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Abstract

A basic result in Ramsey theory states that any tournament contains a “large” transitive

subgraph. Since transitive tournaments contain only transitive subgraphs, it is natural to ask

which subgraphs must appear in any large tournament that is “far” from being transitive. One

result of this type was obtained by Fox and Sudakov who characterized the tournaments that

appear in any tournament that is ε-far from being transitive. Another result of this type was

obtained by Berger et al. who characterized the tournaments that appear in any tournament

that cannot be partitioned into a bounded number of transitive sets.

In this paper we consider the common generalization of the above two results, namely the

tournaments that must appear in any tournament that is ε-far from being the union of a bounded

number of transitive sets. Our main result is a precise characterization of these tournaments.

1 Introduction

A tournament T = (V,E) is a digraph such that for every two distinct vertices u, v exactly one of

the ordered pairs (u, v) or (v, u) is an edge. A tournament is transitive if it contains no directed

cycle, or equivalently, if it is possible to order its vertices so that all edges “point” from left to right.

We use Tn to denote the (unique) n-vertex transitive tournament. If T is a tournament, we say

that a subset of vertices X ⊆ V (T ) is transitive if the sub-tournament induced by X is transitive.

One of the most basic results in graph theory (sometimes attributed to [19] and [13]) states that

any tournament on 2k−1 vertices contains a transitive subset of size k (i.e., a copy of Tk). Since Tn
contains only transitive subsets, it is clear that transitive tournaments are the only subgraphs that

are guaranteed to appear in any tournament. It is thus natural to ask if there are any tournaments

that are guaranteed to appear in any tournament that is “far” from being transitive?

Before describing the first result of this type let us introduce some definitions. We say that

an n-vertex tournament T is ε-far from being transitive if one should change the direction of at

least ε
(
n
2

)
of T ’s edges in order to turn1 it into a transitive tournament. For a tournament H with
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1Note that the number of edges whose direction needs to be changed in order to turn T into a transitive tournament

is precisely the number of edges that need to be removed from T in order to make it cycle-free.
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V (H) = {v1, . . . , vh} and for a vector (a1, . . . , ah) of positive integers, the transitive (a1, . . . , ah)-

blowup of H is the tournament obtained by replacing each vertex vi with the transitive tournament

Tai , and connecting all edges between Tai and Taj in the same direction as the edge connecting

vi and vj . We say that H ′ is a transitive blowup of H if there exists (a1, . . . , ah) such that H ′ is

the transitive (a1, . . . , ah)-blowup of H. In the case that c = a1 = · · · = ah we say that H ′ is a

c-blowup. Notice that, trivially, every tournament is a transitive blowup of itself. The directed

cycle on three vertices is denoted by C3.

The first result addressing the above mentioned meta-problem was obtained by Fox and Sudakov

[15] who characterized the tournaments that appear in every large enough tournament that is ε-far

from being transitive. More precisely, let us say that a tournament H is 1-unavoidable2 if for any

ε > 0 and n ≥ n0(ε), every n-vertex tournament that is ε-far from being transitive contains a copy

of H. The result of Fox and Sudakov [15] states that a tournament H is 1-unavoidable if and only

if H is either a transitive tournament or a transitive blowup of C3.

To describe the second result we need some more definitions. For an integer k ≥ 1, a k-coloring

of a tournament is a partition of its vertices into k parts, where each part induces a transitive

subset. The chromatic number χ(T ) of a tournament T is the minimum k such that T admits a

k-coloring. Berger et al. [5] call a graph H a hero if there is a constant cH so that any tournament

T satisfying χ(T ) > cH contains a copy of H. As noted in [8], the heroes are the tournaments that

satisfy the extreme case of the well-known Erdős-Hajnal conjecture. The main result of [5] is a

precise characterization of heroes (see Theorem 3 for the precise characterization).

Note that a transitive tournament T satisfies χ(T ) = 1 thus the 1-unavoidable tournaments

studied by Fox and Sudakov [15] are those that must appear in any large enough tournament that

is ε-far from being 1-colorable. Given the result of Berger et al. [5] it is thus natural to combine to

two notions studied in [5] and [15] and introduce the following one:

Definition 1.1 (Unavoidable) A tournament W is c-unavoidable if for every ε > 0 and n ≥
n0(ε,W ), every n-vertex tournament T that is ε-far3 from satisfying χ(T ) ≤ c contains a copy of

W . A tournament W is unavoidable if it is cW -unavoidable for some constant cW .

Our first result gives a precise characterization of the unavoidable tournaments.

Theorem 1 A tournament is unavoidable if and only if it is a transitive blowup of a hero.

It is of course natural to ask for any given c ≥ 1 which tournaments are c-unavoidable. We

discuss this in Section 4. Also, as we note later in Section 4, the proof actually shows that for any

unavoidable W there is some δ > 0, so that if one should change the direction of at least n2−δ edges

in order to make an n-vertex T satisfy χ(T ) ≤ cW , then T contains a copy of W .

2The reason for using the 1 will become clear soon.
3A tournament is ε-far from satisfying χ(T ) ≤ c if one should change the direction of at least ε

(
n
2

)
edges in order

to obtain a tournament T ′ that satisfies χ(T ′) ≤ c. Also, if T is not ε-far from satisfying χ(T ) ≤ c then we say that

it is ε-close to satisfying χ(T ) ≤ c.
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Our second result concerns a weaker notion of being unavoidable. To this end it might be better

to consider the contra-positive versions of the notions introduced above. Then H is a hero if every

H-free tournament T satisfies χ(T ) ≤ cH , and W is unavoidable if for every ε > 0 and large enough

n, if T is an n-vertex W -free tournament, then T is ε-close to satisfying χ(T ) ≤ cW . Note that cH
and cW are constants that depend only on H and W respectively. It is thus natural to ask what

happens if we relax the condition on the chromatic number and allow it to depend on ε.

Definition 1.2 (Weakly-Unavoidable) A tournament W is weakly-unavoidable if for every ε >

0 there is cW = cW (ε) so that for every n ≥ n0(ε,W ), every n-vertex tournament T that is ε-far

from satisfying χ(T ) ≤ cW contains a copy of W .

Our second result gives a precise characterization of the weakly-unavoidable tournaments.

Theorem 2 Every tournament is weakly-unavoidable.

As it turns out, the proofs of Theorems 1 and 2 are quite different. While the first one turns out

to be a Turán-type problem, the second turns out to be a Ramsey-type problem. In Section 2 we

prove Theorem 1, which naturally has two main steps. In the first step we show that a transitive

blowup of a hero must be unavoidable. To this end we combine several combinatorial tools that can

all be classified as being related to the area of graph/hypergraph property testing (see e.g. [17]).

To show that any unavoidable tournament must be a transitive blowup of a hero we need to rely

on the characterization of heroes obtained in [5].

Let us mention an interesting aspect of the proof of the second part of Theorem 1. Recall that

if H is a hero, then any H-free tournament T can be partitioned into cH transitive sets. It is then

natural to ask what if we only asked T to contain a transitive subset of linear size. It is shown

in [5], that this (apparently) weaker condition is equivalent to the notion of a hero. One can thus

formulate a similar weaker notion in our setting as well, and only ask that if a tournament T is

W -free then T must contain a set of vertices of linear size that is ε-close to transitive. As our proof

shows, this (seemingly) weaker notion is equivalent to the one in Definition 1.1. In other words,

what we show is that if W is not a transitive blowup of a hero, then it does not satisfy even this

weaker condition.

As we mentioned above, Theorem 2 turns out to be a Ramsey-type problem. The proof of this

theorem, which appears in Section 3, uses the approach of Graham, Rödl and Ruciński [16] in their

study of the Ramsey numbers of bounded degree graphs. As pointed to us by one of the referees,

the main technical part of the proof of Theorem 2 can also be deduced from Lemma 2.8 in [4].

However, this gives a tower-type dependence for the function cW (ε), while our proof gives a single

exponential dependence. Section 4 contains some concluding remarks and open problems.

2 Unavoidable Tournaments

We start with the positive side of Theorem 1 showing that a transitive blowup of a hero is unavoid-

able. We start with the following lemma which proves a “removal lemma” (in the sense of [18]) for
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triangles4 in tournaments with a polynomial bound. Such a lemma appears in [15] with a better

bound, but for completeness we give a shorter and simpler proof.

Lemma 2.1 If an n-vertex tournament T is ε-far from transitive, then it contains at least ε6

128n
3

copies of C3.

Proof. First observe that T has a subtournament with minimum out-degree at least εn/2. One

can construct such a subtournament as follows. As long as there is a vertex with out-degree less

than εn/2, we remove it from T , and repeat. If this process exhausts all vertices, then T has

an ordering of vertices v1, . . . , vn such that each vi has fewer than εn/2 edges pointing from it to

vertices with higher index. But this means that the set of forward edges under this ordering is of

size less than (n−1)εn/2, so T can be made transitive by changing the direction of fewer than ε
(
n
2

)
edges, contradicting the assumption. Thus, let G∗ denote a subtournament of T with minimum

out-degree at least εn/2.

Let αn denote the number of vertices of G∗ and observe that α ≥ ε as in every tournament the

number of vertices is at least twice as large as the minimum out-degree.

Suppose we sample a set Q of q = (2α/ε)2 vertices of G∗. What is the probability that Q

induces a transitive tournament? For this to happen, we must have at least one vertex v of Q such

that all other q − 1 vertices of Q are in-neighbors of v. The probability of this occurring for a

particular v ∈ Q is at most ((αn − 1 − dv)/(αn − 1))q−1 where dv is the number of out-neighbors

of v in G∗. Since dv ≥ εn/2 we have(
αn− 1− dv
αn− 1

)q−1
≤

(
αn− dv
αn

)q−1
≤

(
1− ε

2α

)(2α/ε)2−1
<

ε2

8α2
.

Hence, by the union bound, the probability that Q is transitive is less than 1/2. In particular,

with probability at least 1/2, Q contains a triangle. As there are
(
αn
q

)
sets of q vertices in G∗ and

each triangle of G∗ appears in
(
αn−3
q−3

)
such sets we have, by double counting, that the number of

triangles in G∗ (and therefore in T ) is at least

1

2
· (αn)3

q3
≥ 1

2

(
αnε2

4α2

)3

≥ ε6

128
n3 .

We recall that an h-uniform hypergraph (h-graph for short) on vertex set V is a collection of

edges, where each edge is a subset of h distinct vertices from V . An h-graph is k-colorable if we can

color its vertices with k colors so that no edge is monochromatic. The following result is proved in

[10] (see also [20] for an improved bound).

4As is well known, a tournament is not transitive if and only if it contains a copy of C3. Thus Lemma 2.1 is

equivalent to the statement that if a tournament is ε-far from being C3-free then it contains ε6

128
n3 copies of C3.
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Lemma 2.2 (Czumaj-Sohler [10]) If one must remove from a 3-graph G on n vertices at least

εn3 edges in order to make it k-colorable, then a random subset S ⊆ V (G) of (10k2/ε)2 vertices

spans a non k-colorable 3-graph with probability at least 1/2.

An h-graph is h-partite if its vertex set can be partitioned into h parts such that each edge

contains precisely one vertex from each part. An h-partite h-graph is complete if every subset of

size h with one vertex in each part is an edge. We need the following classical result of Erdős [12].

Lemma 2.3 (Erdős [12]) There is a constant n2.3(ε, h, t) such that for all n > n2.3(ε, h, t), every

n-vertex h-graph with at least εnh edges contains a complete h-partite subgraph with t vertices in

each part.

The following lemma proves the positive part of Theorem 1.

Lemma 2.4 Suppose W is obtained from an h-vertex hero H by a transitive blowup where each

vertex of H is replaced with a transitive tournament on t vertices. Let k be the constant such that

every H-free tournament is k-colorable. Then for any ε > 0 and n > n2.4(ε, t,H), every n-vertex

tournament that is ε-far from being k-colorable contains a copy of W .

Proof. Fix an arbitrary ε > 0 and define n2.4(ε, t,H) = n2.3((
ε18

226hk22
)h, h, 2t−1). Suppose T is

a tournament on n > n2.4(ε, t,H) vertices that is ε-far from being k-colorable. We need to prove

that T contains W . Consider any partition of V (T ) into k parts U1, . . . , Uk. By assumption we

should change the direction of at least ε
(
n
2

)
edges in order to turn this partition into a collection

of k transitive tournaments. We claim that there must be at least one part Ui such that |Ui| ≥ ε
kn

and Ui is ε
k -far from transitive. Indeed, there are at most εn vertices in parts of size less than ε

kn

and hence less than ε2n2 < (ε/2)
(
n
2

)
edges inside such parts. If each larger part was ε

k -close to

transitive we could have changed less than
(
n
2

)
ε/k < (ε/2)

(
n
2

)
edges in these parts and make them

transitive. Thus, one could have made T transitive by changing the direction of less than ε
(
n
2

)
edges, contradicting the assumption. Let therefore Ui be such that |Ui| ≥ ε

kn and be ε
k -far from

transitive. Hence, by Lemma 2.1, the set Ui contains (ε/k)6

128 ( εnk )3 ≥ (ε/2k)9n3 copies of C3. So we

see that in every partition of T into k sets there are (ε/2k)9n3 copies of C3 that are fully contained

in one of the k sets.

Define a 3-graph G3 on V (T ) with {x, y, z} being an edge of G3 if and only if they form a C3

in T . Then the above property of T implies that in every k-partition of V (G3) there are at least

(ε/2k)9n3 edges that belong to one of the k parts. This means that one should remove at least

(ε/2k)9n3 edges from G3 in order to make it k-colorable. Hence, by Lemma 2.2, a random subset of

225k22/ε18 vertices from G3 spans a non k-colorable 3-graph with probability at least 1/2. Hence, a

random subset of 225k22/ε18 vertices from T spans a non k-colorable tournament with probability

at least 1/2. Therefore, each such subset contains a copy of H. This means that T contains at

least
1
2

(
n

225k22/ε18

)(
n−h

225k22/ε18−h
) ≥ 1

2

(
ε18

225k22

)h
nh (1)
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copies of H.

Consider now a random partition of V (T ) into h sets V1, . . . , Vh where we randomly, uniformly

and independently place each vertex v ∈ V (T ) into one of the sets Vi. Suppose the vertices of H

are x1, . . . , xh. Now define a (random) h-partite h-graph Gh on V (T ), with an h-tuple v1, . . . , vh
of vertices being an edge if and only if v1 ∈ V1, . . . , vh ∈ Vh and v1, . . . , vh span a copy of H in T

where for every 1 ≤ i ≤ h vertex vi plays the role of xi. Note that if v1, . . . , vh span a copy of H in

T , then the probability that v1, . . . , vh will be an edge in Gh is at least 1/hh. From (1) we deduce

that the expected number of edges in Gh is at least

1

hh
· 1

2

(
ε18

225k22

)h
nh ≥

(
ε18

226hk22

)h
nh .

Fix an h-graph with at least this many edges. From Lemma 2.3, under assumption that n >

n2.3((
ε18

226hk22
)h, h, 2t−1) = n2.4(ε, t,H), we can conclude that this h-graph contains a complete 2t−1-

partite h-graph on vertex sets S1, . . . , Sh. Going back to T , it is clear that S1, . . . , Sh have the

property that for any choice of v1 ∈ S1, . . . , vh ∈ Sh we get a copy of H with vi playing the role of

xi. By the observation from [19] mentioned in the introduction, every tournament on 2t−1 vertices

contains Tt. We can now pick from each of the sets S1, . . . , Sh a copy of Tt, and thus get a copy of

W .

We now turn to prove the other side of Theorem 1. As opposed to the first direction of the

proof, in which we didn’t use any structural property of heroes, this part of the proof will crucially

rely on the characterization of heroes obtained by Berger et al. [5] (see also [9] for a simpler proof).

To state their result we need some more definitions. For three tournaments P,Q,R, let ∆(P,Q,R)

be the tournament obtained by taking C3 and replacing one of its vertices with P , one with Q,

and one with R. Notice that trivially, C3 = ∆(T1, T1, T1). Also observe that ∆(P,Q,R) is always

a strong tournament, where a tournament T is strong if for any ordered pair of vertices u, v, there

is a path in T from u to v. The main result of [5] is the following.

Theorem 3 (Berger et al. [5]) A tournament is a hero if and only if each of its strong compo-

nents is a hero. A strong tournament is a hero if and only if it is isomorphic to ∆(P, Tq, T1) for

some positive integer q and for some hero P .

As we mentioned in Section 1, we will actually show that for any tournament W that is not

a transitive blowup of a hero, there are tournaments that are W -free and do not even contain a

set of vertices of linear size that is close to being transitive. To make this approach precise let us

introduce the following refined version of the notion of being ε-far from transitive.

Definition 2.5 An n-vertex tournament is (c, ε)-far from transitive if the induced subgraph on

every set of at least cn vertices is ε-far from transitive.

The following lemma shows that in order to prove that a graph W is not unavoidable, it is a

enough to construct for every c > 0 and some ε > 0 a sequence of W -free tournaments that are all

(c, ε)-far from transitive.
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Lemma 2.6 If W is unavoidable, then for every ε > 0 and every n > n2.6(ε,W ) every n-vertex

tournament that is (1/cW , ε)-far from transitive contains a copy of W .

Proof. Suppose T is an n-vertex tournament that is (1/cW , ε)-far from transitive. It is enough

to show that if n is large enough, then T is ε-far from satisfying χ(T ) ≤ cW . Indeed, consider any

partition of V (T ) into cW sets V1, . . . , VcW . Then some set Vi must be of size at least n/cW so by

assumption one should change the direction of at least ε
(
n/cW

2

)
edges just to make Vi transitive. In

particular, T is (ε/c2W )-far from satisfying χ(T ) ≤ cW . Hence, it follows from Definition 1.1 that

for large enough n (that depends only on ε and W ), T must contain a copy of W .

Lemma 2.8 gives a necessary condition for a strong tournament to be unavoidable. Before

proving it, we need the following simple claim observed in [6].

Lemma 2.7 Suppose a tournament T contains three vertex sets A1, A2, A3 each of size r so that

for every 1 ≤ i ≤ 3 and every v ∈ Ai and u ∈ Ai+1 (where indices are taken (mod 3)) the edge

(v, u) belongs to T . Then one should change the direction of at least r2 edges in order to make T

transitive.

Proof. T contains r3 copies of C3 each with one vertex in each of the sets A1, A2, A3. Changing

the direction of an edge in T can destroy at most r of these copies of C3 hence one needs to make

at least r2 modifications to make T transitive.

Lemma 2.8 Every strong unavoidable tournament with at least three vertices has to be of the form

∆(P,Q,R) where P,Q,R are nonempty tournaments.

Proof. Define the following sequence of tournaments, denoted by U1, U2, . . . as follows. U1 = C3

and Uk = ∆(Uk−1, Uk−1, Uk−1). Notice that Uk has 3k vertices and is, in fact, a regular tournament5.

We next show that for any 0 < c ≤ 1, and for all k sufficiently large, the tournament Uk is (c, ε)-

far from transitive for ε = 0.01c6. Consider some sub-tournament Rk of Uk with c · 3k vertices. We

define the following process starting from i = 0. Recall that Uk−i is constructed from three disjoint

copies of Uk−i−1. If all of the three copies contain each at least 0.1|Rk−i| vertices of Rk−i, we halt.

Otherwise, some copy of Uk−i−1 contains at least 0.45|Rk−i| vertices. Denote the sub-tournament

of Rk−i induced by this copy by Rk−i−1 and continue to the next i.

How long can this process continue? Observe that Rk−i has at least 0.45ic · 3k vertices. On the

other hand, Uk−i has 3k−i vertices and hence we must have 3k−i ≥ 0.45ic·3k. Hence, 1.35i ≤ c−1 and

thus i ≤ ln(c−1)/ ln(1.35). When the process halts we have that Rk−i has at least 0.1|Rk−i| vertices

in each of the three parts of Uk−i. By Lemma 2.7, to make Rk−i transitive we need to change the

direction of at least (0.1|Rk−i|)2 edges. To conclude we must show that (0.1|Rk−i|)2 ≥
(|Rk|

2

)
0.01c6.

Indeed,

(0.1|Rk−i|)2 ≥ 0.01 · 0.452ic29k ≥ 0.01 · 0.452 ln(c
−1)/ ln(1.35)c29k ≥ 0.01c89k ≥

(
|Rk|

2

)
0.01c6

5A regular tournament is a tournament where the in-degree and out-degree at each vertex are equal.
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as required.

Suppose now that W is a strong unavoidable tournament. Then, by Lemma 2.6, every suffi-

ciently large tournament that is (cW , 0.01c6W )-far from transitive must contain W . In particular,

for all k sufficiently large, Uk must contain a copy of W . Let k be the smallest integer such that

Uk contains W . We may assume that k > 1 (otherwise W = C3 and we are trivially done). Recall

that Uk = ∆(A1, A2, A3) where Ai is isomorphic to Uk−1 for i = 1, 2, 3. Let B denote a copy of

W in Uk and let Bi = Ai ∩ B for i = 1, 2, 3 and thus B = ∆(B1, B2, B3). We cannot have that B

is entirely contained in some Ai by the minimality of k. We can also not have that B intersects

precisely two of the Ai’s since B is strong. Hence each Bi is nonempty.

Lemma 2.9 The tournament ∆(C3, C3, T1) is not unavoidable.

Proof. Set W = ∆(C3, C3, T1) and let c be a positive integer. By Lemma 2.6, it is enough to

show that there is some ε > 0 so that for any large enough n there is a tournament that is (c, ε)-far

from transitive and is yet W -free. Let t be the smallest integer such that there exists an undirected

graph Gt on t vertices with girth at least 8 and maximum independent set smaller than ct/4. The

existence of Gt follows from a result of Erdős [11]. Set ε = 1/4t2.

The following tournament is constructed in [5]. Take t vertices v1, . . . , vt and a copy of Gt
on these vertices. Orient every edge of Gt from the endpoint with higher index to the endpoint

with lower index (so that all these edges go backwards from “right to left”). Every non-edge of Gt
becomes an edge from left to right. Denote the resulting tournament by Rt and notice that Gt is

the “back-edge graph” of Rt.

As any subgraph on seven vertices of Gt is a forest, we have that any induced subgraph on seven

vertices of Rt is a union of two transitive sets (which one obtains from a bipartition of the forest

induced by these seven vertices). But since W = ∆(C3, C3, T1) is not the union of two transitive

sets, it follows that Rt does not contain W . Furthermore, as Gt is triangle-free, any transitive set

of Rt is the union of two independent sets of Gt (one consisting of all the vertices that are not

the head of any back-edge and the other consisting of all the vertices that are not the tail of any

back-edge). Hence, the largest transitive set of Rt has size smaller than ct/2.

Now, let G∗ be a transitive blowup of Rt obtained by replacing each vertex with a transitive set

of size n/t. Then G∗ has n vertices and we denote the t parts of G∗ by V1, . . . , Vt where Vi is the

blowup of vi and |Vi| = n/t. We claim that G∗ does not contain W as a sub-tournament. Indeed,

assume there is some sub-tournament X of G∗ isomorphic to W . We cannot have each of the seven

vertices of X in a distinct part of G∗ since otherwise X would have been a sub-tournament of Rt,

contradicting the fact that Rt does not contain W . But we also cannot have two or more vertices

of X in the same part as W is not a transitive blowup of any tournament with fewer than seven

vertices, since its chromatic number is 3 while the chromatic number of any smaller tournament is

at most 2.

We next claim that every set of size cn in G∗ is far from transitive, in the sense that one needs

to change the direction of more than c2n2/(4t2) edges to make it transitive. To see this, consider

some set A of cn vertices of G∗. Let Ai = A ∩ Vi for i = 1, . . . , t. Let S be the sub-tournament
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of Rt such that vs ∈ S if |As| ≥ cn/(2t) and let A∗ = ∪vs∈SAs. Notice that the total number of

vertices of A \A∗ is at most cn/2 so |A∗| ≥ cn/2 and hence we also have that |S| > ct/2, so by the

construction, S is not a transitive set. This means that A∗ is not a transitive set and hence, as S

contains a directed triangle, A∗ contains the cn/(2t)-blowup of a directed triangle. By Lemma 2.7,

in order to make A∗ transitive one must change the direction of at least (cn/(2t))2 = c2n2/(4t2)

edges from A∗ which is more than an ε fraction of the
(
cn
2

)
edges of A. As we can take n to be

arbitrary large, this proves that W is not unavoidable.

Corollary 2.10 Every strong unavoidable tournament with at least three vertices is of the form

∆(P, Tk, T`) where P is unavoidable and k, ` are positive integers.

Proof. By Lemma 2.8, if W is a strong tournament that is unavoidable, it must be of the form

∆(P,Q,R) where P,Q,R are nonempty tournaments. Notice, however, that every subtournament

of an unavoidable tournament is unavoidable. Thus, we cannot have more than one of P,Q,R non-

transitive, as otherwise W contains ∆(C3, C3, T1) which is not unavoidable by Lemma 2.9. Hence,

without loss of generality, both Q and R are transitive tournaments, say Q = Tk and R = T`.

The following lemma gives a necessary condition for a tournament to be unavoidable.

Lemma 2.11 If W is unavoidable, then it is a transitive blowup of a hero.

Proof. We prove the lemma by induction on the size of W . If W has at most three vertices, the

result trivially holds, so assume |V (W )| > 3. Assume first that W is not strong, and let W1, . . . ,Wk

be its strong components (we can assume that for i < j, all edges between Wi and Wj point from

Wi to Wj). As each Wi is unavoidable (since they are subtournaments of W ) we have, by the

induction hypothesis, that Wi is a transitive blowup of some hero Hi for i = 1, . . . , k. Now, by

Theorem 3, the tournament H whose strong components are H1, . . . ,Hk is also a hero. But observe

that W is a transitive blowup of H, hence the claim holds.

Assume next that W is strong. By Corollary 2.10, W is of the form ∆(P, Tk, T`) where P is

unavoidable. As P has fewer vertices than W , the induction hypothesis implies that P is a transitive

blowup of some hero H. But by Theorem 3, the tournament ∆(H,T1, T1) is a hero. Since W is a

transitive blowup of ∆(H,T1, T1), the claim holds in this case as well.

Proof. (of Theorem 1) Immediate from Lemmas 2.4 and 2.11.

3 Weakly Unavoidable Tournaments

In this section we prove that every tournament is weakly unavoidable. We begin with a definition

and a few lemmas. The density of an ordered pair of nonempty disjoint vertex sets (A,B) in a

digraph is defined to be d(A,B) = e(A,B)/(|A||B|) where e(A,B) is the number of edges pointing

from A to B (note that we do not necessarily have d(A,B) = d(B,A)).
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Definition 3.1 A bipartite digraph (A,B) is (δ, γ)-dense if for every pair of subsets A′ ⊆ A and

B′ ⊆ B satisfying |A′| ≥ δ|A| and |B′| ≥ δ|B| we have d(A′, B′) ≥ γ and d(B′, A′) ≥ γ.

Lemma 3.2 Let γ < 1
2 and let W be a tournament on w vertices. If U1, . . . , Uw are disjoint vertex

sets satisfying |Ui| ≥ (1/γ)w for every 1 ≤ i ≤ w, and each pair of them is (γw, γ)-dense, then they

contain a copy of W . In particular, if U is a set of at least w(1/γ)w vertices and for each pair of

disjoint subsets A,B ⊆ U of size at least (γw/w)|U | we have d(A,B) ≥ γ and d(B,A) ≥ γ, then U

contains a copy of W .

Proof. We prove the first part of the lemma by induction on w. Denote the vertices of W by

V (W ) = {v1, . . . , vw}. We will prove that U1, . . . , Uw contain a copy of W where the vertex of Ui
in that copy plays the role of vi. Notice that the statement is trivially true for w = 1.

For i = 1, . . . , w − 1, we say that a vertex u of Uw is bad for i if u has fewer than γ|Ui| out-

neighbors in Ui in case (vw, vi) ∈ E(W ) or fewer than γ|Ui| in-neighbors in Ui in case (vi, vw) ∈
E(W ). Let Uw,i ⊂ Uw denote the set of vertices that are bad for i. Clearly, d(Uw,i, Ui) < γ in case

(vw, vi) ∈ E(W ) or d(Ui, Uw,i) < γ in case (vi, vw) ∈ E(W ). Hence, by the assumption that (Uw, Ui)

is (γw, γ)-dense, we must have |Uw,i| < γw|Uw|. We therefore have that there exists X ⊂ Uw with

|X| ≥ |Uw| − (w − 1)γw|Uw| such that each u ∈ X has at least γ|Ui| out-neighbors in Ui in case

(vw, vi) ∈ E(W ) and at least γ|Ui| in-neighbors in Ui in case (vi, vw) ∈ E(W ). Notice that X is

not empty since γw < 1/(w − 1).

Pick some u ∈ X and let Ri ⊂ Ui be the set of out-neighbors of u in Ui in case (vw, vi) ∈ E(W )

or the set of in-neighbors of u in Ui in case (vi, vw) ∈ E(W ). Let W ′ = W \ {vw}. It suffices to

prove that R1, . . . , Rh−1 contain a copy of W ′ where the vertex of Ri in that copy plays the role of

vi. Notice first that

|Ri| ≥ γ|Ui| ≥ γ(1/γ)w ≥ (1/γ)w−1 .

Also notice that γw−1|Ri| ≥ γw|Ui|, so each pair (Ri, Rj) is (γw−1, γ)-dense. By the induction

hypothesis, there is a copy of W ′ in R1, . . . , Rw−1 where the vertex of Ri in that copy plays the

role of vi.

For the second part of the lemma just partition U arbitrarily into w sets of equal size and

observe that each pair of them must be (γw, γ)-dense.

Lemma 3.3 Suppose U1, . . . , Ut are vertex-disjoint subsets of a tournament where t = 3/ε and

|Ui| ≥ q for all i = 1, . . . , t. Furthermore, for every 1 ≤ i < j ≤ t we have d(Uj , Ui) ≤ ε/2. Then

there are subsets R1, . . . , Rt with Ri ⊂ Ui and |Ri| = q, such that the sub-tournament spanned by

∪ti=1Ri is ε-close to transitive.

Proof. Consider a random subset Ri ⊂ Ui of size q. Since d(Uj , Ui) ≤ ε/2 whenever j > i, we have

that the expected number of edges pointing from Rj to Ri is at most q2ε/2. Thus, by linearity of

expectation, there is a choice of subsets R1, . . . , Rt such that one can change the direction of at

most
(
t
2

)
q2ε/2 edges such that no edge points from any Rj to any Ri whenever j > i. Remove also
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all edges with both endpoints in Ri for i = 1, . . . , t. Hence the sub-tournament R = ∪ti=1Ri can be

made transitive by changing the direction of at most t
(
q
2

)
+

(
t
2

)
q2ε/2 edges. But

t

(
q

2

)
+

(
t

2

)
q2ε/2 ≤ tq2

2
+
t2q2ε

4
≤ q2

(
3

2ε
+

9

4ε

)
< q2

4

ε
<

(
tq

2

)
ε .

Since the number of edges of R is
(
tq
2

)
, the latter inequality proves that R is ε-close to transitive.

Lemma 3.4 Let ε > 0 and let w be a positive integer. Every tournament T with n ≥ n3.4(ε, w)

vertices contains one of the following:

1. A set U of at least (ε/8w)3w/εn vertices satisfying the assertion of Lemma 3.2 with γ = ε/4.

2. A collection of 3/ε subsets U1, . . . , Ut each of size at least (ε/8w)3w/εn satisfying the assertion

of Lemma 3.3 with q = (ε/8w)3w/εn.

Proof. Define

n3.4(ε, w) = w

(
4

ε

)w (
8w

ε

)3w/ε

. (2)

For an integer t ≥ 0, let us say that a sequence {U1, . . . , Ut, Vt+1} of t + 1 disjoint sets of vertices

of T is nice if it satisfies the following conditions:

1. |Vt+1| ≥ (ε/8w)wtn.

2. For each 1 ≤ i ≤ t we have |Ui| ≥ (ε/8w)iwn.

3. For every 1 ≤ i < j ≤ t we have d(Uj , Ui) ≤ ε/2.

4. For every 1 ≤ i ≤ t, every vertex in Vt+1 has at most ε|Uj |/2 out-neighbors in Uj .

Note that for t = 0 we can get a nice collection by setting V1 = V (T ). Suppose first that T

contains a nice collection U1, . . . , Ut, Vt+1 with t = 3/ε. Then it is clear that U1, . . . , Ut satisfy the

second assertion of the lemma and we are done.

Otherwise, let U1, . . . , Ut, Vt+1 be a nice collection with the largest possible t, which we assume

satisfies t < 3/ε. We now claim that in this case we can take Vt+1 as the set U in the first assertion

of the lemma with γ = ε/4. To see this, first note that by (2),

|Vt+1| ≥ (ε/8w)wtn ≥ w(1/γ)w

so it satisfies the assumption of Lemma 3.2 and it is also of the right size since it has size at least

(ε/8w)3w/εn. We now need to show that for every pair of disjoint subset A,B ⊆ Vt+1 of size at

least (γw/w)|Vt+1| we have d(A,B) ≥ γ and d(B,A) ≥ γ. So suppose this is not the case and that

A,B is such a pair satisfying d(B,A) < γ.
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Let Vt+2 be the set of vertices of B that have at most 2γ|A| edges pointing to A. Observe that

|Vt+2| ≥ |B|/2 as otherwise that would give d(B,A) ≥ γ. Define Ut+1 = A and observe that we

have found sets Ut+1 and Vt+2 satisfying

|Ut+1| ≥
γw

w
|Vt+1| ≥

γw

w

( ε

8w

)wt
n ≥

( ε

8w

)w(t+1)
n .

and

|Vt+2| ≥
|B|
2
≥ 1

2

γw

w
|Vt+1| ≥

1

2

γw

w

( ε

8w

)wt
n ≥

( ε

8w

)w(t+1)
n .

Furthermore, note that our assumption that U1, . . . , Ut, Vt+1 is a nice sequence, implies that

U1, . . . , Ut+1, Vt+2 is also a nice sequence, contradicting the maximality of t.

We now derive a weaker version of Theorem 2, showing that if a tournament is W -free then

some set of vertices of linear size must be close to transitive. We then use this weaker version

iteratively in order to prove Theorem 2.

Lemma 3.5 Suppose W has w vertices, ε > 0 and n > n3.4(ε, w). Then every n-vertex tournament

T that is ((ε/8w)3w/ε, ε)-far6 from transitive contains a copy of W .

Proof. If T satisfies the second assertion of Lemma 3.4, then Lemma 3.3 implies that T contains a

subset of size at least (ε/8w)3w/εn that is ε-close to transitive, contradicting the assumption of the

lemma. Therefore T must satisfy the first assertion of Lemma 3.4. Lemma 3.2 now implies that T

has a copy of W .

Proof. (of Theorem 2) We prove that there is a function cW (ε) such that if T is a W -free

tournament, then T is ε-close to having chromatic number at most cW (ε). So, suppose T is W -free.

If T has fewer than n3.4(ε, w) vertices, then we can just take the trivial partition into n3.4(ε, w)

vertices. Otherwise, by Lemma 3.5, we can find a subset S1 of size (ε/8w)3w/εn that is ε-close to

transitive. We can now keep pulling subsets S2, S3, . . . on an (ε/8w)3w/ε-fraction of the remaining

vertices until we are either left with fewer than εn vertices or with fewer than n3.4(ε, w) vertices.

This clearly happens after at most log(1/ε) · (8w/ε)3w/ε ≤ (8w/ε)4w/ε iterations. We can then

remove from each of the sets Si the ε-fraction of vertices which make it transitive. Finally, if we

were left with a set of size less than εn we can remove all edges in the set, and if we were left with

fewer than n3.4(ε, h) vertices, we partition it into sets of size 1. In any case we remove fewer than

ε
(
n
2

)
edges, and thus partition T into at most n3.4(ε, h) + (8w/ε)4w/ε ≤ (8w/ε)5w/ε sets that are

transitive.

4 Concluding Remarks and Open Problems

A removal lemma for tournaments: An n-vertex graph or digraph G is ε-far from being H-

free if one should remove from G at least εn2 edges in order to make it H-free. The famous graph

6Recall Definition 2.5.

12



removal lemma states that in this case G must contain fH(ε)nh copies of H, where h = |V (H)|.
As is well known, the proof of this general result uses Szemerédi’s regularity lemma and as a result

the bound on fH(ε) is extremely poor. Alon [1] characterized the graphs H for which fH(ε) can be

bounded from below by εC for some C = C(H). This suggests the following problem:

Problem 4.1 For a tournament H on h vertices and ε > 0 let fH(ε) be the largest real so that any

tournament T that is ε-far from being H-free contains fH(ε)nh copies of H. For which tournaments

can fH(ε) be bounded from below by εC for some C = C(H)?

We note that if T in the above problem is not required to be a tournament, that is if T is allowed to

be an arbitrary digraph, then a characterization is given in [2]. However, the proof in [2] showing

that fH(ε) is not polynomial in ε critically relies on the fact that T is not a tournament. For

example, it follows from [2] that fC3(ε) is not polynomial in ε when T is an arbitrary digraph,

while Lemma 2.1 shows that fC3(ε) is polynomial when T is required to be a tournament. As of

now we can show that there are tournaments H for which fH(ε) is not polynomial (in fact, we can

show that as h grows, almost all h-vertex tournaments are such) but we are still not able to resolve

Problem 4.1 completely. As a special case of Problem 4.1, is it true that fH(ε) is polynomial in ε

whenever H is a hero? Lemma 2.4 shows that a positive answer to this question would actually

imply that fH(ε) is polynomial whenever H is a transitive blowup of a hero, that is, whenever H

is unavoidable.

A characterization of c-unavoidable tournaments: Given a tournament W let cW denote

the smallest c for which W is c-unavoidable, and let c′W be the smallest c so that any W -free

tournament T satisfies χ(T ) ≤ c (i.e. the smallest c for which W satisfies the condition of being

a hero). Then as we mentioned in Section 1, Fox and Sudakov [15] characterized the tournaments

that satisfy cW = 1. Furthermore, this characterization is “efficient” in the sense that given W it

is possible to determine in polynomial time whether cW = 1. The result of Berger et al. [5] gives a

characterization of the tournaments satisfying c′W = O(1) and our main result is a characterization

of the tournaments satisfying cW = O(1). It is thus natural to ask if given a tournament W it is

possible to compute cW . To this end we have the following partial answer.

Lemma 4.2 For an unavoidable tournament W , let H be a minimal (in terms of number of ver-

tices) sub-tournament of W with the property that W is transitive blowup of H. Then cW = c′H .

Furthermore, given W it is possible to find a minimal H as above in polynomial time.

Proof. (sketch) Let H be as above. Since W is unavoidable, Theorem 1 tells us that W is a

transitive blowup of some hero H ′, implying that H ′ is a subgraph of W . Hence H ′ is also a

transitive blowup of H and the minimality of H implies that H must be a subgraph of H ′. Now,

clearly a subgraph of a hero is also a hero, so H must be a hero as well. The proof of Lemma 2.4

thus implies that cW ≤ c′H .
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For the other direction, the definition of c′H implies that there is an H-free tournament R on r

vertices satisfying χ(R) = c′H . Let T be a k-transitive7 blowup of R, for some arbitrary k. We now

wish to show that T is W -free and r−2-far from satisfying χ(T ) ≤ c′H − 1 implying that cW ≥ c′H .

First, it is easy to check that the minimality of H implies that T is also H-free and thus also

W -free. Second, we claim that T is r−2-far from satisfying χ(T ) ≤ c′H − 1. Indeed, T has n = kr

vertices and suppose that Q is some set of fewer than n2/r2 = k2 edges. We need to show that

after changing the direction of the edges in Q the resulting graph cannot be partitioned into c′H −1

transitive sets. For every 1 ≤ i ≤ r let Vi denote the vertex set of the copy of Tk that replaced

vertex i of R. Let Qi,j denote the edges of Q that connect Vi to Vj . Randomly and uniformly

pick a vertex vi from each of the sets Vi. Then the probability that the edge connecting vi and vj
belongs to Q is |Qi,j |/k2, hence the probability that some pair (vi, vj) belongs to Q is bounded by

|Q|/k2 < 1 so there is a choice of r vertices so that all pairs of vertices are connected by edges that

do not belong to Q and thus span a copy of R. But R cannot be partitioned into c′H − 1 transitive

sets, implying that after changing the direction of the edges in Q the resulting graph still cannot

be partitioned into c′H − 1 transitive sets.

As to the task of finding H, let us say that a pair of vertices x, y in W are identical if they form

a homogenous set of size 2 [7], namely for any other vertex z, either (x, z) and (y, z) are both edges

of W or both non-edges of W . Now, as long as there is an identical pair of vertices (x, y) in W ,

remove x and continue. It is easy to check that once we end up with a graph that has no identical

pair we get the required graph H.

It follows from the above lemma that computing cW reduces to the task of computing c′H .

Unfortunately, we do not know how to compute c′H efficiently. It would be interesting to determine

how hard is this task.

A stronger version of Theorem 1: Note that the proof of Theorem 1 shows that if T is ε-far

from satisfying χ(T ) ≤ cW then T contains εCnw copies of W where n and w denote the number of

vertices of T and W respectively and C is a constant that depends only on w. Hence there is some

δ > 0 so that even if T is n−δ-far from satisfying χ(T ) ≤ cW , then T still contains at least one copy

of W . Indeed, this follows from the fact that under the assumption of Lemma 2.3, the h-graph

actually contains Cεt
h
nht copies of the complete h-partite h-graph with t vertices in each part. See

the statement of Lemma 8.1 in [14]. This justifies the comment we made after the statement of

Theorem 1.

A better bound in Theorem 2: It would be interesting to determine the best dependence of

cW (ε) on ε and w (= number of vertices of W ) in Theorem 2. Our proof gives a bound that is

(roughly) exponential in w/ε and we can show that the dependence should indeed be exponential

in w. Is the exponential dependence on ε necessary or can it be made polynomial?

7Namely, a transitive blowup where each vertex is replaced with a copy of Tk
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[12] P. Erdős, On extremal problems of graphs and generalized graphs, Israel Journal of Mathe-

matics 2 (1964), 183-190.
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