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Abstract

It is well known that a graph with m edges can be made triangle-free by removing (slightly less

than) m/2 edges. On the other hand, there are many classes of graphs which are hard to make

triangle-free in the sense that it is necessary to remove roughly m/2 edges in order to eliminate

all triangles.

We prove that dense graphs that are hard to make triangle-free have a large packing of pair-

wise edge-disjoint triangles. In particular, they have more than m(1/4+cβ) pairwise edge-disjoint

triangles where β is the density of the graph and c ≥ 1
100 is an absolute constant. This improves

upon a previous m(1/4 − o(1)) bound which follows from the asymptotic validity of Tuza’s con-

jecture for dense graphs. We conjecture that such graphs have an asymptotically optimal triangle

packing of size m(1/3− o(1)).

We extend our result from triangles to larger cliques and odd cycles.

1 Introduction

All graphs in this paper are finite, undirected, and simple. A triangle edge cover in a graph is a

set of edges meeting all triangles. In other words, the removal of a triangle edge cover results in a

triangle-free graph. Dually, a triangle packing in a graph is a set of pairwise edge-disjoint triangles.

We denote by τ3(G) the minimum size of a triangle edge cover and by ν3(G) the maximum size of a

triangle packing of a graph G. It is easily observed that:

ν3(G) ≤ τ3(G) ≤ 3ν3(G) .

The first inequality follows from the fact that one must delete at least one edge from each triangle

in a triangle packing in order to obtain a triangle-free graph. The second inequality follows from the

fact that deleting all edges of all triangles in a maximum triangle packing results in a triangle-free

graph. A long standing conjecture of Tuza [6] states that this second inequality is not optimal.

Conjecture 1.1 (Tuza [6]) τ3(G) ≤ 2ν3(G).

This conjecture, if true, is best possible as can be seen by taking, say, G = K4 or G = K5. The best

upper bound for τ3(G) is due to Haxell [2] who proved that τ3(G) ≤ (3− 3
23)ν3(G).
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However, there is an important setting, where, asymptotically, Tuza’s conjecture holds. This is

the dense graph setting. To state this result we need first to consider the fractional relaxations of

τ3(G) and ν3(G). A fractional triangle edge cover assigns nonnegative weights to the edges so that

the resulting weight of each triangle (being the sum of the weights of its edges) is at least 1. Dually,

a fractional triangle packing assigns nonnegative weights to the triangles so that the resulting weight

of each edge (being the sum of the weights of the triangles it meets) is at most 1. The goal is thus

to minimize the sum of the weights of a fractional triangle edge cover and to maximize the sum

of the weights of a fractional triangle packing. Let, therefore, τ∗3 (G) and ν∗3(G) be the fractional

relaxations of τ3(G) and ν3(G) respectively. By linear programming duality we have τ∗3 (G) = ν∗3(G),

and, trivially, τ3(G) ≥ τ∗3 (G) and ν3(G) ≤ ν∗3(G). Krivelevich [5] proved that Tuza’s conjecture holds

in a mixed fractional-integral setting. Namely, he proved:

Theorem 1.2 (Krivelevich [5]) For any graph G we have τ3(G) ≤ 2ν∗3(G) and τ∗3 (G) ≤ 2ν3(G).

The inequality τ∗3 (G) ≤ 2ν3(G) is tight (e.g. K4) and the inequality τ3(G) ≤ 2ν∗3(G) is known to be

asymptotically tight. A few years later, Haxell and Rödl [3] (see also [7]) proved that |ν3(G)−ν∗3(G)| =
o(n2) for n-vertex graphs G. In other words, in graphs that contain a quadratic number of pairwise

edge-disjoint triangles, ν3(G) and ν∗3(G) are asymptotically the same. It follows from these results

that:

Theorem 1.3 τ3(G) ≤ 2ν3(G) + o(n2).

In light of the fact that Tuza’s conjecture is optimal, it is interesting to ask whether the constant 2

in Theorem 1.3 is also optimal (notice that this question becomes nontrivial for dense graphs with

τ3(G) = Θ(n2)). Perhaps the most interesting case to consider is when τ3(G) is as large as one can

expect it to be.

It is well known that every graph with m edges can be made bipartite by removing from it less

than m/2 edges (see [1] for the tightest known bounds). In particular, τ3(G) ≤ m/2 − o(m). On

the other hand, there are many different types of graphs that are hard to make triangle-free, that is,

graphs for which τ3(G) ≥ m/2−o(m). For example, complete graphs are hard to make triangle-free,

and (sufficiently dense) random graphs are hard to make triangle-free. It is also easy to construct

many other families of graphs that are hard to make triangle-free. Let us formalize this notion. We

say that a graph G is (1− δ)-hard to make ∆-free if τ3(G) ≥ (1− δ)(m/2).

The following is an immediate consequence of Theorem 1.3.

Corollary 1.4 Let G be a graph with m edges that is (1− on(1))-hard to make ∆-free. Then,

ν3(G) ≥ m

4
− o(n2) .

We conjecture that Corollary 1.4 is not optimal, and that m/4 can be replaced with m/3. For-

mally, we conjecture the following.

Conjecture 1.5 For every ε > 0 and β > 0 there exist N = N(ε, β) and δ = δ(ε, β) such that for

all graphs with n > N vertices and with m ≥ βn2 edges that are (1− δ)-hard to make ∆-free,

ν3(G) ≥ (1− ε)m
3
.
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Since for any m-edge graph we have ν3(G) ≤ m/3, Conjecture 1.5 states that dense graphs that are

hard to make ∆-free have an asymptotically optimal triangle packing: all but a negligible fraction

of the edges are packed.

A weakened, but still challenging version of Conjecture 1.5, asks for a constant improvement over

the 1/4 bound in Corollary 1.4.

Conjecture 1.6 There exists α > 0 so that for all β > 0 there exist N = N(β) and δ = δ(β) such

that for all graphs with n > N vertices and with m ≥ βn2 edges that are (1− δ)-hard to make ∆-free,

ν3(G) ≥ (1 + α)
m

4
.

A further weakening of Conjecture 1.6 allows the improvement α to depend on the density β.

The main result of this paper proves that such an improvement always exists. Hence, for any fixed

density, our main result shows that the constant 1/4 in Corollary 1.4 is not optimal, and can be

replaced with a larger constant.

Theorem 1.7 For every β > 0 there are N = N(β) and δ = δ(β) such that for all graphs with

n > N vertices and with m ≥ βn2 edges that are (1− δ)-hard to make ∆-free,

ν3(G) ≥
(

1 +
β

100

)
m

4
.

The constant 100 in Theorem 1.7 is by no means optimal and it can be somewhat reduced at the price

of complicating the calculations. Since this has no qualitative impact on the statement of Theorem

1.7, we make no effort to optimize it. We also note that δ = δ(β) is a moderate function. As shown

in the proof, it suffices to take δ = β2/99.

The next section contains the proof of Theorem 1.7. Section 3 considers larger cliques. We prove

a bound for the edge covering number of Kk in terms of the fractional edge covering number of Kk

and then use it to extend Theorem 1.7 to larger cliques. Section 4 contains some concluding remarks:

a sketch of a generalization of Theorem 1.7 to larger odd cycles, and an improved integrality gap for

the problem of “maximal triangle-free subgraph” in dense graphs.

2 Packing triangles in graphs that are hard to make triangle free

Since ν∗3(G) = τ∗3 (G) and since, by the result of Haxell and Rödl mentioned earlier we have ν∗3(G) ≤
ν3(G) + o(n2), the following theorem immediately implies Theorem 1.7.

Theorem 2.1 For every β > 0 there exists an integer N = N(β) such that for all graphs with n > N

vertices and with m ≥ βn2 edges that are (1− β2/99)-hard to make ∆-free,

τ∗3 (G) ≥
(

1 +
β

99

)
m

4
.
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We will therefore prove Theorem 2.1, and hence obtain a proof for Theorem 1.7 as well.

We first need to recall some known facts from linear programming. For a graph G, let E(G)

and T (G) denote the sets of edges and triangles of G, respectively. Let f : E(G) → [0, 1] be a

minimum fractional triangle edge cover so that
∑

e∈E(G) f(e) = τ∗3 (G), and let g : T (G) → [0, 1] be

a maximum fractional triangle packing so that
∑

t∈T (G) g(t) = ν∗3(G). Then, the duality theorem of

linear programming states that τ∗3 (G) = ν∗3(G) and (one of) the complementary slackness conditions

states that:

f(e) > 0 implies
∑
t3e

g(t) = 1 . (1)

We designate two sets of edges.

• Let F0 ⊂ E(G) be F0 = {e | f(e) = 0}.

• Let F1 ⊂ E(G) be F1 = {e | f(e) = 1}.

The proof of Theorem 2.1 is split into three cases, according to the cardinalities of F0 and F1.

The first two cases are easy. The first is when F1 is relatively large and the second is when F0 is

relatively small. The remaining case, where F1 is relatively small and F0 is relatively large, is more

difficult. It will be convenient to assume, without loss of generality, that m = βn2. Observe that

this immediately implies the proof for m ≥ βn2. We also set δ = β2/99 so that the assumption in

Theorem 2.1 is that the graph is (1− δ)-hard to make ∆-free.

Case 1: |F1| >
(
δ + β

99

)
m/2.

Define G1 = G(V,E \ F1) to be the graph obtained from G by deleting the edges having weight 1.

We observe that:

τ3(G1) ≥ τ3(G)− |F1| . (2)

τ∗3 (G1) ≤ τ∗3 (G)− |F1| . (3)

τ∗3 (G1) ≥
1

2
τ3(G1) . (4)

Indeed, (2) holds since we have deleted |F1| edges, (3) holds since the total deleted weight is |F1|,
and (4) holds by Theorem 1.2. Using these inequalities and the assumption on the size of F1 we

have:

τ∗3 (G) ≥ τ∗3 (G1) + |F1|

≥ 1

2
τ3(G1) + |F1|

≥ 1

2
(τ3(G)− |F1|) + |F1|

=
1

2
τ3(G) +

1

2
|F1|

≥ 1

2
(1− δ)m

2
+

(
δ +

β

99

)
m

4

=

(
1 +

β

99

)
m

4
.
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Case 2: |F0| <
(

1− 3β
99

)
m/4.

The complementary slackness condition (1) implies that∑
e∈E\F0

∑
t3e

g(t) = m− |F0| .

As each triangle is counted at most three times we have that

τ∗3 (G) = ν∗3(G) ≥ 1

3
(m− |F0|) .

Using the assumption on the size of F0 we obtain:

τ∗3 (G) ≥ 1

3

(
m−

(
1− 3β

99

)
m/4

)
=

(
1 +

β

99

)
m

4
.

Case 3: |F0| ≥
(

1− 3β
99

)
m/4 and |F1| ≤

(
δ + β

99

)
m/2.

Since β ≤ 1/2, our assumptions in this case imply in particular that

|F0| ≥ 0.246m . (5)

|F1| ≤ βm/99 . (6)

For a subset of vertices A ⊂ V , let E(A) denote the set of edges of G with both endpoints in A. If

A and B are disjoint subsets of vertices, then E(A,B) denotes the set of edges with one endpoint in

A and the other in B.

Lemma 2.2 G contains two disjoint subsets of vertices A and B such that

|E(A,B)| − |E(A)| − |E(B)| > β2m

99
.

Proof: Consider the graphH = G(V, F0) consisting only of the edges ofG having weight zero. Notice

that H is still dense as it has at least 0.246m edges, and that H is triangle-free since otherwise f

would not have been a fractional triangle edge cover.

Consider a random subset C of c = d1/(0.246β)e vertices. We say that a vertex x is dominated

by C, if some vertex of C is a neighbor of x in H. Clearly, the probability that a vertex is not

dominated by C is less than (1− c/n)dx , where dx is the degree of x in H. Let Q denote the set of

all edges of H that are incident with vertices that are not dominated by C. Hence, the expected size

of Q satisfies:

E[|Q|] <
∑
x∈V

dx

(
1− c

n

)dx
≤
∑
x∈V

dxe
−dxc/n ≤

∑
x∈V

n

ec
=
n2

ec
.

In particular, there exists a choice of C such that after removing from H the vertices that are not

dominated by C we remain with a subgraph H ′ whose number of edges is at least

0.246m− n2

ec
≥ 0.246m− 0.246βn2

e
≥ 0.246m− 0.246m

e
= 0.246(1− 1/e)m .
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As each vertex of H ′ is dominated by C, let us select for each vertex of H ′, a vertex of C that

dominates it. This partitions the vertices of H ′ into c parts {Au | u ∈ C} where Au consists of

the vertices of H ′ that chose u as their dominating vertex. Observe also that each Au induces an

independent set in H, since otherwise we would have, together with u, a triangle in H, contradicting

its triangle-freeness. As ∪u6=v∈CE(Au, Av) contains all the edges of H ′ and no edge is counted more

than once, we have ∑
u6=v∈C

|E(Au, Av)| ≥ 0.246(1− 1/e)m . (7)

Moreover, E(Au) contains only edges of F1. Indeed, if we had an edge (a, a′) ∈ E(Au) with

f((a, a′)) < 1, then the triangle (a, a′, u) would have weight less than 1 (the edges (u, a) and (u, a′)

have weight 0 as they both belong to F0). But a triangle cannot have weight less than 1 since f is a

fractional triangle edge cover. It follows that∑
u∈C
|E(Au)| ≤ |F1| . (8)

Using (7) and (8) we have∑
u6=v∈C

[|E(Au, Av)| − |E(Au)| − |E(Av)|] ≥ 0.246(1− 1/e)m− (c− 1)|F1| .

It follows that there is a particular choice of pair Au, Av for which

|E(Au, Av)| − |E(Au)| − |E(Av)| ≥
1(
c
2

)0.246(1− 1/e)m− 2

c
|F1| ≥

β2m

54
− β2m

200
>
β2m

99

where we have used (6) and c = d1/(0.246β)e.
Let A and B be disjoint subsets satisfying Lemma 2.2. To complete the proof of Case 3, we

proceed as follows. We split the vertices of V \ (A ∪ B) into two parts X and Y at random. We

consider the cut (A∪X , B ∪ Y ) and compute the expected number of edges crossing it. Each edge

of E(A,B) crosses it by definition. On the other hand, each edge with at least one endpoint in X∪Y
crosses it with probability 1/2. The expected size of this cut is therefore

|E(A,B)|+ 1

2
(m− |E(A,B)| − |E(A)| − |E(B)|) > m

2
+
β2m

198
.

Hence, such a cut exists, implying that we can remove from G the non-edges of this cut to obtain a

triangle-free (in fact, bipartite) subgraph. The number of edges thus removed is less than

m− m

2
− mβ2

198
=
m

2
(1− β2

99
) =

m

2
(1− δ)

contradicting the assumption that τ3(G) ≥ m
2 (1 − δ). This completes the proof of Theorem 2.1,

which, as noted earlier, implies Theorem 1.7.
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3 Larger cliques

Throughout this section we fix k ≥ 4, we let τk(G) denote the minimum size of a Kk edge cover, and

let νk(G) denote the maximum size of a Kk-packing of a graph G. The trivial bounds in this case

are νk(G) ≤ τk(G) ≤
(
k
2

)
νk(G).

Denoting by τ∗k (G) and ν∗k(G) the respective (and equal) fractional parameters, Krivelevich’s

proof for triangles [5] can be generalized to yield:

τk(G) ≤
((

k

2

)
− 1

)
τ∗k (G) . (9)

We omit the details of this easy generalization since the bounds we shall obtain in this section are

better.

As for the case of triangles, the theorem of Haxell and Rödl [3] asserts that |νk(G) − ν∗k(G)| =

o(n2). Thus, an immediate corollary analogous to Theorem 1.3 is:

Corollary 3.1 τk(G) ≤
((

k
2

)
− 1
)
νk(G) + o(n2).

The goal of this section is to prove a significantly better bound, replacing
(
k
2

)
− 1 with a much

smaller value. We shall do that by improving upon (9).

Theorem 3.2

τk(G) ≤ bk2/4cτ∗k (G) .

Proof: Consider the following process which creates a sequence of spanning subgraphs Gi of G,

starting with G = G0. Each Gi is obtained from its predecessor Gi−1 by deleting a single edge

according to the rule specified below. We will halt this process one this rule cannot be applied. We

denote the final graph in our sequence by Gt. Hence we have 0 ≤ t ≤ m.

Let fi and gi be a minimum fractional Kk edge cover and a maximum fractional Kk-packing of

Gi, respectively. Assume first that some Kk of Gi contains
(
k
2

)
− bk2/4c edges that are assigned

weight 0 by fi. This means that the total weight of the remaining bk2/4c edges of this Kk is at least

1, so there is some edge ei with fi(ei) ≥ 1/bk2/4c. We let Gi+1 = Gi−{ei}. If no Kk of Gi contains(
k
2

)
− bk2/4c edges that are assigned weight 0 by fi then we halt the sequence and Gi = Gt is the

final graph in the sequence.

We observe the following inequalities:

τk(Gt) ≥ τk(G)− t . (10)

τ∗k (Gt) ≤ τ∗k (G)− t

bk2/4c
. (11)

τ∗k (Gt) ≥
τk(Gt)(

k
2

) . (12)

Indeed, (10) holds since we have deleted t edges to get from G to Gt, (11) holds since τ∗k (Gi+1) ≤
τ∗k (Gi)− 1/bk2/4c, and (12) is the trivial bound. Using these inequalities we have:

τ∗k (G) ≥ τ∗k (Gt) +
t

bk2/4c
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≥ τk(Gt)(
k
2

) +
t

bk2/4c

≥ τk(G)− t(
k
2

) +
t

bk2/4c

=
τk(G)(

k
2

) − t(
k
2

) +
t

bk2/4c
. (13)

Let 0 ≤ α ≤ 1 be chosen such that Gt has α(m− t) edges that are assigned weight 0 by ft. Thus,

(1−α)(m− t) edges of Gt are assigned positive weight and, using complementary slackness as in (1)

we obtain: ∑
e:fi(e)>0

∑
H3e

gi(H) =
∑

e:fi(e)>0

1 ≥ (1− α)(m− t) .

(Here the internal sum ranges over all graphs H in Gt that are isomorphic to Kk.) Since Kk has
(
k
2

)
edges, this implies, in particular:

τ∗k (Gt) = ν∗k(Gt) ≥
(1− α)(m− t)(

k
2

) .

By (11) we have:

τ∗k (G) ≥ (1− α)(m− t)(
k
2

) +
t

bk2/4c
. (14)

The spanning subgraph P of Gt consisting of the edges having positive weight has (1−α)(m− t)
edges. Since any graph can be made bipartite by removing less than half of its edges, we can delete

from P a subset F of less than (1− α)(m− t)/2 edges to make P bipartite.

We claim that the spanning subgraph Q of Gt obtained by removing F from Gt is Kk-free. Assume

that Q has a Kk. The edges with positive weight form a bipartite subgraph on k vertices inside this

Kk. The number of such edges is clearly at most bk2/4c. This implies that this Kk contains at least(
k
2

)
−bk2/4c edges with zero weight, contradicting the fact that Gt was the last graph in the sequence

and has no copy of Kk with this amount of zero weight edges. We have therefore proved:

τk(Gt) ≤
(1− α)(m− t)

2
.

By (10) we have:

τk(G) ≤ (1− α)(m− t)
2

+ t . (15)

By (14) and (15) we have:

τ∗k (G) ≥ 2τk(G)− 2t(
k
2

) +
t

bk2/4c
. (16)

So, (13) and (16) both supply lower bounds for τ∗k (G) in terms of τk(G) and t. In particular,

the maximum of both bounds can be used as a lower bound for τ∗k (G). For k ≥ 4 observe that (13)

increases as t increases and (16) decreases as t increases. Hence, the maximum of both bounds is
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minimized when they are equal which, in turn, happens when t = τk(G). In this extremal point we

have

τ∗k (G) ≥ τk(G)

bk2/4c
.

Thus, τk(G) ≤ bk2/4cτ∗k (G) proving the theorem.

Theorem 3.2 immediately implies the following improvement of Corollary 3.1.

Corollary 3.3 τk(G) ≤ bk2/4cνk(G) + o(n2).

It is well known that every graph with m edges can be made (k− 1)-partite by removing from it

less than m/(k − 1) edges. One just considers a random partition of the vertex set into k − 1 parts

and observes that the probability of an edge having both of its endpoints in the same part is less than

1/(k−1). In particular, τk(G) ≤ m/(k−1)−o(m). As for the case of triangles, there are many different

types of graphs that are hard to make Kk-free, that is, graphs for which τk(G) ≥ m/(k− 1)− o(m).

We thus say that a graph G is (1− δ)-hard to make Kk-free if τk(G) ≥ (1− δ)m/(k − 1).

The following is an immediate consequence of Corollary 3.3.

Corollary 3.4 Let G be a graph with m edges that is (1− on(1))-hard to make Kk-free. Then,

νk(G) ≥ m

(k − 1)bk2/4c
− o(n2) .

Observe that for, say, K4 we get that dense graphs that are hard to make K4-free have roughly m/12

edge-disjoint copies of K4. As each K4 has 6 edges this implies that a fraction of roughly 1/2 of the

edges can be packed with edge-disjoint copies of K4. More generally, for Kk, we get that a fraction

of 2/k of the edges can be packed with edge-disjoint copies of Kk (if k is odd then this fraction is a

bit larger). It is plausible that conjecture 1.5 can be extended from triangles to larger cliques. That

is, all but a negligible fraction of the edges can be packed with edge-disjoint copies of Kk.

4 Concluding remarks

The proof of Theorem 1.7 can be extended to other odd cycles. Denoting the edge covering and

packing numbers by τCk
(G) and νCk

(G) respectively, the analogous result states that for β-dense

graphs that are (1− δ)-hard to make Ck-free one has

νCk
(G) ≥ (1 + cβ)

m

2k − 2
.

where c is an absolute constant. Observe that for any graph G we have νCk
(G) ≤ m/k.

The proof is essentially the same, with the following minor differences. We use a straightforward

extension of the result of Krivelevich for cycles of length k, which states that τCk
(G) ≤ (k−1)τ∗Ck

(G)

(see also [4] for this observation), and the result of Haxell and Rödl applied to Ck stating that

|νCk
(G)−ν∗Ck

(G)| = o(n2). As in the proof of Theorem 2.1, we split into three cases according to the

relative sizes of F0 and F1/(k−2) where the latter are all edges with weight at least 1/(k−2). Observe

that this coincides with the definition of F1 for the case of triangles. The only real difference is in

Case 3. In Lemma 2.2 we can no longer claim that H is triangle-free. Rather, it is Ck-free. This
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means that any neighborhood of a vertex is no longer forced to be an independent set, but rather

it is forced not to contain a path of length k − 2. But this, in turn, implies that each neighborhood

in H is sparse and has only a linear number of edges, which is negligible in the dense setting. Also,

when using Lemma 2.2 by looking at the subgraph induced by A ∪ B in G, we can no longer claim

that it contains only edges of F1/(k−2) with both endpoints in A or both endpoints in B. However,

it certainly does not contain a path of length k − 2 of edges not in F1/(k−2) with both endpoints in

the same class. Thus, there are only a negligible (linear) number of edges not in F1/(k−2) that are

inside A or inside B. Hence, the same argument as in Case 3 for triangles, also holds here.

Theorem 3.2 supplies, in particular, an efficient approximation algorithm for the NP-Hard prob-

lem of computing τk(G). Its approximation ratio is bk2/4c. It also bounds the integrality gap of this

problem by bk2/4c.

Consider the problem of finding a maximal triangle-free subgraph. Its fractional relaxation is

thus to assign weights in [0, 1] to the edges so that for each triangle, the sum of the weights is not

larger than 2. The goal is to maximize the sum of the weights of such an assignment. Denoting

the corresponding parameters by ρ3(G) and ρ∗3(G) we have, by definition, ρ3(G) = m − τ3(G) and

ρ∗3(G) = m − τ∗3 (G). The (asymptotic) integrality gap of this problem is known to be between 1.5

and 4/3. The lower bound comes from the complete graph: The integral solution is n2/4(1− o(1)),

while the fractional solution comes from assigning a weight of 2/3 to each edge, thereby obtaining

total weight of n2/3(1−o(1)). The upper bound follows from the Krivelevich’s result τ3(G) ≤ 2τ∗3 (G)

after some easy arithmetic manipulations.

Our proof of Theorem 2.1 improves upon the upper bound for dense graphs. Suppose that

G is a graph with m = βn2 edges. Assume first that τ3(G) ≥ (1 − δ)m/2. By Theorem 2.1,

ρ∗3(G) ≤ 3m/4 − mβ/396. On the other hand, for any graph we have ρ3(G) ≥ m/2. Thus, the

integrality gap in this case is at most 3/2 − β/198. Consider next the case τ3(G) ≤ (1 − δ)m/2.

Hence, ρ3(G) ≥ (1 + δ)m/2. By Krivelevich’s result, we have

ρ3(G) = m− τ3(G) ≥ m− 2τ∗3 (G) = 2ρ∗3(G)−m .

This implies that the integrality gap is at most 1/2 + m/(2ρ3(G)). In our case this implies an

integrality gap of 1/2 + 1/(1 + δ) = 3/2 − δ/(1 + δ). Recall that Theorem 2.1 holds already for

δ = β2/99.
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