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Abstract

Let H be a tree on h ≥ 2 vertices. It is shown that if n is sufficiently large and G = (V,E) is an

n-vertex graph with δ(G) ≥ bn/2c, then there are b|E|/(h − 1)c edge-disjoint subgraphs of G

which are isomorphic to H. In particular, if h− 1 divides |E| then there is an H-decomposition

of G. This result is best possible as there are infinitely many examples of trees on h vertices

and graphs G with m(h− 1) edges, δ(G) ≥ bn/2c − 1, for which G has no H-decomposition.

1 Introduction

All graphs considered here are finite, undirected, and have no loops or multiple edges. For the

standard graph-theoretic notations the reader is referred to [2]. Let H be a graph without isolated

vertices. An H-packing of a graph G is a set L = {G1, . . . , Gs} of edge-disjoint subgraphs of G,

where each subgraph is isomorphic to H. The H-packing number of G, denoted by P (H,G), is

the maximum cardinality of an H-packing of G. G has an H-decomposition if it has an H-packing

with the property that every edge of G appears in exactly one member of the H-packing. Note

that in order for G to have an H-decomposition, two necessary conditions must hold. The first is

that e(H) divides e(G). The second is that gcd(H) divides gcd(G) where the gcd of a graph is the

greatest common-divisor of the degrees of its vertices. Note that for any pair of graphs G and H,

we can verify in polynomial time if G satisfies these two conditions. We call these conditions the

“H-decomposition divisibility conditions”. An H-covering of a graph G is a set L = {G1, . . . , Gs}
of subgraphs of G, where each subgraph is isomorphic to H, such that every edge of G appears

in at least one member of L. The H-covering number of G, denoted by C(H,G), is the minimum

cardinality of an H-covering of G. Trivially, C(H,G) = P (H,G) iff G has an H-decomposition.
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The combinatorial and computational aspects of the H-packing, H-covering and H-decomposition

problems have been studied extensively. Wilson in [10] has proved that if G = Kn where n ≥
n0 = n0(H), and Kn satisfies the H-decomposition divisibility conditions, then Kn has an H-

decomposition. Recently, the H-packing and H-covering problems for G = Kn (n ≥ n(H)) were

solved [4, 5], by giving a closed formula for computing P (H,Kn) and C(H,Kn). In case the graph

G is not complete, it is known that the H-covering and H-packing problems are, in general, NP-

hard, since Dor and Tarsi [7] showed that deciding if G has an H-decomposition is NP-Complete,

if H is, say, any connected graph with at least three edges. Wilson’s result can be thought of as

a minimum degree result, where the minimum degree is the highest possible, i.e. n− 1. Following

Wilson, Gustavsson has shown in [8] that if G is an n-vertex graph, δ(G) ≥ (1−ε(H))n, where ε(H)

is some small positive constant depending on H, and G satisfies the H-decomposition divisibility

conditions, then G has an H-decomposition. However, the ε(H) in Gustavsson’s result is a very

small number. For example, if H is a triangle then ε(H) ≤ 10−24. In general, ε(H) ≤ 10−24/|H|q.
It is believed, however, that the correct value for ε(H) is much larger. In fact, Nash-Williams

conjectured in [9] that when H is a triangle, then ε(H) = 1/4, and he also gives an example

showing that this would be best possible. The general problem can therefore be expressed as

follows:

Problem 1: Determine fH(n), the smallest possible integer, such that whenever G has n vertices

(where n ≥ n0(H)), and δ(G) ≥ fH(n), and G satisfies the H-decomposition divisibility conditions,

then G has an H-decomposition.

It is shown in [11] that fH(n) ≥ bn/2c−1 for every connected graph H with at least 3 vertices (if H

is a single edge, the decomposition problem becomes trivial). In that same paper, the author came

close to solving Problem 1 in case H is a tree. It is proved there that fH(n) ≤ n/2 + 10h4
√
n log n

for every tree H. Although this proves fH(n)/n tends to 0.5 as n tends to infinity, there is still the
√
n log n factor which is the gap between the upper and lower bound.

In this paper we show that for every tree H on h > 2 vertices, fH(n) is either bn/2c or bn/2c − 1.

Moreover, for infinitely many values of n we show that fH(n) = bn/2c. We summarize our exact

result in the following Theorems:

Theorem 1.1 Let H be any tree with h > 2 vertices. Let G be a graph on n ≥ (12h)10 vertices

with δ(G) ≥ bn/2c. Then P (H,G) = be(G)/(h− 1)c, and, in particular, if h− 1 divides e(G), then

G has an H-decomposition.

Note that Theorem 1.1 guarantees that there exists an optimal H-packing in G, in the sense that

there are less than e(H) = h− 1 edges which are not packed, which is the best one could hope for.
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Theorem 1.2 For every tree H on h > 2 vertices, if n ≥ (12h)10 then

bn
2
c ≥ fH(n) ≥ bn

2
c − 1.

Furthermore, if n is odd and h− 1 does not divide (n− 1)(n− 3)/8 then fH(n) = bn/2c, and if n

is even and h− 1 divides n(n− 2)/4 but does not divide n(n− 2)/8 then fH(n) = n/2.

Although the result in [11] is an asymptotic version of the result in this paper, the proofs are entirely

different. In fact, the main result in [11] (see lemma 3.1 in this paper) shows that every n-vertex

graph G = (V,E) which has good edge-expansion (in fact Θ(
√
n log n) edge-expansion suffices) has

an H-decomposition (assuming h−1 divides |E|). There are graphs with such edge-expansion that

have maximum degree as small as O(
√
n log n). It is true that graphs with minimum degree at

least n/2 + Θ(
√
n log n) always have the required edge-expansion, and hence are H-decomposable.

However, in order to obtain the exact results proved in this paper, one needs to consider, in

particular, graphs with, say, δ(G) = n/2 which are not good expanders. This requires an entirely

different approach to the proof.

In the following section we prove several density lemmas which are needed for the proof of

Theorem 1.1. This proof, which requires some probabilistic arguments, appears in Section 3.

Section 4 contains the proof of Theorem 1.2, and some concluding remarks.

A word about notation used in the rest of this paper. The degree of a vertex v in the graph

G = (V,E) is denoted by dG(v). The number of edges of G is denoted by e(G). For X ⊂ V , we

denote by G[X] the subgraph induced by X. The number of edges between X and Y is denoted

by e(X,Y ), and e(X) denotes the number of edges in G[X]. The number of neighbors of v in X is

denoted by d(v,X).

2 The lemmas

For the rest of this paper, let H be a fixed tree on h ≥ 3 vertices. A graph G = (V,E) is called r

edge-expanding if for every X ⊂ V with |X| ≤ |V |/2, there are at least r|X| edges between X and

V \X. That is, e(X,V \X) ≥ r|X|.
The following simple lemma shows that if G has large minimum degree, and bad edge-expansion,

then there is a large set X demonstrating this fact:

Lemma 2.1 If G = (V,E) has n vertices, δ(G) ≥ bn/2c and G is not 0.01n − 1 edge-expanding,

then there exists X ⊂ V , 0.49n ≤ |X| ≤ 0.5n, such that e(X,V \X) < (0.01n− 1)|X|.
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Proof: Since G is not 0.01n − 1 edge-expanding, there exists a set X ⊂ V , |X| ≤ n/2, such

that e(X,V \ X) < (0.01n − 1)|X|. Since δ(G) ≥ bn/2c we also know that every X ′ ⊂ V with

|X ′| < 0.49n, has e(X ′, V \X ′) ≥ (bn/2c − (|X ′| − 1))|X ′| ≥ 0.01n|X ′|. Thus, |X| ≥ 0.49n. 2

A well-known fact (see, e.g. [2] p. xvii) is the following:

Fact 1: Every graph S with at least d vertices, and with at least d|S| − d(d+ 1)/2 + 1 edges has a

subgraph with minimum degree at least d+ 1.

Using this fact and Lemma 2.1, we can prove that the graph G of Lemma 2.1 contains two large

disjoint subgraphs with high minimum degree:

Lemma 2.2 If G = (V,E) is as in Lemma 2.1, then there are two disjoint subsets of vertices

X0, Y0 ⊂ V , such that δ(G[X0]) ≥ 0.4n and δ(G[Y0]) ≥ 0.4n.

Proof: According to Lemma 2.1 there exists X ⊂ V with 0.49n ≤ |X| ≤ 0.5n which is not 0.01n−1

edge-expanding. Put Y = V \X. Thus, 0.5n ≤ |Y | ≤ 0.51n. Clearly,
∑
v∈X dG(v) ≥ bn/2c|X|. On

the other hand, e(X,Y ) < (0.01n− 1)|X|. It follows that

e(X) >
bn/2c|X| − (0.01n− 1)|X|

2
≥ 0.245n|X|.

Put d = d0.4ne. We shall prove that there exists a subset X0 ⊂ X such that δ(G[X0]) ≥ d.

According to Fact 1, it suffices to show that e(X) ≥ d|X| − d(d+ 1)/2 + 1. Indeed,

d|X| − d(d+ 1)/2 + 1 ≤ 0.4n|X| − 0.08n2 ≤ 0.4n|X| − 0.16n|X| < 0.245n|X| < e(X). (1)

We now similarly show the existence of Y0. The sum of the degrees in G of the vertices of Y is at

least bn/2c|Y |. Since e(Y,X) < (0.01n− 1)|X| ≤ (0.01n− 1)|Y |, it follows that

e(Y ) >
bn/2c|Y | − (0.01n− 1)|Y |

2
≥ 0.245n|Y |.

Using similar arguments as in the case for X0 (only that now we must use the fact that |Y | ≤ 0.51n

when we replace |X| with |Y | in (1), but the inequality still holds), we obtain that Y contains a

subset Y0 such that δ(G[Y0]) ≥ d0.4ne. 2

Our next goal is to show that the sets X0 and Y0 of the previous lemma can be extended to a

partition of V , with sets A ⊃ X and B ⊃ Y , such that both G[A] and G[B] have good edge-

expansion, and high minimum degree.

Lemma 2.3 If G = (V,E) is as in Lemma 2.1, then there is a partition of V into subsets A and

B with sizes at least 0.4n each, such that both G[A] and G[B] are 0.1n edge-expanding, and both

have minimum degree at least 0.15n.
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Proof: Let X0 and Y0 be the subsets guaranteed by Lemma 2.2. We define a partition of v into

the subsets A and B as follows. For each v ∈ V , if v ∈ X0 we put v in A. If v ∈ Y0 we put v in

B. If v ∈ V \ (A ∪ B) we put v in A if d(v,X0) > d(v, Y0). Otherwise we put v in B. Clearly,

|A| ≥ |X0| > 0.4n and |B| ≥ |Y0| > 0.4n. We still need to show that G[A] and G[B] are at

least 0.1n edge-expanding, and have minimum degree 0.15n. Since the proofs in both cases are

identical, we prove it only for G[A]. Consider A′ ⊂ A with |A′| ≤ |A|/2. We must show that

e(A′, A \A′) ≥ 0.1n|A′|. A′ can be partitioned into two parts, A1 and A2, where A1 = A′ ∩X0 and

A2 = A′ \X0. Since dG[X0](v) ≥ 0.4n for every v ∈ X0, and since A1 ⊂ X0, we have that

d(v,A \A′) ≥ 0.4n− |A1| for every v ∈ A1. (2)

Also note that since

|X0|+ |Y0| ≥ 2(0.4n+ 1) = 0.8n+ 2

we have that for v ∈ A2, d(v,X0 ∪ Y0) ≥ bn/2c − 0.2n+ 2 ≥ 0.3n and since v was chosen to A we

have d(v,X0) ≥ d(v, Y0) so d(v,X0) ≥ 0.15n. This implies that

d(v,A \A′) ≥ 0.15n− |A1| for every v ∈ A2. (3)

We may also use the obvious fact that |A′| ≤ 0.3n since |A′| ≤ |A|/2 = (n−|B|)/2 ≤ (n−0.4n)/2 =

0.3n. Consider first the case 0.3n ≥ |A1| ≥ 0.1n. Using (2) we obtain

e(A′, A \A′) ≥ |A1|(0.4n− |A1|) ≥ 0.03n2 ≥ 0.1n|A′|.

Now consider the case |A1| ≤ 0.1n. Using both (2) and (3) we obtain

e(A′, A \A′) ≥ |A1|(0.4n− |A1|) + (0.15n− |A1|)(|A′| − |A1|).

We therefore wish to show that

|A1|(0.4n− |A1|) + (0.15n− |A1|)(|A′| − |A1|) ≥ 0.1n|A′|.

By rearranging the terms in the last inequality we get the identical inequality |A′|(|A1| − 0.05n) ≤
0.25n|A1|, which trivially holds for all |A1| ≤ 0.1n, since |A′| ≤ 0.3n.

In fact, note that we have shown also that every v ∈ X0 has d(v,A) ≥ d(v,X0) ≥ 0.4n, and every

v ∈ A \X0 has d(v,A) ≥ d(v,X0) ≥ 0.15n. This shows δ(G[A]) ≥ 0.15n. 2

Our next step is to show that if n is sufficiently large, then the edge-set of A from Lemma 2.3 can

be partitioned into two parts Aα and Aβ, such that the spanning subgraph of G[A] consisting of

the edges of Aα has large-enough minimum degree, while the spanning subgraph of G[A] consisting

of the edges of Aβ, still has good edge-expansion. Analogously, we will show the existence of Bα

and Bβ.
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Lemma 2.4 If G = (V,E), is as in Lemma 2.1, with n ≥ 106 vertices, and A and B are as

guaranteed by Lemma 2.3, then the edge sets of G[A] and G[B] can each be partitioned into two

sets Aα, Aβ and Bα, Bβ, which define two spanning subgraphs of G[A] and G[B], respectively (to

simplify notation, we shall also denote these subgraphs by Aα, Aβ, Bα, Bβ) such that δ(Aα) ≥ 0.01n

and δ(Bα) ≥ 0.01n, and Aβ and Bβ are 0.01n edge-expanding.

Proof: Since the proofs for A and B are identical, we prove only for A. We shall prove the

existence of the desired Aα and Aβ using a probabilistic argument. Each edge of G[A] chooses to

be in Aα with probability 1/12, otherwise, it is in Aβ (with probability 1− 1/12 = 11/12). All the

choices are independent. Consider a vertex v ∈ A. The expected degree of v in Aα, is exactly

µv = E[dAα(v)] =
dG[A](v)

12
.

Note that dAα(v) is a random variable with binomial distribution, since it is the sum of dG[A](v)

independent indicator random variables with probability 1/12. It therefore follows from the large

deviation result of Chernoff (cf. e.g. [1]) that:

Prob[|dAα(v)− µv| ≥
µv
5

] ≤ 2e
−2µ2v

25dG[A](v) = 2e
−dG[A](v)

1800 ≤ 2e
−0.15n
1800 < 1/n

where the last inequality holds since n ≥ 106. This shows that with positive probability, for every

v ∈ A,

|dAα(v)− µv| <
µv
5

or equivalently,
dG[A](v)

15
< dAα(v) <

dG[A](v)

10
.

Since, according to Lemma 2.3, dG[A](v) ≥ 0.15n and also since |A| ≤ 0.6n, it follows that

0.01n < dAα(v) < 0.06n

which shows, in particular, that δ(Aα) > 0.01n, and also since dAβ (v) = dG[A](v)−dAα(v) it follows

from the fact that G[A] is 0.1n edge-expanding that for every X ⊂ A with |X| ≤ |A|/2:

eAβ (X,A \X) ≥ eG[A](X,A \X)−
∑
v∈X

dAα(v) ≥ 0.1n|X| − 0.06n|X| > 0.01n|X|

which proves that Aβ is 0.01n edge-expanding. 2

Another useful fact (mentioned, e.g., in [3]) is the following:

Fact 2: Every graph S with δ(S) ≥ h−1 contains a copy of every tree H on h vertices. Furthermore,
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if v is a vertex of S and t is a vertex of H, there is a copy of H in S which maps t to v. In particular,

every graph S with at least (h− 1)|S| edges contains every tree on h vertices as a subgraph.

Fact 2 holds since one can embed any tree with h vertices, vertex by vertex, using the greedy

algorithm, in a graph with minimum degree h − 1. The initial embedding may start with any

vertex t of H, and this vertex can be mapped to any vertex v of S. The “in particular” part of Fact

2 follows from Fact 1, since a graph with |S|(h − 1) edges has a subgraph with minimum degree

h− 1.

3 Proof of Theorem 1.1

The following Theorem which is proved in [11], shows that if G = (V,E) has good edge-expansion,

and h− 1 divides |E|, then G has an H-decomposition.

Lemma 3.1 If G = (V,E) has n vertices, h−1 divides |E|, and G is 10h4
√
n log n edge-expanding,

then G has an H-decomposition. 2

Unfortunately, it is not difficult to construct graphs with δ(G) ≥ n/2 + Ω(
√
n log n) which are not

10h4
√
n log n edge-expanding, so Lemma 3.1, by itself, cannot be used to prove Theorem 1.1.

Using Lemma 2.4, Lemma 3.1 and Fact 2, we are now ready to prove Theorem 1.1. Let G = (V,E)

be a graph with n ≥ (12h)10 vertices, δ(G) ≥ bn/2c, and |E| = m(h − 1) + h0, where m is a

positive integer, and 0 ≤ h0 ≤ h − 2. We need to show that there exists a set L = {T1, . . . , Tm}
of edge-disjoint subgraphs of G, which are isomorphic to H. A rough sketch of the proof is the

following: We distinguish two possibilities. The first, and easy case, occurs when G has good edge-

expansion. In this case we use Lemma 3.1 (with slight modification) to obtain L. Otherwise, G

is not a good expander, in the sense that it satisfies the conditions of Lemma 2.4. In this case we

show how to select a set of edge-disjoint copies of H which absorb all the edges between A and B

(the sets from Lemma 2.4), and (unfortunately) some edges from G[A] and G[B], such that after

deleting these copies, the remains of G[A] and G[B] are still good expanders, in the sense that we

can apply Lemma 3.1 to each of them (this process turns out to be rather complicated). Uniting

the decompositions of the remains of G[A] and G[B] with the initial set of edge disjoint copies

yields L. We now turn to the details of the proof.

The first, and easy case to consider, is when G is 10h4
√
n log n+1 edge-expanding. In this case, we

can pick a set of h0 independent edges of G, and consider the graph G′ obtained from G by omitting

these edges. (The fact that δ(G) ≥ bn/2c guarantees that G has a Hamiltonian path, and since

n > 2h0, there is a set of h0 independent edges.) Note that G′ has m(h − 1) edges, and for every

X ⊂ V with |X| ≤ n/2 there are e(X,V \X) ≥ (10h4
√
n log n+ 1)|X| between X and V \X, in G.

7



Since dG′(v) ≥ dG(v)− 1 for every v ∈ V it follows that there are e(X,V \X) ≥ 10h4
√
n log n|X|

between X and V \X in G′. Thus, G′ is 10h4
√
n log n edge-expanding, and according to Lemma

3.1, G′ has an H-decomposition with m members, as required.

We can now assume that G is not 10h4
√
n log n+1 edge-expanding. Since n ≥ (12h)10 it follows, in

particular, that 10h4
√
n log n+ 1 ≤ 0.01n− 1. Thus, G satisfies the conditions of Lemma 2.4, and

we can find a partition of V into A and B with sizes at least 0.4n each, and create the spanning

graphs Aα, Aβ, Bα and Bβ, as guaranteed by Lemma 2.4. Now let C be the (bipartite) subgraph

of G consisting only of the edges which connect a vertex of A with a vertex of B. Thus, C has

e(A,B) edges, and

e(A,B) + e(Aα) + e(Aβ) + e(Bα) + e(Bβ) = m(h− 1) + h0.

Our initial claim is that e(A,B) is not to small:

Claim 1: e(A,B) ≥ min{|A|, |B|} ≥ 0.4n > 2h > h0 + h− 1.

Proof: Since |A|+ |B| = n, we can assume, e.g., that |B| ≤ bn/2c. Since δ(G) ≥ bn/2c, it follows

that every vertex of v ∈ B has a neighbor in A. This proves the claim.

Let us designate a set C ′ of h− 1 edges of C, and a set C ′′ of h0 edges of C, where C ′ and C ′′ are

disjoint. This can be done, by Claim 1. The edges of C ′′ will be the edges which will not participate

in any member of the packing L, while the edges of C ′ will be used later on to overcome a defect

in the decomposition that we create, due to divisibility problems. Put C∗ = C \ (C ′ ∪ C ′′).
Let L1 = {T1, . . . , Tt} be a maximal set of edge-disjoint subgraphs of C∗, which are isomorphic to

H. Let D be the subgraph of C∗ consisting of the edges of C∗ which are not in any Ti. Since D

has no copy of H, we have, according to Fact 2:

(h−1)n > e(D) = e(C∗)− t(h−1) = e(A,B)−(h−1+h0)− t(h−1) = e(A,B)−(t+1)(h−1)−h0.

We now perform the following process in D, which decomposes the edge-set of D into connected

edge-disjoint subgraphs that are isomorphic to connected subgraphs of H. In order to describe our

process we need some notations. Let q be a vertex of H having degree one (a leaf), and let eq

denote the unique edge of H incident with q. If P is any subtree of H which contains eq, we say

that a vertex of P is terminal if its degree in P is less than its degree in H. The other vertices of

P are called non-terminal. Note that q is a non-terminal vertex of P .

We find in D a maximal subtree S1 which is isomorphic to a subtree of H which contains eq. The

term maximal here means that there is no way to add an edge of D to S1 and still obtain a subtree

of H which contains eq. Deleting the edges of S1 from D, we now similarly find a maximal subtree

S2 in the remaining subgraph of D, and so forth. We repeat this process as long as there remain
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edges in D which do not belong to any Si. Since a single edge is isomorphic to the single-edge

subtree of H obtained from eq by itself, the process can be completed. Let S = {S1, . . . , Sp} be the

set of subtrees obtained by this process. Clearly,

p ≤ e(D) < (h− 1)n. (4)

We claim the following:

Claim 2: Every v ∈ V appears in at most h− 2 members of S as a terminal vertex.

Proof: Let v be a terminal vertex of Si, where i is minimal. Si is isomorphic to some subtree P

of H, where eq ∈ P . The vertex v is mapped, under the isomorphism, to a vertex q′ of P , which

is terminal, i.e dH(q′) > dP (q′) = dSi(v). The number of edges incident with v in D which do

not appear in any of the subtrees S1, . . . , Si is therefore at most |Si| − (1 + dP (q′)) ≤ h − 3, since

otherwise, there would have been an edge (v, u), with u /∈ Si, such that (v, u) could be added to

Si, and form a subtree isomorphic to a subtree of H, which is obtained from P by adding an edge

(q′, q′′), where q′′ /∈ P , thereby contradicting the maximality of Si. This shows that there are at

most h− 3 members of S, which appear after Si, and which contain v. In particular, there are at

most h− 2 members of S in which v is terminal. This completes the proof of the claim.

Our next step is to extend each Si to a tree Ri, which is isomorphic to H, and such that almost all

the trees R1, . . . , Rp are edge-disjoint. The edges of Ri \ Si will be taken from Aα ∪ Bα. We now

describe the process of creating Ri. The process uses probabilistic arguments, and we will not care

whether the Ri’s are edge-disjoint. However, we will show that with high probability, there is a set

of at most O(h8) Ri’s, such that all the other Ri’s are edge-disjoint. Before we begin, it will be

convenient to consider orientations of Aα and Bα, denoted by ~Aα and ~Bα, such that the indegree

and outdegree of every vertex differ by at most 1. That is, if v ∈ A, and d+(v) and d−(v) denote,

respectively, the indegree and outdegree of v in ~Aα, then |d+(v)− d−(v)| ≤ 1 (and the same holds

for v ∈ B). Since d+(v) + d−(v) = dAα(v) ≥ 0.01n, (and, similarly, for v ∈ B) it follows that

d+(v) ≥ n/200− 1/2 ≥ n/201.

The fact that every non-directed graph can be oriented such that the indegree and outdegree differ

by at most 1 is a well-known consequence of Eüler’s Theorem (cf. e.g. [2]).

Consider Si, and let v1, . . . vk be the set of terminal vertices of Si. Let P be the subtree of H which

is isomorphic to Si, and let q1, . . . , qk be the corresponding terminal vertices of P . Let Qj be the

subtree of H which consists of all the vertices of H which are reachable from qj with paths that

contain only edges which do not appear in P . Clearly, P,Q1, . . . , Qk are all edge disjoint subtrees

of H, and their union is H. We can view Qj as a rooted (directed) subtree, whose root is qj . For
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each vj ∈ A, we will find a rooted subtree W j
i of ~Aα, whose root is vj , which is isomorphic (as a

directed graph) to Qj , and with vj being isomorphic to qj . Similarly, if vj ∈ B, we will find the

rooted subtree W j
i in ~Bα. Furthermore, W 1

i , . . . ,W
k
i will be vertex disjoint, and each W j

i will share

with Si only the vertex vj . Thus, the union of Si,W
1
i , . . . ,W

k
i is a tree isomorphic to H, and will

be denoted by Ri. In the next paragraph we describe how to create W j
i . We shall assume that

vj ∈ A, since the process in case vj ∈ B is similar.

Let {qj = x1, x2, . . . , xr} be an ordering of the vertices of Qj in which the children of a vertex

appear after it in the ordering (breadth first search and depth first search are examples of such

orderings). Let yz be the number of children of xz for z = 1, . . . , r. We create W j
i in r stages,

where in stage z we select the yz children of the vertex corresponding to xz (if xz is a leaf then

yz = 0 and we do nothing). In the first stage we must select y1 edges which emanate from vj

in ~Aα, and such that every chosen edge is directed toward a vertex which does not appear in Si,

nor in W 1
i ∪ . . . ∪ W

j−1
i . There are d+(vj) edges emanating from vj in ~Aα. However, some of

these edges may lead to vertices which already appear in Si ∪W 1
i ∪ . . .∪W

j−1
i . Denote by f(vj , i)

the number of edges emanating from vj which lead to vertices in S1 ∪W 1
i ∪ . . . ∪W

j−1
i . Clearly,

f(vj , i) ≤ h − 2, since Si ∪W 1
i ∪ . . . ∪W

j−1
i is isomorphic to a proper subtree of H, consisting

of the parts P,Q1, . . . , Qj−1, and thus containing at most h − 2 edges. Thus, there are at least

d+(vj)− f(vj , i) edges emanating from vj which are plausible candidates for the y1 edges we wish

to select. We will choose this set of y1 edges randomly. That is, each of the
(d+(vj)−f(vj ,i)

y1

)
sets of

y1 edges is equally likely to be chosen, and the choice is made uniformly. Suppose now we have

already made z − 1 stages, and we now wish to perform stage z. Let v ∈ ~Aα be the vertex which

corresponds to xz. We need to select yz edges which emanate from v. These edges can be selected

from a set of d+(v)− f(v, i) edges, where f(v, i) is the number of edges of v which lead to vertices

in S1 ∪W 1
i ,∪ . . . ∪W

j−1
i ∪X where X denotes the z − 1 vertices of W j

i which have already been

selected in previous stages. (In stage 1, X was empty, so we did not consider it). As in the first

stage, f(v, i) ≤ h − 2, and the selection of the yz edges is made at random. This completes the

description of the randomized process which creates W j
i . Note that the process shows that, indeed,

W 1
i , . . . ,W

k
i are all vertex-disjoint, and W j

i shares with Si only the vertex vj . Thus, the union of

Si,W
1
i , . . . ,W

k
i , which we denote by Ri, is, indeed, a tree isomorphic to H.

The random process which creates Ri, is completely independent of the process which created Rj ,

for i 6= j. It may therefore happen that Ri and Rj are not edge disjoint, a situation we wish to

avoid. We will show that, with positive probability, we can delete a set of at most O(h8) trees from

R = {R1, . . . , Rp}, such that the remaining trees are edge-disjoint. The following claim essentially

proves this fact:
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Claim 3: For each directed edge (a, b) of ~Aα ∪ ~Bα, the probability that (a, b) appears in more

than one member of R is at most 356h8/n2.

Proof: Fix (a, b), and assume, w.l.o.g., that (a, b) ∈ ~Aα. We first compute the probability that

(a, b) is an edge of Ri, namely, Prob[(a, b) ∈ Ri]. There are three cases:

1. b appears in Si. In this case, (a, b) cannot be in Ri at all, since whenever we create the edges

of the components W j
i we always take care not to select an edge which leads to a vertex of

Si. Thus, in this case Prob[(a, b) ∈ Ri] = 0.

2. b does not appear in Si and a is a terminal vertex of Si. In this case, we select y1 edges

(recall that y1, in this case, is the number of children of qj in Qj , where qj is the vertex of

P isomorphic to a, using the notations above) emanating from a, randomly, from a set of

d+(a)− f(a, i) edges. Thus, every edge emanating from a in ~Aα is selected with probability

at most y1/(d
+(a)− f(a, i)). Hence,

Prob[(a, b) ∈ Ri] ≤
y1

d+(a)− f(a, i)
≤ h− 2

n/201− (h− 2)
≤ 202h

n
.

3. b does not appear in Si and a is a not a terminal vertex of Si. If a appears in Si as a non-

terminal vertex then, similar to case 1, Prob[(a, b) ∈ Ri] = 0. Otherwise, both a and b do not

appear in Si. The only way that (a, b) can be a vertex of Ri is that there is some other edge

(c, a) of ~Aα which also appears in Ri (c may or may not be a terminal vertex of Si). Suppose

we are given in advance, the set W = {c1, . . . , cw} of vertices of ~Aα, which appear in Ri and

such that (c1, a), . . . , (cw, a) are all edges of ~Aα. Clearly, w < h, b /∈ W (since (a, b) ∈ ~Aα we

cannot have (b, a) ∈ ~Aα), and at most one member c ∈W has (c, a) ∈ Ri (this is because Ri

is a directed tree). We shall compute the probability that (a, b) ∈ Ri given that we know W .

Clearly,

Prob[(a, b) ∈ Ri |W ] ≤
w∑

w′=1

Prob[(cw′ , a) ∈ Ri
∧

(a, b) ∈ Ri |W ] =

w∑
w′=1

Prob[(cw′ , a) ∈ Ri | cw′ ∈ Ri] · Prob[(a, b) ∈ Ri | a ∈ Ri].

As in Case 2,

Prob[(cw′ , a) ∈ Ri | cw′ ∈ Ri] ≤
202h

n
.

Similarly,

Prob[(a, b) ∈ Ri | a ∈ Ri] ≤
202h

n
.

Thus,

Prob[(a, b) ∈ Ri |W ] ≤ w (202h)2

n2
<

(35h)3

n2
.
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The last inequality is independent of W , and hence

Prob[(a, b) ∈ Ri] ≤
(35h)3

n2
.

We now show that the probability that (a, b) appears in more than one member of R is at most

356h8/n2. Let 1 ≤ i < j ≤ p be fixed. The event that (a, b) is in Ri is independent of the event

that a is in Rj , since each member of R is created independently. If a is a terminal vertex of both

Si and Sj then according to case 2,

Prob[(a, b) ∈ Ri
∧

(a, b) ∈ Rj ] ≤
202h

n

202h

n
.

If a is a terminal vertex of exactly one of Si or Sj then according to cases 1,2,3:

Prob[(a, b) ∈ Ri
∧

(a, b) ∈ Rj ] ≤
202h

n

(35h)3

n2

If a is a not a terminal vertex of both Si and Sj then according to cases 1 and 3:

Prob[(a, b) ∈ Ri
∧

(a, b) ∈ Rj ] ≤
(35h)3

n2
(35h)3

n2
.

According to Claim 2, there are at most
(h−2

2

)
pairs i, j in which a is a terminal vertex of both

Si and Sj . Since, by (4), p < (h − 1)n, there are less than (h − 2)(h − 1)n pairs in which a is a

terminal vertex of exactly one of Si or Sj , and there are less than
((h−1)n

2

)
pairs where a is not a

terminal vertex of both Si and Sj . Thus,

Prob[∃ i < j (a, b) ∈ Ri
∧

(a, b) ∈ Rj ] ≤
(

(h− 2)

2

)
2022h2

n2
+ (h− 2)(h− 1)n

202h

n

(35h)3

n2
+

(
(h− 1)n

2

)
356h6

n4
≤ 356h8

n2
.

This completes the proof of Claim 3. 2

An immediate consequence of Claim 3 is that there exists a set R where at most e(Aα)356h8/n2

edges of Aα appear in more than one member of R. Since |A| ≤ 0.6n, we have that e(Aα) ≤ 0.18n2.

This means that there exists a setR in which at most (12h)8 edges appear in more than one member

of R. Deleting from such R the members which contain at least one edge which appears in more

than one member we obtain a set L2 = {R1, . . . , Rp′} of edge-disjoint trees which are isomorphic

to H, and p′ ≥ p− (12h)8.

Up to this stage, we have designated p′ + t edge-disjoint copies of H in G, namely the sets L1 and

L2. We need to extend this with an additional set of m − p′ − t edge-disjoint copies. Let us call
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the edges of G which are not in any member of L1 ∪ L2, nor in C ′′, the non-covered edges. The

number of non-covered edges is exactly (m− p′ − t)(h− 1) and they are formed by all the edges of

Aβ and Bβ, some of the edges of Aα and Bα (namely those that do not appear in any member of

L2), the h− 1 edges of C ′, and those edges of D ⊂ C∗ which are in some Si whose corresponding

Ri is not a member of L2. Let F denote the set of non-covered edges of D. Consider the edge-set

F ∪ C ′. Clearly,

|F |+ |C ′| ≤ (h− 2) · (12h)8 + h− 1 ≤ 128h9.

(We used here the fact that every member of S contains at most h−2 edges.) Let a be the number of

non-covered edges with both endpoints in A. Clearly, e(Aβ) ≤ a ≤ e(Aβ)+e(Aα). Similarly, define b

as the number of non-covered edges with both endpoints in B. Clearly, e(Bβ) ≤ b ≤ e(Bβ)+e(Bα).

Note that a+b+(h−1)+|F | = (m−p′−t)(h−1). Partition F∪C ′ arbitrarily into two subsets F1, F2

such that |F1|+ a ≡ 0 mod (h− 1). This forces |F2|+ b ≡ 0 mod (h− 1). Note that the partition

can be done since |F ∪C ′| ≥ h−1 (this explains why we designated C ′ in the beginning). Note that

(a+ |F1|) + (b+ |F2|) = (m− p′− t)(h− 1). Let G1 be the subgraph of G composed of the edge-set

F1 and the a non-covered edges of A. Similarly define G2 as the subgraph of G composed of F2 and

the b non-covered edges of B. It remains to show that both G1 and G2 have an H-decomposition,

which together with L1 and L2 gives m edge-disjoint copies of H in G. We now show that G1 has

an H decomposition. This suffices, since the proof for G2 is identical. Let G1[A] be the subgraph

of G1 induced by A. G1[A] has a edges, but, since it contains Aβ, we know by Lemma 2.4 that

δ(G1[A]) ≥ δ(Aβ) ≥ 0.01n, since an r edge-expanding graph must have, in particular, a minimum

degree of r. Our first goal is to find a set of |F1| edge-disjoint copies of H in G1, such that each

copy contains exactly one edge of F1 and the other h− 2 edges have both endpoints in A. Define

a tree H ′ on h − 1 vertices obtained from H by deleting a leaf y′ and its incident edge (x′, y′).

Consider we have already found a set of f < |F1| edge-disjoint copies of H covering f edges of F1.

Let (x, y) be an edge of F1 which is not yet covered by any of the f copies. We show how to find

in G1 another edge-disjoint copy, containing (x, y). Since (x, y) ∈ F1 ⊂ F ∪ C ′ ⊂ C, we know that

(x, y) connects a vertex of A and a vertex of B. We may therefore assume that x ∈ A. There are

f(h−2) edges of G1[A] which are used by the previous f copies. Thus, the non-used edges of G1[A]

form a subgraph G′ with a − f(h − 2) edges whose minimum degree is at least 0.01n − f(h − 2).

Note that

δ(G′) ≥ 0.01n− f(h− 2) ≥ 0.01n− (|F1| − 1)(h− 2) ≥

0.01n− (|F ∪ C ′| − 1)(h− 2) > 0.01n− 128h9(h− 2) > h− 2.

In the last inequality we used the fact that n ≥ (12h)10. According to fact 2, G′ contains a copy of

the tree H ′ where x is mapped to the vertex x′ of H ′. We can extend this copy to a copy of H by
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adding the edge (x, y) where y is mapped to y′.

Let G′ be the subgraph of G1[A] which contains the a − |F1|(h − 2) edges which are not covered

by the above mentioned |F1| edge-disjoint copies. Note that a− |F1|(h− 2) ≡ 0 mod (h− 1) since

a+ |F1| ≡ 0 mod (h− 1). It remains to show that G′ has an H-decomposition. We will show this

by using Lemma 3.1. The graph Aβ is 0.01n edge-expanding, by Lemma 2.4. Thus, trivially, the

graph G1[A] which contains Aβ is also 0.01n edge-expanding. Since G′ is obtained from G1[A] by

omitting only |F1|(h − 2) edges, it follows trivially that G′ is 0.01n − |F1|(h − 2) edge-expanding.

However,

0.01n− |F1|(h− 2) ≥ 0.01n− 128h9(h− 2) ≥ 0.002n ≥ 10h4
√
n log n ≥ 10h4

√
|A| log |A|.

(We have used here the fact that n ≥ (12h)10). Thus, according to Lemma 3.1, G′ has an H-

decomposition. 2

4 Proof of Theorem 1.2 and some concluding remarks

We begin this section with a proof of Theorem 1.2. Let H be a fixed tree on h > 2 vertices, and

let n ≥ (12h)10. We first note that Theorem 1.1 shows that fH(n) ≤ bn/2c. As mentioned in the

introduction, the fact that fH(n) ≥ bn/2c − 1 is shown in [11]. However, Theorem 1.2 is stronger

since it establishes many cases in which fH(n) = bn/2c. For two integers s and t ≤ s/2, let K(s, t)

denote the complete graph on s vertices from which t independent edges were removed. Note that

δ(K(s, t)) = s− 2. We consider the following cases:

1. n is odd, and h− 1 does not divide (n− 1)(n− 3)/8. We shall create a graph G on n vertices

as follows. G has two connected components. The first component is K(n−1)/2, and the

second component is the graph K((n + 1)/2, t) where 0 ≤ t ≤ h − 2 satisfies (n − 1)2/4 ≡
t mod (h − 1). Clearly, δ(G) = (n + 1)/2 − 2 = bn/2c − 1. The number of edges of G

is exactly (n − 1)(n − 3)/8 + (n + 1)(n − 1)/8 − t ≡ 0 mod (h − 1). However, G does

not have an H-decomposition since the first component, K(n−1)/2, does not have an H-

decomposition, because it has (n− 1)(n− 3)/8 edges, and this is not divisible by h− 1. This

shows fH(n) > bn/2c − 1, and hence, fH(n) = bn/2c.

2. n is odd, and h−1 divides (n−1)(n−3)/8. We create a graph G with two components, where

the first is K((n − 1)/2, 1) and the second is K((n + 1)/2, t), where 0 ≤ t ≤ h − 2 satisfies

(n − 1)(n − 3)/8 − 1 + (n − 1)(n + 1)/8 − t ≡ 0 mod (h − 1). Clearly, δ(G) = bn/2c − 2, its

number of edges is divisible by h−1, but is has no H-decomposition, since the first component,
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K((n− 1)/2, 1), has (n− 1)(n− 3)/8− 1 edges, which is not divisible by h− 1. This shows

that fH(n) > bn/2c − 2, and therefore fH(n) ≥ bn/2c − 1.

3. n is even, and h− 1 divides n(n− 2)/4 but does not divide n(n− 2)/8. Consider the graph G

obtained from two vertex-disjoint copies of Kn/2. Clearly, δ(G) = n/2− 1, G has n(n− 2)/4

edges, and thusG satisfies theH-decomposition divisibility conditions, butG does not have an

H-decomposition since Kn/2 does not have an H-decomposition. This shows fH(n) > n/2−1

and hence fH(n) = n/2.

4. n is even, and the divisibility conditions in the previous case do not hold. We create G

from two vertex-disjoint components K(n/2, a) and K(n/2, b) where n(n − 2)/4 − a − b ≡
0 mod (h−1), and n(n−2)/8−a is not divisible by h−1, and a ∈ {0, 1} and 0 ≤ b ≤ h−1 (note

that this can always be done). Note that δ(G) = n/2 − 2, G satisfies the H-decomposition

divisibility conditions, but G does not have an H-decomposition since K(n/2, a) does not

have an H-decomposition. This shows fH(n) > n/2− 2 and thus fH(n) ≥ n/2− 1. 2

We end this section with a few concluding remarks:

1. Although Theorem 1.2 shows that fH(n) is, either bn/2c or bn/2c − 1, (and, in many cases,

the exact value is known), it is still interesting to determine the exact value of fH(n) for all

n. This would not be so easy, since it is not only a function of |H| = h and n but also a

function of the structure of H. To see this, consider, e.g. two trees on h = 8 vertices. The

first is S8, the star with 8 vertices, and the second is P8, the path with 8 vertices. Now, if n

is an even integer satisfying n(n − 2)/4 + 1 ≡ 7 mod 14 (e.g. n ≡ 10 mod 14 satisfies this),

then we can create the connected graph G composed from two vertex-disjoint copies of Kn/2

which are joined by a single edge, denoted by (a, b). This graph has n(n−2)/4+1 edges, and

thus satisfies the S8-decomposition divisibility conditions. It is clear, however, that G has no

S8-decomposition, since if (a, b) is covered by a copy of S8 then we can assume that a is the

root. Hence 6 more edges of this copy are all in the Kn/2 which contains a. The remaining

n(n− 2)/8− 6 edges in this Kn/2 cannot be decomposed to edge-disjoint copies of a tree on 7

edges since n(n−2)/8−6 is not divisible by 7. However, it is not too difficult to show that G

has a decomposition into P8, since one can take a copy of P8 whose middle edge covers (a, b),

and the remaining edges form a graph with two identical components, each is Kn/2 with a P4

missing, and the number of edges in this component is n(n− 2)/8− 3 which is a multiple of

7, and according to Theorem 1.1, if n is large enough, there is a P8 decomposition for each

of the components. Thus, for these values of n, fS8(n) = n/2, while it is not difficult to show

that fP8(n) = n/2− 1.
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2. It is a challenging open problem to find other families of graphs, which are not trees, for

which fH(n) can be computed exactly (or even asymptotically) for every member H of the

family.

3. Although we did not try to optimize the constant (12h)10 appearing in the statement of

Theorems 1.1 and 1.2, it is worth noting that this constant is only polynomial in h, while the

constants in Wilson’s and Gustavsson’s Theorems are exponential in h = |H| [6].

4. By slightly modifying the proof of Theorem 1.1 one can obtain that the H-covering number

of G satisfying the conditions of Theorem 1.1 is C(H,G) = de(G)/(h− 1)e. This is done by

first selecting one copy T0 of H in G, and the deleting from this copy some 0 < h0 < h − 1

edges such that the remaining graph G′ has a m(h−1) edges, and now applying Theorem 1.1

for G′, to obtain a decomposition. Adding T0 to this decomposition we get an H-covering of

G with exactly h−1−h0 edges which are covered twice. A slight modification to the lemmas

of Section 2 is needed since it is no longer true that δ(G′) ≥ bn/2c, although this is not an

obstacle since there are at most h0 vertices with degree less than bn/2c, and their degree is

not less than bn/2c − h0.
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