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Abstract

Let {T1, . . . , Tk} be a set of trees which is Kh-packable. It is shown that every n-vertex graph

G = (V,E) with δ(G) ≥ n/2 + 3h
√
n log n has k subgraphs S1, . . . Sk with the following proper-

ties:

1. Si is a set of bn/hc vertex-disjoint copies of Ti.

2. The subgraphs S1, . . . , Sk are edge-disjoint.

3. S1 ∪ . . . ∪ Sk has maximum degree at most h− 1.

There are many interesting special cases of this result. To name just two:

• If H is a tree with h vertices and G = (V,E) is a graph with n vertices, h divides n, and

δ(G) ≥ n/2 + 3h
√
n log n, then G has an H-factor.

• If h divides n, and δ(G) ≥ n/2+3h
√
n log n, then G has a set S of n star subgraphs, where

for each i = 1, . . . , h, there are exactly n/h stars in S having i vertices, any two members

of S having the same size are vertex-disjoint, and the union of all the members of S is an

h− 1 regular spanning subgraph of G.

1 Introduction

All graphs considered here are finite, undirected, and have no loops or multiple edges. For the

standard graph-theoretic notations the reader is referred to [4]. An h-packing of a set of graphs

F = {H1, . . . ,Hk} is a coloring of the edges of Kh with k colors, such that the subgraph induced

by color i contains Hi as a subgraph. It should be noted that F is allowed to contain isomorphic

members. Clearly, if there exists an h-packing of F , then h must be at least as large as the largest

(w.r.t. vertices) member of F . There are many results concerning h-packings, among the famous
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ones are [7] and [5]. An h-packing is called an h-decomposition if there are
(h
2

)
edges in all the

members of F together, or in other words, each subgraph induced by color i is isomorphic to Hi.

There are many results concerning h-decompositions, mainly in the area of designs (cf. [3] for a good

source on Design Theory). A simple example of a family of graphs having an h-decomposition is the

family {S2, . . . , Sh} where Si is a star with i vertices. Another example is the family of paths having

i vertices, for i = 2, . . . , h. It was conjectured by Gyárfás and Lehel [6] that every family of trees

{T2, . . . , Th}, where Ti is an arbitrary tree with i vertices, has an h-decomposition. This conjecture

is still open. A special case of an h-packing or h-decomposition occurs when all the members of F
have h vertices. For example, two identical paths on four vertices have a 4-decomposition, since we

can color the edges of K4 with two colors such that each color induces a path with three edges and

four vertices.

Let H be a connected graph with h vertices. An H-factor of a graph G is a spanning subgraph

of G where each connected component is isomorphic to H. Note that the number of vertices of

G, denoted by n, is assumed to be a multiple of h. Assume now that F = {H1, . . . Hk} is a set

of k graphs, each having h vertices, which has an h-decomposition. We can ask whether G has an

Hi-factor for each i = 1, . . . , k. Can we also insist that all the k factors be edge-disjoint? If so,

consider the union of the factors. It contains n(h− 1)/2 edges. Thus, the average degree is h− 1.

Can we insist that this also be the maximum degree? If all this occurs we say that G has an optimal

factorization of F . The purpose of this paper is to give sufficient conditions which guarantee that

a graph has an optimal factorization of F in case all the members of F are trees. In fact, we prove

a much more general result which is the following:

Theorem 1.1 Let F = {T1, . . . , Tk} be a set of trees which has an h-packing. If G = (V,E) is a

graph with n vertices and δ(G) ≥ n/2 + 3h
√
n log n, then G has k subgraphs S1, . . . , Sk with the

following properties:

1. Si is a set of bn/hc vertex-disjoint copies of Ti.

2. The subgraphs S1, . . . , Sk are edge-disjoint.

3. S1 ∪ . . . ∪ Sk has maximum degree at most h− 1.

There are many interesting special cases which can be solved by applying Theorem 1.1. We

mention just a few:

1. Suppose all the members of F have exactly h vertices, and suppose F has an h-decomposition.

If G = (V,E) satisfies the conditions of Theorem 1.1 and h divides n, then Si is, in fact, a Ti-

factor. It now follows from Theorem 1.1 that F has an optimal factorization. To summarize:
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Theorem 1.2 Let F = {T1, . . . , Th/2} be a set of h/2 trees on h vertices each, having an

h-decomposition. Then, if G = (V,E) has δ(G) ≥ |V |
2 + 3h

√
|V | log |V | and h divides |V | then

G has an optimal factorization of F .

2. Another special case occurs when F is a set consisting of only one tree, H. Trivially, if H

has h vertices, then it has an h-packing. If G = (V,E) satisfies the conditions of Theorem 1.1

and h divides n, then the Theorem states that G has an H-factor. In other words, we have

the following:

Theorem 1.3 Let H be a tree with h vertices. If G = (V,E) has δ(G) ≥ |V |
2 +3h

√
|V | log |V |

and h divides |V | then G has an H-factor.

Unlike Theorem 1.2, Theorem 1.3 is not new. Minimum degree requirements guaranteeing

the existence of H-factors when H is an arbitrary fixed graph have been studied by several

researchers. We mention just the result in [2], which shows, among other things, that if H is

any bipartite graph, then a minimum degree of δ(G) ≥ n/2 + ε(H)n suffices.

3. Another special case which follows from Theorem 1.1 is the following:

Theorem 1.4 Let F = {T1, . . . , Tk} be a set of trees which has an h-decomposition. If

G = (V,E) is a graph with n vertices and δ(G) ≥ n/2 + 3h
√
n log n, and h divides n, then G

has k subgraphs S1, . . . , Sk with the following properties:

(a) Si is a set of n/h vertex-disjoint copies of Ti.

(b) The subgraphs S1, . . . , Sk are edge-disjoint.

(c) S1 ∪ . . . ∪ Sk is an h− 1 regular spanning subgraph of G.

Clearly, Theorem 1.4 applies in the special case when F is the set {S2, . . . , Sh} where Si is

the star with i vertices, which gives the result mentioned in the abstract.

Theorem 1.1 is best possible up to the error term 3h
√
n log n, since there are examples where

a minimum degree of n/2 does not suffice even for the existence of an H-factor of some trees on h

vertices. This also shows that Theorems 1.2, 1.3 and 1.4 are also best possible, up to the sublinear

error term.

The rest of this paper contains the proof of Theorem 1.1 in Section 2, and some concluding

remarks and open problems in Section 3. Throughout this paper, all logarithms are natural.
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2 Proof of the main result

In this section we prove Theorem 1.1. Let F = {T1, . . . , Tk} be a set of trees having an h-packing.

We may therefore assume that the members of F are edge-disjoint trees on the same vertex set

{1, . . . , h}. Let G = (V,E) be an n-vertex graph with δ(G) ≥ n/2 + 3h
√
n log n. If h does not

divide n we may delete at most h− 1 vertices from G in order to obtain a graph whose number of

vertices is divisible by h. Thus, we may assume that

n > δ(G) ≥ n/2 + 3h
√
n log n− h ≥ n/2 + 2h

√
n log n, (1)

and h divides n.

Our first task is to show that V can be partitioned into h equal parts, such that each two parts

have sufficiently many edges between them. This is achieved by the following lemma.

Lemma 2.1 There exists a partition of V into h parts, V1, . . . , Vh, of size n/h each, such that

every vertex has at least n/(2h) neighbors in each of the parts.

Proof: We let each vertex v ∈ V choose a random integer between 0 and h, where 0 is chosen

with probability β = h
√

log n/
√
n (note that β < 1 by (1)) and the other numbers are chosen with

probability α = (1−β)/h. All the choices are independent. For i = 0, . . . , h, let Wi ⊂ V be the set

of vertices which selected i. For v ∈ V , Let wi(v) be the number of neighbors of v in Wi. Clearly,

for i > 0, the expected size of Wi is E[|Wi|] = αn = n
h (1 − β), and the expected value of wi(v)

is E[wi(v)] = αd(v), where d(v) is the degree of v in G. We may use the large deviation result of

Chernoff (cf., e.g. [1] Appendix A) to derive that for i > 0

Prob[|Wi| >
n

h
] = Prob[|Wi| −

n

h
(1− β) > β

n

h
] < exp(−2n2β2/h2

n
) =

1

n2
. (2)

Similarly, we have that for each i = 1, . . . , h and for each v ∈ V

Prob[|wi(v)− αd(v)| >
√
d(v) log n] < 2 exp(−2d(v) log n/d(v)) =

2

n2
. (3)

Since, by (1),

h · 1

n2
+ nh · 2

n2
< 0.5

we have by inequalities (2) and (3) that with probability greater than 0.5, all of the following events

hold:

1. |Wi| ≤ n/h for i = 1, . . . , h.

2. |wi(v)− αd(v)| ≤
√
d(v) log n for each i = 1, . . . , h and for each v ∈ V .
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Consider, therefore, a partition of E into W0, . . . ,Wh in which all of these events hold. Since |Wi| ≤
n/h, for i = 1, . . . , h, we may partition W0 into h subsets X1, . . . , Xh, where |Xi| = n/h − |Wi|.
Put Vi = Wi ∪Xi for i = 1, . . . , h. Note that |Vi| = n/h and Vi ∩ Vj = ∅ for 1 ≤ i < j ≤ h. Let

di(v) be the number of neighbors of v in Vi. Clearly,

di(v) ≥ wi(v) ≥ αd(v)−
√
d(v) log n =

d(v)

h
− βd(v)

h
−
√
d(v) log n ≥

d(v)

h
− 2

√
d(v) log n ≥ n

2h
+ 2

√
n log n− 2

√
d(v) log n ≥ n

2h
.

2

Consider a partition of V into V1, . . . , Vh, as guaranteed by Lemma 2.1. Using this partition, we

can now show that there exists a spanning subgraph of G with the following structural properties:

Lemma 2.2 There exists an h− 1-regular spanning subgraph of G, with the property that for each

v ∈ V , if v ∈ Vi, then v has exactly one neighbor in each Vj for j 6= i.

Proof: It suffices to show that each pair of distinct vertex classes Vi and Vj , have a perfect

matching with edges of G, since the union of all these
(h
2

)
matchings yields the required subgraph.

To see that Vi and Vj have a perfect matching we may use Hall’s Theorem (cf. [4]). We need to

show that each X ⊂ Vi has |N(X)| ≥ |X|, where N(X) is the set of vertices of Vj adjacent to at

least one vertex of X. Indeed, if 0 < |X| ≤ n/(2h) then, by Lemma 2.1, every vertex of X has at

least n/2h neighbors in Vj , and so |N(X)| ≥ n/(2h) ≥ |X|. If n/h ≥ |X| > n/(2h) then, by the

fact that each vertex of Vj has at least n/(2h) neighbors in Vi it follows that N(X) = Vj and so

|N(X)| = n/h ≥ |X|. Thus, Hall’s condition ensuring a perfect matching is satisfied. 2

Let R denote the spanning subgraph of G whose existence is guaranteed in Lemma 2.2. For

1 ≤ i < j ≤ h, let R(i, j) be the n/h edges of R which connect Vi to Vj . By Lemma 2.2, R(i, j) is

a perfect matching between Vi and Vj .

We must now construct, for each i = 1, . . . , k a subgraph Si of G consisting of n/h vertex-

disjoint copies of the tree Ti. In fact, these subgraphs will only use edges of R, and each edge

of R will be used in at most one of the Si’s. This guarantees that S1, . . . , Sk are k edge-disjoint

subgraphs, and that the union S1∪ . . . Sk has maximum degree at most h−1, since it is a subgraph

of R, and R is h− 1-regular.

We construct Si as follows: The edges of Si are simply the union of all the sets R(s, t) where

(s, t) is an edge of Ti. This definition is proper since, by the remark in the beginning of the section,

the vertex-set of Ti is {1, . . . , h}, so s, t ∈ {1, . . . , h}. Now Si is simply the subgraph induced by this

set of edges. Note that Si is, in fact, a subgraph of R. Now, since Ti is a tree (this is crucial!), we

claim that Si is a set of n/h vertex-disjoint copies of Ti. This follows from the fact that each path
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in Si is isomorphic to a path of Ti, and since there are no cycles in Ti, each connected component

of Si contains exactly one edge from each R(s, t) for (s, t) ∈ Ti. Now, the obvious isomorphism

between the vertex classes V1, . . . , Vh and the vertices of Ti shows that each connected component

is isomorphic to Ti. Finally, the fact that for i 6= j, Si and Sj are edge-disjoint, follows from the

fact that Ti and Tj are edge-disjoint trees on the same vertex-class {1, . . . , h}. 2

3 concluding remarks and open problems

1. As mentioned in the introduction, the minimum degree requirement in Theorem 1.1 is manda-

tory, up to the sub-linear error term 3h
√
n log n. In fact, it is shown in [2] that there are

bipartite graphs H, where for arbitrary large n, a minimum degree of n/2 for G does not

suffice in order to guarantee even the existence of an H-factor, let alone the much stronger

requirements in Theorem 1.1. For example, consider the star Sh on h > 2 vertices, where h

is even. If n = kh where k is any odd positive integer, and G is the complete bipartite graph

with n/2 vertices in each vertex class then G cannot have an Sh-factor, although δ(G) = n/2

and h divides n. Similar examples involving other types of trees also exist.

2. Theorem 1.2 applies whenever F is a set of h/2 trees with h vertices each, which has an

h-decomposition. There are many such families of trees. The smallest nontrivial example

is when h = 4 and F consists of two paths on four vertices. This is the only example for

h = 4. The case h = 6 already contains examples where the three members of F are not all

isomorphic to each other. In fact, since the number of non-isomorphic trees with the same

size h grows exponentially with h, so does the number of different sets F to which Theorem

1.2 applies.

3. Theorem 1.1 has an obvious randomized algorithm. Lemma 2.1 is the only random part, and

can clearly be performed in O(n2) time. The probability of achieving success in the obtained

partition of V constructed in Lemma 2.1 is proved there to be greater than 0.5. By letting

each vertex know its class, we can verify in O(n2) time if, in fact, the random partition satisfies

the requirements of the Lemma. Lemma 2.2 can be done in O(n2.5) using any one of the well-

known algorithms for bipartite matching. Having done this, the construction of the sets Si is

performed by a one time pass on the edges of R, namely in O(n) time. The overall running

time is, therefore, O(n2.5). In fact, since the number of events we need to control in Lemma

2.1 is polynomial (h + nh events, to be precise), we can use the standard derandomization

technique of conditional probabilities (cf. [1]) to obtain a polynomial deterministic algorithm.
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4. As mentioned in the introduction, results guaranteeing the existence of H-factors for trees

(and other graphs) provided the minimum degree is n/2 + o(n) (in the case of trees) are

known (cf. e.g., [2]). However, all of these results use the Szemerédi Regularity Lemma ([8])

and therefore have horrible constants, which require that n be very large with respect to |H|,
where ”very large” is a tower function of |H|. On the other hand, Theorem 1.3 only requires

that n be quadratic in h, (as can be seen from inequality (1)). This is advantageous if one

needs to obtain H-factors of graphs G with a reasonable number of vertices.
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