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Abstract

For a graph G, let V ar(G) denote the variance of the degree sequence of G, let sq(G) denote the

sum of the squares of the degrees of G, and let t(G) denote the number of triangles in G and in

its complement. The parameters are related by: V ar(G) = sq(G)/n− d2 where d is the average

degree of G, and t(G) =
(
n
3

)
+ sq(G)/2−m(n− 1). Let V ar(n) denote the maximum possible

value of V ar(G) where G has n vertices, and let sq(n,m) and t(n,m) denote the maximum

possible values of sq(G) and t(G), respectively, where G has n vertices and m edges. We present

a polynomial time algorithm which generates all the graphs with n vertices and m edges having

sq(G) = sq(n,m) and t(G) = t(n,m). This extends a result of Olpp which determined t(n,m).

We also determine V ar(n) precisely for every n, and show that

V ar(n) =
q(q − 1)2

n
(1− q

n
) =

27

256
n2 −O(n),

where q = [3n/4], (if n ≡ 2 mod 4 the rounding is up) thereby improving upon previous results.

1 Introduction

All graphs considered here are finite, undirected, and have no loops or multiple edges. For the

standard graph-theoretic notations the reader is referred to [2]. For a graph G = (V,E), let sq(G)

denote the sum of squares of the degrees of G, namely sq(G) =
∑
v∈V dv

2, where dv denotes the

degree of vertex v. The variance of G, denoted V ar(G), is the second central moment, or variance,

of the degrees of G, namely V ar(G) = 1
n

∑
v∈V (dv − d)2 where d = 2|E|/n is the average degree.

It is a routine exercise to show that:

V ar(G) =
sq(G)

n
− d2. (1)

Thus, if G1 and G2 are two graphs with the same number of vertices and the same number of edges,

then V ar(G1) > V ar(G2) if and only if sq(G1) > sq(G2).

The definitions of V ar(G) and sq(G) raise the following two extremal combinatorial problems:

∗Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: zeac603@uvm.haifa.ac.il
†Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: raphy@math.tau.ac.il

1



1. Determine V ar(n), the maximum possible variance of a graph with n vertices.

2. Determine sq(n,m) the maximum possible value of sq(G) where G is a graph with n vertices

and m edges. (By (1) this is also the maximum possible variance of a graph with n vertices

and m edges. Also note that, trivially, sq(n) = maxm sq(n,m) = n(n − 1)2 by considering

Kn).

Note that, by (1) we have that

V ar(n) = max
0≤m≤(n2)

sq(n,m)

n
− 4

m2

n2
. (2)

The function sq(n,m) is related to the Ramsey-type problem of determining t(n,m), the maximum

number of monochromatic triangles in an m edge-coloring of Kn (an m edge-coloring of Kn is a

red-blue coloring in which precisely m edges are colored red). It is not difficult to show (see Lemma

2.2 in the next section) that

t(n,m) =

(
n

3

)
+
sq(n,m)

2
−m(n− 1). (3)

The functions sq(G), sq(n,m) and t(n,m) have been considered by several researchers. Some

results on sq(G) consider G to be restricted to some family of graphs, such as planar and outerplanar

graphs [9, 4]. In fact, in [9] it is proved that sq(G) ≤ 2n2 + 12n − 44 when G is a planar graph

with n vertices, and that this result is sharp. Thus, by (1), V ar(G) ≤ 2n − 24 + 100/n − 144/n2

whenever G is a maximal planar graph with n vertices, and this is sharp. Several results give upper

bounds on sq(G) for general graphs. Székely, Clark and Entringer [8] have proved that if the degree

sequence of G is d1, . . . , dn then

sq(G) ≤ (
√
d1 + . . .+

√
dn)2. (4)

By applying Cauchy-Schwarz, it follows from their result that sq(n,m) ≤ 2mn and, consequently,

V ar(n) ≤ n2/4. An improvement upon the value of sq(n,m) was obtained by de Caen [3], who

proved that for n ≥ 2,

sq(n,m) ≤ m(
2m

n− 1
+ n− 2). (5)

This result yields V ar(n) ≤ (n− 1)(n− 2)/8. The inequalities (4) and (5) are incomparable since

it is easy to construct graphs for which (4) is better than (5), and vice versa. Note however, that

(5) is always less than 2mn (unless m = 0) and thus, (5) is a better bound for sq(n,m). Another

relevant paper, which generalizes the results of de Caen is [5]. Goodman [6] has made a conjecture

about t(n,m). This conjecture has been proved by Olpp [7], which determined t(n,m), and also
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determines at least one m edge-coloring of the edges of Kn which has t(n,m) monochromatic

triangles. It follows from Olpp’s result, and from (3) that sq(n,m) is also determined and that

one can always generate a graph G with n vertices and m edges having sq(G) = sq(n,m). Olpp’s

result, however, does not determine the set of all non-isomorphic m edge-colorings of Kn with

t(n,m) monochromatic triangles (in fact, it determines at most two non-isomorphic colorings).

Our first result in this paper is a polynomial time algorithm which generates all non-isomorphic

m edge-colorings with t(n,m) monochromatic triangles. In fact, we determine all graphs G with n

vertices and m edges having sq(G) = sq(n,m):

Theorem 1.1 Let F (n,m) denote the set of all graphs G with n vertices and m edges having

sq(G) = sq(n,m). The set of all graphs in F (n,m) can be computed in O(|F |n2) time.

Note that by coloring the edges of G ∈ F (n,m) red, and the edges of G (the complement of G)

blue, we get by (3) an m edge-coloring coloring of Kn with t(n,m) monochromatic triangles. Thus,

F (n,m) also determines all non-isomorphic m edge-colorings of Kn with t(n,m) monochromatic tri-

angles. It is interesting to note that the set F (n,m) may contain several non-isomorphic graphs. For

example, running the algorithm for n = 9 and m = 18 we obtain sq(9, 18) = 192 and F (9, 18) con-

sisting of exactly six graphs whose degree sequences are: (0, 0, 3, 5, 5, 5, 6, 6, 6), (2, 2, 2, 3, 3, 3, 5, 8, 8),

(0, 3, 3, 3, 3, 3, 7, 7, 7), (1, 1, 1, 5, 5, 5, 5, 5, 8), (0, 0, 4, 4, 4, 6, 6, 6, 6) and (2, 2, 2, 2, 4, 4, 4, 8, 8) (it is triv-

ial to reconstruct each of these graphs from the degree sequences). However, as can be seen from

Olpp’s Theorem (stated in Lemma 2.1 in the next section) his proof only yields the first two

constructions.

Our motivation to further introduce V ar(G) and V ar(n) is the recent paper of Albertson [1] who

dealt with certain ways to measure how far a graph is from being a regular graph. He introduced

(with relation to a certain Ramsey type problem) the parameter irr(G), called the irregularity of

G, defined by
∑
|dx − dy| where the sum is taken over all edges (x, y) of G. It is proved in [1]

that for every graph with n vertices, irr(G) ≤ 4n2/27. Clearly, if G is regular then irr(G) = 0.

However, the converse is not true, as can be seen from graphs with regular connected components

of different degrees. Also, it is not true that irr(G) = irr(G) where G is the complement of G.

With these facts in mind, V ar(G) seems a natural parameter to measure the irregularity of graphs

and it is easy to see that:

1. V ar(G) = V ar(G).

2. V ar(G) = 0 if and only if G is regular.

By utilizing Olpp’s result, together with (3), some calculus, and a symmetry argument, we are

able to determine V ar(n), and two n-vertex graphs G with V ar(G) = V ar(n):
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Theorem 1.2

V ar(n) =
q(q − 1)2

n
(1− q

n
)

Where q = [3n/4], (in case n = 2 mod 4 the rounding is up). The n-vertex graph G consisting of

a Kq and n− q isolated vertices, has V ar(G) = V ar(n), and thus V ar(G) = V ar(n) as well (For

n > 1 G and G differ).

The rest of this paper contains the proofs of Theorems 1.1 and 1.2 in the next section, as well

as the proof of (3) and some concluding remarks and open problems in the final section.

2 Proof of the main results

We begin this section by describing Olpp’s result concerning the number of Monochromatic triangles

in an m edge-coloring of Kn. For a red-blue edge-coloring c of Kn, denote by t(c) the number of

monochromatic triangles. Before we state Olpp’s result we need to define two graphs. Let u and

v be two integers which satisfy m =
(v
2

)
+ u where 0 ≤ u ≤ v − 1. Note that for every m ≥ 0, v

and u are uniquely defined. Let H1(n,m) be the n-vertex graph which is composed of a clique on

v vertices and, if u > 0, there is a unique vertex outside the clique which joins exactly u vertices of

the clique. (The remaining vertices, if there are any, are isolated). Note that H1(n,m) has exactly

m edges. Let q and p be two integers which satisfy m =
(q
2

)
+ q(n− q) + p where 1 ≤ p ≤ n− q− 1.

Note that for every m > 0, p and q are uniquely defined. Let H2(n,m) be the unique n-vertex

graph composed of q vertices of degree n − 1, and the subgraph induced on the remaining n − q
vertices has exactly p edges which all share a common endpoint. Note that H2(n,m) has exactly

m edges. Olpp has proved the following:

Lemma 2.1 (Olpp [7]) Let c1 be an m edge-coloring of Kn where the edges colored red are defined

by H1(n,m). Let c2 be an m edge-coloring of Kn where the edges colored red are defined by H2(n,m).

Then t(n,m) = max{t(c1) , t(c2)}.

Note that Lemma 2.1 also supplies a formula for t(n,m) since t(c1) and t(c2) can be explicitly

computed.

We now prove (3), which shows that sq(n,m) and t(n,m) are linearly correlated.

Lemma 2.2

t(n,m) =

(
n

3

)
+
sq(n,m)

2
−m(n− 1).

Proof: Let G be any graph with n vertices and m edges. Let cG be the m edge-coloring of Kn where

the edges of G are the ones colored red. It suffices to show that t(cG) =
(n
3

)
+ sq(G)/2−m(n− 1).
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Let y be the number of monochromatic copies of P3 (the path with two edges) in cG. Every

monochromatic triangle contains three monochromatic copies of P3, and every non-monochromatic

triangle contains only one monochromatic P3, thus y = 3t(cG) + (
(n
3

)
− t(cG)) = 2t(cG) +

(n
3

)
. It is

easy to compute y in terms of the degrees of G, since, clearly: y =
∑
x∈V

(dx
2

)
+
(n−1−dx

2

)
. Using

the fact that
∑
x∈V d

2
x = sq(G) and

∑
x∈V dx = 2m we obtain that y = sq(G) + 3

(n
3

)
− 2m(n− 1).

Therefore,

2t(cG) +

(
n

3

)
= y = sq(G) + 3

(
n

3

)
− 2m(n− 1)

The result now follows. 2

By Lemma 2.2 we see that if G ∈ F (n,m) (recall that G ∈ F (n,m) if it has n vertices, m

edges and sq(G) = sq(n,m)) then t(cG) = t(n,m), and vice-versa. Now, since sq(H1(n,m)) =

2m(v − 1) + u(u + 1) and sq(H2(n,m)) = q(n − 1)2 + (4q + p + 1)p + q2(n − q) we obtain the

following corollary:

Corollary 2.3 Let n be a positive integer and let 1 ≤ m ≤
(n
2

)
. Then

sq(n,m) = max{2m(v − 1) + u(u+ 1) , q(n− 1)2 + (4q + p+ 1)p+ q2(n− q)}.

where q, p, u, v are defined as in the above definition of H1(n,m) and H2(n,m). If the maximum is

obtained by the first expression then sq(H1(n,m)) = sq(n,m). If the maximum is obtained by the

second expression then sq(H2(n,m)) = sq(n,m).

Corollary 2.3 supplies an accurate formula for computing sq(n,m), and, furthermore, it es-

tablishes at least one graph (namely, H1(n,m) or H2(n,m)) which belongs to F (n,m). However,

Olpp’s proof does not characterize all graphs in F (n,m).

Example: Consider the case n = 9 and m = 18. We have v = 6, u = 3, q = 2, p = 3.

Thus, sq(9, 18) = max{192 , 192} = 192. We have also that F (9, 18) ⊃ {H1(9, 18), H2(9, 18)}.
The degree sequence of H1(9, 18) is (0, 0, 3, 5, 5, 5, 6, 6, 6) and the degree sequence of H2(9, 18) is

(2, 2, 2, 3, 3, 3, 5, 8, 8). However, as shown in the introduction, there are at least four other graphs

in F (9, 18). In fact, as we shall see, |F (9, 18)| = 6.

Our goal in Theorem 1.1 is to present an efficient procedure which establishes all graphs in

F (n,m). In fact, we shall give a recursive formula for obtaining sq(n,m) and F (n,m) from the

values of sq(n − 1, z) and F (n − 1, z) for some z, thus, by using a routine dynamic programming

approach, we can solve the problem.

Before proving Theorem 1.1 we need two lemmas. The first one determines F (n,m) in case m

is relatively small w.r.t. n. We use the notation Ek to denote a set of k isolated vertices.
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Lemma 2.4 If 0 ≤ m ≤ n− 1, then sq(n,m) = m(m+ 1). Furthermore, if m 6= 3 then F (n,m) =

{K1,m + En−1−m}, and if m = 3 then F (n,m) = {K1,3 + En−4 , K3 + En−3}.

Proof: We shall prove the lemma by induction on m. For m ≤ 4 the lemma holds by direct

verification, noting, in particular, that when m = 3, sq(K3 +En−3) = sq(K1,3 +En−4) = 12 = 3 ·4.

Assume now that m ≥ 5. Let (x, y) be an edge. Clearly dx + dy − 1 ≤ m. Let G′ = G \ {e}. By

the induction hypothesis, sq(G′) ≤ m(m− 1). Thus, clearly,

sq(G) = sq(G′)+d2x+d2y−(dx−1)2−(dy−1)2 ≤ m(m−1)+2(dx+dy−1) ≤ m(m−1)+2m = m(m+1)

where equality is achieved if and only if dx+dy−1 = m and sq(G′) = m(m−1). Thus, we must have

G′ = K1,m−1 + En−m, and the requirement dx + dy − 1 = m now forces that G = K1,m + En−1−m

2.

Lemma 2.5 Let G ∈ F (n,m). Then, either G has an isolated vertex, or G has a vertex with

degree n− 1.

Proof: Let G be a graph with n vertices and m edges having no isolated vertex, and no vertex

with degree n−1. It suffices to show that there exists a graph G′ with the same number of vertices

and edges having sq(G′) > sq(G). Indeed, let x have maximum degree in G. Since dx < n−1 there

exists a vertex y such that (y, x) is not an edge of G. Since y is not isolated, there exists a vertex

z such that (y, z) is an edge of G. Let G′ be obtained from G by replacing the edge (y, z) with the

edge (y, x).

sq(G′)− sq(G) = ((dx + 1)2 + (dz − 1)2)− (d2x + d2z) = 2(dx − dz + 1) ≥ 2.

2

Given a graph G, denote by G+ the graph obtained by adding to G an isolated vertex, and let

G∗ be the graph obtained by adding to G a new vertex which is connected to every vertex of G.

The next lemma supplies a recursive formula for computing sq(n,m) and F (n,m) given the values

of sq(n− 1,m) and sq(n− 1,m− n+ 1) and given F (n− 1,m) and F (n− 1,m− n+ 1).

Lemma 2.6 Let n ≥ 1 and m be integers satisfying 0 ≤ m ≤
(n
2

)
. Then:

1. If m ≤ n− 1 then sq(n,m) = m(m+ 1) and F (n,m) = {K1,m + En−1−m}, unless m = 3 in

which case F (n, 3) = {K1,3 + En−4 , K3 + En−3}.

2. If m >
(n−1

2

)
then

sq(n,m) = sq(n− 1,m− n+ 1) + (n− 1)2 + 4m− 3(n− 1)
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and

F (n,m) = {G∗ | G ∈ F (n− 1,m− n+ 1)}.

3. If n− 1 < m ≤
(n−1

2

)
then

sq(n,m) = max{sq(n− 1,m) , sq(n− 1,m− n+ 1) + (n− 1)2 + 4m− 3(n− 1)}.

If the maximum is obtained by the first number, then F (n,m) = {G+ | G ∈ F (n− 1,m)}. If

the maximum is obtained by the second number then F (n,m) = {G∗ | G ∈ F (n−1,m−n+1)}.
If both numbers obtain the maximum, then F (n,m) is the union of both of these sets.

Proof: The first case is identical to Lemma 2.4. Consider the second case where m >
(n−1

2

)
.

Let H ∈ F (n,m). H cannot have an isolated vertex. Thus, by Lemma 2.5, H has a vertex x

with degree n − 1. Consider the graph G obtained from H by deleting x. Clearly, H = G∗, and

sq(H) = sq(G) + (n − 1)2 + 4m − 3(n − 1). Now, if K ∈ F (n − 1,m − n + 1) then sq(K∗) =

sq(n − 1,m − n + 1) + (n − 1)2 + 4m − 3(n − 1). Since K∗ has n vertices and m edges, we must

have sq(K∗) ≤ sq(H). It follows that G ∈ F (n− 1,m− n+ 1) and sq(H) = sq(n− 1,m− n+ 1) +

(n − 1)2 + 4m − 3(n − 1), and thus, sq(n,m) = sq(n − 1,m − n + 1) + (n − 1)2 + 4m − 3(n − 1).

Furthermore, for any K ∈ F (n − 1,m − n + 1) we have that K∗ ∈ F (n,m). Now consider the

third case, where n − 1 < m ≤
(n−1

2

)
. Let H ∈ F (n,m). According to Lemma 2.2, either H

has a vertex of degree n − 1, or H has an isolated vertex. If H has a vertex of degree n − 1

then, as in the previous case, sq(n,m) = sq(n − 1,m − n + 1) + (n − 1)2 + 4m − 3(n − 1), and

F (n,m) ⊃ {K∗ | K ∈ F (n − 1,m − n + 1)}. If H has an isolated vertex x, then, denoting by

G the graph obtained from H by deleting x we have H = G+ and sq(G) = sq(H). Now, if

K ∈ F (n− 1,m) then sq(K+) = sq(n− 1,m), and since K+ has n vertices and m edges we must

have sq(K+) ≤ sq(H). It follows that G ∈ F (n − 1,m) and sq(H) = sq(n,m) = sq(n − 1,m).

Furthermore, for any K ∈ F (n− 1,m) we have that K+ ∈ F (n,m). Obviously, if F (n,m) contains

both a graph with an isolated vertex and another graph with a vertex of degree n−1 then we must

have sq(n− 1,m) = sq(n− 1,m−n+ 1) + (n− 1)2 + 4m− 3(n− 1) and F (n,m) is a union of both

{K∗ |K ∈ F (n− 1,m− n+ 1)} and {K+ | K ∈ F (n− 1,m)}. Note also that this union is disjoint

since m− n+ 1 6= m (if n = 1 the third case cannot occur). 2

We can now turn Lemma 2.6 into an algorithm:

Proof of Theorem 1.1: We wish to generate all graphs in F (n,m). We shall use the dynamic

programming approach based on the recursive equation shown in Lemma 2.6. We use recursion,

and assume the graphs are represented via their n by n adjacency matrices. We shall also use the

fact that whenever we need to compute some sq(x, y) we can do this in constant time (naturally,
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under the uniform cost model) using Corollary 2.3, since p, q, u and v can be computed by solving

quadratic equations in x and y. We begin by computing sq(n,m). If m ≤ n − 1 then we know

by Lemma 2.4 that F (n,m) = {K1,m + En−m−1}, unless m = 3 in which case we also have the

graph K3 + En−3, and we are done. Otherwise, if sq(n,m) = sq(n− 1,m) (this should be checked

only if m ≤
(n−1

2

)
) we recursively obtain the set of all graphs in F (n − 1,m), and to each graph

in this set we add the n’th line and n’th column to its adjacency matrix, where all the entries are

zero, since the n’th vertex represents an isolated vertex. This is F (n,m). Now we check whether

sq(n,m) = sq(n− 1,m−n+ 1) + (n− 1)2 + 4m− 3(n− 1) (recall that it is possible that both cases

occur). If so, we recursively obtain the set of all graphs in F (n− 1,m− n+ 1), and to each graph

in this set we add the n’th line and n’th column to its adjacency matrix, where all the entries are

1 (except for the entry (n, n) which is 0), since the n’th vertex represents a vertex of degree n− 1.

The obtained graph is added to F (n,m). Note that, as mentioned in the end of the proof of Lemma

2.6, each element added to F (n,m) is unique. The amount of work invested in each graph going

from stage n− 1 to stage n is O(n). Thus, we can compute F (n,m) in O(n2|F (n,m)|) time. 2

Example: We shall construct the graphs in F (6, 7). According to the algorithm, we need to

recursively consider F (5, 7) and F (5, 2). Clearly F (5, 2) = {K1,2 + E2}, and sq(5, 2) = 6. For

F (5, 7) we need to recursively consider F (4, 3). Now, F (4, 3) = {K3 +E1 , K1,3} and sq(4, 3) = 12.

It follows that sq(5, 7) = 12 + 42 + 4 · 7− 3(5− 1) = 44 and F (5, 7) = {(K3 + E1)
∗ , K∗1,3}. Now,

sq(6, 7) = max{sq(5, 7) , sq(5, 2) + 25 + 28− 15} = max{44 , 44} = 44. Thus, |F (6, 7) = 3| and

F (6, 7) = {((K3 + E1)
∗)+ , (K∗1,3)

+ , (K1,2 + E2)
∗}.

We now turn to prove Theorem 1.2. Recall the graphs H1(n,m) and H2(n,m) defined at the

beginning of this section:

Lemma 2.7 There exists 0 ≤ m ≤
(n
2

)
such that V ar(H1(n,m)) = V ar(n).

Proof: Let G be a graph with n vertices having V ar(G) = V ar(n). Let m = e(G). By (1)

sq(G) = sq(n,m). By corollary 2.3, either sq(H1(n,m)) = sq(n,m) or sq(H2(n,m)) = sq(n,m).

In the first case, we have, again by (1) that V ar(H1(n,m)) = V ar(G) = V ar(n) and we are done.

In the second case, notice that H2(n,m) is the complement graph of H1(n,
(n
2

)
− m). Since the

variance of any graph is the same as the variance of its complement, we have V ar(H1(n,
(n
2

)
−m)) =

V ar(H2(n,m)) = V ar(G) = V ar(n) and we are done. 2

Proof of Theorem 1.2: According to Lemma 2.7, Corollary 2.3 and (1) we know that

V ar(n) = max
0≤m≤(n2)

2m(v − 1) + u(u+ 1)

n
− 4

m2

n2
(6)
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where v and u are uniquely defined by m =
(v
2

)
+ u and 0 ≤ u ≤ v − 1. Note that we cannot just

compute (6) by derivation, since, by definition, u and v are always integers, and so the function

cannot be replaced by a continuous one. We will first show that the (6) is obtained when u = 0.

Since V ar(1) = V ar(2) = 0, we can assume n ≥ 3 and 1 ≤ m ≤
(n
2

)
− 1. Thus, 2 ≤ v ≤ n− 1. In

order to show that (6) is obtained when u = 0 it suffices to show that:

1. When v = n− 1 and u = 0, the r.h.s. of (6) is larger than when v = n− 1 and 1 ≤ u ≤ n− 2.

2. For every 2 ≤ v ≤ n − 1, when m =
(v
2

)
the value of the r.h.s. of (6) is larger than when

m =
(v
2

)
− λ for every 1 ≤ λ ≤ v − 2.

We verify that both conditions holds:

1. Since m =
(n−1

2

)
+ u then, putting k =

(n
2

)
−m, the r.h.s. of (6) is k(k+ 1)/n− 4k2/n2, and,

since 1 ≤ k ≤ n − 1, the maximum of this expression is obtained when k = n − 1, which, in

turn, implies that m =
(n−1

2

)
, hence v = n− 1 and u = 0.

2. We need to show that

2
(v
2

)
(v − 1)

n
− v2(v − 1)2

n2
≥

2(
(v
2

)
− λ)(v − 2) + (v − λ− 1)(v − λ)

n
−

4(
(v
2

)
− λ)2

n2
.

Multiplying both sides by n2 and rearranging the terms, the last inequality is equivalent to:

n(4v − 5− λ) ≥ 4v2 − 4v − 4λ.

Since v ≥ 2 and λ ≤ v − 2, it suffices to show that

n ≥ 4v2 − 4v − 4λ

4v − 5− λ
= v +

v + λv − 4λ

4v − 5− λ
.

Since λ ≤ v − 2, we have v+λv−4λ
4v−5−λ ≤ 1, and so the last inequality holds since n ≥ v + 1.

We have shown that for all n > 2.

V ar(n) = max
2≤v≤n−1

2
(v
2

)
(v − 1)

n
− v2(v − 1)2

n2
(7)

Although v in constrained to an integer, we can use derivation to determine (7). It turns out that (7)

is maximized when v = [3n/4], and when n ≡ 2 mod 4, we need to perform the rounding upwards,

namely v = (3n+ 2)/4. Note that (7) is obtained by the graph H1(n,
(v
2

)
), and its complement. 2
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3 Concluding remarks and open problems

By running the algorithm of Theorem 1.1 for each n ≤ 150 and each 0 ≤ m ≤
(n
2

)
we have observed

the following:

1. Since V ar(n) is obtained whenever m =
(q
2

)
or m =

(n
2

)
−
(q
2

)
, where q = [3n/4] (rounding is

up when n ≡ 2 mod 4), it is interesting to determine F (n, q) since this tells us the number

of n-vertex graphs which have variance V ar(n). It turns out that for n ≤ 150 we always

have that |F (n, q)| = 1, and, in fact, F (n, q) = {Kq + En−q}, unless n = 4 in which case

F (4, 3) = {K3 + E1,K1,3}. It is therefore safe to conjecture that:

Conjecture 3.1 For every n > 1 there are exactly two graphs with n vertices having variance

V ar(n). They are Kq ∪ En−q and its complement.

2. For every n ≤ 150, the number of graphs in F (n,m) is either 1,2,3,4 or 6. Representing

examples are: |F (6, 3)| = 2, |F (6, 4)| = 1, |F (6, 7)| = 3, |F (7, 9)| = 4, |F (9, 18)| = 6. It is

therefore interesting to solve the following problem:

Problem 3.2 Is it true that for every n and m, |F (n,m)| ≤ C where C is an absolute

constant. In particular, is it true that C = 6? Is it true that for every n and m, F (n,m) 6= 5?
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