A Note on Packing Trees into Complete Bipartite Graphs

Raphael Yuster
Department of Mathematics
Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv, Israel

Abstract

Let $\left\{T_{2}, \ldots, T_{t}\right\}$ be a sequence of trees, where T_{i} has i vertices. We show that if $t<0.79 n$, then the sequence can be packed into the complete bipartite graph $K_{n-1, n / 2}\left(K_{n,(n-1) / 2}\right)$, where n is even (odd). This significantly improves the result which appears in [2].

Let $\left\{T_{2}, \ldots, T_{t}\right\}$ be a sequence of trees, where T_{i} has i vertices. We call such a sequence a t-sequence. We say that the sequence can be packed into the graph G, if G contains edge disjoint subgraphs H_{2}, \ldots, H_{t} such that H_{i} is isomorphic to $T_{i}, i=2, \ldots, t$. Clearly G must contain at least $\binom{t}{2}$ edges. Gyárfás and Lehel [3] conjectured that any n-sequence can be packed into K_{n}. Hobbs, Bourgeois and Kasiraj [4] conjectured that any n-sequence can be packed into the complete bipartite graph $K_{n-1, n / 2}$ when n is even, and in $K_{n,(n-1) / 2}$ when n is odd. Both conjectures, if true, are best possible, and both are still open. Bollobás observed in [1] that any $\lfloor n / \sqrt{2}\rfloor$-sequence can be packed into K_{n}. Using a similar observation, Caro and Roditty showed in [2] that any $\lfloor 0.3 n\rfloor$-sequence can be packed into $K_{n-1, n / 2}$. In this note we significantly improve their result and show that any $\lfloor\sqrt{5 / 8} n\rfloor$-sequence can be packed into $K_{n-1, n / 2}$. Note that $\sqrt{5 / 8}>0.79$.

Bollobás [1] gave a simple procedure for embedding a tree T in a graph H with sufficiently many edges. The following lemma shows that if H is bipartite, significantly less edges are needed in order to guarantee the existence of T in H.

Lemma 1.1 Let H be a bipartite graph with vertex classes H_{1} and H_{2} of sizes h_{1} and h_{2} respectively, $h_{1} \leq h_{2}$. Let T be a tree whose bipartite vertex classes are of sizes k_{1} and k_{2}. If $k_{1} \leq h_{1}$ and $k_{2} \leq h_{2}$ and $e(H) \geq k_{2} h_{1}+k_{1} h_{2}+k_{1}+k_{2}-h_{1}-h_{2}-k_{1} k_{2}$ then H contains a subgraph isomorphic to T.

Proof We perform the following procedure on the vertices of H. If there exists a vertex in H_{1} whose degree is less than k_{2}, we delete it from the graph. Otherwise, if there exists a vertex in H_{2} whose degree is less than k_{1} we delete it from the graph. Otherwise, we halt. We claim that when we halt, H_{i} contains at least k_{i} vertices, $i=1,2$. Note that otherwise, at some stage in the procedure, H_{i} contains exactly $k_{i}-1$ vertices, for some $i=1,2$. Suppose this happens first for $i=1$. Every remaining vertex of H_{2} has, therefore, a degree less than k_{1} and we can therefore delete them all in the next stages of the procedure until H becomes empty. We have thus deleted at most $\left(k_{2}-1\right)\left(h_{1}-\left(k_{1}-1\right)\right)+\left(k_{1}-1\right) h_{2}$ edges during the process, and remained with an empty graph. Hence, $e(H) \leq k_{2} h_{1}+k_{1} h_{2}+k_{1}+k_{2}-h_{1}-h_{2}-k_{1} k_{2}-1$, which is a contradiction. A similar argument holds for $i=2$. Having shown this, note that when the procedure ends, every remaining vertex of H_{1} has degree at least k_{2}, and every remaining vertex of H_{2} has degree at least k_{1}. Hence, one can construct a copy of T in the subgraph of H induced on the remaining vertices.

Corollary 1.2 Let H be a subgraph of $K_{n-1, n / 2}$ and suppose that $n \geq 2 k$. If $e(H)>(k-1)(3 n / 2-$ k) then H contains every tree on $2 k$ vertices.

Proof Let T be a tree on $2 k$ vertices, whose vertex classes are of sizes k_{1} and k_{2}, where $k_{1} \leq k_{2}$. We apply Lemma 1.1 to T and H with $h_{1}=n / 2, h_{2}=n-1$. Note that $k_{1}+k_{2} \leq n$ and therefore $k_{2} \leq h_{2}$ and $k_{1} \leq h_{1}$. If H does not contain T then, according to the Lemma, $e(H) \leq$ $k_{2} n / 2+k_{1}(n-1)+k_{1}+k_{2}-k_{1} k_{2}-3 n / 2$. Replacing k_{2} with $2 k-k_{1}$ we obtain that

$$
\begin{gathered}
e(H) \leq\left(2 k-k_{1}\right) n / 2+k_{1} n+2 k-k_{1}-k_{1}\left(2 k-k_{1}\right)-3 n / 2= \\
n k+k_{1} n / 2+2 k-2 k \cdot k_{1}+k_{1}^{2}-k_{1}-3 n / 2
\end{gathered}
$$

Since $1 \leq k_{1} \leq k$, the maximum of the last inequality is obtained when $k_{1}=k$, which implies that $e(H) \leq(k-1)(3 n / 2-k)$, a contradiction.

Theorem 1.3 Any $\lfloor\sqrt{5 / 8} n\rfloor$-sequence can be packed into $K_{n-1, n / 2}$ (n even).

Proof Put $t=\lfloor\sqrt{5 / 8} n\rfloor$ and let $\left\{T_{2}, \ldots, T_{t}\right\}$ be a t-sequence. Clearly, $K_{n-1, n / 2}$ contains a copy of T_{t} (in fact, it contains any tree on n vertices). Suppose that we have already packed T_{t}, \ldots, T_{k+1} into $K_{n-1, n / 2}$ for some $t>k>1$. Let H be the spanning subgraph of $K_{n-1, n / 2}$ which contains all the edges that do not appear in this packing. Clearly,

$$
e(H)=\binom{n}{2}-\binom{t}{2}+\binom{k}{2}
$$

Suppose first that k is even. If we can show that $e(H)>(k / 2-1)(3 n / 2-k / 2)$, then according to Corollary 1.2 , we may find a copy of T_{k} in H, and add T_{k} to the packing. Hence we need to show that

$$
\frac{n^{2}}{2}+n-\frac{t^{2}}{2}+\frac{t}{2}+\frac{3 k^{2}}{4}-k-\frac{3 n k}{4}>0
$$

The minimum of the l.h.s. is attained when $k=n / 2+2 / 3$. Replacing k with $n / 2+2 / 3$ we have

$$
\frac{5 n^{2}}{16}+\frac{n}{2}-\frac{1}{3}-\frac{t^{2}}{2}+\frac{t}{2}>0
$$

which holds for our chosen value of t. A similar computation yields the result when k is odd (in which case we need to show that $e(H)>(k / 2-1 / 2)(3 n / 2-k / 2-1 / 2)$.

A smilar proof shows that any $\lfloor\sqrt{5 / 8} n\rfloor$-sequence can be packed into $K_{n,(n-1) / 2}$ (n odd).

Acknowledgment

The author thanks Y. Roditty for useful discussions.

References

[1] B. Bollobás, Some remarks on packing trees, Discrete Math. 46 (1983), 203-204.
[2] Y. Caro and Y. Roditty, A note on packing trees into complete bipartite graphs and on Fishburn's conjecture, Discrete Math. 82 (1990), 323-326.
[3] A. Gyárfás and J. Lehel, Packing trees of different order into K_{n}, Coll. Math. Soc. J. Bolyai 18 Combinatorics (1978), 463-469.
[4] A.M. Hobbs, B.A. Bourgeois and J. Kasiraj, Packing trees in complete graphs, Discrete Math. 67 (1987), 27-42.

