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Abstract

A sequence of positive integers a1 ≤ a2 ≤ . . . ≤ an is called an ascending monotone wave of

length n, if ai+1−ai ≥ ai−ai−1 for i = 2, . . . , n−1. If ai+1−ai > ai−ai−1 for all i = 2, . . . , n−1

the sequence is called an ascending strong monotone wave of length n. Let Zk denote the cyclic

group of order k. If k | n, then we define MW (n,Zk) as the least integer m such that for

any coloring f : {1, . . . ,m} → Zk there exists an ascending monotone wave of length n, where

an ≤ m, such that
∑n

i=1 f(ai) ≡ 0 mod k. Similarly, define SMW (n,Zk), where the ascending

monotone wave in MW (n,Zk) is replaced by an ascending strong monotone wave. The main

results of this paper are:

•
√
k
2 n ≤ MW (n,Zk) ≤ c1(k)n. Hence, this result is tight up to a constant factor which

depends only on k.

•
(
n
2

)
< SMW (n,Zk) ≤ c2(k)n2. Hence, this result is tight up to a constant factor which

depends only on k.

• MW (n,Z2) = 3n/2.

• 23
12n− 7/6 ≤MW (n,Z3) ≤ 2n + 3.

These results are the zero-sum analogs of theorems proved in [1] and [5].

AMS 1991 Mathematics subject classification: 05D10.
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1 Introduction

A sequence of positive integers a1 ≤ a2 ≤ . . . ≤ an is called an (ascending) monotone wave of

length n, if ai+1− ai ≥ ai− ai−1 for i = 2, . . . , n− 1. If ai+1− ai > ai− ai−1 for all i = 2, . . . , n− 1
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the sequence is called an (ascending) strong monotone wave of length n. In particular, every

arithmetic progression is a monotone wave. Alon and Spencer [1] and Brown, Erdös and Freedman

[5] considered the least positive integer t(n) such that in any coloring of the integers in the interval

[1, . . . , t(n)], using two colors, there is always a monochromatic monotone wave of length n. It is

shown in [1] that c1n
3 ≤ t(n) ≤ c2n

3 where c1 and c2 are some positive constants. Bollobás, Erdös

and Jin [4] considered monochromatic pairs of strong monotone waves of length 2, in a k-coloring

of the integers.

In the zero-sum direction, a theorem of Alon and Caro [2] states that in any coloring of the integers

1, . . . , 2n−1, where n is even, with the colors 0 and 1, there is an arithmetic progression a1, . . . , an,

such that
∑n

i=1 c(ai) ≡ 0 mod 2, where c(ai) is the color of ai. Another strongly related paper is

[8]. Motivated by these results and the recent trend in zero-sum Ramsey Theory (see, e.g. [3, 6, 7]),

we shall consider the zero-sum analogs of the above mentioned results.

Define MW (n,Zk) as the least integer m such that for any coloring f : {1, . . . ,m} → Zk, there exists

a monotone wave of length n with an ≤ m, such that
∑n

i=1 f(ai) ≡ 0 mod k. Define SMW (n,Zk) as

the least integer m such that for any coloring f : {1, . . . ,m} → Zk, there exists a strong monotone

wave of length n with an ≤ m, such that
∑n

i=1 f(ai) ≡ 0 mod k. Finally, define W (n,Zk) as

the least integer m such that for any coloring f : {1, . . . ,m} → Zk, there exists an arithmetic

progression of length n with an ≤ m, such that
∑n

i=1 f(ai) ≡ 0 mod k. The purpose of this paper

is to investigate these three functions. As usual in zero-sum theory, we shall assume that k ≥ 2

and that k divides n. Our main results determine the asymptotic behavior of MW (n,Zk) and

SMW (n,Zk), for fixed k. It turns out that MW (n,Zk) is a linear function of n, and SMW (n,Zk)

is a quadratic function of n. In case k = 2, MW (n,Z2) is determined precisely, and in case k = 3,

tight upper and lower bound are determined. For W (n,Zk), a quadratic lower bound is determined

for fixed k ≥ 3. We summarize these results in the following theorems:

Theorem 1.1
√
k
2 n ≤MW (n,Zk) ≤ cn, where c = c(k) is a constant depending only on k.

Note that for fixed k, Theorem 1.1 is best possible up to a constant factor.

Theorem 1.2 SMW (n,Zk) ≤ cn2, where c = c(k) is a constant depending only on k.

Note that for fixed k, Theorem 1.2 is best possible up to a constant factor, as any strong monotone

wave of length n has an ≥ n(n− 1)/2 + 1. Thus, SMW (n,Zk) ≥ n(n− 1)/2 + 1.

Theorem 1.3 MW (n,Z2) = 3n/2, 23
12n− 7/6 ≤MW (n,Z3) ≤ 2n + 3.

Theorem 1.4 W (n,Zk) ≥ n2(1 − o(1)) whenever k ≥ 3. Furthermore, if n + 1 is a prime,

W (n,Zk) ≥ n2.
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The last theorem should be compared with the aforementioned theorem of Alon and Caro, showing

that W (n,Z2) = 2n− 1.

The rest of this paper is organized as follows. In section 2 we prove the upper and lower bounds for

MW (n,Zk) and SMW (n,Zk), namely Theorems 1.1 and 1.2. In Section 3 we focus on monotone

waves in Z2 and Z3 and prove Theorem 1.3. Arithmetic progressions and Theorem 1.4 are dealt

with in Section 4. The final section contains some concluding remarks and open problems.

2 Upper bounds for MW (n, Zk) and SMW (n, Zk)

We begin this section by proving the lower bound in Theorem 1.1. Clearly, MW (n,Zk) ≥ n.

However, the lower bound of Theorem 1.1, which is
√
kn/2, shows that no absolute multiple of n

can bound MW (n,Zk) for general k:

Proof that MW (n,Zk) ≥
√
kn/2: Let m = b

√
k − 1c. Let x = b(n−m)/2c. Consider the coloring

f : [1, . . . , (m + 1)x + m2]→ Zk defined by f((x + m)i + j) = 0 for i = 0, . . . ,m and j = 1, . . . , x,

and otherwise f = 1, That is, f assigns x consecutive zeroes followed by m consecutive ones,

followed by x consecutive zeroes, and so forth. We claim that there is no zero-sum monotone wave

of length n, in the defined interval. Indeed, if a1, . . . , at is a zero-sum monotone wave, then we

shall show that t < n. To see this, we note first that there are exactly m2 integers in the interval

[1, . . . , (m+1)x+m2] which are assigned 1 by f . Since m2 < k it follows that f must be constantly

zero on any zero-sum monotone wave. In particular, f(ai) = 0 for i = 1, . . . , t. If t ≤ x we are

done since x < n. Otherwise, the definition of f implies that there must be some j ≤ x, such that

aj+1 − aj ≥ m + 1. The monotonicity now implies that aj+p − aj ≥ p(m + 1) for p = 1, . . . , t− j.

Thus, at − aj ≥ (t− j)(m + 1) and therefore

t ≤ t− j + x ≤ at − aj
m + 1

+ x <
at

m + 1
+ x ≤ (m + 1)x + m2

m + 1
+ x < 2x + m ≤ n

as required. It follows that MW (n,Zk) ≥ (m + 1)x + m2 + 1 ≥
√
kn/2.

We now prove the upper bounds for both MW (n,Zk) and SMW (n,Zk), thereby completing

the proofs of Theorems 1.1 and 1.2. Although the claimed upper bounds in both theorems

are different, the proofs are similar. Before we proceed with the proof we need two defini-

tions. Let MW (n,Zk, s) (SMW (n,Zk, s)) be the least integer m, such that for any coloring

f : {1, . . . ,m} → Zk, using only s colors from Zk, there exists a zero-sum (strong) monotone wave

of length n. Clearly, MW (n,Zk, 1) = n, SMW (n,Zk, 1) =
(n
2

)
+ 1, MW (n,Zk, k) = MW (n,Zk),

SMW (n,Zk, k) = SMW (n,Zk). The following lemma establishes a relation between MW (n,Zk, s)

and MW (n,Zk, s + 1), and between SMW (n,Zk, s) and SMW (n,Zk, s + 1).
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Lemma 2.1 If n ≥ k2 is divisible by k then

MW (n,Zk, s + 1) ≤
(

(k − 1)(s + 1) + 1

2

)
MW (n,Zk, s) + n− (k − 1)(s + 1).

SMW (n,Zk, s + 1) ≤
(

(k − 1)(s + 1) + 1

2

)
SMW (n,Zk, s) +

(
n− (k − 1)(s + 1) + 1

2

)
+ 1.

Proof: Put x = MW (n,Zk, s) (x = SMW (n,Zk, s) for the strong monotone wave case). Put

q = (k − 1)(s + 1) and put y =
(q+1

2

)
x + n − q (y =

(q+1
2

)
x +

(n−q+1
2

)
+ 1 in the strong case).

Consider f : [1, . . . , y] → Zk where f(j) ∈ S, and S = {u0, . . . , us} is an s + 1-subset of Zk. We

must prove that there is a (strong) monotone wave of length n which is zero-sum. For i = 0, . . . s,

let (in the non-strong case) ri = |{j : f(j) = ui , j ≤ n − q}| be the number of times f assigns

ui to integers in the interval [1, n− q]. In the strong case, let ri be the number of times f assigns

ui to members of the sequence
(j
2

)
+ 1 for j = 1, . . . , n− q. Let 0 ≤ ti ≤ k − 1 be selected so that

ti + ri ≡ 0 mod k. Now, define p = q −
∑s

i=0 ti. Clearly, p ≥ 0. Since
∑s

i=0 ri = n − q and since

k | n, it follows that k | p. Clearly, in the non-strong case,

(
n−q∑
j=1

f(j)) + (
s∑

i=0

ui · ti) + p · u0 =
s∑

i=0

ui(ri + ti) + p · u0 ≡ 0 mod k.

In the strong case we similarly have

(
n−q∑
j=1

f(

(
j

2

)
+ 1)) + (

s∑
i=0

ui · ti) + p · u0 =
s∑

i=0

ui(ri + ti) + p · u0 ≡ 0 mod k.

Thus, if we can find a strong monotone wave a1, . . . , aq of length q = p +
∑s

i=0 ti in the interval

[n − q + 1, y] (or in the interval [
(n−q+1

2

)
+ 1, y] in the strong case) having ti elements colored by

ui, for i = 1, . . . , s, and t0 + p elements colored by u0, and such that a1 − (n − q) < a2 − a1,

(a1−
(n−q

2

)
− 1 < a2−a1 in the strong case) then extending the interval [1, . . . , n− q] (or extending

the sequence
(j
2

)
+ 1 for j = 1, . . . , n− q in the strong case) with this wave, we obtain a monotone

wave (strong monotone wave) of length n which is zero-sum. We will show that such a (strong)

monotone wave exists, under the assumption that the interval [n− q + 1, y] contains no monotone

wave (strong monotone wave) of length n which is zero-sum (and we can assume the latter, since

otherwise we are done).

We shall construct a1, . . . , aq such that the first p+ t0 elements are colored u0, the next t1 elements

are colored u1, and so on, the last ts elements are colored us. Indeed, a1 can be found in the interval

[n− q + 1, n− q + x], (or in the interval [
(n−q+1

2

)
+ 1,

(n−q+1
2

)
+ x] in the strong case) since all s+ 1

colors appear in this interval, otherwise, by the definition of x, there would have been a zero-sum
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(strong) monotone wave of length n. Having determined a1, we can similarly find a2 in the interval

[2a1 − (n− q) + 1, 2a1 − (n− q) + x] (or [2a1 −
(n−q

2

)
+ 2, 2a1 −

(n−q
2

)
+ x + 1] in the strong case).

Note that this guarantees a2 − a1 > a1 − (n− q) (or a2 − a1 > a1 −
(n−q

2

)
− 1 in the strong case),

maintaining (strong) monotonicity. Now a3 can be found in the interval [2a2−a1 + 1, 2a2−a1 +x],

and so forth, where in the end aq can be found in the interval [2aq−1 − aq−2 + 1, 2aq−1 − aq−2 + x].

Note that by this construction we get that aj ≤ x ·
(j+1

2

)
+ (n− q), (or aj ≤ x ·

(j+1
2

)
+
(n−q+1

2

)
+ 1)

as can be seen by induction from the fact that aj+1−aj ≤ aj−aj−1 +x. Since y = x
(q+1

2

)
+(n−q),

(and y = x
(q+1

2

)
+
(n−q+1

2

)
+ 1 in the strong case) our construction can be completed. 2

The following corollary is immediate from Lemma 2.1, since

MW (n,Zk, s + 1) ≤MW (n,Zk, s)

(
(k − 1)(s + 1) + 1

2

)
+ n− (k − 1)(s + 1) ≤ k4MW (n,Zk, s).

Similarly, SMW (n,Zk, s + 1) ≤ k4SMW (n,Zk, s).

Corollary 2.2 If n ≥ k2 then MW (n,Zk) < k4kn and SMW (n,Zk) < k4kn2.

In case n ≤ k2 we trivially have MW (n,Zk) ≤ c(k) and SMW (n,Zk) ≤ c(k) where c(k) is an

appropriately chosen constant since in this case, MW (n,Zk) and SMW (n,Zk) are only functions

of k, bounded by the Van der Waerden constant. This completes the proof of Theorems 1.1 and

1.2. 2

The constant c(k) = k4k which appears in the upper bounds for MW (n,Zk) and SMW (n,Zk) can

be significantly improved when k is prime. We will show how to obtain MW (n,Zk) ≤ k2n (a similar

proof shows that SMW (n,Zk) ≤ k2n2). Consider a coloring f : [1, . . . , k2n]→ Zk. Let 0 ≤ t ≤ k−1

be chosen such that
∑n−1

i=k ≡ t mod k. For j = 1, . . . , k, let Ij = [(j2 − j + 1)n, (j2 − j + 2)n − 1].

These k intervals are disjoint and if we select an element from each interval we obtain a monotone

wave of length k. If f is constant on some Ij , then Ij is a zero-sum monotone wave. Assume,

therefore, that Aj = {f(aj), f(bj)} where {aj , bj} ⊂ Ij and f(aj) 6= f(bj). Applying the Cauchy-

Davenport theorem (see, e.g., [9, 10]) to the sets Aj j = 1, . . . , k (here we use the fact that k is

prime), we can obtain k integers m1, . . . ,mk such that mj ∈ {aj , bj} and
∑k

i=1 f(mi) ≡ −t mod k.

Thus, k, k + 1, . . . , n− 1,m1, . . . ,mk is a zero-sum monotone wave of length n.

3 Zero-sum waves in Z2 and Z3

In this section we prove Theorem 1.3, which determines MW (n,Z2), and provides a very tight

bound for MW (n,Z3). We shall begin with the easier case:

Determining MW (n,Z2): Since Zk = Z2 in this case, we are interested only in the case where

n is even. A lower bound of 3n/2 is established as follows. Put n = 2m, and consider the interval
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[1, . . . , 3m − 1] with the coloring f which is zero everywhere except for f(m + 1) = 1. Clearly,

any monotone wave with length t satisfying
∑t

i=1 f(ai) ≡ 0 mod 2 cannot include the element

m + 1. Thus, if a1 > m + 1 we must have t ≤ 2m − 2, and if a1 < m + 1 we must have

t ≤ m+ (2m− 2)/2 = 2m− 1. In any case t ≤ 2m− 1 = n− 1, showing MW (n,Z2) ≥ 3m = 3n/2.

We now prove the upper bound. Let n = 2m and consider a fixed Z2-coloring f of the interval

[1, . . . , 3m]. Let b =
∑2m−1

i=1 f(ai) mod 2. Consider first the case b = 1. If f(i) = 1 for some

2m ≤ i ≤ 3m we are done, since the sequence {1, . . . , 2m− 1, i} has even sum, and is a monotone

wave of length n. Thus, we assume f(i) = 0 for all 2m ≤ i ≤ 3m. Let j be the largest index having

f(j) = 1. If j ≤ m we are done since the sequence {m+1, . . . , 3m} has zero sum, and is a monotone

wave of length n. We may therefore assume j ≥ m + 1. Clearly,
∑j−1

i=1 f(ai) mod 2 = b − 1 = 0.

Thus, the sequence {1, . . . , j − 1, j + 1, . . . , 4m− j + 1} has even sum, and is a monotone wave of

length n. Note that the sequence is within the interval bounds since 4m− j + 1 ≤ 3m.

Now consider the case b = 0. By defining the coloring g(i) = 1 − f(i) we now have a coloring

satisfying
∑2m−1

i=1 g(ai) mod 2 ≡ b + (2m − 1) mod 2 = 1. According to the previous arguments,

there is a monotone wave of length n with zero sum, with respect to g. The same sequence has

zero sum with respect to f , since n is even.

A tight bound for MW (n,Z3) We start with a lower bound for MW (n,Z3). We wish to prove

that MW (n,Z3) ≥ 23
12n − 7/6. The case n = 3 is therefore trivial, so we may assume n ≥ 6 is

divisible by 3. Let x and y be two positive integers satisfying 1 < y < x < n, and having different

parity. Put

z = min{n + x− 1, 2y − x + 2n− 1,−x/2− 3y/2 + 3n− 1/2}.

Consider the coloring f : [1, . . . , z]→ Z3 which satisfies f(x) = f(y) = 1 and f(i) = 0 for i /∈ {x, y}.
We now show that there is no monotone wave of length n whose sum (w.r.t f) is divisible by 3.

Consider any monotone wave T = {a1, . . . , at} satisfying
∑t

i=1 f(ai) ≡ 0 mod 3. Clearly, x and y

do not belong to T . We distinguish three cases:

1. If a1 > x then t < n since z < x + n.

2. If x > a1 > y, (possible only if x−y > 1), then there are at most x−a1 members of T smaller

than x, and the remaining members of T are greater than x, and have difference at least 2

between each other. Thus, either t ≤ x− a1 ≤ x < n, or at ≥ 2(t− (x− a1)) + x− 1. Since

at ≤ z ≤ 2y − x + 2n− 1 it follows that 2y − x + 2n− 1 ≥ 2t− x + 2a1 − 1 ≥ 2t− x + 2y + 1

which implies t ≤ n− 1.

3. If a1 < y there are at most y − a1 members of T smaller than y. Since x − y is odd, there

are at most (x− y − 1)/2 members of T between x and y, since the difference between these
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elements is at least 2. Furthermore, since x− y is odd, the gap between any two elements of

T which are larger than x (if there are any) is at least 3. Thus, either t < n or

at ≥ 3(t− (y − a1)− (x− y − 1)/2) + x− 2 = 3t− 3y/2 + 3a1 − x/2− 1/2.

Since at ≤ z ≤ −x/2− 3y/2 + 3n− 1/2 it follows that

−x/2− 3y/2 + 3n− 1/2 ≥ 3t− 3y/2 + 3a1 − x/2− 1/2 ≥ 3t− 3y/2 + 5/2− x/2

which implies t ≤ n− 1.

In all cases, t ≤ n−1. Thus, there is no monotone wave of length n whose sum (w.r.t f) is divisible

by 3, which means MW (n,Z3) ≥ z + 1. It now remains to choose x and y in order to maximize

z, under the constraint that 1 < y < x < n and x− y is odd. If we did not insist that x and y be

integers, we can take x = (11n− 2)/12 and y = (5n + 4)/12, giving

z = min{23n/12− 7/6, 23n/12− 1/6, 23n/12− 11/12} = 23n/12− 7/6

Since y must be an integer, we can round (5n + 4)/12 to the closest integer, and if this number is

odd, round (11n− 2)/12 to the closest even integer, or otherwise to the closest odd integer. Note

that these adjustments change y by at most 1/2 and x by at most 1, thus the three expressions

whose minimum defines z are reduced to give

z = min{23n/12− 13/6, 23n/12− 13/6, 23n/12− 13/6} = 23n/12− 13/6.

Hence, MW (n,Z3) ≥ 23n/12− 7/6, as required.

We now prove the claimed upper bound for MW (n,Z3). Fix a coloring f : [1, . . . , 2n + 3] → Z3.

We must show that there exists a monotone wave of length n whose sum is divisible by 3. Let

x ≡
∑n−1

i=1 f(i) mod 3, where 1 ≤ x ≤ 3. Put c = 3− x. If f(t) = c for some n ≤ t ≤ 2n + 3 we are

done since in this case 1, 2, . . . , n − 1, t is the desired monotone wave. We may therefore assume

that f(j) 6= c for j = n, . . . , 2n + 3. We may also assume that f is not constant on the interval

[n, 2n + 3] since in this case we have, e.g. that n, . . . , 2n − 1 is a zero-sum monotone wave. In

particular, we may assume f(n) 6= f(t), where t > n is maximum possible.

Put b ≡
∑n−2

i=1 f(i) mod 3, where 0 ≤ b ≤ 2. If b = c we are done since we can take the sequence

1, . . . , n − 2, n, t which has sum c + f(n) + f(t) mod 3 and this is the sum of three distinct values

mod 3, and hence divisible by 3. The only problem is when t = n + 1, but the maximality of t

implies that in this case f(n+ 1) 6= f(n+ 4) = f(n), and then the sequence 1, . . . , n−2, n+ 1, n+ 4

is monotone, and its sum is divisible by 3. We may now assume b 6= c.
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Let 0 ≤ a ≤ 2, where a 6= b and a 6= c. This uniquely determines a. Let r ≥ n be the minimal

integer satisfying f(r) = b, and let s ≥ n be the maximal integer satisfying f(s) = b. r and s exist

since f is not constant on [n, . . . , 2n+3] and does not get the value c in this interval. Clearly, r ≤ s,

and we can also assume that r ≤ 2n− 1 since otherwise f has the constant value a on the interval

n, . . . , 2n − 1, and this is a zero-sum monotone wave. Similarly, we can assume s ≥ n + 4, since

otherwise f has constant value a on the interval n + 4, . . . , 2n + 3. We distinguish the following

cases, where each case assumes that the cases above it do not hold:

1. r = n. In this case the sequence 1, . . . , n− 2, n, s is monotone, and has sum b+ f(n) + f(s) =

b + b + b ≡ 0 mod 3.

2. r = s. Since the previous case does not hold we must have f(n) = a. If f is constantly a on

[1, . . . , n] we are done. Otherwise, let t < n be maximal having f(t) 6= a. We distinguish the

following subcases:

(a) f(t) = c and r− t ≤ n−1. In this case we take the monotone wave t, . . . , r−1, r, . . . , t+

n − 1 in which the value of f is a on all elements except f(t) = c and f(r) = b. Thus,

the sum is a(n− 2) + b + c ≡ 0 mod 3.

(b) f(t) = c and r− t > n− 1. In this case we take the monotone wave t, . . . , t+ n− 2, r in

which the value of f is a on all elements except f(t) = c and f(r) = b. Thus, the sum

is a(n− 2) + b + c ≡ 0 mod 3.

(c) f(t) = b, t < n/2, and r − t > n. In this case we can take the monotone wave

t + 1, . . . , t + n in which the value of f is constantly a.

(d) f(t) = b, t < n/2, and r − t ≤ n. In this case we can take the monotone wave

t + 1, . . . , r − 1, r + 1, . . . , 2n− r + 2t + 1 in which the value of f is constantly a. Note

that 2n− r + 2t + 1 ≤ 2n + 3, so the wave is within bounds.

(e) f(t) = b and t ≥ n/2. Let us denote u = 2b+ (n− t−1)a mod 3, v = b+ (n− t)a mod 3,

w = (n − t + 1)a mod 3. Clearly, u, v, w are all distinct mod 3. Assume first that∑t−1
i=1 f(i) + u ≡ 0 mod 3. In this case the monotone wave 1, . . . , n − 1, r has sum∑t−1
i=1 f(i) + b + (n − t − 1)a + b ≡ 0 mod 3. If

∑t−1
i=1 f(i) + v ≡ 0 mod 3, the monotone

wave 1, . . . , n has sum
∑t−1

i=1 f(i) + b + (n − t)a ≡ 0 mod 3. Finally, if
∑t−1

i=1 f(i) + w ≡
0 mod 3, we must again consider two subcases. If r and t have the same parity, or if

2n − t + 1 < r we can take the monotone wave 1, . . . , t − 1, t + 1, t + 3, . . . , 2n − t + 1.

This sequence does not include r and has sum
∑t−1

i=1 f(i) + (n − t + 1)a ≡ 0 mod 3.

If r and t have different parity and 2n − t + 1 ≤ r we can take the monotone wave
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1, . . . , t− 1, t + 1, . . . , r − 2, r + 1, r + 4, . . . , 3n− r/2− 3t/2 + 5/2. This sequence does

not include r and has sum
∑t−1

i=1 f(i) + (n− t + 1)a ≡ 0 mod 3. However, we must show

that 3n− r/2− 3t/2 + 5/2 ≤ 2n + 3, which is equivalent to n ≤ (r + 3t + 1)/2, and this

holds since t ≥ n/2 and r ≥ n.

3. r + 1 = s. Once again, there are three subcases:

(a)
∑r−1

i=r−n+2 f(i) ≡ b mod 3. In this case the sequence r−n+ 2, . . . , r− 1, r, r + 1 has sum

b + b + b ≡ 0 mod 3.

(b)
∑r−1

i=r−n+2 f(i) ≡ a mod 3, and r ≤ 2n− 2. In this case the sequence r − n + 2, . . . , r −
1, r + 2, r + 5 has sum a + a + a ≡ 0 mod 3.

(c)
∑r−1

i=r−n+2 f(i) ≡ a mod 3, and r > 2n− 2. Note that since we always assume r ≤ 2n− 1

we must have r = 2n − 1. In this case f has constant value a on the monotone wave

n, . . . , 2n− 2, 2n + 1.

(d)
∑r−1

i=r−n+2 f(i) ≡ c mod 3. In this case the sequence r−n+ 2, . . . , r− 1, r, r + 2 has sum

c + b + a mod 3.

4. r + 1 < s. The subcases are:

(a)
∑r−2

i=r−n+1 f(i) ≡ c mod 3. In this case the sequence r−n+ 1, . . . , r− 2, r− 1, r has sum

c+ f(r− 1) + f(r) = c+ a+ b ≡ 0 mod 3. (We have used here the fact that Case 1 does

not hold, and thus r > n, which means r − 1 ≥ n, and hence f(r − 1) = a).

(b)
∑r−2

i=r−n+1 f(i) ≡ b mod 3. In this case the sequence r − n + 1, . . . , r − 2, r, s has sum

b + b + b ≡ 0 mod 3.

(c)
∑r−2

i=r−n+1 f(i) ≡ a mod 3. If there exists j > r with f(j) = a, the monotone wave

r − n + 1, . . . , r − 2, r − 1, j has sum a + f(r − 1) + f(j) = a + a + a ≡ 0 mod 3.

Otherwise, we have that f(j) = b for all j ≥ r. If r ≤ n+ 4 we have the monotone wave

r, . . . , r + n − 1 in which f is constantly b, and hence it is zero-sum. If r > n + 4 we

know that f(r − 2) = f(r − 1) = a. This means that the pairs (r − 2, r − 1), (r − 2, r)

and (r, r + 3) have sums a + a, a + b and b + b respectively, and these sums are distinct

mod 3. Thus, the monotone wave r − n, . . . , r − 3 of length n − 2 can be continued by

one of the three pairs to obtain a monotone wave of length n which is zero-sum.

This proves MW (n,Z3) ≤ 2n + 3, and completes the proof of Theorem 1.3. 2
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4 Zero-sum arithmetic progressions

Arithmetic progressions are a special case of monotone waves. Although W (n,Z2) = 2n − 1 is

completely determined, almost nothing is known about W (n,Zk) where k ≥ 3. Theorem 1.4

provides a quadratic (Ω(n2)) lower bound of for all k ≥ 3:

Proof of Theorem 1.4: Let p be the largest prime not exceeding n. We will show that W (n,Zk) ≥
p(n−1)+1. Since for n ≥ 2 there is always a prime between (n+1)/2 and n, and if n is sufficiently

large there is a prime between n− n3/5 and n [11], it follows that W (n,Zk) ≥ n2(1− o(1)).

Consider the coloring f : [1, . . . , p(n − 1)] → Zk which is defined by f(j) = 1 if j ≡ 0 mod p, and

f(j) = 0 otherwise. We will show that there is no arithmetic progression of length n whose sum

is divisible by k. Let a1, . . . , an be an arithmetic progression. Thus, ai = a1 + (i − 1)d, for some

1 ≤ d ≤ p − 1. (Note that if d ≥ p, then an would be out of bounds). We now show that if

1 ≤ i < j ≤ n and j − i 6= p, then ai 6= aj mod p. To see this, note that aj − ai = (j − i)d and

(j− i)d is not a multiple of p as p is prime and d ≤ p−1 and j− i 6= p , and j− i < 2p, since n ≤ 2p.

It follows that for every t = 1, . . . , p, there exists an i such that ai ≡ t mod p, and if i + p ≤ n,

then also ai+j ≡ t mod p. Thus,
∑n

i=1 f(ai) = 1 or
∑n

i=1 f(ai) = 2. In any case, since k ≥ 3, f is

not zero-sum.

In case n + 1 is a prime, we can strengthen Theorem 1.3. by selecting p = n + 1, and defining

f : [1, . . . , n2−1]→ Zk as follows: f(i) = 1 if i ≡ 0 mod p or i ≡ −1 mod p and f(i) = 0 otherwise.

Now one obtains that for every arithmetic progression a1, . . . , an, any two elements are distinct

mod p, thus the sum of the sequence is either 1 or 2, and thus, not zero-sum. Hence W (n,Zk) ≥ n2

if n + 1 is a prime. 2

5 Concluding remarks and open problems

1. Although Theorem 1.1 shows that, for fixed k, MW (n,Zk) is a linear function of n, it is still

interesting to determine the correct constant, which depends on k. Theorem 1.3 states that

for k = 2 the constant is 3/2, and for k = 3 the constant is at least 2 − 1
12 and at most 2.

For k > 3 we only have the lower bound
√
k/2 and the upper bound k4k, unless when k is a

prime in which case the upper bound is improved to k2. We conjecture that the constant for

the upper bound is less than k2 for all k.

2. Similar questions to the ones asked in the preceding paragraph are also valid for SMW (n,Zk).

Theorem 1.2 shows that, for fixed k, SMW (n,Zk) is a quadratic function of n. A proof

that SMW (n,Z2) =
(n+1

2

)
is known, although it uses different tools, and will be presented
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elsewhere. However, unlike MW (n,Z3), we do not know of similar tight upper and lower

bounds for SMW (n,Z3). Furthermore, Theorem 1.1 provides a
√
k/2 lower bound for the

constant which multiplies n in MW (n,Zk). We do not know how to prove a lower bound

with a similar constant multiplying n2 in SMW (n,Zk).

3. Using a computer, we know that MW (3, Z3) = 7, MW (6, Z3) = 13, MW (9, Z3) = 18,

MW (12, Z3) = 23 and MW (15, Z3) = 29. We conjecture that MW (n,Z3) ≤ 23n/12 +

C where C is some absolute (small) number. We have also computed MW (4, Z4) = 13,

MW (8, Z4) = 21, MW (5, Z5) = 21, SMW (3, Z3) = 9 and SMW (6, Z3) = 27.

4. The proof of Theorem 1.4 provides a quadratic lower bound for W (n,Zk), in case k ≥ 3. We

do not know of any polynomial upper bound for this function. In particular, is it true that

W (n,Zk) = O(nk)? By using a computer we have W (3, Z3) = 9 and W (6, Z3) = 36. In view

of Theorem 1.4 it is plausible to conjecture that W (n,Z3) = n2.
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