consider first the case $w\left(H_{\min }\right) \geq 0$. The theorem follows in this case since we have

$$
\left|w\left(H_{\text {min }}\right)\right|=w\left(H_{\text {min }}\right) \leq \frac{m}{\binom{n}{2}} w(f) \leq \frac{\Delta}{n-1} w(f) \leq \frac{\Delta}{n-1} 2(n-1) r=2 \Delta r
$$

where we have used that $2 m \leq n \Delta$ and the stated assumption that $w(f) \leq 2(n-1) r$. Observe that if $w(f) \leq 2(n-1) r\left(1-\frac{1}{\Delta}\right)$ as assumed in the second part of the theorem, then, in fact, $\left|w\left(H_{\text {min }}\right)\right| \leq 2 \Delta r\left(1-\frac{1}{\Delta}\right)=2(\Delta-1) r$ so the second part of the theorem holds as well in this case.

We may now assume that $w\left(H_{\min }\right)<0$. We start by proving the first part of the theorem where H is not assumed to be connected. Let P be the graph whose vertices are all the n ! copies of H in K_{n}. We connect vertex H_{π} of P with vertex H_{σ} of P if π and σ differ in a single transposition. Clearly, P is connected as any permutation can be obtained from any other permutation by a sequence of transpositions. Consider some edge $\left(H_{\pi}, H_{\sigma}\right)$ of P and let (uv) be the transposition connecting π and σ. The symmetric difference between the edge set of H_{π} and the edge set of H_{σ} consists only of edges that are incident with u in H_{π} or H_{σ} or edges that are incident with v in H_{π} or H_{σ}. As the number of such edges is at most 4Δ, it follows that $\left|w\left(H_{\pi}\right)-w\left(H_{\sigma}\right)\right| \leq 4 \Delta r$. Consider a path of P connecting $H_{\text {max }}$ and $H_{\text {min }}$. As $w\left(H_{\max }\right) \geq 0$ and $w\left(H_{\text {min }}\right)<0$, there must be some edge $\left(H_{\pi}, H_{\sigma}\right)$ on this path such that $w\left(H_{\pi}\right) \geq 0$ and $w\left(H_{\sigma}\right) \leq 0$. It follows that

$$
\min \left\{w\left(H_{\pi}\right),-w\left(H_{\sigma}\right)\right\} \leq 2 \Delta r
$$

as required.

Consider next the case where H is connected. Let Q be the spanning subgraph of P where (H_{π}, H_{σ}) is an edge if and only if π and σ differ in a single transposition (uv) and, furthermore, $u v$ is an edge in both H_{π} and H_{σ} (notice that $u v$ is either an edge in both of them or in none of them). We claim that Q is connected. Since P is connected, it suffices to show that for any two permutations π and σ that differ in a single transposition (uv), there is a path in Q connecting H_{π} and H_{σ}. We prove it by induction on the length of a shortest path connecting u and v in H (which is finite as H is connected). For shortest paths of length 1 this is true as H_{π} and H_{σ} are adjacent in Q, by its definition. For shortest paths of length $k>1$, consider a path $u=x_{0}, x_{1}, \ldots, x_{k}=v$ connecting u and v in H. Then H_{π} is connected to H_{φ} where φ is obtained from π by the transposition $\left(x_{0}, x_{1}\right)$. Now, as the length of a shortest path from x_{1} to $v=x_{k}$ is only $k-1$, we have by induction that H_{φ} and H_{σ} are connected in Q. Thus H_{π} and H_{σ} are connected in Q as well.

Now, for an edge $\left(H_{\pi}, H_{\sigma}\right)$ of Q, the symmetric difference between the edge set of H_{π} and the edge set of H_{σ} consists only of edges that are incident with u in H_{π} or H_{σ} or edges that are incident with v in H_{π} or H_{σ}, but this symmetric difference does not include the edge $u v$ which appears in both H_{π} and H_{σ}. The number of such edges is therefore at most $4(\Delta-1)$. It follows that $\left|w\left(H_{\pi}\right)-w\left(H_{\sigma}\right)\right| \leq 4(\Delta-1) r$. Consider a path of Q connecting $H_{\max }$ and $H_{\min }$. As $w\left(H_{\max }\right) \geq 0$ and $w\left(H_{\min }\right)<0$, there must be some edge $\left(H_{\pi}, H_{\sigma}\right)$ on this path such that $w\left(H_{\pi}\right) \geq 0$ and $w\left(H_{\sigma}\right) \leq 0$. It follows that

$$
\min \left\{w\left(H_{\pi}\right),-w\left(H_{\sigma}\right)\right\} \leq 2(\Delta-1) r
$$

as required.
Two graphs H_{1} and H_{2} with the same vertex set are k-edge switchable if H_{2} can be obtained from H_{1} by replacing at most k edges of H_{1} with edges of H_{2}. Call a family of graphs with the same vertex set k-edge switchable if any graph in the family can be obtained from any other by a sequence of k-edge switches. For example, results of Havel [10] and Hakimi [9] (sometimes attributed to Berge) show, in particular, that the family of spanning k-regular subgraphs of K_{n} is 2-edge switchable. Also, the family of spanning trees is 1 -edge switchable (see also Lemma 5.1). The proof of Theorem 1.1 uses the fact that the family of labeled copies of a given spanning graph H of K_{n} is 2Δ-edge switchable. A similar proof can thus be obtained for any other family of k-edge switchable graphs, as long as one can guarantee that the average weight of a graph in the family is small. We summarize this in the following corollary.

Corollary 2.1 Let \mathcal{H} be a family of graphs with n vertices that is k-edge switchable, such that each graph in \mathcal{H} has m edges. Let $f: E\left(K_{n}\right) \rightarrow[-r, r]$ be an edge weighing with $|w(f)| \leq k r\binom{n}{2} / m$. Then, there is a copy of \mathcal{H} in K_{n} with absolute weight at most $k r$.

One simple consequence of Theorem 1.1 is that, for even n, in any weighing of K_{n} with weights in $[-1,1]$ where the total sum of the weights is at most $2(n-1)$, there is a perfect matching whose total absolute weight is at most 2 (apply the case $\Delta=1$ and $r=1$ in Theorem 1.1). This is
tight for, say, K_{8}, as we can label seven edges incident with the same vertex with -1 and label the remaining edges with 1 , having $w(f)=21-7=14=2 \cdot(8-1)$, and yet any perfect matching of this weighing of K_{8} has weight 2 . The same extremal example is true for the weight interval $[-r, r]$ by multiplying each edge weight by r. Observe, however that for the special case of weights in $\{-1,0,1\}$ one may delete at most two edges from a perfect matching of absolute total weight at most 2 and obtain a zero-sum matching. A more illustrative application is given in the following proposition.

Proposition 2.2 Let $f: E\left(K_{n}\right) \rightarrow\{-1,0,1\}$ be an edge weighing with $|w(f)| \leq n-1$. Then, there is a zero-sum path with at least $n-2$ vertices.

Proof: We use Theorem 1.1 where H is a cycle of length n (hence the connected case where $\Delta=2), r=1$, and observe that the assumption $|w(f)| \leq n-1$ satisfies the stated condition in the theorem. The theorem guarantees that if C is a Hamilton cycle of minimum total absolute weight, then $|w(C)| \leq 2$.

If $w(C)=0$ (a zero-sum Hamilton cycle), then either C contains a zero edge, which, once removed, show that there is a zero-sum Hamilton path, or else n must be even and exactly half of the edges of C have weight 1 and the other half have weight -1 . We may remove a vertex incident with one positive and one negative edge and obtain a zero-sum path with $n-1$ vertices.

If $|w(C)|=1$, then we can remove an edge with weight 1 if $w(C)=1$ or an edge with weight -1 if $w(C)=-1$ and obtain a zero-sum Hamilton path.

We remain with the case $|w(C)|=2$. We prove the case $w(C)=2$ as the negative case is symmetric. The proof of Theorem 1.1 shows that either all Hamilton cycles have weight 2 or else there must be both a positive and a negative weight Hamilton cycle (since the average weight of a Hamilton cycle is at most 2, we cannot have that all Hamilton cycles have nonnegative weight, as otherwise at least one cycle has nonnegative weight smaller than 2 and the proposition holds by one of the previous cases). If all Hamilton cycles have weight 2, then we must have $w(f)=n-1$ and hence there must be two edges with weight 1 incident with the same vertex u. Taking any Hamilton cycle that contains these two edges consecutively and then deleting u, we obtain a zero-sum path with $n-1$ vertices. We remain with the case where there are both a positive weight Hamilton cycle and a negative weight Hamilton cycle. The proof of Theorem 1.1 shows that there are two Hamilton cycles C_{π} and C_{σ} with $w\left(C_{\pi}\right)=2, w\left(C_{\sigma}\right)=-2$ and π differs from σ in a single transposition (uv) where $u v$ is an edge of both C_{π} and C_{σ}. Hence, if x is the other neighbor of u in C_{π} and y is the other neighbor of v in C_{π} (which implies that $x v$ and $y u$ are both edges of C_{σ}), then we must have that the weights of $x u$ and $y v$ are 1 and the weights of $x v$ and $y u$ are -1 . Now, if the weight of $u v$ is zero, we can delete u and v from C_{π} and obtain a zero-sum path with $n-2$ vertices. If the weight of $u v$ is 1 we can delete u from C_{π} and obtain a zero-sum path with $n-1$ vertices. If the weight of $u v$ is -1 we can delete u from C_{σ} and obtain a zero-sum path with $n-1$ vertices.

3 Zero-sum almost H-factors

Theorem 1.2 is based on the following lemma.
Lemma 3.1 For a positive integer $r \geq 2$ and an integer q, any sequence of $n \geq \max \{2 r-1,|q|+r\}$ elements from $\{-r, \ldots, r\}$ whose sum is q, has a nonempty subsequence of size at most $2 r-1$ whose sum is zero.

Proof: Denote the sequence by S. We may assume that S has no zero element, as in this case we are done. We further assume that S does not contain an element and its negation, otherwise we are done since $2 r-1>2$. In particular we may assume that $-r$ and r are not both in S. As we can multiply the whole sequence by -1 , without affecting the statement or the result, we may assume that $-r$ is not in S.

A prefix sum c_{k} is the sum of the first k elements of S. As the lemma is oblivious to reordering the elements, we can consider the ordering of the elements that maximizes k for which $-r \leq c_{j} \leq r-1$ for all $1 \leq j \leq k$. Observe that $k \geq 1$, as otherwise all elements of S are equal to r and thus $q=n r$ and $n=q / r<q+r$ contradicting the assumption.

Assume first that $k \geq 2 r-1$. If some $c_{j}=0$ for $j \leq 2 r-1$, we are done. Else $c_{1}, \ldots, c_{2 r-1}$ are non-zero. Suppose that $c_{2 r-1}>0$ and let $m \leq 2 r-2$ be the largest integer such that $c_{m}<0$. If no such m exists, then all the $c_{1}, \ldots, c_{2 r-1}$ are each in the range $\{1, \ldots, r-1\}$ so already among c_{1}, \ldots, c_{r} there are $i<j$ such that $c_{i}=c_{j}$ and we are done as the subsequence between locations $i+1$ and j has zero-sum. So we may assume $2 r-2 \geq m \geq 1$. Write $b=c_{m+1}-c_{m}$ and observe that $b>0$ and b is the element of S in location $m+1 \leq 2 r-1$. This forces that for $j \leq m$ no $c_{j}=-b$ for otherwise $c_{j}+b=0$. Also for $2 r-1 \geq j \geq m+1$ no $c_{j}=-b$ as all these c_{j} are positive. So none of $c_{1}, \ldots, c_{2 r-1}$ are equal to $-b$, none are equal to 0 and none are equal to r (because of the definition of k). So, there are only at most $2 r-2$ possible values for the $c_{1}, \ldots, c_{2 r-1}$, and hence there are $1 \leq i<j \leq 2 r-1$ such that $c_{i}=c_{j}$ and we are done as the subsequence between locations $i+1$ and j has zero-sum.

Suppose now that $c_{2 r-1}<0$ and let $m \leq 2 r-2$ be the largest integer such that $c_{m}>0$. If no such m exists, then all the $c_{1}, \ldots, c_{2 r-1}$ are each in the range $\{-r, \ldots,-1\}$ so already among c_{1}, \ldots, c_{r+1} there are $i<j$ such that $c_{i}=c_{j}$ and we are done as the subsequence between locations $i+1$ and j has zero-sum. So we may assume $2 r-2 \geq m \geq 1$. Write $b=c_{m+1}-c_{m}$ and observe that $b<0$ and b is the element of S in location $m+1 \leq 2 r-1$. This forces that for $j \leq m$ no $c_{j}=-b$ for otherwise $c_{j}+b=0$. Also for $2 r-1 \geq j \geq m+1$ no $c_{j}=-b$ as all these c_{j} are negative. So none of $c_{1}, \ldots, c_{2 r-1}$ are equal to $-b$, none are equal to 0 , and none are equal to r. Observe that $-b \neq r$ since we assumed that $-r$ is not in S. So, there are only at most $2 r-2$ possible values for the $c_{1}, \ldots, c_{2 r-1}$, and hence there are $1 \leq i<j \leq 2 r-1$ such that $c_{i}=c_{j}$ and we are done as the subsequence between locations $i+1$ and j has zero-sum.

Suppose next that $k \leq 2 r-2$. If some $c_{j}=0$ for $j \leq k$ we are done. Otherwise we are left with at least $\max \{2 r-1,|q|+r\}-(2 r-2)=\max \{1,|q|-r+2\}$ elements at location $k+1 \ldots, n$. If $c_{k}<0$,
then by the maximality of k all remaining elements of S are negative of order at most $-r-c_{k}-1$. So the sum of the whole sequence S is at most $c_{k}+\left(-r-c_{k}-1\right) \max \{1,|q|-r+2\}$. If $|q| \geq r-1$, then we have $c_{k}+\left(-r-c_{k}-1\right)(|q|-r+2)=-c_{k}(|q|-r+1)-(r+1)(|q|-r+2)$ which gets maximum at $c_{k}=-r$, as $c_{k} \geq-r$. Thus, we get a sum of at most $r(|q|-r+1)-(r+1)(|q|-r+2)=-|q|-2<q$, which is impossible. If $|q| \leq r-2$, then we have a sum of at most $c_{k}+\left(-r-c_{k}-1\right)=-r-1<q$ which is impossible.

If $c_{k}>0$, then by the maximality of k all remaining elements are positive and of order at least $r-c_{k}$. So the sum of the whole sequence S is at least $c_{k}+\left(r-c_{k}\right) \max \{1,|q|-r+2\}$. If $|q| \geq r-1$, then we have $c_{k}+\left(r-c_{k}\right)(|q|-r+2)=-c_{k}(|q|-r+1)+r(|q|-r+2)$ which gets minimum at $c_{k}=r-1$, as $c_{k} \leq r-1$. Thus, we get a sum of at least $-(r-1)(|q|-r+1)+r(|q|-r+2)=|q|+1>q$, which is impossible. If $|q| \leq r-2$, then we have a sum of at least $c_{k}+\left(r-c_{k}\right)=r>q$ which is impossible.

Proof (Theorem 1.2): Let H be a given graph with h vertices, m edges, and maximum degree Δ. We may assume that $m>1$ or $r>1$ as the case of matchings with a $\{-1,0,1\}$-weighing trivially satisfies the theorem by the comment following the proof of Theorem 1.1. For a positive integer n, let H_{n} be the n-vertex graph consisting of $t=\lfloor n / h\rfloor$ vertex-disjoint copies of H and $n-h t<h$ isolated vertices. Let $f: E\left(K_{n}\right) \rightarrow\{-r, \ldots, r\}$ be an edge weighing with $|w(f)| \leq 2(n-1) r$. By Theorem 1.1, K_{n} with this weighing has a copy of H_{n} with $\left|w\left(H_{n}\right)\right| \leq 2 \Delta r$. Let $X_{1}, X_{2}, \ldots, X_{t}$ be the copies of H comprising such a copy of H_{n}. Thus,

$$
\left|\sum_{i=1}^{t} w\left(X_{i}\right)\right| \leq 2 \Delta r
$$

Consider the sequence of integers $w\left(X_{1}\right), w\left(X_{2}\right), \ldots, w\left(X_{t}\right)$. It is a sequence of length t whose sum, call it q, satisfies $|q| \leq 2 \Delta r$. Furthermore, each element in this sequence is an integer in $\{-r m, \ldots, r m\}$ as H has m edges each having weight in $\{-r, \ldots, r\}$. Hence, by Lemma 3.1, as long as $t \geq \max \{2 r m-1,2 \Delta r+r m\}$, we can find a nonempty subsequence of $\left\{X_{1}, \ldots, X_{t}\right\}$ of length at most $2 r m-1$, whose sum of weights is zero (here we use the assumption that $r m>1$). Removing such a subsequence we again obtain a leftover sequence whose sum is still q, but now with less than t elements. We can repeat this process as long as we remain with a leftover sequence containing at least $\max \{2 r m-1,2 \Delta r+r m\}$ elements. Once we arrive at a smaller leftover sequence we halt. We have constructed a set of vertex-disjoint copies of H that cover all vertices of K_{n} but at most

$$
\begin{aligned}
& h \cdot(\max \{2 r m-1,2 \Delta r+r m\}-1)+(n-h t) \\
\leq & h \cdot(\max \{2 r m-1,2 \Delta r+r m\}-1)+h-1 \\
< & \max \{h(2 r m-1), h(2 \Delta r+r m)\}
\end{aligned}
$$

vertices.
The case where $H=K_{k}$ is of particular interest. Plugging in the parameters $m=\binom{k}{2}, h=k$, and $\Delta=k-1$ we obtain the following corollary.

Corollary 3.2 Let $f: E\left(K_{n}\right) \rightarrow\{-r, \ldots, r\}$ be an edge weighing with $|w(f)| \leq 2(n-1) r$. Then K_{n} contains a zero-sum $\left(K_{k}, c\right)$-factor where, for $k \geq 5$ we have $c \leq k^{2}(k-1) r-k-1$, for $k=4$ we have $c \leq 48 r-1$ and for $k=3$ we have $c \leq 21 r-1$.

4 Zero-sum fixed graphs

We recall first the theorem of Kövári-Sós-Turán [11] regarding the value of $Z_{a, b}(m, n)$, which is the smallest integer k such that any bipartite graph with vertex classes A and B where $|A|=m$ and $|B|=n$ and k edges has $K_{s, t}$ as a subgraph with the s vertices being in A and the t vertices being in B.

Lemma 4.1 [Kövári-Sós-Turán [11]]

$$
Z_{a, b}(m, n)<(a-1)^{1 / b}(n-b+1) m^{1-1 / b}+(b-1) m .
$$

Proof (Theorem 1.3): Fix $\epsilon>0$, a positive integer r and a complete bipartite graph $K_{s, t}$ which is r-good. Throughout this proof we assume, wherever necessary, that n is sufficiently large as a function of r, s, t, ϵ. Consider a weighing $f: E\left(K_{n}\right) \rightarrow\{-r, \ldots, r\}$ with $|w(f)| \leq n^{2}\left(\frac{1}{2}-\epsilon\right)$. We assume that $w(f) \geq 0$ as the proof of the negative case is symmetric.

We may assume that the number of edges having zero weight is at most, say, $\left(\epsilon^{2} / 4 r\right) n^{2}$. Otherwise, since the Turán number of $K_{s, t}$ is $o\left(n^{2}\right)$, we would have a copy of $K_{s, t}$ all of whose edges are zero, hence zero-sum, and we are done.

Since $w(f) \leq n^{2}\left(\frac{1}{2}-\epsilon\right)$, there must be at least $(\epsilon / 4 r) n^{2}$ negative weight edges. Indeed, otherwise, we would have at least $\binom{n}{2}-(\epsilon / 4 r) n^{2}-\left(\epsilon^{2} / 4 r\right) n^{2}$ positive weights and thus

$$
w(f) \geq 1 \cdot\left(\binom{n}{2}-\frac{\epsilon}{4 r} n^{2}-\frac{\epsilon^{2}}{4 r} n^{2}\right)-r \cdot \frac{\epsilon}{4 r} n^{2}>n^{2}\left(\frac{1}{2}-\epsilon\right)
$$

contradicting the assumption. As $w(f) \geq 0$ we infer that there must be (much more than) $(\epsilon / 4 r) n^{2}$ positive weight edges.

Consider the degree sequence $d_{1} \geq d_{2} \cdots \geq d_{n}$ of any graph with n vertices and with δn^{2} edges (say, $\delta<1 / 16$). By a theorem of Erdős and Gallai [7] we infer that for any $3 \delta n \leq x \leq 4 \delta n$,

$$
n-\delta n \geq d_{x} \geq \frac{\delta}{2} n
$$

As a direct argument, notice that if $d_{x}>n-\delta n$, then the sum of the degrees of the graph is at least $x(n-\delta n) \geq 3 \delta n(n-\delta n)$ which contradicts the fact that the graph only has δn^{2} edges. If, on the other hand, $d_{x}<(\delta / 2) n$, then the number of edges is only at most $(\delta / 2) n^{2}+\binom{x}{2}<\delta n^{2}$ for $x \leq 4 \delta n$, again, a contradiction.

It follows from the above discussion that our weighing of K_{n} has a set of vertices X with, say, $|X| \geq(\epsilon / 100 r) n$ that are each incident with at least $(\epsilon / 10 r) n$ positive weight edges and at least $(\epsilon / 10 r) n$ negative weight edges.

We say that a vertex $u \in X$ is of type $(a,-b)$ if a is the most common positive weight of an edge incident with u in $V\left(K_{n}\right) \backslash X$ and $-b$ is the most common negative weight of an edge incident with u in $V\left(K_{n}\right) \backslash X$. As there are at most r^{2} possible types, we have that there is a set $X^{*} \subset X$ with $\left|X^{*}\right| \geq\left(\epsilon / 100 r^{3}\right) n$ such that all vertices of X^{*} have same type $(a,-b)$ and every $u \in X^{*}$ is incident with at least $\left(\epsilon / 20 r^{2}\right) n$ edges of weight a in $V\left(K_{n}\right) \backslash X^{*}$ and at least $\left(\epsilon / 20 r^{2}\right) n$ edges of weight $-b$ in $V\left(K_{n}\right) \backslash X^{*}$.

As $(a+b) / g c d(a, b) \in B_{r}$, and since $K_{s, t}$ is r-good we have, without loss of generality, that $s=q(a+b) / g c d(a, b)$ for some positive integer q. Let $s_{a}=q a / g c d(a, b)$ and $s_{b}=q b / g c d(a, b)$. We will prove that there are three vertex-disjoint subsets $T \subset X^{*}, S_{a}$ and S_{b} with $|T|=t,\left|S_{a}\right|=s_{a}$, $\left|S_{b}\right|=s_{b}$ such that all edges between T and S_{a} have weight $-b$ and all edges between T and S_{b} have weight a. Hence, the complete bipartite graph with one side consisting of T and the other side $S=S_{a} \cup S_{b}$ is a copy of $K_{s, t}$ whose total weight is $a t s_{b}-b t s_{a}=0$.

Consider the bipartite graph B_{a} whose vertex classes are X^{*} and $V\left(K_{n}\right) \backslash X^{*}$ consisting of all the edges between X^{*} and $V\left(K_{n}\right) \backslash X^{*}$ having weight a. As $\left|X^{*}\right|=\Theta(n),\left|V\left(K_{n}\right) \backslash X^{*}\right|=\Theta(n)$ and $\left|E\left(B_{a}\right)\right|=\Theta\left(n^{2}\right)$ we have, by Lemma 4.1, that B_{a} contains a copy of $K_{\Theta(\log n), s_{b}}$ with vertex classes $T^{*} \subset X^{*}$ having $\left|T^{*}\right|=\Theta(\log n)$ vertices and $S_{b} \subset V\left(K_{n}\right) \backslash X^{*}$ having $\left|S_{b}\right|=s_{b}$ vertices. Next, consider the bipartite graph B_{b} whose vertex classes are T^{*} and $V\left(K_{n}\right) \backslash\left(X^{*} \cup S_{b}\right)$ consisting of all the edges between T^{*} and $V\left(K_{n}\right) \backslash\left(X^{*} \cup S_{b}\right)$ having weight $-b$. As any vertex of T^{*} has at least $\left(\epsilon / 20 r^{2}\right) n-O(1)$ neighbors in $V\left(K_{n}\right) \backslash\left(X^{*} \cup S_{b}\right)$ we have, again by Lemma 4.1, that B_{b} contains a copy of $K_{t, s_{a}}$ with vertex classes $T \subset T^{*}$ having $|T|=t$ vertices and $S_{a} \subset V\left(K_{n}\right) \backslash\left(X^{*} \cup S_{b}\right)$ having $\left|S_{a}\right|=s_{a}$ vertices. We have therefore found a zero-sum copy of $K_{s, t}$.

One can extend the notion of r-goodness to bipartite graphs that are not necessarily complete bipartite as follows. We say that a bipartite graph H with vertex classes X and Y and m edges is r-good if for every $1 \leq a \leq r$ and $1 \leq b \leq r$, there is $X^{\prime} \subset X$ such that the sum of the degrees of the vertices of X^{\prime} is $m a /(a+b)$. Thus, for example, any k-regular bipartite graph with sides of even cardinality is 1 -good. The proof of Theorem 1.3 stays intact for this more general definition of r-good graphs.

Corollary 4.2 For a positive integer r, an r-good bipartite graph H and a real $\epsilon>0$ the following holds. For all n sufficiently large, any weighing $f: E\left(K_{n}\right) \rightarrow\{-r, \ldots, r\}$ with $|w(f)| \leq n^{2}\left(\frac{1}{2}-\epsilon\right)$ contains a zero-sum copy of H.

Proof (Theorem 1.4): The proof of the first part of the theorem resembles the proof of Theorem 1.3 , but with some necessary nontrivial modifications. Throughout this part of the proof we assume, wherever necessary, that n is sufficiently large as a function of ϵ. Consider a weighing $f: E\left(K_{n}\right) \rightarrow$ $\{-1,0,1\}$ with $|w(f)| \leq(1-\epsilon) n^{2} / 6$. We assume that $w(f) \geq 0$ as the proof of the negative case is symmetric.

We may assume that the number of edges having zero weight is at most $n^{2} / 3$. Otherwise, since the Turán number of K_{4} is at most $n^{2} / 3$, we would have a copy of K_{4} all of whose edges are zero, hence zero-sum, and we are done. Thus, there are at least $\binom{n}{2}-n^{2} / 3 \geq(1-\epsilon / 2) n^{2} / 6$ edges with
nonzero weight. As $w(f) \leq(1-\epsilon) n^{2} / 6$ we must therefore have at least $\epsilon n^{2} / 24$ edges with weight -1 . As $w(f) \geq 0$ we have at least $(1-\epsilon / 2) n^{2} / 12 \geq n^{2} / 24$ edges with weight 1 . We call a vertex positive if it is incident with at least $(\epsilon / 1000) n$ positive edges and negative if it is incident with least $(\epsilon / 1000) n$ negative edges. Let P denote the set of positive vertices and N denote the set of negative vertices.

Consider first the case $|P \cap N| \geq \epsilon n / 1000$. As in the proof of Theorem 1.3 (namely, applying the Kövári-Sós-Turán Theorem twice) we can obtain a copy of $K_{2,31}$ whose vertex classes are A and B with $A=\{u, v\}, B=\left\{x_{1}, \ldots, x_{31}\right\}$ and all the 31 edges incident with u have weight 1 while all the 31 edges incident with v have weight -1 . Consider the complete graph induced by B. As the Ramsey number $R(4,3,3)=31$ (see [12]) we have that B either induces a copy of K_{4} all of whose edges are zero, in which case we are done, or else it induces are triangle $\left\{x_{i}, x_{j}, x_{k}\right\}$ all of whose edges have weight 1 or all of whose edges have weight -1 . Hence, either $\left\{u, x_{i}, x_{j}, x_{k}\right\}$ is a zero-sum copy of K_{4} or else $\left\{v, x_{i}, x_{j}, x_{k}\right\}$ is a zero-sum copy of K_{4}.

Consider next the case $|P \cap N| \leq \epsilon n / 1000$. Observe that by the definition of P and the fact that there are at least $n^{2} / 24$ positive weight edges, we have that $|P| \geq n / 24$. Likewise, by the definition of N and the fact that there are at least $\epsilon n^{2} / 24$ negative weight edges we have that $|N| \geq \epsilon n / 24$. Let $X=N \backslash P$ and $Y=P \backslash N$ and observe that $|X| \geq \epsilon n / 50$ and $|Y| \geq n / 50$. We claim that most edges between X and Y have weight 0 . Indeed, the number of edges between X and Y with positive weight cannot be more than $|X|(\epsilon / 1000) n$ as otherwise some vertex of X would belong to P, contradicting its definition. Likewise, the number of edges between X and Y with negative weight cannot be more than $|Y|(\epsilon / 1000) n$ as otherwise some vertex of Y would belong to N, contradicting its definition. Since $(|X|+|Y|)(\epsilon / 1000) n \leq|X||Y| / 10$ we have that at least 90 percent of the edges between X and Y have weight 0 and hence, at least half of the vertices of X are each incident to at least $(2 / 3)|Y|$ neighbors of Y via zero weight edges. Let X^{\prime} denote such a set of vertices of X and notice that $\left|X^{\prime}\right| \geq \epsilon n / 100$. Consider the complete graph induced by X^{\prime}. We may assume that X^{\prime} contains less than $\left|X^{\prime}\right|^{2} / 3$ edges with weight 0 otherwise, by Turán's Theorem, we would have a K_{4} in X^{\prime} all of whose edges are zero and we are done. Hence X^{\prime} has at least $\binom{\left|X^{\prime}\right|}{2}-\left|X^{\prime}\right|^{2} / 3$ edges with nonzero weight. They cannot all be positive as otherwise X^{\prime} would contain vertices of P contradicting its definition. Hence, there is an edge (u, v) with weight -1 such that $u, v \in X^{\prime}$. Let $Y^{\prime} \subset Y$ be the set of vertices such that each $y \in Y^{\prime}$ is connected to both u and v via zero weight edges. By the definition of X^{\prime} we have that $\left|Y^{\prime}\right| \geq|Y| / 3 \geq n / 200$. Consider the complete graph induced by Y^{\prime}. We may assume that Y^{\prime} contains less than $\left|Y^{\prime}\right|^{2} / 3$ edges with weight 0 otherwise, by Turán's Theorem, we would have a K_{4} in Y^{\prime} all of whose edges are zero and we are done. Hence Y^{\prime} has at least $\binom{\left|Y^{\prime}\right|}{2}-\left|Y^{\prime}\right|^{2} / 3$ edges with nonzero weight. They cannot all be negative as otherwise Y^{\prime} would contain vertices of N contradicting the definition of Y. Hence, there is an edge (y, w) with weight 1 such that $y, w \in Y^{\prime}$. Now, $\{u, v, y, w\}$ induce a zero-sum copy of K_{4}.

We now proceed to the second part of the theorem. When $k \equiv 2,3 \bmod 4$, the number of edges of K_{k} is odd, hence any coloring of K_{n} with weights -1 and 1 only does not have a zero-sum copy
of K_{n}. If $k \equiv 1 \bmod 4$, then consider any weighing of K_{n} obtained by taking two vertex-disjoint cliques of size $n / 2$ (assume n is even), labeling the edges of the first with 1 , the edges of the second with -1 and the edges between them with zero. The total weight of the coloring is 0 yet is does not contain any zero-sum copy of K_{k}. Finally, if $k \equiv 2 \bmod 4$, then let $n=16 t^{2}$ and consider the following weighing of K_{n}. Take two vertex-disjoint cliques on sizes $n / 2-2 t$ and $n / 2+2 t$. Label the edges inside both cliques with 1 and the edges between them with -1 . It is easy to verify that the total weight of this coloring is 0 . Now, any copy of K_{k} has $k / 2+d$ vertices in the first clique and $k / 2-d$ vertices in the second clique for some integer d so its weight is

$$
\binom{k / 2+d}{2}+\binom{k / 2-d}{2}-(k / 2+d)(k / 2-d)=2 d^{2}-k / 2 .
$$

The only way that $2 d^{2}-k / 2=0$ is if $k=4 d^{2}$.

5 Zero-sum spanning trees

Consider the graph S whose vertices are all the n^{n-2} labeled spanning trees of K_{n}. Two trees T_{1} and T_{2} are connected in S if they differ in a single edge, namely they are 1-edge switchable.

Lemma 5.1 The family of labeled spanning trees of K_{n} is 1 -edge switchable. Namely, S is connected.

Proof: The lemma follows from the well-known fact that the spanning trees form a matroid. For completeness, we prove the lemma directly. We need to show that any two trees T_{1} and T_{2} are connected in S via a path. The proof is by downwards induction on $\left|E\left(T_{1}\right) \cap E\left(T_{2}\right)\right|$ where the base case $n-2$ follows from the definition of S. Assume that $\left|E\left(T_{1}\right) \cap E\left(T_{2}\right)\right|<n-2$ and consider the forest F induced by $E\left(T_{1}\right) \cap E\left(T_{2}\right)$ which has more than two components. F can thus be completed into a tree T_{3} by adding to F at least one edge of $E\left(T_{1}\right) \backslash E\left(T_{2}\right)$ and at least one edge of $E\left(T_{2}\right) \backslash E\left(T_{1}\right)$. As $\left|E\left(T_{1}\right) \cap E\left(T_{3}\right)\right|>\left|E\left(T_{1}\right) \cap E\left(T_{2}\right)\right|$ and $\left|E\left(T_{2}\right) \cap E\left(T_{3}\right)\right|>\left|E\left(T_{1}\right) \cap E\left(T_{2}\right)\right|$ we have by the induction hypothesis that T_{3} and T_{1} are connected in S via a path and T_{3} and T_{2} are connected in S via a path, thus T_{1} and T_{2} are connected in S via a path.

Proof (Theorem 1.5): Let n be odd and let $f:\{-1,0,1\} \rightarrow E\left(K_{n}\right)$ with $|w(f)| \leq n-2$. We may assume $w(f) \geq 0$ as the negative case is symmetric. We first observe that there is some spanning tree T with $w(T) \leq 0$. Consider a partition of K_{n} into $(n-1) / 2$ pairwise edge-disjoint Hamilton cycles. If all of these Hamilton cycles have positive weight, then since $w(f) \leq n-2$, at least one of them has weight 1 . By deleting some edge with weight 1 on this Hamilton we obtain a zero-sum Hamilton path.

Let therefore $T_{\max }$ and $T_{\min }$ be two spanning trees with maximum total weight and minimum total weight respectively. As $w\left(T_{\max }\right) \geq 0$ and $w\left(T_{\min }\right) \leq 0$ we have by Lemma 5.1 that there are two spanning trees T_{1} and T_{2} with $w\left(T_{1}\right) \geq 0, w\left(T_{2}\right) \leq 0$ and $w\left(T_{1}\right)-w\left(T_{2}\right) \leq 2$. Hence, we can assume that $w\left(T_{1}\right)=1$ and $w\left(T_{2}\right)=-1$ otherwise we are done.

Consider some edge $e=(x, y)$ of T_{1} with weight 0 (notice that there must be such an edge since n is odd and $w\left(T_{1}\right)=1$) and consider the two disconnected components of $T_{1}-e$. Denote them by X and Y where $x \in X$ and $y \in Y$.

If there is some edge f with weight -1 connecting X and Y, then we are done since the spanning tree whose edge set is $\left(E\left(T_{1}\right)-e\right) \cup f$ has weight zero. Also notice that not all $|X| \cdot|Y|$ edges between X and Y have weight 0 otherwise there is a spanning tree all of whose edges are zero. Hence there is some edge f between X and Y having weight 1 .

Recall that $E\left(T_{2}\right)=\left(E\left(T_{1}\right)-r\right) \cup s$ where r is an edge with weight 1 and s is an edge with weight -1 . Without loss of generality, the two endpoints of r are both in X (otherwise the two endpoints are both in Y). Now, either the two endpoints of s are both in X and then the tree whose edge set is $\left(E\left(T_{2}\right)-e\right) \cup f$ has weight zero. Else, one endpoint of s is in X and the other is in Y, but this case (of an edge with weight -1 between X and Y) was already ruled out.

The following proposition shows that in any balanced $\{-1,0,1\}$-weighing of a tree one can still find a relatively large zero-sum subtree, although far from spanning.

Proposition 5.2 Let T be a tree and $f: E(T) \rightarrow\{-1,0,1\}$ such that $|w(f)| \leq q$. Then, there is a subtree T^{*} with $e\left(T^{*}\right) \geq(e(T)-q) /(q+1)$ which is zero-sum, and this is best possible.

Proof: We prove the proposition by induction of q. If $q=0$ the statement is trivially true. Assume we proved it for q and let's prove it for $q+1$. We may assume without loss of generality that $w(f)=q+1$ as the negative case is symmetric. A branch in T rooted at a vertex z is obtained by taking an edge (z, u) and all the subtree rooted at u. For a vertex $v \in T$ and a branch B with v as its root, let $e(B)$ denote the number of edges in B. Let B^{*} be a branch with root z with the property that $e\left(B^{*}\right)$ is minimal among all branches B of T with $w(B)>0$.

If B^{*} consists of a single edge (z, v), then v is a leaf and by the definition of B^{*} the weight of (u, v) is 1 . Thus, $T^{*}=T-v$ is a tree with $w\left(T^{*}\right)=q$. Hence by induction, there is a zero-sum subtree $T^{* *}$ of T^{*} with $e\left(T^{* *}\right) \geq\left(e\left(T^{*}\right)-q\right) /(q+1)=(e(T)-(q+1)) /(q+1)>(e(T)-(q+1)) /(q+2)$.

So we may assume that B^{*} is not a single edge. Let $e=(z, w)$ be the unique edge of B^{*} incident with w and notice that since w is not a leaf, each additional neighbor of w other than z defines a sub-branch of B^{*}. Denote them by B_{1}, \ldots, B_{r}. Now, $w\left(B_{i}\right)$ cannot be positive as this contradicts the minimality of B^{*}. If $w(e) \leq 0$, then since $w\left(B^{*}\right)>0$, this implies that there is some positive branch B_{i} again contradicting the minimality of B^{*}. Hence, it follows that $w(e)=1$. If there is a negative branch B_{i}, then again as $w\left(B^{*}\right)>0$ and $w(e)=1$, the sum of weights of all branches B_{1}, \ldots, B_{r} is non-negative, so there must be another branch B_{j} which is positive, contradicting the minimality of B^{*}. So, $w\left(B_{i}\right) \leq 0$ for $i=1, \ldots, r$. Hence we conclude that $\sum_{i=1}^{r} w\left(B_{i}\right)=0$ as there is no negative and no positive branches at w. So write $B^{* *}$ for the tree consisting of the union of B_{1}, \ldots, B_{r} and observe that $B^{* *}$ is a zero-sum subtree. If $e\left(B^{* *}\right) \geq(e(T)-(q+1)) /(q+2)$ we are done. Else set $T^{*}=T \backslash V\left(B^{* *}\right)$. From the above we infer that sum $w\left(T^{*}\right)=q$ (we lost just 1 for the edge (z, w)), and that $e\left(T^{*}\right)=e(T)-e\left(B^{* *}\right)-1$. By induction there is a zero-sum tree $T^{* *}$
with

$$
\begin{aligned}
e\left(T^{* *}\right) & \geq\left(e\left(T^{*}\right)-q\right) /(q+1) \\
& =\left(e(T)-e\left(B^{* *}\right)-q-1\right) /(q+1) \\
& >(e(T)-(e(T)-(q+1)) /(q+2)-(q+1)) /(q+1) \\
& =(e(T)-(q+1)) /(q+2)
\end{aligned}
$$

To see that the result is best possible consider the following example. Let P_{n} denote the path on n edges. Label the edges of P_{n} as follows. First take n such that $n-q=0 \bmod q+1$. Label the first $(n-q) /(q+1)$ edges on the path with zero and then take q blocks of the form 1 following $(n-q) /(q+1)$ zeros. The sum of the weights of the edges is q. the longest zero-sum path is $(n-q) /(q+1)$ and the total number of elements edges is $(n-q) /(q+1)+q((n-q) /(q+1)+1)=(q+1)(n-q) /(q+1)+q=n$.

6 Concluding remarks and open problems

The proof of Theorem 1.4 almost settles the question of existence or nonexistence of zero-sum copies of K_{k} for weighings with $\{-1,0,1\}$ with total weight zero. The only remaining cases left open are values of k of the form $k=4 d^{2}$ where $d \geq 2$ (so K_{16} is the first open case).

Problem 6.1 For $k=4 d^{2}$, is it true that for all n sufficiently large, any weighing $f: E\left(K_{n}\right) \rightarrow$ $\{-1,0,1\}$ with $w(f)=0$ contains a zero-sum copy of K_{k}.

Another open problem is to determine precisely all bipartite graphs that satisfy Corollary 4.2 for a given r. Many bipartite graphs fail to do so for simple divisibility reasons. For example, any bipartite graph with an odd number of edges fails already for $r=1$. However, the set of bipartite graphs that potentially satisfy Corollary 4.2 may be strictly larger than the set of r-good bipartite graphs.

In this paper we considered weighings of K_{n} which are close to balanced, trying to find subgraphs that are zero-sum or close to zero-sum. It would be interesting to consider weighing of other combinatorial structures that guarantee the existence of zero-sum or close to zero-sum substructures. For weighings of complete k-uniform hypergraphs, the results of Section 2 and 3 remain almost intact. In fact, the exact same proof of Theorem 1.1 can be reused to prove the following statement which generalizes it.

Proposition 6.2 Let H be a k-uniform hypergraph with n vertices and maximum degree Δ. Let $f: E\left(K_{n}^{k}\right) \rightarrow[-r, r]$ be an edge weighing with $|w(f)| \leq 2 r\binom{n-1}{k-1}$. Then, there is a copy of H in K_{n}^{k} with absolute weight at most $2 \Delta r$. Furthermore, if H is connected and $|w(f)| \leq 2 r\binom{n-1}{k-1}\left(1-\frac{1}{\Delta}\right)$, then there is a copy of H in K_{n}^{k} with absolute weight at most $2(\Delta-1) r$.

As Lemma 3.1 is only about integers, the proof of Theorem 1.2 can be analogously phrased for almost H-factors of complete hypergraphs, with some adjustments to the constants. We omit
the obvious details. Conversely, one may also wish to look at total balanced weighing of sparse structures.

References

[1] P. Balister, Y. Caro, C. Rousseau, and R. Yuster. Zero-sum square matrices. European Journal of Combinatorics, 23(5):489-497, 2002.
[2] A. Bialostocki and P. Dierker. Zero sum ramsey theorems. Congressus Numerantium, 70:119130, 1990.
[3] A. Bialostocki and P. Dierker. On zero sum ramsey numbers: multiple copies of a graph. Journal of Graph Theory, 18(2):143-151, 1994.
[4] B. Bollobás. Extremal Graph Theory. Academic Press, 1978.
[5] Y. Caro. A complete characterization of the zero-sum (mod 2) ramsey numbers. Journal of Combinatorial Theory, Series A, 68(1):205-211, 1994.
[6] Y. Caro. Zero-sum problems - a survey. Discrete Mathematics, 152(1):93-113, 1996.
[7] P. Erdős and T. Gallai. Graphs with given degrees of vertices. Mat. Lapok., 11:264-274, 1960.
[8] Z. Füredi and D. Kleitman. On zero-trees. Journal of Graph Theory, 16(2):107-120, 1992.
[9] S.L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph. SIAM Journal on Applied Mathematics, 10(3):496-506, 1962.
[10] V. Havel. A remark on the existence of finite graphs. Casopis Pest. Mat., 80:477-480, 1955.
[11] T. Kövari, V. Sós, and P. Turán. On a problem of k. zarankiewicz. Colloquium Math., 3:50-57, 1954.
[12] P. Radziszowski. Small ramsey numbers. The Electronic Journal of Combinatorics, DS1:1-50, 2011.
[13] A. Schrijver and P.D. Seymour. A simpler proof and a generalization of the zero-trees theorem. Journal of Combinatorial Theory, Series A, 58(2):301-305, 1991.

[^0]: *Department of Mathematics, University of Haifa at Oranim, Tivon 36006, Israel. E-mail: yacaro@kvgeva.org.il
 ${ }^{\dagger}$ Department of Mathematics, University of Haifa, Haifa 31905, Israel.
 E-mail: raphy@math.haifa.ac.il

