
Approximate shortest paths in weighted graphs

Raphael Yuster

Department of Mathematics

University of Haifa

Haifa 31905, Israel

E–mail: raphy@math.haifa.ac.il

Abstract

We present an approximation algorithm for the all pairs shortest paths (APSP) problem in

weighed graphs. Our algorithm solves the APSP problem for weighted directed graphs, with real

(positive or negative) weights, up to an additive error of ε. For any pair of vertices u, v, the

algorithm finds a path whose length is at most δ(u, v) + ε. The algorithm is randomized and

runs in Õ(n(ω+3)/2) < O(n2.688) time, where n is the number of vertices and ω is the matrix

multiplication exponent. The absolute weights are allowed to mildly depend upon n, being at

most no(1) (we note that even if the weights are constants, δ(u, v) can be linear in n, while the

error requirement ε is a small constant independent of n). Clearly, ε-additive approximations

generalize exact algorithms for integer weighted instances. Hence, if ω = 2 + o(1), this algorithm

is as fast as any algorithm known for integer APSP in directed graphs, and is more general.

1 Introduction

Shortest paths problems are among the most fundamental algorithmic graph problems. In the

shortest paths problem we are given a (possibly weighted, possibly directed) graph G = (V,E) and a

set S ⊂ V × V of pairs of vertices, and are required to find distances and shortest paths connecting

the pairs in S. In the Single Source Shortest Paths (SSSP) problem we have S = {s} × V for some

s ∈ V and in the All Pairs Shortest Paths (APSP) problem we have S = V × V .

Our main result is on the APSP problem. In its most general setting, the graph G = (V,E)

is a directed graph with real edge weights that can be positive or negative. Thus, the graph is

associated with a weight function w : E → <. Algorithms that manipulate real numbers as pure

entities work in the addition-comparison model. In this model the only operations allowed on pairs

of real numbers are additions and comparisons, and each of these operations has unit cost. The

fastest algorithm for the general APSP problem was obtained by Chan [3]. Its runtime for n-vertex

graphs is O(n3 log3 log n/ log2 n) which is almost cubic. This result improved earlier barely sub-cubic

algorithms dating back to the first such algorithm by Fredman [6]. When edge weights are integers,

1

we are no longer restricted to the addition-comparison model, and we can manipulate the bits of the

integral weight. The fastest algorithm for APSP in directed graphs with integer (positive or negative)

weights was obtained by Zwick [12] and runs in Õ(n2+µ) time1, where µ < 0.575 is a function of the

exponent of rectangular matrix multiplication. It is assumed here that the weights are small (their

absolute value is bounded by a constant, or, more liberally, at most no(1)). We note that if (as many

researcher find plausible) two n× n matrices can be multiplied in Õ(n2) time, Zwick’s algorithm, as

well as an earlier algorithm of algorithm of Alon, Galil, and Margalit [2], runs in Õ(n2.5) time.

The theoretical and practical importance of the APSP problem lead many researchers to look for

faster algorithms that settle for almost shortest paths. The review article [13] contains a detailed

survey of such algorithms. There are two natural ways to approximate shortest paths. The first

is by stretch-factor algorithms. These types of algorithms guarantee an α-stretch factor. Namely,

they compute a path whose length is at most αδ(u, v), where δ(u, v) is the distance from u to v

(assumed to be positive in this definition), and α > 1. The second is additive approximations (also

called surplus approximations). These types of algorithms guarantee an ε-additive error. Namely,

they compute a path whose length is at most δ(u, v) + ε. The fastest stretch-factor algorithm for

APSP was obtained by Zwick [12]. His algorithm achieves a stretch of (1 + ε) in Õ((nω/ε) log(W/ε))

time. The algorithm assumes that the real weights are all positive and in the interval [1,W]. If

ε = 1/nt, and t ≤ 0.706, and W = no(1), then a faster algorithm whose runtime is Õ(nω+0.468t) was

obtained by Roditty and Shapira [10]. Here and throughout this paper ω < 2.376 denotes the matrix

multiplication exponent [4].

Good additive approximations exist for undirected graphs. We mention two notable results.

Aingworth, Chekuri, Indyk, and Motwani [1] obtained a 2-additive APSP algorithm in unweighted

undirected graphs that runs in Õ(n2.5) time. This was later improved by Dor, Halperin, and Zwick

[5] who obtained a running time of Õ(min{n3/2m1/2, n7/3}). They also obtain an O(log n)-additive

APSP algorithm that runs in almost optimal Õ(n2) time.

It is much more difficult to obtain good additive approximations for directed graphs, moreover

for the general case where the weights are real, and possibly negative. One naive approach is to

round (up) the real weights to the closest rational which is a multiple of some O(1/n). This reduces

the problem to computing exact solutions in integer weighted directed graphs where the absolute

weights are O(n). However, there is no truly sub-cubic algorithm known that handles such large

integer weights. Likewise, one can obtain a constant additive approximation using the stretch factor

approximation algorithm of Zwick mentioned above, with ε = O(1/n). However, this also results in

a super-cubic runtime, and, in addition, does not directly apply to the case of negative edge weights.

Our main result obtains the first truly sub-cubic algorithm that achieves an ε-additive approxi-

mation. It applies to the most general setting, where positive and negative real weights are allowed.

It is assumed that the absolute value of a weight is at most no(1).

1Throughout this paper, Õ(f(n)) stands for f(n)no(1).

2

Theorem 1.1 Let ε > 0 be fixed. Let G = (V,E) be a directed graph whose edges have real (positive

or negative) weights, of absolute value at most no(1). There is a randomized algorithm that computes

APSP in G up to an ε-additive error in Õ(n(ω+3)/2) time.

We assume that the input graph contains no negative cycles. In other words, for pairs u, v for

which δ(u, v) = −∞, the result returned by the algorithm is meaningless. Clearly, any ε-additive

approximation algorithm implies an exact algorithm for the case of integer weights. The converse,

however, is not necessarily true. Hence, the algorithm of Theorem 1.1 is also an Õ(n(ω+3)/2) exact

algorithm for the case of small (positive or negative) integer weights. This matches the runtime

of the algorithm of Alon, Galil, and Margalit [2], but is strictly more general than it. In fact, if

ω = 2 + o(1), then the runtime of the algorithm of Theorem 1.1 matches the runtime of the fastest

known integer APSP algorithm of Zwick mentioned earlier. The algorithm of Theorem 1.1, though,

is strictly more general as it can handle real weights, while still obtaining an ε-additive error.

The rest of this paper contains the proof of Theorem 1.1 in Section 2 and some concluding remarks

and open problems in Section 3.

2 Proof of the main result

We construct a weight-approximated version of the input graph that is somewhat easier to work with.

Let Gint be obtained from G be replacing each weight w(e) with the weight wint(e) = d2nε w(e)e. Since

0 ≤ wint(e) − 2n
ε w(e) < 1 we know that whenever δ(u, v) is finite, then δint(u, v) is also finite and

0 ≤ δint(u, v)− 2n
ε δ(u, v) < n. Hence, in order to obtain ε-additive approximations of distances in G

it suffices to obtain n-additive approximations δ̂int of distances in Gint, since such an approximation

implies

δ(u, v) ≤ ε

2n
δ̂int(u, v) ≤ δ(u, v) + ε .

It is our goal, therefore, to compute an approximation δ̂int(u, v) of lengths of actual paths in Gint

that satisfies

δint(u, v) ≤ δ̂int(u, v) ≤ δint(u, v) + n .

Denote by W the maximum absolute value of a weight of an edge of G, and recall that W = no(1).

For any two vertices u, v we have |δ(u, v)| < nW (from here onwards we will only consider pairs for

which δ(u, v), and thus δint(u, v), is finite). Each weight of Gint is an integer in {−K, . . . ,K} where

K = b(2W/ε)n + 1c. Notice, though, that distances in Gint can be of absolute value as large as

Õ(n2).

2.1 Computing distances for a given subset of pairs

An important part of our algorithm consists of computing exact distances in Gint for all pairs in a

set of pairs S × V ∪ V × S, where S is relatively large, but still a small part of V . In other words,

3

we will solve SSSP in Gint from each vertex of S, and solve SSSP in the edge-reversed Gint from

each vertex of S. It is costly, though, to compute SSSP in a graph with negative edge weights,

such as Gint. As observed by Johnson [9], by an appropriate reweighing, we can settle for just one

application of SSSP and then reduce the problem to SSSP in a graph with non-negative edge weights.

Johnson’s reweighing consists of running a single application of SSSP from a new vertex, denoted

by r, connected with directed edges of weight 0 from r to each vertex of V . Goldberg [7], improving

a result of Gabow and Tarjan [8], obtained an O(m
√
n logK) algorithm for the SSSP problem in

directed graphs with integer edge weights of value at least −K (here m = O(n2) denotes the number

of edges of the graph). It follows that the reweighing of Gint can be obtained in Õ(n2.5) time, in

our case. The reweighing consists of assigning vertex weights h(v) for each v ∈ V (these are the

distances from r to v after applying SSSP from r). The new weight, denoted by wint+(u, v) is just

wint(u, v) + h(u)− h(v) ≥ 0. It now suffices to compute SSSP from each vertex of S in Gint+ (and

similarly in its edge-reversed version). This, in turn, can be performed in O(n2) time for each vertex

of S, using Dijkstra’s algorithm. We therefore obtain:

Lemma 2.1 Let S ⊂ V . There is an algorithm that computes δint(s, v) and δint(v, s) for each s ∈ S
and each v ∈ V in Õ(|S|n2 + n2.5) time.

Recall that Dijkstra’s algorithm also computes shortest paths trees, hence a representation of shortest

paths yielding the distances can be efficiently computed in the same time.

2.2 Approximating distances that are realized by few edges

Another important part of our algorithm consists of computing approximate distances in Gint con-

necting pairs of vertices for which there exists a shortest path (realizing the exact distance) that

does not use too many edges. More precisely, for a pair of vertices u, v, let c(u, v) be the smallest

integer k such that δint(u, v) is realized by a path containing k edges. We describe a procedure that

obtains an n-additive approximation of δint(u, v) for those pairs u, v having c(u, v) ≤ t, where t will

be chosen later. Notice that if c(u, v) ≤ t, then |δint(u, v)| ≤ Kt.
Our procedure is a modified version of the stretch-factor approximation algorithm of Zwick from

[12], although the latter only applies to graphs with positive edge weights. Indeed, let us first show

how Zwick’s algorithm can be applied, without change, in the special case where G (and hence Gint)

only has positive edge weights. In this case, each edge of Gint is in {1, . . . ,K}. For a given γ > 0,

the algorithm from [12] computes paths of stretch at most 1+γ in time Õ((nω/γ) logK). If we apply

it with γ = ε/(2Wt) the running time becomes, in our case, Õ(tnω). It computes paths of length

δ̂int(u, v), of stretch at most 1 + γ, for all pairs of vertices of Gint. But let us examine what this

means for those pairs having c(u, v) ≤ t. For such pairs we have

δ̂int(u, v) ≤ (1 + γ)δint(u, v) = δint(u, v) +
ε

2Wt
δint(u, v) ≤ δint(u, v) +

ε

2Wt
Kt ≤ δint(u, v) + n .

4

algorithm scale(A,M,R)

The algorithm receives a matrix A. It returns a matrix A′ where elements outside the range

{−M, . . . ,M} are changed to ∞ and other elements are scaled to the range {−R, . . . , R}.

a′ij ←
{
dRaij/Me if −M ≤ aij ≤M
+∞ otherwise

return A′

Figure 1: Scaling a matrix with positive and negative entries.

The stretch-factor approximation is meaningless when negative weight edges (and hence paths) exist.

Still, we can modify the algorithm from [12] so that its consequence for additive approximations of

those pairs for which c(u, v) ≤ t remains almost intact. The modification will still run in Õ(tnω)

time, but its analysis will be somewhat more involved.

Recall that a weighted directed graph, such as Gint, is associated with its distance matrix. This

matrix, denoted by D, has rows and columns indexed by V and has D(u, v) = wint(u, v). We assume

that diagonal entries are 0 and if there is no edge from u to v then D(u, v) =∞. If D1 and D2 are two

distance matrices then the matrix C = D1 ?D2 is defined by C(u, v) = minw∈V D1(u,w) +D2(w, v).

We call C the distance product of D1 and D2. We also denote D2 = D ? D (not to be confused

with the standard matrix product). Notice that D2(u, v) is the exact distance from u to v whenever

c(u, v) ≤ 2. Similarly Di = Di−1 ? D (and which, by associativity, equals also Dj ? Di−j for any

j = 1, . . . , i−1) has the property that Di(u, v) is the exact distance from u to v whenever c(u, v) ≤ i.
It is therefore our goal to approximate the entries of Dt(u, v). We will show how to compute a

matrix B so that for any pair u, v we have Dt(u, v) ≤ B(u, v) ≤ Dt(u, v) + n, thereby obtaining an

n-additive approximation for those pairs having c(u, v) ≤ t.
The procedure is based on exact distance products of scaled versions of the matrices to be

(distance) multiplied. The simple algorithm scale(A,M,R), given in Figure 1, is a version of the

scale algorithm from [12], where the only change is that it also scales matrices with negative entries.

The elements of a matrix A in the range {−M, . . . ,M} are scaled (and rounded up) to the range

{−R, . . . , R}. Other elements are replaced with infinity. Algorithm scale is used by algorithm

approx-dist-prod(A,B,M,R), given in Figure 2, whose code is identical to the one from [12] (but

we will apply it on matrices that also have negative entires). Algorithm approx-dist-prod computes

an approximation of the distance product A ? B.

Suppose R is a power of 2 and that every finite element in A and B is in {−M, . . . ,M}. Let

C ′ = A ? B and let C be the matrix obtained by calling approx-dist-prod(A,B,M,R). The same

5

algorithm approx-dist-prod(A,B,M,R)

The algorithm receives two n× n matrices A and B. Elements of A and B that are of

absolute value greater than M are replaced by ∞. It returns an approximate distance

product C ′ of A and B based on the resolution parameter R.

C ← +∞
for r ← blog2Rc to dlog2Me do
begin

A′ ← scale(A, 2r, R)

B′ ← scale(B, 2r, R)

C ′ ← dist-prod(A′, B′, R)

C ← min{C , (2r/R)C ′}
end

return C

Figure 2: Approximate distance products.

analysis as in [12] shows that for every i and j,

c′ij ≤ cij ≤ c′ij + 2M/R . (1)

We show how to compute an approximation of Dt by repeated applications of approx-dist-prod.

We will assume that t is a power of 2, and compute the approximation by repeated squaring, as shown

in Figure 3.

Let us set R to be the smallest power of 2 greater than 4Wt(log2 t)/ε. Let Ms be the value of M

that is set during the s’th iteration in algorithm approx-power. Likewise, let Bs be the matrix B

during the s’th iteration in algorithm approx-power. The following lemma establishes bounds on

Ms and on the entries of Bs.

Lemma 2.2 In round s of algorithm approx-power we have:

Ms ≤ 2sK

 s∑
j=0

(s
j

)
Rj

 ,

D2s(i, j) ≤ Bs(i, j) ≤ D2s(i, j) + 2sK

 s∑
j=1

(s
j

)
Rj

 .

Proof: The proof is by induction on s. For s = 1, note that in the first call to approx-dist-prod,

each finite element of B = D has a value in {−K, . . . ,K}, and K = M . Thus, by Equation (1),

6

algorithm approx-power(D, t)

B ← D

M ← max{|bij | : |bij | 6=∞}
R← 4Mt(log2 t)/ε

R← 2dlog2Re

for s← 1 to dlog2 te do
B ← approx-dist-prod(B,B,M,R)

M ← max{|bij | : |bij | 6=∞}
return B

Figure 3: Computing an approximation of Dt.

in the resulting B1 we have D2(i, j) ≤ B1(i, j) ≤ D2(i, j) + 2K/R. The smallest value in B1 is at

least −2K and the largest value is at most 2K + 2K/R. Hence, M1 ≤ 2K + 2K/R. We now assume

that the lemma holds for s− 1 and prove it for s. In the call to approx-dist-prod during iteration

s, each finite element of B = Bs−1 has a value in {−Ms−1, . . . ,Ms−1}, and M = Ms−1. Thus, in

resulting Bs we have

B2
s−1(i, j) ≤ Bs(i, j) ≤ B2

s−1(i, j) + 2Ms−1/R .

On the other hand, by the induction hypothesis,

D2s−1
(i, j) ≤ Bs−1(i, j) ≤ D2s−1

(i, j) + 2s−1K

s−1∑
j=1

(s−1
j

)
Rj

 ,

from which it follows that

D2s(i, j) ≤ B2
s−1(i, j) ≤ D2s(i, j) + 2sK

s−1∑
j=1

(s−1
j

)
Rj

 .

Therefore,

D2s(i, j) ≤ Bs(i, j) ≤ D2s(i, j) + 2sK

s−1∑
j=1

(s−1
j

)
Rj

+ 2Ms−1/R ≤

D2s(i, j) + 2sK

s−1∑
j=1

(s−1
j

)
Rj

+
2

R
2s−1K

s−1∑
j=0

(s−1
j

)
Rj

 = D2s(i, j) + 2sK

 s∑
j=1

(s
j

)
Rj

 .

Similarly,

Ms ≤ 2Ms−1 + 2Ms−1/R = 2Ms−1(1 + 1/R) ≤ 2sK

s−1∑
j=0

(s−1
j

)
Rj

 (1 + 1/R) = 2sK

 s∑
j=0

(s
j

)
Rj

 .

7

Lemma 2.3 The matrix B computed by approx-power satisfies Dt(u, v) ≤ B(u, v) ≤ Dt(u, v) + n

for all pairs u, v. The running time of approx-power is Õ(nωt).

Proof: By our choice of R as the smallest power of 2 greater than 4Wt(log2 t)/ε we have, from

Lemma 2.2, that for s = log t,

Dt(u, v) ≤ B(u, v) ≤ Dt(u, v) + tK

 s∑
j=1

(s
j

)
Rj

 <

Dt(u, v) + tK log2 t/R < Dt(u, v) +Kε/(4W) < Dt(u, v) + n .

The running time follows from the fact that we apply a polylogarithmic number of calls to dist-prod,

which, in turn, runs in Õ(Rnω) = Õ(nωt), as shown by Yuval [11] (see also [12]).

2.3 Completing the proof of Theorem 1.1

We set t to be the smallest power of two larger than n(3−ω)/2.

We first apply the algorithm of Lemma 2.3 which computes a value B(u, v) for each pair of

vertices u, v. By Lemma 2.3, this requires Õ(n(ω+3)/2) time. Next, we choose a random subset

S ⊂ V consisting of 4n lnn/t vertices. We apply the algorithm of Lemma 2.1 and obtain δint(s, v)

and δint(v, s) for each s ∈ S and each v ∈ V . By Lemma 2.1, this requires Õ(n(ω+3)/2) time. For

each pair of vertices u, v let

`(u, v) = min
s∈S

δint(u, s) + δint(s, v) .

Notice that the runtime required for computing all the `(u, v) is also Õ(n(ω+3)/2).

Our algorithm will return, for each pair u, v, the value

δ̂int(u, v) = min{B(u, v) , `(u, v)} .

We claim that with very high probability, δint(u, v) ≤ δ̂int(u, v) ≤ δint(u, v) + n. Consider a pair of

vertices u, v for which c(u, v) > t. Let p(u, v) be some path with c(u, v) edges, realizing δint(u, v). As

S was chosen randomly, the probability that none of the (at least t) internal vertex of p(u, v) belongs

to S is at most (1− (4 lnn)/t)t < 1/n3. Hence, with probability at least 1− 1/n, S has the property

that for each pair u, v with c(u, v) > t, there is some path with c(u, v) edges realizing δint(u, v),

containing an internal vertex from S. Assuming S has this property, we have, using the fact that sub-

paths of shortest paths are shortest paths, that `(u, v) = δint(u, v) whenever c(u, v) > t. On the other

hand, for pairs u, v with c(u, v) ≤ t, we have, by Lemma 2.3, that Dt(u, v) ≤ B(u, v) ≤ Dt(u, v) +n.

But since c(u, v) ≤ t, we have Dt(u, v) = δint(u, v), and hence δint(u, v) ≤ B(u, v) ≤ δint(u, v) + n.

We have proved that, with probability at least 1 − 1/n, for all pairs u, v for which δint(u, v) is

finite, we have δint(u, v) ≤ δ̂int(u, v) ≤ δint(u, v) + n. Also notice that our approximation δ̂int(u, v)

represents an actual path having this length. A data structure representing the actual paths is also

8

easily obtained. For `(u, v) this is obtained by the shortest path trees constructed by Dijkstra’s

algorithm (as noted in the paragraph following Lemma 2.1). For B(u, v) this is obtained using the

witnesses of dist-prod, as shown in [12].

3 Concluding remarks

The algorithm of Theorem 1.1, running in Õ(n(ω+3)/2), is asymptotically as fast as any known al-

gorithm for integer APSP, if ω = 2 + o(1). Still, for the current known upper bound of ω, Zwick’s

algorithm for integer APSP runs faster, in Õ(n2+1/(4−ω)) time (and even slightly faster using rectan-

gular matrix multiplication). Although it is of some interest to improve the runtime of the algorithm

of Theorem 1.1 to match the runtime of Zwick’s algorithm, the major task is, clearly, to break the

Õ(n2.5) barrier assuming ω = 2 + o(1).

References

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani, Fast estimation of diameter and shortest

paths (without matrix multiplication), SIAM Journal on Computing 28 (1999), pp. 1167–1181.

[2] N. Alon, Z. Galil, and O. Margalit, On the exponent of the all pairs shortest path problem,

Journal of Computer and System Sciences 54 (1997), pp. 255–262.

[3] T. M. Chan, More Algorithms for All-Pairs Shortest Paths in Weighted Graphs, Proceedings of

the 39th ACM Symposium on Theory of Computing (STOC), ACM Press (2007), pp. 590–598.

[4] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Journal of

Symbolic Computation 9 (1990), pp. 251–280.

[5] D. Dor, S. Halperin, and U. Zwick, All pairs almost shortest paths, SIAM Journal on Computing

29 (2000), pp. 1740–1759.

[6] M. L. Fredman, New bounds on the complexity of the shortest path problem, SIAM Journal on

Computing 5 (1976), pp. 49–60.

[7] A. V. Goldberg, Scaling algorithms for the shortest paths problem, SIAM Journal on Computing

24 (1995), pp. 494–504.

[8] H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for general graph matching problems,

Journal of the ACM 38 (1991), pp. 815–853.

[9] D. B. Johnson, Efficient algorithms for shortest paths in sparse graphs, Journal of the ACM 24

(1977), 1–13.

9

[10] L. Roditty and A. Shapira, All-Pairs Shortest Paths with a sublinear additive error, Proceedings

of the 35th International Colloquium on Automata, Languages, and Programming (ICALP),

LNCS (2008), pp. 622–633.

[11] G. Yuval, An algorithm for finding all shortest paths using N2.81 infinite-precision multiplica-

tions, Information Processing Letters 4 (‘976), pp. 155–156.

[12] U. Zwick, All-pairs shortest paths using bridging sets and rectangular matrix multiplication,

Journal of the ACM 49 (2002), pp. 289–317.

[13] U. Zwick, Exact and approximate distances in graphs - a survey, Proceedings of the 9th Annual

European Symposium on Algorithms (ESA), LNCS (2001), pp. 33–48.

10

