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Abstract

For a graph G whose degree sequence is d1, . . . , dn, and for a positive integer p,
let ep(G) =

∑n
i=1 d

p
i . For a fixed graph H, let tp(n,H) denote the maximum value

of ep(G) taken over all graphs with n vertices that do not contain H as a subgraph.
Clearly, t1(n,H) is twice the Turán number of H. In this paper we consider the case
p > 1. For some graphs H we obtain exact results, for some others we can obtain
asymptotically tight upper and lower bounds, and many interesting cases remain open.

1 Introduction

All graphs considered here are finite, undirected, and have no loops or multiple edges. For the
standard graph-theoretic notations the reader is referred to [1]. For a graph G whose degree
sequence is d1, . . . , dn let ep(G) =

∑n
i=1 d

p
i . Clearly, e1(G) = 2e(G). Recently, several papers

were published concerning the problem of maximizing e2(G) over all graphs having n vertices
and m edges. See, e.g., [2, 3, 9, 4, 10]. In this line of research no restriction is imposed on
the structure of G. Along the spirit of Turán Theory we consider the problem of finding the
maximum of ep(G) over the class of graphs which contain no copy of prescribed forbidden
subgraphs. For a fixed graph H, let tp(n,H) denote the maximum value of ep(G) taken over
all graphs with n vertices that do not contain H as a subgraph. Clearly, t1(n,H) = 2t(n,H)
where t(n,H) is the Turán Number of H.
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1



The Turán number t(n,H) is one of the most studied parameters in Graph Theory. Many
interesting and non-trivial results give either exact values or asymptotically tight upper and
lower bounds for t(n,H). For example, the classic result of Turán (from which Turán Theory
has emerged) determines t(n,Kp) for all n and p. There are still many open problems, even
when H is a rather simple graph. For example, when H is a tree with k vertices it is
conjectured that t(n,H) = (k/2− 1)n(1 + o(1)), and when k − 1 divides n the conjecture is
that t(n,H) = (k/2− 1)n. The lower bound is obtained by taking n/(k − 1) vertex-disjoint
copies of Kk−1. The upper bound would follow if one can prove the famous conjecture of
Erdős and Sós [5], which states that graphs with (k/2−1)n+1 edges contain every tree with
k vertices. This conjecture is known to hold if G is C4-free [12] or if the tree has a vertex
adjacent to at least (k − 2)/2 leaves [13].

In many cases, the extremal graphs with respect to t(n,H) tend to be regular or almost
regular. That is, the k’th central moment of the degree sequence is either zero or very
small. If we wish to investigate highly non-regular H-forbidden graphs, then just counting
the number of edges does not suffice. If we wish to maximize the second central moment
of the degree sequence of H-forbidden graphs, then the parameter t2(n,H) is the correct
measure. Likewise, for the p’th central moment the parameter tp(n,H) is the suitable one.
In this paper we consider tp(n,H) for p > 1. For some graphs H we are able to give exact
or near-exact results, while for others the problem remains open.

Our first result shows that in both the quadratic and cubic cases, when H = Kk, the
extremal graph that yields tp(n,H) is exactly the same graph that yields t1(n,H), namely
the Turán Graph T (n, k).

Theorem 1.1 Let k > 2 be a positive integer, and let p = 1, 2, 3. Then, tp(n,Kk) =
ep(T (n, k)), where T (n, k) is the Turán Graph.

Theorem 1.1 is sharp in the sense that for p ≥ 4, tp(n,Kk) is not obtained by the Turán
graph (but is obtained by another non-balanced complete (k − 1)-partite graph). Note: In
the original version of this paper Theorem 1.1 was mistakenly stated for all p. This was also
observed by Pikhurko and by Schelp.

Let Pk denote the path with k vertices. Faudree and Schelp [7] characterized the extremal
graphs that yield t(n, Pk). Let r ≡ n mod (k − 1). An extremal graph giving t(n, Pk) is
obtained by taking bn/(k − 1)c vertex-disjoint copies of cliques of order k − 1 and, if r 6= 0,
another clique Kr on the remaining vertices. Hence, t(n, Pk) =

(
k−1
2

)
bn/(k−1)c+

(
r
2

)
. These

graphs are far from optimal when considering tp(n, Pk) when p > 1, since they have small
maximum degree.

Our next theorem determines tp(n, Pk) for n sufficiently large (for small values of n there
are some disturbances). In order to describe this theorem we define the graph H(n, k) for
n ≥ k ≥ 4 as follows. The vertex set of H is composed of two parts A and B where
|B| = bk/2c − 1 and |A| = n − |B|. B induces a complete graph, and A induces an
independent set when k is even, or a single edge plus |A| − 2 isolated vertices when k is odd.
All possible edges between A and B exist.
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Theorem 1.2 Let k ≥ 4, let p ≥ 2 and let n > n0(k). Then, H(n, k) contains no copy of
Pk and tp(n, Pk) = ep(H(n, k)). Furthermore, H(n, k) is the unique extremal graph.

Note that, trivially, tp(n, P2) = 0 and tp(n, P3) = n when n is even and tp(n, P3) = n− 1
when n is odd (by taking a maximum matching on n vertices). Also note that when n is
small compared to k, the graph H(n, k) is not the extremal graph. As an extreme example
note that tp(k − 1, Pk) = (k − 1)(k − 2)p and is obtained by Kk−1. A close examination of
the proof of Theorem 1.2 shows that the value of n0(k) in the statement of the theorem is
O(k2). Another thing to note is that, as long as p ≥ 2, the actual value of p is insignificant.

Let C∗ be the family of even cycles. It is an easy exercise to show that any graph with
more than b3(n − 1)/2c edges contains an even cycle. This bound is sharp and there are
exponentially many extremal graphs [1]. In fact, the extremal graphs can be constructed
recursively as follows. For n = 1 take a single point. For n = 2 take a single edge. If n > 2
we construct graphs with no even cycles and with b3(n−1)/2c edges as follows. Let G be any
such extremal graph with n−2 vertices. Pick any vertex x of G and add to G two new vertices
a, b. Now add a triangle on x, a, b. The resulting graph has n vertices e(G)+3 = b3(n−1)/2c
edges, and no even cycle. Notice that the Friendship Graph Fn is one of the extremal graphs.
Fn is defined as follows. Take a star with n vertices and add a maximum matching on the
set of leaves. Thus, Fn has exactly n − 1 + b(n − 1)/2c = b3(n − 1)/2c edges, and no even
cycle. Note that when n is odd, e2(Fn) = (n− 1)2 + 4(n− 1) = n2 + 2n− 3 and when n is
even e2(Fn) = (n− 1)2 + 4(n− 2) + 1 = n2 + 2n− 6. Our next theorem shows that, unlike
the Turán case, there is only one extremal graph giving t2(n,C

∗), and it is Fn. (Notice the
natural extension of the definition of tp to families of graphs).

Theorem 1.3 For n sufficiently large, t2(n,C
∗) = e2(Fn) and Fn is the unique extremal

graph.

We mention that Theorem 1.3 also holds for p > 2, but the proof is rather technical and
we omit it.

The rest of this paper is organized as follows. In Section 2 we consider complete graphs
and prove Theorem 1.1. In Section 3 we consider paths and prove Theorem 1.2. Some other
acyclic graphs H for which tp(n,H) can be determined are handled in Section 4. In Section
5 we prove Theorem 1.3 and also asymptotically determine tk(n,Kk,k). The final section
contains some concluding remarks and open problems.

2 Complete graphs

In order to prove Theorem 1.1 we need the following theorem of Erdős [6] that characterizes
the maximal degree sequences of graphs without a Kk.

Lemma 2.1 (Erdős [6]) Let G = (V,E) be a graph without a Kk. Then, there is a (k−1)-
partite graph G′ = (V,E ′) such that for every v ∈ V , dG(v) ≤ dG′(v).
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If G and G′ are as in Lemma 2.1 then, clearly, ep(G) ≤ ep(G
′) for all p ≥ 1. Thus, the

following corollary immediately follows from Lemma 2.1:

Corollary 2.2 For every n ≥ k− 1 ≥ 1 there exists a complete (k− 1)-partite graph G with
n vertices such that tp(n,Kk) = ep(G).

Proof of Theorem 1.1: It suffices to show that the complete (k − 1)-partite graph G
in Corollary 2.2 is the Turán Graph T (n, k), in the cases p = 2, 3. For k = 2 this is
trivial. Assume therefore that k ≥ 3. It suffices to show that if G′ is any complete (k − 1)-
partite graph that has (at least) two vertex classes X and Y with |X| − |Y | > 1 then the
complete (k − 1)-partite graph G′′ obtained from G′ by transferring a vertex from X to Y
has ep(G

′′) > ep(G
′). Indeed, putting |X| = x and |Y | = y we have

ep(G
′′)− ep(G′) = (y + 1)(n− y − 1)p + (x− 1)(n− x+ 1)p − y(n− y)p − x(n− x)p > 0

where the last inequality may be verified using standard (although tedious) calculus, and
the facts that n ≥ x + y and x − y − 1 > 0. For example, if p = 2 the expression in the
middle of the last inequality is equivalent to the expression (x− y− 1)(n+ 3(n− x− y)).

Theorem 1.1 is not true for p ≥ 4. This can already be seen by the fact that the complete
bipartite graph G = Kbn/2−1c,dn/2+1e has e4(G) > e4(T (n, 3)).

Let K ′k be the graph obtained from Kk by adding a new vertex of degree one, connected
to one of the original vertices. It is not difficult to show that tp(n,K

′
k) = tp(n,Kk) for

n > n(k) (assuming k ≥ 3 and p ≥ 2). Indeed, we can state this more generally.

Proposition 2.3 Let H be a vertex-transitive graph with at least two edges. Let H ′ be
obtained from H by adding a new vertex of degree one connected to one of the original
vertices. Then, if p ≥ 2, tp(n,H

′) = tp(n,H) for n > n(p,H).

Proof: Clearly, tp(n,H
′) ≥ tp(n,H) since H ′ contains H. Now assume that equality does

not hold. Let G be an n-vertex graph having a copy of H as a subgraph, but having no
H ′ as a subgraph, and having ep(G) = tp(n,H

′) > tp(n,H). Since H is vertex-transitive,
the set of vertices of every copy of H in G is disconnected from the other vertices of G,
since otherwise we would have an H ′. Thus, if t is the number of copies of H in G we have
ep(G) ≤ th(h − 1)p + tp(n − ht,H). However, tp(n,H) = Ω(np) as can be seen by the star
Sn which has no copy of H (recall that H is vertex-transitive with at least two edges), and
ep(Sn) = Ω(np), thus for n sufficiently large, th(h − 1)p + tp(n − ht,H) is maximized when
t = 0. Consequently, ep(G) ≤ tp(n,H), a contradiction.

4



3 Paths

In order to determine tp(n, Pk) it is useful to have an upper bound on the maximum number
of edges possible in a graph not containing Pk. The following lemma, which is a theorem of
Faudree and Schelp, determines the Turán number for paths.

Lemma 3.1 (Faudree and Schelp [7]) Let k > 1 and let n > 0. Let r = bn/(k− 1)c and
let s ≡ n mod (k − 1) where 0 ≤ s < k − 1. Then t(n, Pk) = r

(
k−1
2

)
+
(
s
2

)
.

In fact, Faudree and Schelp also characterized the extremal Turán graphs. The graph
composed of r vertex-disjoint cliques of order k − 1 plus an additional clique of order s is
extremal (sometimes, however, it is not the only extremal graph). It would be somewhat
more convenient to use the following less accurate upper bound for t(n, Pk), that is always
at least as large as the value in Lemma 3.1

Corollary 3.2 If G has n vertices and is Pk-free then e(G) ≤ n(k − 2)/2.

We also need a lemma bounding ep(G) for n-vertex graphs G that have linearly many
edges, and have maximum degree Θ(n).

Lemma 3.3 Let p ≥ 2 be an integer, let 0.5 < α ≤ 1 and let t > α be real. Let G be an
n-vertex graph with ∆(G) ≤ αn and with at most tn edges. Then:

ep(G) ≤ t

α
(αn)p + o(np).

Proof: Consider the degree sequence of G, denoted {d1, . . . , dn}. It is a sequence of n
nonnegative integers whose sum is at most 2tn and whose elements do not exceed αn. If we
“forget” that this sequence is graphic then dp1 + . . .+ dpn is, obviously, at most

2tn

αn
(αn)p =

2t

α
(αn)p.

However, the sequence is graphic. This means, for example, that if there is a vertex of
degree, say, αn, then there are at least αn nonnegative elements in the sequence. In fact,
for any fixed β ≤ α there are at most t/β + o(1) vertices with degree at least βn, and if this
happens, then the other degrees are all at most t/β+o(1) which is constant (and hence have
no significant contribution to ep(G)). By the convexity of the polynomial xp, the optimal
situation is obtained by taking vertices with degree αn as many as possible (there are at
most t/α+ o(1) such vertices), and this forces the other vertices (except maybe one) to have
constant degree. Hence,

ep(G) ≤ t

α
(αn)p + o(np).

Before we prove Theorem 1.1 we need to dispose of the special case k = 5, since this
value causes technical difficulties in the proof.
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Lemma 3.4 For n ≥ 12, tp(n, P5) = ep(H(n, 5)). Furthermore, H(n, 5) is the unique
extremal graph.

Proof: First note that for r ≥ 3, H(r, 5) is a star with r vertices with an additional edge
connecting two of its leaves. Assume G is an n-vertex graph having no P5 and tp(n, P5) =
ep(G). Trivially, G may only contain cycles of length 3 or 4. In fact, the vertices of every
4-cycle must induce a component of G isomorphic to K4, and for any 3-cycle, the connected
component to which it belongs must be an H(r, 5) for some r ≥ 3. Thus, the components
of G are either K4’s or H(r, 5)’s (there may be several with distinct values of r), or trees.
Trivially, every tree T with r vertices has ep(T ) ≤ ep(Sr) where Sr is the r-vertex star.
Similarly, ep(Sr) ≤ ep(H(r, 5)) since H(r, 5) contains Sr (if r = 1 or r = 2 we define
H(1, 5) = S1 and H(2, 5) = S2). Thus, we may assume that every component is either a K4

or an H(r, 5). Another trivial check is that ep(H(r1, 5)) + ep(H(r2, 5)) < ep(H(r1 + r2, 5)).
Thus, we can assume that there is at most one component equal to H(r, 5) and the other
components are K4. In fact, replacing three copies of K4 (contributing 12 · 3p to ep(G) with
one copy of H(12, 5) (contributing 11p +2p+1 +9 to ep(G)) improves ep(G) so we can assume
that there are at most two components isomorphic to K4. Since n ≥ 12 we must have r ≥ 4.
Now, for r ≥ 4, ep(H(r+ 4, 5))− ep(H(r, 5)) > 4 · 3p so it is better to replace an H(r, 5) and
a K4 with one H(r + 4, 5). Consequently, G = H(n, 5).

Proof of Theorem 1.2: In the proof we shall assume, wherever necessary, that n is
sufficiently large as a function of k, and that k 6= 5. It is trivial to check that the graph
H(n, k) defined in the introduction has no Pk. We therefore have the lower bound tp(n, Pk) ≥
ep(H(n, k)). To prove the theorem it suffices to show that any Pk-free graph G with n
vertices that is not H(n, k) has ep(G) < ep(H(n, k)) for every p ≥ 2. Assume the contrary,
and let G = (V,E) be a Pk-free graph with n vertices that is maximal in the sense that
ep(G) = tp(n, Pk) and G 6= H(n, k). We will show how to derive a contradiction.

According to Corollary 3.2, |E| ≤ n(k − 2)/2. Order the vertices of G in nonincreasing
degree order. That is V = {x1, . . . , xn} where dG(xi) ≥ dG(xi+1) for i = 1, . . . , n − 1. Put
di = dG(xi), and put b = bk/2c − 1. Note that

ep(H(n, k)) = bnp + o(np) (1)

Put B = {x1, . . . , xb} and A = {xb+1, . . . , xn}. First observe that we may assume that d1
is very large. For instance, we may assume that for all k 6= 5, d1 > 0.79n since otherwise,
applying Lemma 3.3 to G with α = 0.79 and t = (k − 2)/2 we get for k 6= 5,

ep(G) ≤ k/2− 1

0.79
(0.79)pnp + o(np) ≤ (0.395k − 0.79)np + o(np) < bnp + o(np) = ep(H(n, k)).

Lemma 3.5 If db ≤ 0.65n then ep(G) < ep(H(n, k)).
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proof: By (1) it suffices to show that ep(G) ≤ cnp +O(np−1) where c is a constant smaller
than b. Consider the spanning subgraph of G obtained by deleting all the edges adjacent
with the vertices of B \ {xb}. Denote this subgraph by G′. The maximum degree of G′

is at most 0.65n. Let fi denote the degree of xi in G′ for i = b, . . . , n. By definition,
ep(G

′) = fp
b + . . .+ fp

n. Since fi ≥ di − b+ 1, and since fb + . . .+ fn ≤ n(k − 2) = O(n) we
have

ep(G) = dp1 + . . .+ dpn ≤ dp1 + . . .+ dpb−1 + (fb + b− 1)p + . . .+ (fn + b− 1)p = (2)

dp1 + . . .+ dpb−1 + ep(G
′) + o(np)

Define t = e(G′)/n. We consider three cases according to the value of t.
Case 1: t < 0.65. Since the degree sequence has sum at most 1.3n and no element is larger
than 0.65n we have ep(G

′) ≤ 2(0.65n)p and using (2) we get:

ep(G) ≤ dp1 + . . .+ dpb−1 + ep(G
′) + o(np) ≤ (b− 1 + 2(0.65)p)np + o(np) < ep(H(n, k)).

Case 2: 1.45 > t ≥ 0.65. According to Lemma 3.3 with α = 0.65 we know that:

ep(G
′) ≤ t

0.65
(0.65n)p + o(np) ≤ 0.9425np + o(np).

Using (2) we get:

ep(G) ≤ dp1 + . . .+ dpb−1 + ep(G
′) + o(np) ≤ (b− 1 + 0.9425)np + o(np) < ep(H(n, k)).

Case 3: t ≥ 1.45. According to Lemma 3.3 with α = 0.65 we know that:

ep(G
′) ≤ t

0.65
(0.65n)p + o(np). (3)

Let z denote the number of edges of G with both endpoints in B \{xb}. Clearly, z ≤
(
b−1
2

)
<

k2. Now,

n
k − 2

2
≥ e(G) = e(G′)+d1+ . . .+db−1−z = tn+d1+ . . .+db−1−z ≥ tn+d1+ . . .+db−1−k2

It follows that

d1 + . . .+ db−1 ≤ n(
k − 2

2
− t) + k2 = n(

k − 2

2
− t) + o(n).

Since di < n the last inequality immediately gives:

dp1 + . . .+ dpb−1 ≤ (
k − 2

2
− t)np + o(np). (4)

Plugging (3) and (4) in (2) yields:

ep(G) ≤ dp1 + . . .+ dpb−1 + ep(G
′) + o(np) ≤
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(
k − 2

2
− t+

t

0.65
(0.65)p)np + o(np) ≤ (

k − 2

2
− 0.5075)np + o(np) < ep(H(n, k)).

In view of Lemma 3.5 we may now assume db > 0.65n, and due to the remark prior to
Lemma 3.5 we may also assume that when k 6= 5, d1 > 0.79n. Let A′ ⊂ A be the set of
vertices that have a neighbor in B. Let G[A′] denote the subgraph induced by A′.

Lemma 3.6 If k is even, then G[A′] has no edges. If k is odd, then G[A′] contains at most
one edge.

Proof: Assume the contrary. We will derive a contradiction by showing that G contains a
Pk. We distinguish three cases
Consider first the case where k is even. Let (a0, a1) be an edge of G[A′]. By the definition
of A′, a1 has a neighbor in B. Assume w.l.o.g. x1 is a neighbor of a1. Note that since
di > 0.65n for i = 1, . . . , b we have that any two vertices of B have at least 0.3n common
neighbors in G, and hence at least 0.3n − (b − 2) > k common neighbors in A′. Therefore,
let ai ∈ A′ be a common neighbor of xi−1 and xi for i = 2, . . . , b such that a0, a1, . . . , ab
are all distinct. Let ab+1 ∈ A′ be a neighbor of xb distinct from a0, . . . , ab. We have that
a0, a1, x1, a2, x2, a3, . . . , ab−1, xb−1, ab, xb, ab+1 is a Pk.
Next, consider the case where k is odd and there are two edges in G[A′] sharing a common
endpoint in A′. Denote these two edges by (a−1, a0) and (a0, a1). As in the previous case we
can obtain a Pk of the form a−1, a0, a1, x1, a2, x2, a3, . . . , ab−1, xb−1, ab, xb, ab+1.
Next, consider the case where k is odd and G[A′] has two independent edges, denoted (a0, a1)
and (ab+1, ab+2) such that a1 and ab+1 have at least two vertices of B in their neighborhood
union. W.l.o.g. a1 is a neighbor of x1 and ab+1 is a neighbor of xb. As in the previous cases
we can obtain a Pk of the form a0, a1, x1, a2, x2, a3, . . . , ab−1, xb−1, ab, xb, ab+1, ab+2.
The only remaining case is that k is odd and G[A′] contains two or more independent edges,
and all the endpoints of these independent edges are connected to a single vertex of B, say,
x1. In this case, there may not be a Pk present, but we will show that there is a Pk-free
graph G′ on n vertices with ep(G

′) > ep(G), contradicting the maximality of G. Since we
assume k ≥ 7 we have b ≥ 2 so x2 ∈ B. Let A∗ denote the set of non-isolated vertices
in G[A′]. |A∗| ≥ 4 and no vertex of A∗ is connected to x2. We may delete the |A∗|/2
independent edges of G[A′], and replace them with |A∗| new edges from x2 to each of the
vertices of A∗. Clearly, if G is Pk-free, so is G′ (this follows from the fact that k is odd, so
b = bk/2c−1 = (k−3)/2). However, the degree sequence of G′ majorizes that of G since the
degree of x2 increased, while the other degrees have not changed. Hence, ep(G

′) > ep(G), a
contradiction.

An immediate corollary of Lemma 3.6 is the following:

Corollary 3.7 The subgraph of G induced by B ∪A′ is a spanning subgraph of H(b+ a′, k)
where |A′| = a′. In particular, if A′ = A then G is a spanning subgraph of H(n, k).
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Note that by Corollary 3.7 we have that if A′ = A then ep(G) < ep(H(n, k)) since G 6=
H(n, k). This contradicts the maximality of ep(G). The only remaining case to consider is
when A′ 6= A. The following lemma shows that this is impossible, due to the maximality of
G. This final contradiction completes the proof of Theorem 1.2.

Lemma 3.8 If A′ 6= A then there exists a Pk-free graph G′ with n vertices such that ep(G) <
ep(G

′).

Put A′′ = A \ A′. We claim that each v ∈ A′′ has at most one neighbor in A′. Indeed,
if it had two neighbors, say a0, a1 then, as in the previous cases, we can obtain a Pk of the
form a0, v, a1, x1, a2, x2, . . . , ab−1, xb−1, ab, xb, ab+1 (in fact, if k is even this is a Pk+1). Since
G[A′′] is Pk-free it contains at most (k/2− 1)a′′ edges, where a′′ = |A′′| = a− a′. Hence, it
contains a vertex v whose degree is at most k − 2. Hence dG(v) ≤ k − 1. Delete all edges
adjacent to v in G, and connect v to all edges of B. Denote the new graph by G′. Note
that G′ is also Pk-free. To see this, note that otherwise, any Pk in G′ must contain v. Let
xi ∈ B be a neighbor of v in such a Pk. If v is not an endpoint of the Pk it also contains
another neighbor xj ∈ B in the path. Since xi and xj have many common neighbors in A′

(much more than k), let v′ ∈ A′ be such a common neighbor which is not on the Pk (if v
is an endpoint of the Pk it suffices to take v′ ∈ A′ to be any neighbor of xi not on the Pk).
Replacing v with v′ on the Pk we obtain a Pk in G, contradicting the assumption. We now
show that ep(G

′) > ep(G). Consider the effect of the transformation from G to G′ on the
degree sequence. The degrees of the vertices of B increased by one. The degree of v may
have decreased by at most k− 1− b. The degrees of the neighbors of v in G have decreased
by 1. Since every vertex of B has degree at least 0.65n, the total increase in ep(G

′)− ep(G)
contributed by the vertices of B is at least

b((0.65n+ 1)p − (0.65n)p) = bp(0.65n)p−1 + o(np−1).

Assuming k 6= 5, we know d1 > 0.79n. This implies that a′′ < 0.21n. This fact, together
with Lemma 3.6 shows that every vertex of A′′ has degree at most 0.21n in G. Thus, the
total decrease in ep(G

′)− ep(G) contributed by the vertices of A is at most

(k − 1)((0.21n)p − (0.21n− 1)p) + (k − 1)2 − b2 = (k − 1)p(0.21n)p−1 + o(np−1)

Hence, for k 6= 5

ep(G
′)− ep(G) ≥ p(b(3.09)p−1 − k + 1)(0.21)p−1np−1 + o(np−1) > 0.
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4 Other acyclic graphs

A linear forest is a forest whose components are paths. An even linear forest is a forest
whose components are paths with an even number of vertices (distinct components may
have different lengths). The simplest example of an even linear forest is a matching, namely,
a graph whose components are single edges. Let Mk denote the matching with 2k vertices.
Note that every even linear forest F with 2k vertices is a spanning subgraph of P2k and
contains Mk as a spanning subgraph. Thus, for every n we have tp(n,Mk) ≤ tp(n, F ) ≤
tp(n, P2k). We immediately get the following proposition:

Proposition 4.1 Let k ≥ 2 be an integer, and let p ≥ 2 be an integer. If F is an even linear
forest with 2k vertices then, for n sufficiently large, tp(n, F ) = ep(H(n, 2k)) where H(n, 2k)
is the extremal graph appearing in Theorem 1.2.

Proof: By Theorem 1.2 we know that for n sufficiently large, tp(n, P2k) = ep(H(n, 2k)).
On the other hand, it is trivial to check that H(n, 2k) does not contain Mk as a subgraph.
Hence, tp(n,Mk) ≥ ep(H(n, 2k)). Since tp(n,Mk) ≤ tp(n, F ) ≤ tp(n, P2k) we must have
tp(n,Mk) = tp(n, F ) = tp(n, P2k) for n sufficiently large.

Another family of trees for which tp is easy to compute is the family of stars. Indeed, let
Sk denote the star with k ≥ 2 vertices. Clearly, if G has no Sk it has ∆(G) ≤ k − 2. Thus,
every n-vertex graph G that is k − 2-regular must satisfy tp(n, Sk) = ep(G). If n > k − 2 is
even then it is well-known that such G exist for all k ≥ 2. (in fact, they can be obtained by
an edge-disjoint union of k−2 perfect matchings). So is the case when n is odd and k is even
(they can be obtained by an edge-disjoint union of (k−2)/2 Hamilton cycles). If both n and
k are odd then there do not exist k − 2-regular n-vertex graphs, so, clearly, if G has n − 1
vertices with degree k− 2 and one vertex with degree k− 3, then tp(n, Sk) = ep(G). Such G
are well-known to exist for all n > k − 2. In fact, they can be obtained by an edge-disjoint
union of (k− 3)/2 Hamilton cycles plus a maximum matching. Note that if n ≤ k− 2, then,
clearly, tp(n, Sk) = ep(Kn). To summarize:

Proposition 4.2 Let Sk be the star with k ≥ 2 vertices. Then:

1. If n ≤ k − 2 then tp(n, Sk) = n(n− 1)p.

2. If n > k − 2 and nk is even then tp(n, Sk) = n(k − 2)p.

3. If n > k − 2 and nk is odd then tp(n, Sk) = (n− 1)(k − 2)p + (k − 3)p.

A slight modification of Sk is the near star S∗k . This graph is an Sk−1 to which we add
one new neighbor to one of the leaves. So, e.g., S∗4 = P4. This slight modification to Sk

yields an entirely different result for tp(n, S
∗
k).
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Proposition 4.3 If n > 2k then tp(n, S
∗
k) = ep(Sn) = (n− 1)p + (n− 1).

Proof: Let G be a graph without an S∗k . If G has a vertex of degree m ≥ k − 1 then,
trivially, this vertex belongs to a component of G that is an Sm+1, since otherwise G would
have an S∗k . Hence, each component of G either has maximum degree at most k − 2, or else
is a star. Let s denote the number of vertices of G that belong to components of the first
type. Then, ep(G) ≤ s(k − 2)p + (n− s− 1)p + (n− s− 1). Clearly, when n > 2k (in fact,
even before that point as p increases), the last inequality is optimized when s = 0. Thus,
ep(G) ≤ (n− 1)p + (n− 1). Equality is obtained since Sn is S∗k-free.

A connected bipartite graph is equipartite if the two vertex classes forming the bipartition
have equal size. For equipartite trees T that obey the Erdős-Sós Conjecture we can asymp-
totically determine tp(n,H). Examples of such trees are even paths (however, for these we
already have the sharp result of Theorem 1.2), but there are many others. One example is
the balanced double star Sk,k, that is obtained by taking two disjoint copies of the star Sk

and joining their roots with an edge. Sidorenko [13] has proved that the Turán number of
Sk,k satisfies t(n, Sk,k) ≤ (k− 1)n (equality is obtained when 2k− 1 divides n). Namely, the
Erdős-Sós Conjecture holds for Sk,k.

Proposition 4.4 If H is an equipartite tree with 2k vertices, and t(n,H) ≤ (k − 1)n then

tp(n,H) = (k − 1)np + o(np).

Proof: We use Lemma 3.3 with α = 1 and t = k−1. Indeed, if G is an n-vertex graph that
is H-free, then G has at most tn edges. Thus, by Lemma 3.3, ep(G) ≤ (k − 1)np + o(np).
Consequently, tp(n,H) ≤ (k − 1)np + o(np). On the other hand, consider the complete
bipartite graph Bk−1,n−k+1. Since H is equipartite, Bk−1,n−k+1 does not contain H as a
subgraph. Since ep(Bk−1,n−k+1) = (k−1)(n−k+1)p +(n−k+1)(k−1)p = (k−1)np +o(np)
we have tp(n,H) = (k − 1)np + o(np).

5 Even cycles and complete bipartite graphs

Proof of Theorem 1.3 Let G have n vertices and no even cycle, and assume that G 6= Fn.
We must show e2(G) < e2(Fn). Let d1 ≥ d2 ≥ . . . ≥ dn be the degree sequence of G, and let
x1, . . . , xn be the corresponding vertices. Notice first that d1 +d2 ≤ n+ 1. Indeed, otherwise
x1 and x2 would have two distinct common neighbors, and G would contain a C4.
We first consider the case d1 ≤ 0.75n. Straightforward convexity arguments, plus the fact
that d1 + d2 ≤ n + 1 and the fact that e(G) < 1.5n show that the largest possible value for
the sum of squares is at most the one given by a sequence of the form:

0.75n , 0.25n(1 + o(1)) , 0.25n(1 + o(1)) , 0.25n(1 + o(1) , d5 , d6 , . . . , dn
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where di is bounded by the constant 4 for i ≥ 5. Hence e2(G) ≤ 12
16
n2 + o(n2) < e2(Fn) for

n sufficiently large (in fact, n = 12 already suffices).
Next, we consider the case d1 > 0.75n. Consider any nonincreasing sequence of n nonnegative
integers having the following properties:

1. 0.75n < d1 ≤ n− 1.

2. d1 + d2 ≤ n+ 1.

3. There are at least d1 + 1 nonzero elements in the sequence.

4. The sum of the elements is at most 3(n− 1).

Putting d1 = x, the degree sequence dominates the sequence S = {x, 1, . . . , 1, 0, . . . , 0}
(there are x ones and n− x− 1 zeroes here). Hence, there are at most 3(n− 1)− 2x units
to assign to S (subject to the four properties above) in order to obtain the degree sequence
of G. By convexity, the sum of squares is maximized if we assign n − x additional units to
the second, third, etc. elements of S, until we run out of units. Thus,

e2(G) ≤ x2 + (n+ 1− x)2
3(n− 1)− 2x

n− x
+ 12(x− 3(n− 1)− 2x

n− x
).

Putting x = n − k (where 1 ≤ k < n/4) the r.h.s. of the last inequality is equal to
n2 − (k − 3)n+ 3k2 − 6. Thus,

e2(G) ≤ n2 − (k − 3)n+ 3k2 − 6.

Note that when n > max{20 , 4k} and k ≥ 2 we have n2−(k−3)n+3k2−6 < n2 +2n−6 ≤
e2(Fn). Thus, we have shown that if d1 < n − 1 then e(G) < e2(Fn). If d1 = n − 1 then,
subject to the above four properties, the sum of squares is maximized by the unique sequence
n− 1, 2, 2, . . . , 2. When n is odd there is only one graph with this degree sequence, namely
Fn, and we assume G 6= Fn so e2(G) < e2(Fn). When n is even this is not the degree sequence
of any graph (as the sum of the elements is odd), thus, subject to the above four properties
and the requirement that the sequence be graphic, the sum of squares is maximized by the
sequence n− 1, 2, 2, . . . , 2, 1. There is only one graph with this degree sequence, namely Fn.
Again by our assumption, G 6= Fn, so e2(G) < e2(Fn).

We now turn our attention to complete bipartite graphs. The Turán number for Kk,k

is well-understood only for k = 2. It is known that t(K2,2, n) = 0.5n3/2(1 + o(1)) (cf.
[1]). Exact values and extremal graphs are known only in special cases. Recently, Füredi
proved in [8] that if a graph has q2 + q + 1 vertices q > 13, m edges and no K2,2 then
m ≤ 0.5q(q + 1)2, and equality holds for graphs obtained from finite projective planes with
polarities. If k ≥ 3 the asymptotic behavior of Kk,k is not known. The best (and rather
simple) bounds are t(Kk,k, n) ≤ O(n2−1/k) and t(Kk,k, n) ≥ Ω(n2−2/k). Our next proposition
shows that tk(n,Kk,k) can be asymptotically determined for every k ≥ 2. In fact, something
slightly stronger can be proved:
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Proposition 5.1 Let 2 ≤ a ≤ k where a, k are integers. Then: tk(n,Ka,k) = (a− 1)nk(1 +
o(1)). Furthermore, if p ≥ k then tp(n,K2,k) = np(1 + o(1)).

Proof: The lower bound is obtained by considering the complete bipartite graph Ka−1,n−a+1.
It contains no Ka,k and obviously has ep(Ka−1,n−a+1) = (a−1)np(1+o(1)). The upper bound
is obtained as follows. If G has n vertices and no Ka,k then

n∑
i=1

(
di
k

)
≤ (a− 1)

(
n

k

)
since otherwise, by the pigeonhole principle, there would be at least a vertices whose neigh-
borhood intersection contains at least k vertices, and hence there would be a Ka,k. It follows
that ek(G) ≤ (a− 1)nk(1 + o(1)). In case a = 2 we get ek(G) ≤ nk(1 + o(1)), so by a trivial
convexity argument we get that for p ≥ k ep(G) ≤ np(1 + o(1)).

6 Concluding remarks and open problems

Recently, Pikhurko [11] proved the following theorem that was conjectured in the original
version of this paper.

Theorem 6.1 [Pikhurko [11]] Let H be a graph with chromatic number r ≥ 3. Then,
tp(n,H) = tp(n,Kr)(1 + o(1)).

Computing tp(n,H), or even t2(n,H) for some specific fixed graphsH seems an interesting
open problem. The smallest graph for which we have no exact answer is C4.

Problem 6.2 Determine t2(n,C4). In particular, is it true that for infinitely many n,
t2(n,C4) = e2(Fn) where Fn is the friendship graph.

Recall that by Proposition 5.1, t2(n,C4) = n2(1 + o(1)). From Turán Theory we know
that the Turán number of C2k for k > 2 (cf. [1]) is smaller than that of C4. This is not the
case for p ≥ 2, since C2k contains P2k and hence tp(n,C2k) ≥ (k − 1)np(1 + o(1)). On the
other hand, since C2k is a subgraph of Kk,k we know by Proposition 5.1 that tk(n,C2k) =
(k − 1)nk(1 + o(1)). It is interesting to determine what happens for p 6= k. We conjecture:

Conjecture 6.3 For p > 1, tp(n,C2k) = (k − 1)np(1 + o(1)).
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