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Abstract

Let H = (V,E) be a hypergraph, and let F be a field. A function f : V → F is called stable

if for each e ∈ E, the sum of the values of f on the members of e is the same. The linear space

consisting of the stable functions, denoted by U(H,F ), is called the uniformity space of H over

F . The dimension of U(H,F ), denoted by udim(H,F ), is called the uniformity dimension of

H over F . The concept of uniformity space carries over to several (weighted) (hyper)graph-

theoretic problems, in which we require that all the sub(hyper)graphs having a specific property

have the same weight or size. This is done by defining an appropriate hypergraph whose edges

represent all the sub(hyper)graphs having the property. Two such natural problems are:

• Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs where G1 is a subgraph of G2. A

function f : E2 → F is called stable if all the copies of G1 in G2 have the same weight.

• Let G = (V,E) be a graph. A function f : V → F is called stable if all the maximal (w.r.t.

containment) independent sets of G have the same weight.

Clearly, many other problems can be formulated, and their resulting uniformity space can be

defined. The purpose of this paper is twofold. The first is to determine (or, alternatively,

compute efficiently) the uniformity dimension, and a corresponding basis, of several problems.

The other purpose is to show applications of the uniformity space concept to other graph-

theoretic problems, such as the determination of the zero-sum mod 2 Ramsey numbers.

1 Introduction

All graphs and hypergraphs considered here are finite, undirected and have no loops or multiple

edges. For the standard graph-theoretic notations the reader is referred to [3]. Let H = (V,E)

be a hypergraph, and let F be a field. A function f : V → F is called stable if for some c ∈ F ,

and for each e ∈ E,
∑

v∈e f(v) = c. In other words, the sum of the values of f on the members

of e is the same. Clearly, if f1 and f2 are two stable functions, so is every linear combination of
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them. Thus, the set U(H,F ) of all the stable functions is a linear space over F . We call this space

the uniformity space of H over F . Another way to view U(H,F ) is through the incidence matrix

of H. This zero-one matrix, denoted by B(H), has |V | columns and |E| rows, and B(e, v) = 1

iff v ∈ e. Thus, we may identify U(H,F ) with all the vectors u ∈ F |V | such that B(H)u = cJ ,

for some c ∈ F , and where J is the all-one vector in F |E|. Clearly, U(H,F ) has finite dimension,

which is at most |V |. The dimension of U(H,F ), denoted by udim(H,F ), is called the uniformity

dimension of H over F . Note that udim(H,F ) can be immediately computed from the rank of

B(H) over F . The problem of computing the rank of incidence matrices of hypergraphs has been

investigated by several researchers (cf. [2, 14, 25]) and these results may sometimes be helpful

in solving combinatorial problems which rely on the characterization of U(H,F ). In this paper,

however, we are concerned with combinatorial problems whose U(H,F ) characterization cannot be

determined from the known results on rank(B(H)).

The concept of uniformity space provides a linear algebra framework for many graph-theoretic

and hypergraph-theoretic problems. In these problems we wish to assign weights, which are scalars

of some field F , to the vertices or the edges of the graph (hypergraph), such that the sum of the

weights on all subgraphs (subhypergraphs) of a specific type, is the same. We wish to determine

the dimension and a basis of the linear space of these weight-assignment functions. Such problems

can be converted to the problem of determining a basis for U(H,F ), where H is an appropri-

ately defined hypergraph, which we call the master hypergraph. H is constructed in the following

obvious manner. The vertices of H are the objects of the original graph (hypergraph) to which

weight-assignment is applied (usually, these objects are either edges or vertices). Each edge of H

corresponds to a subset of objects which comprise a subgraph (subhypergraph) having the required

type. Consider, for example, the following uniformity-space problems:

P1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs where G1 is a subgraph of G2. A function

f : E2 → F is called G1-stable if all the copies of G1 in G2 have the same weight (the weight

of a copy is the sum of the values of f on the edges of the copy). Let U(G1, G2, F ) be the

vector space of all the G1-stable functions, and let udim(G1, G2, F ) be its dimension.

P2. Let S = (V,E) be an r-uniform hypergraph on n vertices. For 1 ≤ k ≤ n, a function

f : E → F is called k-stable if all the induced subhypergraphs of S on k vertices have the same

weight. Let U(S, k, F ) be the vector space of the k-stable functions, and let udim(S, k, F ) be

its dimension.

The problems P1 and P2, and dual formulations of them, are closely related to central prob-

lems in combinatorics such as Null t-designs [16], Block designs [10] (pages 718-740), signed
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hypergraph designs [26], and G-decomposition of Kn [10]. In all of these problems, in which

the rank of the adjacency matrix of the master hypergraph was computed, there always ap-

pears the condition v ≥ k+ t where v is the number of vertices of the graph or hypergraph in

question (e.g. in P1 v is the number of vertices of G2, and in P2, v is the number of vertices

of S), k is the number of vertices of the sub-(hyper)graphs from which the corresponding

uniformity property is required (e.g. in P1 k is the number of vertices of G1 while in P2 k

is the same k mentioned there), and t is the number of vertices in each edge (e.g. in P1,

t = 2 and in P2, t = r). This condition is necessary in all the algebraic methods mentioned

in these references [26]. The main theorem of this paper, Theorem 1.1, avoids the restriction

v ≥ k+ 2 for graphs, and thus can be directly used to compute the rank of the corresponding

adjacency matrix of the master hypergraph.

P3. Let G = (V,E) be a graph. A function f : V → F is called MIS-stable (DOM-stable) if

all maximal independent sets (minimal dominating sets) of G have the same weight (the

maximality and minimality are w.r.t. containment). Let U(MIS : G,F ) (U(DOM : G,F ))

be the vector space of all the MIS-stable (DOM-stable) functions, and let udim(MIS : G,F )

(udim(DOM : G,F )) be its dimension.

A graph is called well-covered if all maximal independent sets (w.r.t. containment) have equal

size. Such graphs have been defined and extensively studied (see, e.g., [21, 22, 12]). Clearly,

a graph G is well-covered iff the all-one function f : V (G)→ F is MIS-stable, where F is any

field of characteristic 0. Weighted well-covered graphs are graphs with real-valued weights on

the vertices such that all maximal independent sets have the same weight; in other words,

the weight function is an MIS-stable function. Such graphs have been studied in [6]. A

similar concept is that of well-dominated graphs, in which all minimal dominating sets have

the same size. These graphs have been studied in [13]. Clearly, a graph G is well-dominated

iff the all-one function f : V (G) → F is DOM-stable, where F has characteristic 0. Other

graph families which have natural correspondence with uniformity space are graphs having

2-packings [17] and equimatchable graphs [20].

P4. Let G = (V,E) be a graph. A function f : E(G) → F is called neighborhood-stable if for

every vertex v ∈ G, the sum of the values of f on the edges adjacent to v is the same. Thus,

given a graph, one may wish to determine the linear space of neighborhood-stable functions,

and its dimension.

Problem P4 includes a set of problems concerning magic graphs, in which there is an additional

requirement that f is one-to-one. There are many papers on this subject [18, 19, 11, 24].
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Note that in all of the uniformity space problems, once the appropriate master hypergraph

H (in fact, its incidence matrix B(H)) is constructed, computing a basis for U(H,F ) is easy

since it is merely a problem of solving a set of linear equations. However, the master hypergraph

might be much larger than the size of the original problem. Consider, for example, computing

udim(G1, G2, F ) defined in problem P1 above. The number of rows of the master hypergraph is

equal to the number of copies of G1 in G2, which may be exponential in the size of G2. Furthermore,

one needs also to detect all copies of G1 within G2, which may also be difficult. Thus, computing

udim(G1, G2, F ) through the master hypergraph is impractical. The same arguments hold for

problems P2 and P3 described above. On the other hand, problem P4, which is to compute the

dimension of the neighborhood-stable functions, can be solved in polynomial time since the master

hypergraph can be constructed from the original graph in polynomial time.

The first goal of this paper is to determine, and to compute efficiently, the uniformity dimension,

and a corresponding basis, of several graph-theoretic problems. We now describe our main results

in this area. Recall that for every natural number p, a graph is called regular mod p if the degrees

of all the vertices are the same, modulo p. In our applications, p denotes the characteristic of a

field, and therefore we shall also allow p = 0, and a regular graph is considered regular mod 0. We

also assume r = s mod 0, iff r = s.

Theorem 1.1 Let G be a connected graph with n ≥ 3 vertices, and let F be a field of characteristic

χ(F ) = p. Then:

1. If G is not regular mod p and G 6= K1,n−1, then udim(G,Kn, F ) = 1, unless p = 2 and G is

complete bipartite.

2. If G is regular mod p, and G /∈ {Kn,K1,n−1} then udim(G,Kn, F ) = n, unless p = 2 and G

is complete bipartite.

3. If G = K1,n−1 then udim(G,Kn, F ) =
(n−1

2

)
, unless p = 2 and n is even, in which case

udim(G,Kn, F ) =
(n−1

2

)
+ 1.

4. If G = Kn then udim(G,Kn, F ) =
(n
2

)
.

5. If p = 2 and G is complete bipartite udim(G,Kn, F ) =
(n−1

2

)
if n is odd and udim(G,Kn, F ) =(n−1

2

)
+ 1 if n is even.

In all cases, a basis of U(G,Kn, F ) can be computed in O(n4) time. Furthermore, given f :

E(Kn)→ F , one can decide in O(n4) time if f is G-stable, and if it is not, two copies of G in Kn

having different weights can be produced.
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Theorem 1.1 enables us to determine udim(G,Kn, F ), and compute a basis of U(G,Kn, F ) for all

connected n-vertex graphs (if n = 1, 2 the problem is trivial), and all fields. Now, it is easy to

see that if G is the complement of G in Kn, then U(G,Kn, F ) = U(G,Kn, F ). This is because f

is G-stable iff it is G-stable. Furthermore, if two copies of G in Kn have different weights, then

the complements of these copies are copies of G, which also have different weights. Since the

complement of a non-connected graph is always connected we have that Theorem 1.1 also enables

us to determine udim(G,Kn, F ) and compute a basis for U(G,Kn, F ) in case G is non-connected.

If G has m vertices and m < n then, by adding n−m isolated vertices to G, we obtain an n-vertex

graph G′ where, clearly, U(G,Kn, F ) = U(G′,Kn, F ). Consequently, Theorem 1.1 can be applied

to all graphs with m ≤ n vertices. We emphasize here that Theorem 1.1 can be easily applied,

via standard linear algebra, to compute the p-rank of the incidence matrix of any graph G on m

vertices in Kn, n ≥ m. This goes below the barrier n ≥ m+ 2 mentioned in [26]. In Section 2 we

prove Theorem 1.1, and we also show that computing udim(G1, G2, F ) is, in general, NP-Hard (see

[15] for the definition of NP-Hardness).

Our next result shows that in several cases, one can efficiently compute udim(MIS : G,F ), and

a basis of U(MIS : G,F ).

Theorem 1.2 Let F be a field, and let G be an n-vertex graph. Then, udim(MIS : G,F ), and a

basis for U(MIS : G,F ) can be computed in polynomial time in the following cases:

1. G has girth at least 7, and χ(F ) = 0.

2. The maximum degree of G is O((log n)1/3).

Note that, in particular, the first part of Theorem 1.2 shows that udim(MIS : T, F ) can be

computed for any tree T . In fact, we show that udim(MIS : G,F ) is equal to the number of

degree-one vertices of G, plus the number of C7 components of G. As a corollary of this result, one

can obtain the result of Ravindra [23], which determines the well-covered trees. The second part

of Theorem 1.2 is a consequence of a result of Caro et. al. [6]. In Section 3 we prove Theorem 1.2,

and its related corollaries.

The second goal of this paper is to exhibit applications of the uniformity space to other graph-

theoretic problems. The first one we consider is the zero-sum mod 2 Ramsey numbers. Let G =

(V,E) be an n-vertex graph with |E| = 0 mod k. Denote by R(G,Zk) the smallest integer m such

that for every f : E(Km) → Zk, there exists a zero-sum copy of G in Km (i.e. the sum of the

values of f on the edges of the copy is 0 mod k). The first author, in [4], determined the value of

R(G,Z2) for all possible graphs G (i.e. all the graphs with an even number of edges). However, the

proof is involved, and contains a detailed case analysis. In Section 4 we show how R(G,Z2) can be
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rather easily determined, as a consequence of Theorem 1.1. Furthermore, our proof also supplies

an algorithm which, given f : E(Km)→ Z2, where m = R(G,Z2), produces a zero-sum copy of G

in Km. This algorithmic aspect is a new result, since the proof in [4] is non-algorithmic.

As another application, consider the following Theorem:

Theorem 1.3 Let r, k and n be positive integers such that r ≤ k ≤ n− r. Let H be an r-uniform

hypergraph on n vertices having the property that every induced k-vertex subhypergraph has the same

number of edges. Then H is either the complete r-uniform hypergraph, or the empty hypergraph.

We prove this theorem by showing that it is a consequence of a more general result which states,

in the language of problem P2, that udim(Sr,n, k, F ) = 1, and U(Sr,n, k, F ) is spanned by the

all-one constant function, where Sr,n is the complete r-uniform hypergraph on n vertices, and F is

a field with characteristic 0. This proof also appears in Section 4. The final section contains some

concluding remarks.

2 Determining U(G,Kn, F ) and udim(G,Kn, F )

The main goal of this section is to prove Theorem 1.1. Since the proof is rather detailed, we

split it into several lemmas. In this section we shall always assume, unless otherwise stated, that

G = (V,E) is a connected graph with n ≥ 3 vertices. The degree of a vertex v ∈ G is denoted by

d(v). F denotes a field, and p = χ(F ) is the characteristic of F . It will be convenient to denote

the vertices of Kn by the numbers 1, . . . , n. Using this convention, we may identify a copy of G

in Kn with a one-to-one mapping g : V (G) → {1, . . . , n}, which defines the obvious isomorphism

between G and its copy in Kn. We denote by g−1(i) the vertex of G which maps by g to i. For a

weight function f : E(Kn)→ F , and for a copy g of G in Kn, let w(f, g) be the sum of the values

of f on the edges of the copy g (the summation is performed in the field F ). Thus, if f is G-stable,

w(f, g1) = w(f, g2) for any two copies g1 and g2.

Lemma 2.1 If G is regular mod p, then udim(G,Kn, F ) ≥ n. Furthermore, a set Q of n linearly-

independent G-stable functions can be constructed in O(n3) time.

Proof: Let r be the degree of every vertex of G, modulo p (recall that if p = 0, then G is regular,

and r denotes the degree of all vertices). We define a set Q = {f1, . . . , fn} of n distinct linearly

independent G-stable functions, where fi : E(Kn) → F . For all i = 1, . . . , n − 1, the value of

fi is 1 on every edge which is adjacent to the vertex i of Kn. The value of fn is 1 on all the

edges of Kn. Clearly, each fi can be constructed in O(|E(Kn)|) = O(n2) time, and Q is therefore

constructed in O(n3) time. Note that for all i = 1, . . . , n− 1, w(fi, g) = d(g−1(i)) mod p = r. Also,
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w(fn, g) = |E(G)| mod p. Thus, in any case, fi is G-stable for all i = 1, . . . , n. It remains to show

that the fi’s are linearly independent. Indeed, assume that c1f1 + . . .+cnfn = 0. Let 1 ≤ i ≤ n−1,

and let j /∈ {i, n} (such a j exists since n ≥ 3). Consider the edge (j, n). fk((j, n)) = 1 iff k = j

or k = n. Thus, cj + cn = 0. Now consider the edge (i, j). fk((i, j)) = 1 iff k ∈ {i, j, n}. Thus,

ci + cj + cn = 0. These two equalities imply ci = 0. Thus, for all i = 1, . . . , n − 1, ci = 0. Hence,

also, cn = 0. 2

Lemma 2.2 If G is not the complete graph and not a star then G has four vertices x, y, z, w such

that (x, z) ∈ E, (y, z) /∈ E and (y, w) ∈ E. Furthermore, if G is not complete bipartite then one

may choose w such that (x,w) ∈ E. These vertices can be detected in O(n2) time.

Proof: The assumptions in the lemma imply that G has at least n ≥ 4 vertices, since otherwise

n = 3 and G would have been a K3 or a K1,2. If G is complete bipartite the result is obvious.

Assume, therefore, that G is not complete bipartite. The fact that G is a connected graph which

is not a star and not the complete graph implies that G has a vertex y with 2 ≤ d(y) ≤ n − 2.

Let N(y) denote the neighbor-set of y, and let N2(y) denote the vertices at distance 2 from y.

Since d(y) ≤ n − 2, we have that N2(y) is non-empty. If there exists a vertex x ∈ N2(y) which

is connected to some vertex z /∈ N(y) then let w ∈ N(y) be any neighbor of x. The four vertices

x, y, z, w satisfy the conditions of the lemma. If every vertex of N2(y) is only connected to vertices

of N(y) then the fact that G is connected implies that V = {y} ∪N(y) ∪N2(y), and now the fact

that G is not complete-bipartite implies that there is a vertex x ∈ N2(y) and a vertex z ∈ N(y)

such that (x, z) /∈ E. Let w ∈ N(y) be a neighbor of x. By replacing the roles of x and y we have

that the four vertices x, y, z, w satisfy the conditions of the lemma. Note that the operations we

have performed only involve degree counting and Breadth-First Search, and these can be performed

in O(n2) time using the adjacency matrix of G 2.

Lemma 2.3 Assume that G /∈ {K1,n−1,Kn} and that if p = 2 G is also not complete bipartite.

Let f : E(Kn)→ F . If f is G-stable then for every four vertices a, b, c, d of Kn, f(a, b) + f(c, d) =

f(b, c) + f(d, a) holds. If f is not G-stable, and there exist four vertices a, b, c, d for which f(a, b) +

f(c, d) 6= f(b, c) + f(d, a) then two copies of G in Kn with different weights can be produced in

O(n2) time.

Proof: If n = 3 there is nothing to prove, so assume n ≥ 4. Fix four vertices x, y, z, w as in

Lemma 2.2. If p = 2, G is not complete bipartite, and thus we may also assume by Lemma 2.2 that

(x,w) ∈ E. Put N(y) \ {x} = {y1, . . . , yr} where w = y1. Put N(x) \ (N(y) ∪ {y}) = {x1, . . . , xs}
where x1 = z. We may assume that {y1, . . . , yt} are also neighbors of x for some 0 ≤ t ≤ r, and
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if G is not complete bipartite we know that t > 0. Fix any four vertices a, b, c, d of Kn. Consider

a copy g1 of G in Kn for which g1(x) = a, g1(y) = c, g1(z) = b, g1(w) = d. g1 maps the n − 4

remaining vertices of G to the remaining n− 4 vertices of Kn in some arbitrary way. Now consider

a copy g2 of G which coincides with g1 on all vertices except x and y, which are permuted with

respect to g1. Thus, g2(x) = c and g2(y) = a. If f is G-stable we must have

0 = w(f, g1)−w(f, g2) = (
s∑

i=1

f(a, g1(xi))+
r∑

i=t+1

f(c, g1(yi)))− (
s∑

i=1

f(c, g1(xi))+
r∑

i=t+1

f(a, g1(yi))).

(1)

We now define two additional copies, g3 and g4, of G in Kn. g3 coincides with g1 on all vertices

except w and z, which are permuted. Thus, g3(z) = d and g3(w) = b. g4 coincides with g3 on all

vertices except x and y, which are permuted. Thus g4(x) = c and g4(y) = a. Once again, if f is

G-stable,

0 = w(f, g3)−w(f, g4) = (
s∑

i=1

f(a, g3(xi))+
r∑

i=t+1

f(c, g3(yi)))− (
s∑

i=1

f(c, g3(xi))+
r∑

i=t+1

f(a, g3(yi))).

(2)

We now subtract (2) from (1). However, we must distinguish between the case t = 0 and the case

t > 0. If t > 0, we obtain

0 = (w(f, g1)− w(f, g2))− (w(f, g3)− w(f, g4)) = f(a, b)− f(c, b)− f(a, d) + f(c, d)

which implies f(a, b)+f(c, d) = f(b, c)+f(d, a), as required. If t = 0 (recall that this only happens

if G is complete bipartite) we obtain

0 = (w(f, g1)− w(f, g2))− (w(f, g3)− w(f, g4)) =

f(a, b) + f(c, d)− f(c, b)− f(a, d)− f(a, d)− f(c, b) + f(c, d) + f(a, b)

which implies f(a, b) + f(c, d) = f(b, c) + f(d, a), in case p 6= 2. If f is not G-stable, and f(a, b) +

f(c, d) 6= f(b, c) + f(d, a) for some four vertices of Kn, then one can create the two copy pairs

(g1, g2) and (g3, g4) as before, and compute their weights, in O(n2) time. By the above equalities,

we must have that either w(f, g1) 6= w(f, g2) or w(f, g3) 6= w(f, g4). 2

Lemma 2.4 Let f : E(Kn)→ F be such that for any four vertices a, b, c, d of Kn, f(a, b)+f(c, d) =

f(b, c) + f(d, a) holds. Let

S = {(1, 2), . . . , (1, n), (2, 3)} ⊂ E(Kn).

Then for any two vertices a, b of Kn, f(a, b) is a linear combination of the values of f on the

members of S.
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Proof: If (a, b) ∈ S the claim is obvious. We may therefore assume that 2 ≤ a < b ≤ n. If a = 2

we have f(2, b) = f(2, 3) + f(1, b)− f(1, 3) (note that this equality trivially holds when b = 3). If

a = 3 then f(3, b) = f(2, 3) + f(1, b)− f(1, 2). If a > 3 then f(a, b) = f(1, a) + f(2, b)− f(1, 2) =

f(1, a) + f(2, 3) + f(1, b)− f(1, 3)− f(1, 2). 2

Note that the set S in Lemma 2.4 has n members, and thus the following corollary is a conse-

quence of Lemmas 2.3 and 2.4.

Corollary 2.5 If G /∈ {Kn,K1,n−1}, then udim(G,Kn, F ) ≤ n, unless p = 2 and G is complete

bipartite.

Lemma 2.6 Assume G 6= K1,n−1, and G is not regular mod p and that if p = 2 then G is not

complete bipartite. Let f : E(Kn)→ F . Then, f is G-stable iff f is constant. If f is not constant,

one can find two copies of G in Kn, with different weights, in O(n4) time.

Proof: Clearly, a constant function is always G-stable. Assume, therefore, that f is G-stable.

According to Lemmas 2.3 and 2.4 we know that f is determined by its values on the set S defined in

Lemma 2.4. Furthermore, according to the proof of Lemma 2.4 it suffices to show that f is constant

on S. Since G is not regular modulo p, there exist two vertices x and y such that d(x) 6= d(y) mod p.

Put N(x)\(N(y)∪{y}) = {x1, . . . , xs}, and N(y)\(N(x)∪{x}) = {y1, . . . , yr}. Hence, r 6= s mod p.

Consider two copies of G in Kn, that differ only in their values on x and y. One of the copies, say

g1, has g1(x) = 1 and g1(y) = 2 while the other copy, g2, has g2(x) = 2 and g2(y) = 1. For any

other vertex z, we have g1(z) = g2(z) ≥ 3. Since f is stable it follows that

0 = w(f, g1)−w(f, g2) = (
s∑

i=1

f(1, g1(xi))+
r∑

i=1

f(2, g1(yi)))−(
s∑

i=1

f(2, g1(xi))+
r∑

i=1

f(1, g1(yi))). (3)

According to Lemma 2.4, and using the fact that g1(xi) ≥ 3 we know that f(2, g1(xi)) = f(2, 3) +

f(1, g1(xi)) − f(1, 3). Similarly, f(2, g1(yi)) = f(2, 3) + f(1, g1(yi)) − f(1, 3). Plugging these two

equalities into (3) we get:

(s− r)(f(1, 3)− f(2, 3)) = 0.

This implies that f(1, 3) = f(2, 3). By symmetric arguments we also have f(1, 2) = f(2, 3). Using

these equalities and the equalities in Lemma 2.4 we obtain that f(1, b) = f(2, b) = f(3, b) for all

b ≥ 4, and f(a, b) = f(1, a) + f(1, b)− f(1, 2), for all 2 ≤ a, b.
It remains to show that f(1, 2) = f(1, b) for b ≥ 4. For this purpose, we define two copies of G

in Kn, namely g3 and g4. Like before, g3 and g4 coincide on all vertices except x and y. Thus,

g3(x) = 2, g3(y) = b. g4(x) = b, g4(y) = 2. Using the stability of f we obtain:

0 = w(f, g3)−w(f, g4) = (
s∑

i=1

f(2, g3(xi))+
r∑

i=1

f(b, g3(yi)))−(
s∑

i=1

f(b, g3(xi))+
r∑

i=1

f(2, g3(yi))). (4)
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We now show that f(2, g3(xi)) − f(b, g3(xi)) = f(1, 2) − f(1, b). This is clearly true if g3(xi) = 1.

If g3(xi) = 3 we may use the fact that f(2, 3) = f(1, 2) and the fact that f(1, b) = f(3, b). If

g3(xi) ≥ 4 we may put g3(xi) = a and use the fact that f(a, b) = f(1, a) + f(1, b) − f(1, 2) =

f(2, a) +f(1, b)−f(1, 2). Similar arguments show that f(2, g3(yi))−f(b, g3(yi)) = f(1, 2)−f(1, b).

Plugging these two equalities into (4) we get:

(s− r)(f(1, 2)− f(1, b)) = 0

which implies f(1, 2) = f(1, b).

Now, if f is not constant, then f is not G-stable. If there are four vertices a, b, c, d in Kn with

f(a, b) + f(c, d) 6= f(b, c) + f(d, a) (this can be checked in O(n4) time by considering all subsets

of four vertices), then one can generate two copies with different weights according to Lemma 2.3.

Otherwise, we know by Lemma 2.4 that f cannot be constant on S. We may assume w.l.o.g.

that f(1, 3) 6= f(2, 3) (otherwise we may rename the vertices of Kn such that this holds). Hence,

according to the first part of the proof of our lemma, we must have that the copies g1 and g2 have

different weights. These copies are easily created in O(n2) time. 2

The next lemma determines udim(K1,n−1,Kn, F ).

Lemma 2.7 udim(K1,n−1,Kn, F ) =
(n−1

2

)
, unless p = 2 and n is even, where in this case we have

udim(K1,n−1,Kn, F ) =
(n−1

2

)
+ 1. In both cases, a basis for U(K1,n−1,Kn, F ) can be computed in

O(n4) time. Furthermore, given f : E(Kn) → F , one can decide in O(n2) time if f is K1,n−1

stable, and if not, produce two copies with different weights.

Proof: Let f be K1,n−1-stable. The copies of K1,n−1 in Kn determine that for all i = 1, . . . , n,∑n
j=1,j 6=i f(i, j) = c where c ∈ F . If p 6= 2, these requirements form n linearly independent

equations with
(n
2

)
variables. Thus, for c = 0, there are

(n
2

)
− n linearly-independent solutions,

f1, . . . , f(n2)−n
. Let f∗ be a solution for c = 2 = 2∗1F . f∗ exists since one may take any Hamiltonian

circuit in G and assign the value 1 on the edges of the circuit, and 0 on the non-edges. Note

that f∗ is not a linear combination of the fi’s, and if f ′ is any other solution for c 6= 0, then

2f ′ − cf∗ is a solution for c = 0, and thus f ′ is linearly dependent on f∗ and the fi’s. Thus,

udim(K1,n−1,Kn, F ) =
(n
2

)
− n + 1 =

(n−1
2

)
. Now consider the case p = 2. In this case, the

dimension of the linear equations is only n − 1. Thus, for c = 0 there are
(n
2

)
− n + 1 linearly-

independent solutions. If n is even, the all-one function f∗ is a solution for c = 1, and hence

udim(K1,n−1,Kn, F ) =
(n
2

)
−n+ 2 =

(n−1
2

)
+ 1. If n is odd, there is no solution for c = 1, and thus

udim(K1,n−1,Kn, F ) =
(n
2

)
− n+ 1 =

(n−1
2

)
.

By the arguments above, we see that computing a basis for U(K1,n−1,Kn, F ) reduces to the problem

of solving a set of O(n) linear equations in
(n
2

)
variables. This can be done in O(n4) time using
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Gaussian elimination.

Given a function f : E(Kn)→ F one can compute, for all i ∈ Kn, the sum of weights of the edges

adjacent to i in O(n2) time, and thus decide whether f is G stable or not. If it is not stable, there

are two vertices i and j which are the roots of two copies of K1,n−1 with different weights. 2

The final lemma of this section determines U(G,Kn, F ) and udim(G,Kn, F ) in case G is com-

plete bipartite, and p = 2.

Lemma 2.8 If G is a complete bipartite graph and p = 2, udim(G,Kn, F ) =
(n−1

2

)
if n is odd, and

udim(G,Kn, F ) =
(n−1

2

)
+ 1 if n is even. In any case, a basis for U(G,Kn, F ) can be generated in

O(n4) time. Furthermore, Given f : E(Kn) → F one can decide in O(n2) time if f is G-stable,

and if not, produce two copies with different weights.

Proof: Let x and y be two vertices of G which belong to different vertex classes. Consider two

copies g1 and g2, where g1(x) = i, g1(y) = j, g2(x) = j, g2(y) = i. g1(z) = g2(z) for all z /∈ {x, y}.
Let f be G-stable. Since p = 2 we have:

0 = w(f, g1)− w(f, g2) = w(f, g1) + w(f, g2) =
n∑

k=1,k 6=i

f(i, k) +
n∑

k=1,k 6=j

f(j, k) =

=
n∑

k=1,k 6=i

f(i, k)−
n∑

k=1,k 6=j

f(j, k).

It follows that f is also K1,n−1-stable, since the sum of the weights of the edges adjacent to each

vertex is the same. Thus we have, U(G,Kn, F ) ⊂ U(K1,n−1,Kn, F ). According to Lemma 2.7, it

remains to show that udim(G,Kn, F ) ≥
(n−1

2

)
when n is odd, and udim(G,Kn, F ) ≥

(n−1
2

)
+ 1

when n is even. Let f(i,j,k) denote the function which assigns the value 1 to the edges of the triangle

(i, j, k), and 0 to all the other edges of Kn. Note that f is G-stable since w(f, g) = 0 for every

copy g. Now consider the set T = {f(i,i+1,j) | 1 < i + 1 < j ≤ n}. T has
(n−1

2

)
members. We

now prove that T is a linearly independent set. Assume, to the contrary, that f(i,i+1,j) is a linear

combination of T ′ ⊂ T . If i = 1 the contradiction follows from the fact that the edge (1, j) is

assigned 1 only in f(1,2,j). Now consider the case i > 1. The edge (i, j) is assigned 1 only in

f(i,i+1,j) and in f(i−1,i,j), thus f(i−1,i,j) ∈ T ′. The edge (i − 1, j) is assigned 1 in f(i−1,i,j) and 0 in

f(i,i+1,j) and therefore f(i−2,i−1,j) ∈ T ′. Continuing in the same manner we obtain that f(1,2,j) ∈ T ′,
which is a contradiction to the fact that the edge (1, j) is assigned 0 in f(i,i+1,j). We have shown

that udim(G,Kn, F ) ≥ |T | =
(n−1

2

)
. If n is even we have that the all-one function f∗ is a G-stable

function which is linearly independent from T . To see this, note that if f∗ were a linear combination

of some T ′ ⊂ T , the fact that (1, j) is assigned 1 only in f∗ and f(1,2,j) means that f(1,2,j) ∈ T ′, for
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all j = 3, . . . , n. But now the edge (1, 2) is assigned 1 in f∗ and n − 2 = 0 mod 2 in T ′, which is

impossible. Thus, udim(G,Kn, F ) ≥ |T |+ 1 =
(n−1

2

)
+ 1.

Note that we have shown that U(G,Kn, F ) = U(K1,n−1,Kn, F ). Hence, as in the previous lemma,

a basis for U(G,Kn, F ) can be constructed in O(n4) time, but we can, alternatively, also take the

set T in case n is odd, or T ∪ {f∗} in case n is even, as a basis for U(G,Kn, F ).

Given f : E(Kn)→ F one can compute, for all i ∈ Kn, the sum of weights of the edges adjacent to

i in O(n2) time, and thus decide whether f is K1,n−1-stable or not, which happens iff f is G-stable.

If it is not stable, there are two vertices i and j with different sums of weights on their adjacent

edges. We use i and j to construct, in O(n2) time, the two copies g1 and g2 described in the

beginning of the proof, which must have different weights. 2

We are now ready to prove the main result of this section.

Proof of Theorem 1.1:

1. G is not regular mod p and G 6= K1,n−1, and if p = 2 then G is not complete bipartite. It

follows from Lemma 2.6 that udim(G,Kn, F ) = 1, and the all-one constant function is a basis

for U(G,Kn, F ). By the same lemma, if f is not constant, then one can find two copies with

different weights in O(n4) time.

2. G is regular mod p, and G /∈ {Kn,K1,n−1}, and if p = 2 then G is not complete bipartite.

It follows from Lemma 2.1 and Corollary 2.5 that udim(G,Kn, F ) = n. Furthermore, by

Lemma 2.1, the set of functions Q defined in Lemma 2.1 is a basis of U(G,Kn, F ), and

Q can be constructed in O(n3) time. Given f : E(Kn) → F , we can determine if f is a

linear combination of Q in O(n4) by solving the corresponding set of
(n
2

)
linear equalities

in n + 1 variables, in O(n4) time. If f is not G-stable, there is only the trivial solution.

In this case we know by Lemmas 2.3 and 2.4 that there must be four vertices a, b, c, d with

f(a, b) + f(c, d) 6= f(b, c) + f(d, a). We can locate such a foursome in O(n4) time, and then

by Lemma 2.3 we can produce two copies of G with different weights in O(n2) time.

3. G = K1,n−1. This case is completely determined in Lemma 2.7.

4. G = Kn. This is a trivial case, since every function is G-stable. Thus, udim(G,Kn, F ) =
(n
2

)
,

and the standard basis is a basis for U(G,Kn, F ).

5. G is complete bipartite and p = 2. This case is completely determined in Lemma 2.8.

2

We conclude this section by showing that, in general, computing udim(G1, G2, F ) is NP-Hard.

To prove this, we present a special case of it, in the form of a decision problem:
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INSTANCE: two graphs G1 and G2 and a homomorphism h : V (G1) → V (G2) which shows that

G1 is, indeed, a subgraph of G2.

QUESTION: is udim(G1, G2, F ) 6= |e(G2)|.
We show that this problem, denoted by P, is NP-Complete. P belongs to NP due to the fact that

udim(G1, G2, F ) = |e(G2)| iff there is exactly one copy of G1 in G2. Thus, one proves that the

answer to an input is ”yes” by supplying another homomorphism h′ : V (G1)→ V (G2). We perform

a polynomial transformation from the CONNECTED SUBGRAPH ISOMORPHISM problem [15]

to P. Let H and G be two connected graphs which are input to SUBGRAPH ISOMORPHISM.

Construct an input to P by putting G1 = H and G2 = G ∪H (i.e. G2 is the vertex-disjoint union

of G and H). Clearly, H is not a subgraph of G iff there is exactly one copy of G1 in G2.

3 The algorithmic aspect of U(MIS : G,F )

In this section we consider U(MIS : G,F ), the space of all MIS-stable functions of G. It is not

difficult to show that computing a basis for U(MIS : G,F ) is NP-hard, in general. This follows

from the fact that the constant function belongs to U(MIS : G,F ) (when χ(F ) = 0) iff the graph

G is well-covered. However, it is shown in [8] that deciding whether a graph is not well-covered is

NP-Complete, even when G is K1,4-free. Theorem 1.2 states, however, that there are some large

families of graphs for which a basis for U(MIS : G,F ) can be computed in polynomial time. In

order to prove the first part of Theorem 1.2 we first need several lemmas and definitions.

Lemma 3.1 If the connected components of G = (V,E) are G1, . . . , Gk then udim(MIS : G,F ) =∑k
i=1 udim(MIS : Gi, F ). Furthermore, a basis for U(MIS : G,F ) can be constructed in O(|V | ·

udim(MIS : G,F )) time from bases of the spaces U(MIS : Gi, F ).

Proof: Let fi be an MIS-stable function for Gi. The extension of fi to G which is defined by

fi(v) = 0 for v /∈ Gi, is MIS-stable for G. Note that we have that fi is linearly independent from

any linear combination of fj ’s where j 6= i. Clearly, the extended fi is constructed from the original

fi in O(|V |) time. The Lemma now follows by taking the extensions in the union of bases of all

the U(MIS : Gi, F ) for i = 1, . . . , k. 2

By lemma 3.1 we only need to prove the first part of Theorem 1.1 for connected graphs. Fix a

connected graph G = (V,E), and let g(G) denote the girth of G. For v ∈ V , let N i(v) be the set

of vertices at distance i from v. We partition V into four classes. V1 contains all the degree-one

vertices of G. V2 = N1(V1) \ V1. V3 = N1(V2) \ (V1 ∪ V2). Finally, V4 = V \ (V1 ∪ V2 ∪ V3). If f is

MIS-stable, and I ⊂ V is a maximal independent set of G, we put f(I) =
∑

v∈I f(v).
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Lemma 3.2 Let f : V (G) → F be MIS-stable. If g(G) ≥ 6 then for all v ∈ V2 we must have

f(v) =
∑

u∈V1∩N1(v) f(u).

Proof: Since g(G) ≥ 6, we have thatN2(v) is an independent set. Consider a maximal independent

set I1 which contains N2(v) ∪ {v} and possibly some other vertices. Now consider I2 = I1 ∪ (V1 ∩
N1(v)) \ {v}. Clearly, I2 is also a maximal independent set. Since f is MIS-stable, we have

f(I1) = f(I2), and the lemma follows. 2

Lemma 3.3 Let f : V (G) → F be MIS-stable. If g(G) ≥ 7 then for all z ∈ V3 we must have

f(z) = 0.

Proof: Let v ∈ V2 be a neighbor of z. Let S = (N2(z)∩N3(v))∪(N2(v)∩N3(z)). Since g(G) ≥ 7,

we have that S is an independent set. Let I1 be a maximal independent set containing S and v.

Let I2 = I1 ∪ {z} ∪ (V1 ∩N1(v)) \ {v}. I2 is also a maximal independent set. Since f(I1) = f(I2)

we have f(z) +
∑

u∈V1∩N1(v) f(u) = f(v). By Lemma 3.2 we know that
∑

u∈V1∩N1(v) f(u) = f(v).

Thus, f(z) = 0. 2

Lemma 3.4 Let f : V (G) → F be MIS-stable. If g(G) ≥ 7 then for all x, y ∈ V3 ∪ V4 we must

have f(x) = f(y). In particular, if V1 6= ∅ then f(x) = 0 for all x ∈ V3 ∪ V4.

Proof: Assume, to the contrary, that the claim is false. Let x, y ∈ V3 ∪ V4 be two vertices with

f(x) 6= f(y), and which are closest. We may assume that f(y) 6= 0 and hence by Lemma 3.3

we must have y ∈ V4. Let z be any neighbor of y on the shortest path connecting y and x. Let

A1 = N2(z) ∩ N3(y) and A2 = N2(y) ∩ N3(z). Since y ∈ V4 we have that A1 6= ∅ and A2 6= ∅.
Furthermore, since g(G) ≥ 7 we have that S = A1 ∪ A2 is an independent set. Let I1 be a

maximal independent set containing S and y. Let I2 = I1 ∪{z} \ {y}. Clearly, I2 is also a maximal

independent set. Thus, f(z) = f(y) 6= 0. From Lemma 3.3 we have that z /∈ V3, and hence z ∈ V4.
But the distance from z to x is shorter than the distance from y to x, a contradiction. Now, if

V1 6= ∅ then if V4 6= ∅ then, necessarily, V3 6= ∅, and thus f(x) = 0 for all x ∈ V3 ∪ V4. 2

Theorem 3.5 If g(G) ≥ 7 and χ(F ) = 0, then udim(MIS : G,F ) = |V1|, unless G = C7, in

which case udim(MIS : C7, F ) = 1. Furthermore, a basis of udim(MIS : G,F ) can be constructed

in O(|V ||V1|) time.

Proof: Let f : V → F . Assume first that V1 6= ∅. According to Lemma 3.4, the value of f on

V3 and V4 is 0. According to Lemma 3.2, the value of f on v ∈ V2 is a linear combination of the

value of f on V1. Thus, f is determined by its values on V1. For v ∈ V1 let fv(u) = 1 if u = v or if
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u ∈ V2 is a neighbor of v. Otherwise, fv(u) = 0. Hence, the set {fv | v ∈ V1} spans U(MIS : G,F )

and, trivially, it is also linearly independent. Clearly, one may construct fv in O(|V |) time. Now

consider the case where V1 = ∅. In this case V4 = V . By Lemma 3.4, f must be constant. Since

χ(F ) = 0, this means that G is well-covered. It is known by [22] Corollary 4.3 that the only

(connected) well-covered graph with no vertex of degree 1 and with girth at least 7, is C7. 2

In Lemmas 3.2, 3.3 and 3.4 we did not require that χ(F ) = 0. Thus, if |V1| > 0, we can extend

Theorem 3.5 to all fields. Note that the first part of Theorem 1.2 follows from Theorem 3.5 and

Lemma 3.1. It is also interesting to note the following alternative of corollary 4.3 of [22].

Corollary 3.6 Let G = (V,E) be a connected graph with g(G) ≥ 7, and with |V1| > 0. Then G is

well-covered iff |V2| = |V1| and |V3| = |V4| = 0.

Proof: Let f : V → F be the all-one function. Recall that G is well-covered iff f is MIS-stable.

By Lemma 3.4, if f is MIS-stable, |V3| = |V4| = 0. By Lemma 3.2, if f is MIS-stable, a vertex of V2

must have exactly one neighbor in V1, which implies |V2| = |V1|. The other direction is trivial. 2

If G is a tree, Corollary 3.6 applies, and we obtain the result of Ravindra [23], which states that

a tree is well-covered iff there is a perfect matching between the leaves and the non-leaves of the

tree.

The second part of Theorem 1.2 follows from the result in [6]. One of the consequences of their

paper is that given a graph G = (V,E) with |V | = n, and ∆(G) = O((log n)1/3), one can determine

a basis of U(MIS : G,F ) is polynomial time. There is no restriction on the characteristic of F in

this case.

4 Applications of the uniformity space

In the first part of this section we show how to use Theorem 1.1 in order to compute the zero-

sum mod 2 Ramsey numbers R(G,Zk). These numbers are computed in [4], where the following

theorem in proved:

Theorem 4.1 (The zero-sum characterization theorem [4]) Let G be a graph on n vertices,

with no isolated vertices and an even number of edges. Then:

1. R(G,Z2) = n+ 2 if G = Kn ( i.e. n = 0, 1 mod 4 ).

2. R(G,Z2) = n+ 1 if G = Kp ∪Kq ( i.e.
(p
2

)
+
(q
2

)
= 0 mod 2 ).

3. R(G,Z2) = n+ 1 if all the degrees in G are odd and G 6= Kn.
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4. R(G,Z2) = n otherwise.

Furthermore, given f : E(Km) → Z2 where m = R(G,Z2), one can find a zero-sum copy of G in

Km in O(m4) = O(n4) time.

As mentioned in the introduction, the non-algorithmic part of Theorem 4.1 is proved in [4] directly,

and the proof is rather detailed. The algorithmic part of Theorem 4.1 is new, and does not appear

in [4]. We now present a rather short proof of Theorem 4.1 which uses the uniformity space results

of Theorem 1.1.

Proof of Theorem 4.1: We use the same notation used in Section 2. Note that if n ≤ m <

R(G,Z2), then there exists f : E(Km) → Z2 such that for every copy g of G in Km, w(f, g) 6= 0.

But in Z2 this implies that w(f, g) = 1, and thus f is G-stable. Since f is not identically zero, and

not identically one, this implies the following two observations:

OB1. udim(G,Km, Z2) ≥ 2 (since the all-one function is also G-stable, and is linearly-independent

with f).

OB2. If S is a basis for udim(G,Km, Z2) there exists f ′ ∈ S and a copy g of G in Km such that

w(f ′, g) = 1.

We now analyze the different cases in Theorem 4.1. We demonstrate the algorithmic part only in

the first case. The reader may verify the algorithmic part in the other cases in an analogous way.

1. G = Kn. If R(Kn, Z2) > n + 2 then, by Observation 1, we get udim(Kn,Kn+2, Z2) ≥ 2.

Now let G∗ be the connected graph on n + 2 vertices obtained by adding two isolated ver-

tices to Kn, and taking the complement. As noted in the introduction, U(Kn,Kn+2, Z2) =

U(G∗,Kn+2, Z2). However, according to case 1 in Theorem 1.1, udim(G∗,Kn+2, Z2) =

1 if n is even, a contradiction. If n is odd we know, by case 2 in Theorem 1.1, that

udim(G∗,Kn+2, Z2) = n + 2 where a basis to the linear space are the functions f1, . . . , fn+2

defined in Lemma 2.1. (Recall that fi assigns 1 to the edges adjacent to vertex i of Kn+2,

for i = 1, . . . , n+ 1, whereas fn+2 is the all-one function). In any case, w(fi, g) = 0 for every

copy g of Kn in Kn+2, which contradicts Observation 2. Thus, R(Kn, Z2) ≤ n+ 2.

We now prove the algorithmic part. According to Theorem 1.1, given an assignment f :

E(Kn+2)→ Z2 we can find in O((n+ 2)4) = O(n4) time whether f is G-stable or not, and if

it is not, we can produce two copies with different weights in O(n4) time. One of these copies

has weight 0. If f is stable, then in case n is even, f must be constant, and hence every copy

of Kn has weight 0. If n is odd, f is a linear combination of f1, . . . , fn+2, and thus, once

again, every copy of Kn has weight 0.
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Finally, to see that R(Kn, Z2) > n + 1, consider f : E(Kn+1) → Z2 which assigns 1 to the

edges of the triangle (1, 2, 3), and 0 to all other edges. Clearly, every copy g of Kn in Kn+1

contains one or three edges of the triangle, and hence w(f, g) = 1.

2. G = Kp ∪ Kq. If G in not regular mod 2 or if all the vertices of G have odd degree then

according to Theorem 1.1, udim(G,Kn+1, Z2) = 1. If all the vertices of G have even degree

then udim(G,Kn+1, Z2) = n+ 1, and the functions f1, . . . , fn+1 in Lemma 2.1 are a basis to

the linear space. Note, however, that w(fi, g) = 0 for every copy g of G in Kn+1. In any case,

we see by Observations 1 and 2 that R(G,Z2) ≤ n+ 1.

To see that R(G,Z2) > n, consider f : E(Kn) → Z2 which assigns 1 to the edges of some

triangle of Kn, and 0 to the other edges. A copy of G must include one or three edges of this

triangle.

3. All the vertices of G have odd degree and G 6= Kn. Note that G 6= K1,n−1 since the number

of edges of G is required to be even, and thus n is odd, but the root has even degree. Hence,

according to Theorem 1.1 udim(G,Kn+1, Z2) = 1 and thus R(G,Z2) ≤ n+ 1.

To see that R(G,Z2) > n consider f : E(Kn)→ Z2 which assigns 1 to the edges adjacent to

vertex 1 of Kn, and 0 to all other edges. Every copy of G in Kn includes an odd number of

edges assigned 1.

4. G is not one of the graphs mentioned above. Trivially, R(G,Z2) ≥ n for any graph G

on n vertices. It thus suffices to show that R(G,Z2) ≤ n. Consider first the case G =

K1,n−1. In this case n must be odd. Let f : E(Kn) → Z2. If every copy g of G in Kn

had w(f, g) = 1, this means that the subgraph of G on the edges assigned 1 by f has all

its degrees odd. This is impossible, since n is odd. Thus, R(G,Z2) ≤ n. We may now

assume G /∈ {Kn,K1,n−1}. Now consider the case where G is not complete bipartite. If

G is not regular mod 2, udim(G,Kn, Z2) = 1. If G is regular mod 2 (and thus all the

degrees are even), then udim(G,Kn, Z2) = n. A basis for the linear space are the functions

f1, . . . , fn of Lemma 2.1. But, w(fi, g) = 0 for every copy g of G in Kn. In any case, we have

shown R(G,Z2) ≤ n. The only remaining case is when G is complete bipartite. In this case

udim(G,Kn, Z2) =
(n−1

2

)
if n is odd and udim(G,Kn, Z2) =

(n−1
2

)
+ 1 if n is even. The set

T = {f(i,i+1,j) | 1 < i + 1 < j ≤ n} defined in Lemma 2.8 forms a basis of the linear space

when n is odd. If n is even we show in Lemma 2.8 that one may add to T the all-one function

f∗, in order to form a basis. In any case, w(f(i,i+1,j), g) = 0 for every copy g of G in Kn,

since a complete bipartite graph must capture two or zero edges of a triangle. Trivially, we

also have w(f∗, g) = |e(G)| mod 2 = 0. Hence, according to Observation 2, R(G,Z2) ≤ n. 2
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In the second part of this section we wish to see how a pure hypergraph-theoretic theorem which

involves no weight functions, namely Theorem 1.3 mentioned in the introduction, can be deduced

as a special case of a theorem involving uniformity space. Recall that Sr,n denotes the complete

r-uniform hypergraph with n vertices.

Theorem 4.2 Let r, n, k be positive integers where r ≤ k ≤ n− r. Let F be a field with character-

istic 0. Then udim(Sr,n, k, F ) = 1, and any non-zero constant function is a basis for U(Sr,n, k, F ).

Proof: We begin the proof with the case k = n − r. Let V = {1, . . . , n} denote the vertex-set

of Sr,n. Let E denote the edge-set of Sr,n. Each e ∈ E is an r-subset of V . Let f : E → F be

k-stable. This means that every induced subhypergraph of Sr,n on n − r vertices has the same

weight. Denote this common weight by w∗. For R ⊂ V , 1 ≤ |R| ≤ r, put w(f,R) =
∑

R⊂e,e∈E f(e),

and put x(f,R) =
∑

R∩e=∅ f(e) (the sum of weights on edges which do not contain any vertex of

R). We first show that x(f,R) depends only on |R| = i. There are
(n−i
n−r

)
induced subhypergraphs of

Sr,n on n−r vertices which do not contain any vertex of R. All these subhypergraphs have the same

weight, w∗. On the other hand, every edge e which is disjoint from R appears in exactly
(n−i−r
n−2r

)
of these subhypergraphs. Thus, by counting the sum of the weights of all these subhypergraphs in

two ways we have: (
n− i
n− r

)
w∗ = x(f,R)

(
n− i− r
n− 2r

)
.

Thus, x(f,R) depends only on |R| = i. We now show that w(f,R) depends only on |R| = i.

This is done by induction on i. For i = 1 this is true since w(f, {v}) = w(f) − x(f, {v}) where

w(f) =
∑

e∈E w(e). Assume this is true for all j < i. By the inclusion-exclusion principle:

w(f)− x(f,R) =
∑
R′⊂R

(−1)|R
′|−1w(f,R′).

Thus, w(f,R) depends only on w(f)−x(f,R) (which depends only on |R|) and on weights of proper

subsets R′ of R, where these weights, by the induction hypothesis, only depend on |R′|. Note that

when |R| = r, w(f,R) is simply the weight of the edge R, and therefore we have proved that all

weights are the same and this means that f is constant and udim(Sr,n, k, F ) = 1.

When r ≤ k < n − r we can use the fact that every subhypergraph S′ on n − r vertices contains

exactly
(n−r

k

)
induced subhypergraphs on k vertices. By the assumption, the sum of weights of each

of these k-vertex subhypergraphs is the same, say w∗. Every edge of S′ appears in exactly
(n−2r
k−r

)
of these subhypergraphs. Thus,

w∗
(
n− r
k

)
= w(S′)

(
n− 2r

k − r

)
.
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This means that w(S′) is the same for all subhypergraphs S′ on n−r vertices. Thus, by the previous

case, f is constant and udim(Sr,n, k, F ) = 1. 2

Theorem 1.3 is a consequence of Theorem 4.2:

Proof of Theorem 1.3 Let S be an n-vertex r-uniform hypergraph, and let r ≤ k ≤ n−r. Assume

that every induced subhypergraph of S on k vertices has the same number of edges. Define the

following function f : E(Sr,n)→ F (F is any field of characteristic 0). f(e) = 1 iff e ∈ S, otherwise

f(e) = 0. By our assumption, f is k-stable for Sr,n. By Theorem 4.2, f must be constant. Thus,

either f is identically 1 and S = Sr,n, or f is identically 0, and S has no edges. 2

5 Concluding remarks

1. Theorem 1.1 shows how to compute a basis for U(G,Kn, F ) for all possible graphs G with n

or less vertices. On the other hand, computing udim(G1, G2, F ) in NP-Complete in general.

It is plausible that there are other non-trivial infinite families of graphs F for which one can

compute udim(G1, G2, F ), in polynomial time, for all G1 ⊂ G2 ∈ F .

2. We have shown that the linear algebraic concept of uniformity space can sometimes enable us

to solve (hyper)graph-theoretic problems which do not involve linear algebra. Recently [9],

using the uniformity space method, we were able to solve completely the determination of

the zero-sum bipartite Ramsey numbers, raised by Bialostocki and Dierker [1], and partially

solved in [5]. Another recent application of this method is the characterization of the Zm-

well-covered graphs of girth at least 6 [7].

3. Lemma 3.3 cannot be strengthened to graphs with girth 6. To see this, consider a C6 =

(a, b, c, d, e, f) to which a new vertex g of degree one has been added, and connected to a.

Assign +1 to b, c assign −1 to e, f and assign 0 to g, a, d. This assignment is MIS-stable (for

characteristic 0), but b ∈ V3.
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