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Abstract

We prove that a tournament with n vertices has more than 41

300
n2(1 − o(1)) arc-disjoint

transitive triples, and more than 113

3000
n2(1 − o(1)) arc-disjoint transitive quadruples, improving

earlier bounds. In particular, 82 percent of the arcs of a tournament can be packed with transitive

triples and 45 percent of the arcs of a tournament can be packed with transitive quadruples. Our

proof is obtained by examining the fractional version of the problem and utilizing a connection

between the integral and fractional versions.
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1 Introduction

Throughout this paper we follow the graph-theoretic notations of [2]. Given an undirected graph,

an orientation is obtained by assigning a direction to each edge. Thus, orientations are simple

directed graphs with no 2-cycles. A tournament is an orientation of the complete graph. Namely,

for every two distinct vertices x and y, either (x, y) or (y, x) is an arc, but not both. Tournaments

play an important role in combinatorics and in social choice theory.

There are many non-isomorphic tournaments with n vertices, but only one transitive tourna-

ment. It is obtained by labeling the vertices {1, . . . , n}, where (i, j) is an arc if and only if i < j.

We denote the transitive tournament with n vertices by TTn. The tournament TT3 is also called

a transitive triple as it consists of some triple {(x, y), (x, z), (y, z)}. A TTk-packing of a directed

graph D is a set of arc-disjoint subgraphs of D, each of them isomorphic to TTk. The TTk-packing

number of D, denoted νk(D), is the maximum size of a TTk-packing of D. The TT3-packing number

of Dn, the complete directed graph with n vertices and n(n− 1) arcs, has been studied, e.g., in the

papers of Gardner [7], Phelps and Lindner [10] and Skillicorn [12].
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Given an n-vertex tournament T , how small can νk(T ) be? We denote this parameter by νk(n).

Namely, νk(n) = minT νk(T ) where T ranges over all n-vertex tournaments. Clearly, the arc-

disjointness requirement implies that νk(n) ≤
(

n
2

)

/
(

k
2

)

, and, in fact, for k > 3 there are examples

showing that this bound cannot be reached even asymptotically. However, for k = 3, it has been

conjectured by Yuster in [14] that ν3(n) = 1
6n

2(1 − on(1)). That is, all but a negligible fraction of

the arcs can be packed with transitive triples. In fact, the conjecture is sharper:

Conjecture 1.1 ν3(n) = ⌈n(n− 1)/6 − n/3⌉.

He verified this conjecture for all n ≤ 8 using a computer. There are (many) examples of tourna-

ments T with n vertices for which νk(T ) = ⌈n(n − 1)/6 − n/3⌉. Currently, the best lower bound

for ν3(n) is 51
392n

2(1 − o(1)), given in [14].

The main result of this paper improves this bound. We show that ν3(n) ≥ 0.1366n2(1 + o(1))

implying that, approximately, 82 percent of the arcs of a tournament can be packed with transitive

triples. More precisely, we prove:

Theorem 1.2 ν3(n) ≥ 41
300n

2(1 − o(1)).

The proof technique is completely different from that of [14]. The original proof in [14] uses

probabilistic arguments combined with some decomposition results for undirected graphs. Our

proof, however, uses a fractional relaxation of the problem. We obtain a lower bound for the

fractional version of the problem and then utilize a result of Nutov and Yuster [9], based on a

technique of Haxell and Rödl [6], enabling us to deduce the same bound for our (integral) version,

with only a minor loss in the error term. We also use an idea similar to the one used by Keevash

and Sudakov in [8] to improve our constants even further. The big advantage in using the fractional

version is the ability to investigate small (but not too small) cases, using a computer, and then

glue the solutions of the small cases into the large n-vertex tournament. Still, in order to obtain

meaningful results we need to examine all tournaments with, say, 10 vertices, and for each of them

solve a linear program.

In Section 2, we define the fractional relaxation of the problem, and show how the solution to

the integral version can be deduced from the solution to the fractional version. We then reduce

the general fractional problem to a specific fractional problem on a constant number of vertices.

For any r, solving the fractional problem for tournaments with r vertices (via linear programming)

implies a solution for arbitrary large tournaments. The larger r is, the better the final general

solution will be. Our computational resources enable us to solve the fractional problem for r = 10.

This is already far from trivial as there are 245 labeled tournaments with 10 vertices. Thus, in order

to solve it in our lifetime, we must be able to discard isomorphic tournaments, while still computing

the solution of the linear program for at least one tournament in each isomorphism class. We show

how to achieve this goal in Section 3.
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Section 4 contains a further application of our method. We begin by showing that our method

yields a nontrivial lower bound for ν4(n). It is not difficult to construct examples showing that

ν4(n) ≤ 1
14n

2. Thus, one cannot expect, in general, to pack more than 86 percent of the arcs of a

tournament with copies of TT4. We prove that one can always pack more than 45 percent of the

arcs with copies of TT4. Next, we consider orientations of not necessarily complete graphs. We

prove that for any δ > 0, there are orientations of graphs with minimum degree at least n(1 − δ)

that cannot be almost fully packed with transitive triples. Thus, one cannot replace the tournament

in (the asymptotic version of) Conjecture 1.1 with an arbitrary dense orientation.

2 Packing transitive triples

We begin this section by defining the fractional relaxation of the TTk-packing problem, and define

the parameter ν∗k(n) that is the fractional analogue of νk(n). We then utilize a result of Nutov

and Yuster to obtain that ν∗k(n) ≤ νk(n) + o(n2). This, in effect, enables us to consider only the

fractional parameter. We next show how optimal solutions of the fractional TTk-packing problem

of small tournaments can be glued together to obtain a (not necessarily optimal) solution of the

fractional TTk-packing problem of a large tournament, thereby achieving a lower bound for νk(n)

based on the exact solution of ν∗k(r) for some fixed r. Next, we show how to exploit the existence of

TT3-factors (that exist in every tournament whose number of vertices is a multiple of 3) in order to

achieve even better bounds for ν3(n) based on the exact solution of ν3(r) for some fixed r. Finally

we state a conjecture analogous to that of Conjecture 1.1 for the fractional version.

2.1 Fractional relaxation

Let R+ denote the set of nonnegative reals. A fractional TTk-packing of a directed graph D is a

function ψ from the set Fk of copies of TTk in D to R+, satisfying
∑

e∈X∈Fk
ψ(X) ≤ 1 for each

arc e ∈ E(D). Letting |ψ| =
∑

X∈Fk
ψ(X), the fractional TTk packing number, denoted ν∗k(D), is

defined to be the maximum of |ψ| taken over all fractional TTk packings ψ. Since a TTk-packing

is also a fractional-TTk packing (by letting ψ = 1 for elements of Fk in the packing and ψ = 0

for the other elements), we always have ν∗k(D) ≥ νk(D). However, the two parameters may differ.

Consider, for example, D = TT4. Trivially, ν3(TT4) = 1 as two triangles of K4 share an edge.

However ν∗3(TT4) = 2 as can be seen by assigning ψ = 1/2 to each of the four transitive triples of

TT4, and noticing that each edge of K4 belongs to two triangles.

It is well known that computing νk(D) (and hence finding a maximum TTk-packing) is an NP-

Hard problem. Even the very special case of deciding whether a directed graph has a decomposition

into transitive triples is known to be NP-Complete (see, e.g. [4] for a more general theorem on the

NP-Completeness of such decomposition problems). On the other hand, computing ν∗k(D) (for k

fixed) amounts to solving a linear programming problem of polynomial size, and hence can be done
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in polynomial time. Thus, it is interesting to find out when νk(D) and ν∗k(D) are “close” as, in

particular, for such instances this immediately yields an efficient approximation algorithm for this

NP-Hard problem. Indeed, a result of Nutov and Yuster [9] asserts that, for orientations, these two

parameters differ by at most o(n2), thus giving an approximation algorithm with an o(n2) additive

error term. In fact, their result is much more general. Let S be any given (finite or infinite) family

of orientations. For an orientation D, let νS(D) denote the maximum number of arc-disjoint copies

of elements of S that can be found in D, and let ν∗S(D) denote the respective fractional relaxation.

The following is proved in [9]

Theorem 2.1 For any given family S of orientations, if D is an n-vertex orientation then ν∗S(D)−

νS(D) = o(n2). Furthermore, a set of at least νS(D) − o(n2) arc-disjoint elements of S can be

generated in randomized polynomial time.

We note that an undirected version of Theorem 2.1 has been recently proved by Yuster [15] extending

an earlier result of Haxell and Rödl [6] dealing with single element families. The proof of Theorem

2.1 makes use of the directed version of Szemerédi’s regularity lemma [13] that has been used

implicitly in [3] and proved in [1].

By considering the single-element family S = {TTk} we obtain the following immediate corol-

laries of Theorem 2.1.

Corollary 2.2 Let k ≥ 3 be a fixed integer. If D is an n-vertex orientation then ν∗k(D)− νk(D) =

o(n2). Furthermore, a set of at least νk(D)−o(n2) arc-disjoint copies of TTk in D can be generated

in randomized polynomial time.

Let ν∗k(n) be the minimum possible value of ν∗k(T ) ranging over all n-vertex tournaments T . Obvi-

ously, ν∗k(n) ≥ νk(n). Together with Corollary 2.2 we have:

Corollary 2.3 Let k ≥ 3 be a fixed integer. Then, ν∗k(n) ≥ νk(n) ≥ ν∗k(n) − o(n2).

2.2 Gluing fractional solutions

The goal of this subsection is to prove the following lemma.

Lemma 2.4 Let 2 < k < r < n be integers. Then,

ν∗k(n) ≥
n(n− 1)

r(r − 1)
ν∗k(r).

Proof: Clearly, the complete graph Kn has precisely
(n

r

)

distinct copies of Kr (not necessarily

edge-disjoint). Also, for any edge (u, v) of Kn, we can select any set of r − 2 vertices, other than

u, v and obtain a copy of Kr containing (u, v). Thus, every edge of Kn appears in precisely
(

n− 2

r − 2

)
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copies of Kr.

Let Tr be the set of all r-vertex tournaments of an n-vertex tournament T . Suppose that for

each X ∈ Tr we have computed ν∗k(X) realized by some fractional TTk-packing ψX . We define a

fractional TTk-packing ψ of T as follows. Let Fk be the set of all copies of TTk in T . For Y ∈ Fk

let R(Y ) ⊂ Tr be those r-vertex tournaments that contain Y . Notice that

|R(Y )| =

(

n− k

r − k

)

and notice that for each X ∈ R(Y ), ψX(Y ) is well defined. We now define

ψ(Y ) =
1

(n−2
r−2

)

∑

X∈R(Y )

ψX(Y ).

We claim that ψ is a proper fractional TTk-packing of T . Indeed, notice first that ψ is non-negative

and its domain is only Fk. It remains to show that for each arc (u, v) of T ,
∑

(u,v)∈Y

ψ(Y ) ≤ 1.

Indeed, since all the ψX are TTk-packings we have, for all (u, v) ∈ X,
∑

(u,v)∈Y ⊂X

ψX(Y ) ≤ 1.

Summing the last inequality over all X containing (u, v) we have

∑

(u,v)∈X

∑

(u,v)∈Y ⊂X

ψX(Y ) ≤

(

n− 2

r − 2

)

.

Therefore,
∑

(u,v)∈Y

ψ(Y ) =
∑

(u,v)∈Y

1
(n−2

r−2

)

∑

X∈R(Y )

ψX(Y )

=
1

(n−2
r−2

)

∑

(u,v)∈X

∑

(u,v)∈Y ⊂X

ψX(Y ) ≤

(

n−2
r−2

)

(n−2
r−2

) ≤ 1.

We have shown that ψ is a proper fractional TTk-packing of T . Furthermore, the value of ψ is

|ψ| =
1

(

n−2
r−2

)

∑

X∈Tr

ν∗k(X).

Since, by definition, ν∗k(X) ≥ ν∗k(r) we have

|ψ| ≥
1

(

n−2
r−2

)

(

n

r

)

ν∗k(r) =
n(n− 1)

r(r − 1)
ν∗k(r).

Sine T was an arbitrary n-vertex tournament we have ν∗k(n) ≥ n(n−1)
r(r−1) ν

∗
k(r), as required.
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2.3 Recursively exploiting a TT3-factor

Keevash and Sudakov [8] discovered a simple trick that combines factors with fractional solutions in

order to achieve slightly better approximations than the ones obtained using the blowup technique

of the previous subsection. They used their method on an edge-coloring problem. We shall use a

similar method for our TT3-packing problem. We first need the following simple lemma.

Lemma 2.5 Let n > 1 and let T be tournament with 3n vertices. Then, T contains a factor of

transitive triples (namely, n vertex-disjoint transitive triples).

Proof: Using the greedy algorithm, the problem reduces to showing that a tournament with six

vertices has two vertex-disjoint transitive triples. A tournament with 6 vertices has
(

6
3

)

= 20 triples,

partitioned into 10 pairs of vertex-disjoint triples. Thus, it suffices to show that any tournament

T with 6 vertices has more than 10 transitive triples. Let, as usual, d+(v) and d−(v) denote the

in-degree and out-degree of a vertex, respectively. Clearly,
(d+(v)

2

)

+
(d−(v)

2

)

≥ 4. Thus,

∑

v∈T

[(

d+(v)

2

)

+

(

d−(v)

2

)]

≥ 24.

Since each transitive triple contains precisely one source and one sink, it follows that T has at least

24/2 = 12 transitive triples.

The following lemma is similar to lemma 2.2 in [8].

Lemma 2.6 Let r > 1. Then, ν∗3 (3r) ≥ 9ν∗3 (r) + r.

Proof: Consider a tournament T with 3r vertices. By Lemma 2.5, let T1, . . . , Tr be r vertex-disjoint

transitive triples in T . Consider the r-partite tournament with each vertex class j consisting of the

vertices of Tj . By definition, for any one of the 3r distinct tournaments on r vertices with exactly

one vertex in each Tj, we can find a fractional TT3-packing ψi with value at least ν∗3(r). Note

also that every arc of the r-partite tournament is contained in precisely 3r−2 such tournaments.

Therefore, as in the previous subsection, 3−(r−2)
∑

i ψi is a valid fractional TT3-packing of this r-

partite tournament. The fractional TT3-packing number of the r-partite tournament is, therefore,

at least 3−(r−2)3rν∗3(r) = 9ν∗3(r). As we have not used the arcs of the Tj , this implies that ν∗3(3r) ≥

9ν∗3 (r) + r, as required.

Corollary 2.7
ν∗3(n)

n(n− 1)
≥
ν∗3(r)

r2
+

1

6r
− on(1).
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Proof: Iterating the result of Lemma 2.6 we obtain that

ν∗3(3p+1r) ≥ 9p+1ν∗3(r) +

p
∑

i=0

9p−i3ir = 9p+1ν∗3 (r) + 9pr
3

2
(1 − 3−p−1)

for every p ≥ 0. This implies that

ν∗3(3p+1r)

3p+1r(3p+1r − 1)
≥
ν∗3 (3p+1r)

9p+1r2
≥
ν∗3(r)

r2
+

1

9r

3

2
(1 − 3−p−1).

Taking the limit as p tends to infinity yields the required result.

Proof of Theorem 1.2: In the next section we will show that ν∗3(10) = 12. This fact, together

with Corollary 2.7 gives that

ν∗3(n)

n(n− 1)
≥

12

100
+

1

60
− on(1) =

41

300
− on(1).

Thus, ν∗3(n) ≥ 41
300n

2 − o(n2). Together with Corollary 2.3 we obtain ν3(n) ≥ 41
300n

2(1 − o(1)) as

well.

2.4 A conjecture for fractional TT3-packings

Since ν∗3(n) ≥ ν3(n), it may be that a sharp inequality holds. We show that if Conjecture 1.1 holds,

then it implies ν∗3(n) = ν3(n) for all n. Indeed, it suffices to show that there exist tournaments

T on n vertices with ν∗3 (T ) ≤ ⌈n(n − 1)/6 − n/3⌉. In fact, these would be the same tournaments

having ν3(T ) ≤ ⌈n(n− 1)/6 − n/3⌉ constructed in [14].

Let T3(n) be the complete 3-partite Turán graph with n vertices. It is well-known that T3(n) has
(n
2

)

−⌈n(n−1)/6−n/3⌉ edges. Denote the partite classes by V1, V2, V3. Orient all edges between V1

and V2 from V1 to V2. Orient all edges between V2 and V3 from V2 to V3. Orient all edges between

V1 and V3 from V3 to V1. Complete this orientation to a tournament T by adding arcs between

any two vertices in the same partite class in any arbitrary way. Notice that each transitive triple in

T contains at least one arc with both endpoints in the same vertex class. Hence, the total weight

of any fractional TT3-packing cannot exceed the number of arcs with both endpoints in the same

vertex class, which is precisely ⌈n(n− 1)/6 − n/3⌉.

3 Computer verification

As shown in the previous section, the bound 41/300 in the proof of Theorem 1.2 relies on the fact

that ν∗3 (10) = 12. The fact that ν∗3(10) ≤ 12 is a special case of the construction in subsection 2.4.

Specifically, Let V1 consist of four vertices, V2 and V3 consist of three vertices each. All the arcs
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go from V1 to V2, from V2 to V3 and from V3 to V1. The 12 arcs with both endpoints in the same

vertex class are oriented arbitrarily. As each transitive triple contain one of these 12 arcs, we have

that ν∗3(T ) ≤ 12 for such tournaments.

Proving that ν∗3(10) ≥ 12 is a nontrivial computational problem. As K10 has
(10

2

)

= 45 edges,

there are 245 distinct labeled tournaments on 10 vertices. Thus, simply generating each one, and

proving ν∗3(T ) ≥ 12 for each such labeled tournament T is not computationally feasible. Fortu-

nately, there are less than 245 isomorphic tournaments. In fact, the number of non-isomorphic

tournaments on 10 vertices is small enough (though still in the millions) so that the problem be-

comes computationally feasible. We begin this section by describing the procedure that generates

10-vertex tournaments without missing any isomorphism class. Next, we show that, for many gen-

erated tournaments T , there is no need to solve the costly linear program that computes ν∗3(T ).

By examining some aspects of the structure of T we can be sure, in many cases, that ν∗3 (T ) ≥ 12.

Such tournaments are filtered out. Finally, we describe the linear program for those generated

tournaments which pass our filter.

3.1 Generating all non-isomorphic 10-vertex tournaments

For a tournament T let T t denote the transpose of T . Namely, T t is obtained from T by reversing

the direction of each arc. Since the transpose of a transitive tournament is a transitive tournament

we have that ν∗k(T ) = ν∗k(T t).

Let Fk be the family of k-vertex tournaments having the property that every labeled tournament

with k vertices is isomorphic to some element of Fk and no two elements of Fk are isomorphic. The

score of a tournament is the sorted out-degree sequence. The score of TTk is (k− 1, k− 2, . . . , 1, 0).

In fact, this is the only k-vertex tournament with this score. Clearly, F3 consists of only two

elements, a transitive triple whose score is (2, 1, 0) and a 3-cycle whose score is (1, 1, 1). It is

also not difficult to see that F4 consists of four elements whose scores are (3, 2, 1, 0), (3, 1, 1, 1),

(2, 2, 2, 0) and (2, 2, 1, 1). They are shown in Figure 1. A more extensive case analysis is needed

to determine F5. In fact, it consists of 12 elements. Four of those can simply be obtained from 4-

vertex tournaments by adding a new vertex with out-degree 4. The obtained scores are (4, 3, 2, 1, 0),

(4, 3, 1, 1, 1), (4, 2, 2, 2, 0) and (4, 2, 2, 1, 1). Seven other tournaments have maximum out-degree 3.

One of them has score (3, 3, 3, 1, 0), one of them has score (3, 3, 2, 2, 0), two of them have score

(3, 3, 2, 1, 1), and three of them have score (3, 2, 2, 2, 1). Finally, one (regular) tournament has score

(2, 2, 2, 2, 2). Figure 2 exhibits the 12 elements of F5.

Let S be the set of 10-vertex orientations obtained as follows. For every pair of tournaments

(X,Y ) where X ∈ F4 and Y ∈ F5, create an orientation by adding a new vertex t, and adding the

arcs (t, y) for each y ∈ Y and the arcs (x, t) for each x ∈ X. Notice that S consists of precisely

|F4| · |F5| = 4 × 12 = 48 orientations. Each one of these orientations has one articulation point,

t. Furthermore, no two elements of S are isomorphic. Also, in each element of S, no vertex of the
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(3,2,1,0) (3,1,1,1) (2,2,2,0) (2,2,1,1)

Figure 1: The tournaments on four vertices with their scores

out-neighborhood of t is connected to no vertex of the in-neighborhood of t. Thus, each element

of t has 20 missing arcs, and hence 220 ways to transform it into a tournament (some of them will

be isomorphic, however). Thus, let S∗ be the set of 48 · 220 = 50331648 tournaments obtained by

adding the arcs to each element of S, in every possible way. We therefore have:

Observation 3.1 S∗ contains all the elements of F10 that have a vertex with out-degree 5.

Notice that it is very easy to generate all the elements of S∗, since F4 and F5 are explicitly known.

It is a very tedious work to establish the elements of F6. Instead, let F ′
6 be the set of 6-vertex

tournaments obtained by taking each element of F5, adding a new vertex, and adding the 5 arcs

from the new vertex to the other vertices in any possible way. Clearly, F ′
6 is easily constructed,

and has 25 · |F5| = 384 elements. Furthermore, F ′
6 ⊃ F6.

Let R be the set of 10-vertex orientations obtained as follows. For every pair of tournaments

(X,Y ) where X ∈ F3 and Y ∈ F ′
6, create an orientation by adding a new vertex t, and adding the

arcs (t, y) for each y ∈ Y and the arcs (x, t) for each x ∈ X. Notice that R consists of precisely

|F3| · |F
′
6| = 2 × 384 = 768 orientations. Each one of these orientations has one articulation point,

t. In each element of R, no vertex of the out-neighborhood of t is connected to no vertex of the

in-neighborhood of t. Thus, each element of t has 18 missing arcs, and hence 218 ways to transform

it into a tournament (some of them will be isomorphic, however). Thus, let R∗ be the set of

768 · 218 = 201326592 tournaments obtained by adding the arcs to each element of R in every

possible way. We therefore have:

Observation 3.2 R∗ contains all the elements of F10 that have a vertex with out-degree 6.

Notice that it is very easy to generate all the elements of R∗, since F3 and F ′
6 are explicitly known.

Let T0 be the 10-vertex tournament obtained by taking two vertex-disjoint copies of the (unique)

5-vertex tournament with score (2, 2, 2, 2, 2) and orienting the 25 arcs between the copies all in the

same direction. Notice that the score of T0 is (7, 7, 7, 7, 7, 2, 2, 2, 2, 2). In fact:

Observation 3.3 T0 is the unique 10-vertex tournament with score (7, 7, 7, 7, 7, 2, 2, 2, 2, 2).
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(3,3,2,1,1) 

(3,2,2,2,1) (3,2,2,2,1) (2,2,2,2,2) 

Figure 2: The tournaments on five vertices with their scores

Indeed, consider the sub-tournament A induced on the five vertices with out-degree 2, and the

sub-tournament B induced on the five vertices with out-degree 7. Since each of A and B contains

10 internal arcs, we must have that all the arcs go from B to A.

We can now prove the following lemma:

Lemma 3.4 Let Q = S∗ ∪R∗ ∪ {T0}. If T ∈ F10 then either T ∈ Q or T t ∈ Q.

Proof: Let T ∈ F10. If the score of T contains the number 5 then T ∈ S∗. If the score of T contains

the number 6 then T ∈ R∗. If the score of T contains the number 4 then T t ∈ S∗. If the score of T

contains the number 3 then T t ∈ R∗. Thus, we can assume that the score of T contains only the

numbers 0, 1, 2, 7, 8, 9. Let A be the subtournament induced on the vertices with out-degree 0, 1, 2

and let B be the subtournament induced on the vertices with out-degree 7, 8, 9. The sum of the

out-degrees of the vertices of B is at most
(

|B|
2

)

+ |B|(10−|B|) and at least 7|B|. Similarly, the sum
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of the in-degrees of the vertices of A is at most
(

10−|B|
2

)

+ |B|(10− |B|) and at least 7(10− |B|). It

follows that we must have |A| = |B| = 5, and that the score of T is (7, 7, 7, 7, 7, 2, 2, 2, 2, 2) which

means that T = T0.

The main loop of our program simply generates each element of Q. We then verify, for each

generated element T , that ν∗3(T ) ≥ 12. By Lemma 3.4, this suffices to establish that ν∗3 (10) ≥ 12,

as required.

3.2 Filtering the non-essential tournaments

Since Q has 768·218 +48·220 +1 = 251658241 elements, it is quite infeasible to run a linear program

for each element of Q. We have used the lp solve package developed by Michel Berkelaar as our

linear programming kit. Our tests show that an average run of a linear program corresponding to an

element of Q requires 0.1 seconds on our computing equipment (including the input file creation).

This means that it would take roughly 290 days of continuous run to complete the process. In this

section we show that, in many cases (in fact, most cases), it is easy to determine that ν∗3(T ) ≥ 12

without actually running the linear program.

The first and simplest filter is to eliminate obvious isomorphisms inside Q.

Observation 3.5 If an element of R∗ has a vertex with out-degree 4 or out-degree 5, then it is

isomorphic to an element of S∗, or its transpose is isomorphic to an element of S∗.

It turns out that from the 201326592 elements of R∗, less than ten million do not have a vertex

with out-degree 4 nor a vertex with out-degree 5.

For an arc e, let α(e) denote the number of transitive triples containing e. For a tournament T ,

let α(T ) be the maximum of α(e) ranging over the arcs of T . If T has 10 vertices, then, trivially,

α(T ) ≤ 8. Let β(T ) be the number of (not necessarily arc-disjoint) transitive triples in T . If T has

10 vertices, then, trivially, β(T ) ≤ 120. Let γ(T ) be the number of arcs with α(e) = 8. Notice that

α(T ), β(T ), and γ(T ) can be computed by simple counting.

Lemma 3.6 If T ∈ Q and β(T ) ≥ 12α(T ) then ν∗3 (T ) ≥ 12.

Proof: Assign the weight 1/α(T ) to each transitive triple of T . Thus, for each arc, the sum of the

weights of the transitive triples containing it is at most 1. The total weight is β(T )/α(T ) ≥ 12.

A special case of Lemma 3.6 holds when β(T ) ≥ 96 in which case we always have β(T ) ≥ 12α(T ).

So is the case, e.g., for T0, that has more than 100 transitive triples.

Lemma 3.7 If T ∈ Q and β(T ) − γ(T ) ≥ 84 then ν∗3(T ) ≥ 12.
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Proof: For each arc with α(e) = 8, arbitrarily pick one transitive triple containing e. Let W

be the set of triples picked, and notice that |W | ≤ γ(T ) (it may be that two incident arcs picked

the same triple). Assign the weight 0 to the triples of W and assign the weight 1/7 to the other

transitive triples. For each arc, the sum of the weights of the transitive triples containing it is at

most 7/7 = 1. The total weight is 1
7(β(T ) − |W |) ≥ 84/7 = 12.

It turns out that the number of elements of Q that pass the filters of Observation 3.5, Lemma

3.6 and Lemma 3.7 is less than four million. Indeed, our program completes its run in less than

five days.

3.3 Generating the linear program

Let T be an element of Q that does not pass the filters of the previous subsection. We must verify

that ν∗3 (T ) ≥ 12 by explicitly computing an optimal fractional TT3-packing for T . As mentioned

earlier, this can easily be done by solving a corresponding linear program. We now describe this

program.

Assume that the vertices of T are labeled {0, . . . , 9}. The linear program has β(T ) variables,

each corresponding to a transitive triple of T , and 45 constraints, each corresponding to an arc of

T . For a transitive triple induced on the vertices {i, j, k} with i < j < k, we create the variable xijk.

For any arc (u, v), let C(u, v) be the sum of all the variables corresponding to the transitive triples

that contain (u, v) (in case (u, v) does not appear on any transitive triple, we define C(u, v) = 0).

The set of 45 constraints is, therefore, {C(u, v) ≤ 1 : (u, v) ∈ E(T )}. Finally, the objective

function is to maximize the sum of all variables. Clearly, the value of an optimal solution to this

linear program corresponds to ν∗3(T ).

As mentioned earlier, we have used the linear programming package lp solve available from the

site http://www.cs.sunysb.edu/˜algorith/implement/lpsolve/implement.shtml ). The

source code of our program is available to the readers upon request. The following is an example

of an input file expected by lp solve, corresponding to some tournament with 10 vertices, and the

corresponding (truncated) output file generated by lp solve.

max:

x012+x013+x014+x015+x019+x023+x024+x025+x028+x029+x034+x035+x036+

x037+x045+x049+x058+x067+x068+x069+x078+x079+x089+x123+x124+x125+

x126+x127+x128+x129+x134+x135+x136+x137+x138+x145+x146+x147+x148+

x149+x156+x157+x158+x167+x168+x178+x234+x235+x236+x237+x245+x246+

x247+x249+x256+x257+x258+x267+x289+x348+x349+x356+x357+x359+x367+

x368+x369+x378+x379+x389+x456+x457+x458+x467+x468+x478+x567+x569+

x579+x589+x678+x679+x689+x789;

cl:

x012+x013+x014+x015+x019<=1;
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x012+x023+x024+x025+x028+x029<=1;

x013+x023+x034+x035+x036+x037<=1;

x014+x024+x034+x045+x049<=1;

x015+x025+x035+x045+x058<=1;

x036+x067+x068+x069<=1;

x037+x067+x078+x079<=1;

x028+x058+x068+x078+x089<=1;

x019+x029+x049+x069+x079+x089<=1;

x012+x123+x124+x125+x126+x127+x128+x129<=1;

x013+x123+x134+x135+x136+x137+x138<=1;

x014+x124+x134+x145+x146+x147+x148+x149<=1;

x015+x125+x135+x145+x156+x157+x158<=1;

x126+x136+x146+x156+x167+x168<=1;

x127+x137+x147+x157+x167+x178<=1;

x128+x138+x148+x158+x168+x178<=1;

x019+x129+x149<=1;

x023+x123+x234+x235+x236+x237<=1;

x024+x124+x234+x245+x246+x247+x249<=1;

x025+x125+x235+x245+x256+x257+x258<=1;

x126+x236+x246+x256+x267<=1;

x127+x237+x247+x257+x267<=1;

x028+x128+x258+x289<=1;

x029+x129+x249+x289<=1;

x034+x134+x234+x348+x349<=1;

x035+x135+x235+x356+x357+x359<=1;

x036+x136+x236+x356+x367+x368+x369<=1;

x037+x137+x237+x357+x367+x378+x379<=1;

x138+x348+x368+x378+x389<=1;

x349+x359+x369+x379+x389<=1;

x045+x145+x245+x456+x457+x458<=1;

x146+x246+x456+x467+x468<=1;

x147+x247+x457+x467+x478<=1;

x148+x348+x458+x468+x478<=1;

x049+x149+x249+x349<=1;

x156+x256+x356+x456+x567+x569<=1;

x157+x257+x357+x457+x567+x579<=1;

x058+x158+x258+x458+x589<=1;

x359+x569+x579+x589<=1;

x067+x167+x267+x367+x467+x567+x678+x679<=1;

x068+x168+x368+x468+x678+x689<=1;

x069+x369+x569+x679+x689<=1;

x078+x178+x378+x478+x678+x789<=1;

x079+x379+x579+x679+x789<=1;

x089+x289+x389+x589+x689+x789<=1;

Example of an input file

Value of objective function: 15

x012 0

x013 0

x014 0.29545

x015 0.068182
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x019 0.63636

x023 0.20455

.

.

.

x579 0.52273

x589 0.022727

x678 0

x679 0.38636

x689 0

x789 0

Example of an output file

4 Related results

In this section we consider problems related to TT3-packing. We first study TT4-packings, and

show that the methods we used to prove Theorem 1.2 can be applied to this case as well in order

to obtain nontrivial lower bounds. We then consider the problem of TT3-packings in orientations

of not necessarily complete graphs. We show that orientations of random graphs behave similar

to orientations of a tournament, while, on the other hand, minimum degree requirements are not

enough to guarantee such behavior.

4.1 Packing TT4

Determining ν4(n) and ν∗4(n) is, obviously, a more difficult problem than (the already very difficult

problem of) determining ν3(n) and ν∗3(n). First, as mentioned in the introduction, we cannot hope,

in general, to pack almost all of the edges of a tournament with edge-disjoint copies of TT4. The

following construction appears in [14]. It is well-known (cf. [11]) that there is a unique tournament

T7 with seven vertices, and with no TT4. Consider the complete 7-partite orientation with n vertices

obtained by blowing up each vertex of T7 with n/7 vertices. Add arbitrary arcs connecting two

vertices in the same vertex class to obtain a tournament T with n vertices. Clearly, any TT4 of

T must contain an arc with both endpoints in the same vertex class. Hence, ν4(n) ≤ ν4(T ) ≤

7
(n/7

2

)

= 1
14n

2(1+ o(1)). Hence at least
(n
2

)

− 6ν4(T ) ≥ 1
14n

2(1+ o(1)) arcs must be unpacked. The

same example also shows that ν∗4(n) ≤ 1
14n

2(1 + o(1)). Similar constructions exist for all k ≥ 4,

where the fraction of packed edges tends to zero as k increases.

In order to obtain a lower bound for ν∗4 (n) we shall require a lemma analogous to Lemma 2.6.

Unlike the case for transitive triples, tournaments with 4n vertices do not necessarily have n vertex-

disjoint copies of TT4. But they do have n − 1 such copies, since it is well known (see, e.g. [11])

that every tournament with 8 vertices has a TT4. Thus, the following lemma is a straightforward

analogue of Lemma 2.6.
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Lemma 4.1 Let r > 1. Then, ν∗4 (4r) ≥ 16ν∗4 (r) + r − 1.

Similarly, the following corollary is analogous to Corollary 2.7.

Corollary 4.2
ν∗4(n)

n(n− 1)
≥
ν∗4(r)

r2
+

1

12r
−

1

15r2
− on(1).

Proof: Iterating the result of Lemma 4.1 we obtain that

ν∗4(4p+1r) ≥ 16p+1ν∗4(r) +

p
∑

i=0

16p−i(4ir − 1)

= 16p+1ν∗4 (r) + 16pr
4

3
(1 − 4−p−1) − 16p 16

15
(1 − 16−p−1)

for every p ≥ 0. This implies that

ν∗4(4p+1r)

4p+1r(4p+1r − 1)
≥
ν∗4(4p+1r)

16p+1r2
≥
ν∗4(r)

r2
+

1

16r

4

3
(1 − 4−p−1) −

1

16r2
16

15
(1 − 16−p−1).

Taking the limit as p tends to infinity yields the required result.

Proposition 4.3 ν4(n) ≥ 113
3000n

2(1 − o(1)).

Modifying our computer program we were able to compute ν∗4(10) = 3. This fact, together with

Corollary 4.2 gives that

ν∗4(n)

n(n− 1)
≥

3

100
+

1

120
−

1

1500
− on(1) =

113

3000
− on(1).

Thus, ν∗4(n) ≥ 113
3000n

2 − o(n2). Together with Corollary 2.3 we obtain ν4(n) ≥ 113
3000n

2(1 − o(1)) as

well. Notice that this means that one can always pack approximately 45 percent of the arcs of a

tournament with arc-disjoint copies of TT4, while the example in the beginning of this subsection

shows that, in general, we cannot expect to pack more than 100 · (12/14) ≈ 86 percent of the arcs.

4.2 Packing transitive triples in orientations of non-complete graphs

Proposition 4.4 For every δ > 0, there exist orientations of graphs with minimum degree at least

n(1 − δ) so that in every packing with transitive triples, at least δn2(1 − o(1)) arcs are unpacked.
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Proof: Since we are concerned with asymptotics, we may assume that n is a multiple of 6 and that

δn is an even integer. Let H be an undirected graph with n/3 vertices which is n/3 − δn regular.

Consider the undirected graph G obtained by taking three vertex-disjoint copies of H, denoted H1,

H2 and H3, and connecting with an edge any two vertices belonging to different copies. Notice

that G has n vertices and is n(1− δ)-regular. Orient the edges from H1 to H2, from H2 to H3 and

from H3 to H1. Orient the edges inside the Hi arbitrarily. Denote the oriented graph by ~G. Since

each transitive triple of ~G contains an arc with both endpoints in the same vertex class we have

ν3(~G) ≤ 3
n

6
(
n

3
− δn) =

n2

6
− δ

n2

2
.

The total number of edges of the elements of an optimal TT3-packing is, therefore, at most n2

2 − 3
2δn

2.

On the other hand, the number of arcs of T is n2

2 (1 − δ). it follows that in every TT3-packing of
~G, at least δn2 arcs remain unpacked.

We note that it is proved in [17] that every oriented graph with n vertices can be edge-decomposed

into at most ⌊n2/3⌋ transitive subtournaments, and this is tight.

The situation in Proposition 4.3 should be compared to the very different situation in the related

undirected problem. For an undirected graph G, let ρ(G) be the maximum number of edge-disjoint

triangles that can be packed into G. It is shown in [16] that for δ < 3−12, every graph with minimum

degree n(1 − δ) can be packed with triangles so that only o(n2) edges remain unpacked.

Let 0 < p < 1 be a constant, and let G(n, p) be the random graph with n vertices and edge

probability p. Namely, for any two vertices, there is an edge between them with probability p. All
(

n
2

)

choices are performed independently. By the result of Frankl and Rödl [5], it is well known that

for any t, if n is sufficiently large, the random graph G(n, p) almost surely has a set of edge-disjoint

copies of Kt so that only o(n2) edges remain unpacked. Now, in any orientation of the random

graph, each such Kt becomes a t-vertex tournament, which, in turn, by Theorem 1.2, can be packed

with 41
300 t

2(1 − ot(1)) edge-disjoint transitive triples. It follows that for any p, almost surely, any

orientation of G(n, p) has a packing with transitive triples so that approximately 82 percent of the

edges are packed. In fact, if Conjecture 1.1 is true, then, almost surely, any orientation of G(n, p)

has a packing with transitive triples so that only o(n2) arcs remain unpacked.
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