
Single source shortest paths in H-minor free graphs

Raphael Yuster ∗

Abstract

We present an algorithm for the Single Source Shortest Paths (SSSP) problem in directed H-

minor free graphs. For every fixed H, if G is a graph with n vertices having integer edge lengths

and s is a designated source vertex of G, the algorithm runs in Õ(n
√
11.5−2 logL) ≤ O(n1.392 logL)

time, where L is the absolute value of the smallest edge length. The algorithm computes shortest

paths and the distances from s to all vertices of the graph, or else provides a certificate that G is

not H-minor free. Our result improves an earlier O(n1.5 logL) time algorithm for this problem,

which follows from a general SSSP algorithm of Goldberg.

Keywords: shortest paths; H-minor free graphs.

1 Introduction

The Single Source Shortest Paths (SSSP) problem is the problem of finding shortest paths and, in

particular, the distances from a specified source vertex to all vertices of a given directed graph. This

problem is one of the classical and fundamental problems in computer science and has numerous

applications.

Dijkstra [4] gave an almost linear time algorithm for the SSSP problem if all edge lengths are

nonnegative reals. His algorithm runs in O(m + n log n) time where m is the number of edges and

n is the number of vertices, if one uses the implementation from [8]. The situation becomes much

more complicated when negative edge lengths are allowed. Bellman [2] and Ford [6] gave an O(mn)

time algorithm for the SSSP problem where the edge lengths are arbitrary reals. No superlogarithmic

improvement over this simple algorithm is known. If the edge lengths are assumed to be integers, the

fastest known algorithm to date is an O(m
√
n logL) of Goldberg [11], improving earlier algorithms

of Gabow [9] and Gabow and Tarjan [10], where L is the absolute value of the smallest edge length

(if L is assumed to be a constant and m is sufficiently large then there are slightly faster algorithms

based upon fast matrix multiplication techniques).

A lot of research has been conducted in cases where the input graph belongs to some important

family of graphs, as the SSSP problem has numerous applications even when the graph is a grid

or a plane graph. For sparse graphs with m = O(n) edges, the above algorithm of Goldberg runs

in O(n1.5 logL) time. Unfortunately, even if we assume that the underlying graph has bounded

∗Department of Mathematics, University of Haifa, Haifa 31905, Israel. E–mail: raphy@math.haifa.ac.il

1

degree, we do not know how to do better. For planar graphs, however, better algorithms are known.

A strongly polynomial O(n3/2) time algorithm was first given by Lipton, Rose, and Tarjan [15],

based on the seminal result on planar graph separators of Lipton and Tarjan [16]. For integer edge

lengths, this was later improved by Henzinger et al. [12] who gave an Õ(n4/3 logL) time algorithm.

As will be explained below, one cannot directly apply this algorithm to H-minor free graphs since

finding an O(
√
n) separator for such graphs already requires O(n1.5) time with present methods

[1]. A significant improvement was made by Fakcharoenphol and Rao [5] who gave an O(n log3 n)

algorithm for planar graphs with arbitrary real edge lengths. Finally, Klein et al. improved this to

O(n log2 n) [13]. These two algorithms are based on planarity.

In this paper we consider a much more general class of graphs, the class of H-minor free graphs.

A graph G′ is a minor of a graph G if G′ can be obtained from a subgraph of G by contracting

edges. A graph is H-minor free if H is not a minor of G. In this paper, we say that a directed

graph G is H-minor free if the underlying undirected version of G is H-minor free. The classical

Kuratowski-Wagner Theorem [14, 24] states that a graph is planar if and only if it has no K5 nor

K3,3 minors. (For three different proofs of the theorem, see [23].)

Families of H-minor free graphs, for some fixed graph H, are the cornerstone of the seminal

theory of graph minors developed over the last 20 years, in a series of more than 20 papers, by

Robertson and Seymour. These families are, to date, the most studied families of graphs in modern

graph theory. The graph minor theory of Robertson and Seymour culminated, in [21], with a proof

of the profound graph minor theorem, also known as the Wagner’s conjecture, that states that in

every infinite set of finite graphs, there is a graph which is isomorphic to a minor of another. One of

the consequences of this theorem is that for any surface S (whether orientable or not) there is a finite

set of graphs F (S), such that a graph can be embedded in S (without crossing edges) if and only

if it does not contain a graph from F (S) as a minor. (This result actually follows from a restricted

version of Wagner’s conjecture which was already proved in [20].) For a very recent survey of the

theory of graph minor see Lovász [17].

Classes of H-minor free graphs are much more general, however, than the class of planar graphs

or classes of bounded genus graphs. For example, the class of K5-free graphs contains all the planar

graphs, and many other graphs, but there is no bounded genus surface on which all the graphs from

this family can be embedded.

The question we try to answer in this paper is the following: Can we obtain an algorithm whose

running time is significantly faster than the O(n1.5 logL) time algorithm of Goldberg, when applied

to H-minor free graphs (it is a well-known old result of Mader [18] that H-minor free graphs have

m = O(n) edges). Our main result yields a positive answer.

Theorem 1.1 Let H be any fixed graph. For a given H-minor free directed graph G whose edge

lengths are integers, and a designated source vertex s ∈ V (G), there is an Õ(n
√
11.5−2 logL) ≤

O(n1.392 logL) time algorithm that computes a shortest path and the distance from s to each vertex

of G.

2

It should be noted that if G contains an H-minor, the algorithm may still work as designated, but

is allowed to fail. In case of failure, the algorithm produces a certificate for an H-minor in G. An

H-model in (the undirected version) of G is a set of disjoint connected subgraphs {Xv : v ∈ V (H)}
indexed by the vertices of H, such that for every edge uv ∈ E(H), there is an edge xy ∈ E(G) with

x ∈ Xu and y ∈ Xv. Clearly G has an H-minor if and only if G has an H-model. Thus, in case of

failure, the algorithm produces an H-model of G.

Our algorithm is based upon the “four steps” algorithm of Henzinger et al. [12], but with two

major modifications, that are required due to the following obstacles. It should be noted that [12]

works not only for planar graphs, but also for every graph which satisfies an O(
√
n)-separator theorem

(see the next section for an exact definition), assuming that an O(
√
n)-separator can be obtained

in linear time. Unfortunately, although H-minor free graphs satisfy an O(
√
n)-separator theorem,

the fastest algorithm for finding such a separator, due to Alon et al. [1] runs in O(n1.5) time, and

hence we cannot use it directly. It has recently been shown by Reed and Wood [19] that an O(n2/3)-

separator for H-minor free graphs can be found in linear time. If we use these larger separators in

the result of [12], we arrive at another bottleneck, which is the need to solve many all-pairs shortest

paths (APSP) problems in smaller, and very dense, pieces of the graph, and each such computation

requires cubic time in the size of the pieces (which are now larger than in the case of planar graphs).

We show that by using separators that are slightly larger than optimal, we can solve these APSP

problems faster, resulting in an improvement in the overall running time. The main idea is to first

create the pieces quickly using large separators by using the algorithm of [19], and within each small

piece, use small separators, via the algorithm of [1], to enhance the APSP computations.

We note that recently, Tazari and Müller-Hannemann [22] obtained a linear O(n) time algorithm

for SSSP in H-minor free graphs where edge weights are non-negative reals, extending another linear

time algorithm of Henzinger et al. [12] for planar graphs with arbitrary non-negative real weights.

The latter algorithm of Henzinger et al. (unlike their algorithm in the case of negative edge weights)

works in linear time also for every bounded degree graph that has an O(n1−ε)-separator theorem.

Thus, using the Reed-Wood result mentioned above, it directly works for H-minor free graphs with

bounded degree. It is trivial to transform any planar graph to another planar graph with bounded

degree, while maintaining the shortest distances. This, however, is far from trivial in the case of

H-minor free graphs, and Tazari and Müller-Hannemann cleverly overcome this obstacle.

The rest of this paper is organized as follows. The next section contains definitions and lemmas

that are needed for the proof of Theorem 1.1. The algorithm proving Theorem 1.1 is described in

Section 3. The final section contains some concluding remarks.

2 Definitions and Lemmas

A separation of a graph G is a pair (A,B) of vertex sets A,B ⊆ V (G) such that A ∪ B = V (G),

and there is no edge with one endpoint in A \B and the other endpoint in B \A. The set A ∩B is

called a separator of G. We say that a graph G with n vertices has an (f(n), α)-separator if there is

3

a separation (A,B) with |A ∩B| ≤ f(n), |A \B| ≤ αn and |B \ A| ≤ αn. We say that a hereditary

family of graphs (a family closed under subgraphs) satisfies an (f(n), α)-separator theorem if every

graph with n vertices belonging to the family has an (f(n), α)-separator.

By the seminal result of Lipton and Tarjan [16], planar graphs satisfy an (O(
√
n), 2/3)-separator

theorem. In fact, they also show how to compute an (O(
√
n), 2/3)-separator in linear time. Subse-

quently, Alon, Seymour and Thomas [1] extended the result of Lipton and Tarjan to H-minor free

graphs. The running time of their algorithm is O(n1.5) for every fixed H.

Clearly, if g(n) ≥ f(n) then having an (f(n), α)-separator implies having a (g(n), α)-separator,

but maybe the latter can be found more quickly. We thus say that a hereditary family of graphs has

an (f(n), α, t(n))-separator algorithm if it satisfies an (f(n), α)-separator theorem and an (f(n), α)-

separator can be constructed in O(t(n)) time. We can therefore state the result of [1] as follows.

Lemma 2.1 For any fixed graph H, the family of H-minor free graphs has an (O(
√
n), 2/3, O(n1.5))-

separator algorithm.

In a recent result, Reed and Wood [19] generalize the result from [1] in an interesting way. They

show that a separator for an H-minor free graph can be found more quickly, if we are willing to

settle for a larger separator. Quantifiably, their result can be stated as follows.

Lemma 2.2 Let γ ∈ [0, 1/2] be fixed and let H be a fixed graph. The family of H-minor free graphs

has an (O(n(2−γ)/3), 2/3, O(n1+γ))-separator algorithm. Furthermore, if an input graph is not H-

minor free then an H-model asserting this fact is produced in O(n1+γ) time.

Notice that the case γ = 1/2 of Lemma 2.2 degenerates to Lemma 2.1.

Suppose G is a graph and F ⊂ E(G). The region induced by F is the set of vertices incident

with an edge of F . A partition of E(G) into k parts defines a set of k regions. We say that a vertex

of some region is a boundary vertex if it belongs to more than one region. Otherwise, the vertex is

called internal. An (r, s)-division of an n-vertex graph G is a partition of E(G) into O(n/r) parts,

so that each region contains at most r vertices and O(s) boundary vertices.

Fredrickson [7] showed that for every r, an (r,
√
r)-division of an n-vertex planar graph can be

found in O(n log n) time by a simple recursive application of the separator algorithm of Lipton and

Tarjan. His method carries over without change to the more general setting of a hereditary family of

graphs with an (f(n), α, t(n))-separator algorithm. Thus, for H-minor free planar graphs we obtain,

using Lemma 2.2 and [7]:

Lemma 2.3 Let γ ∈ (0, 1/2] be fixed and let H be a fixed graph. For any r ≤ n, an H-minor free

graph with n vertices has an (r, r(2−γ)/3)-division and such a division can be constructed in O(n1+γ)

time.

A family of sets V1, . . . , Vk is called a delta system if the common intersection of all of them is

identical to the intersection of any two of them.

4

Lemma 2.4 Let G = (V,E) be a directed graph with n vertices and with V = V1 ∪ · · · ∪ Vk where

V1, . . . , Vk is a delta system of common intersection T of cardinality t, and k is a constant. Suppose

also that there is no edge between Wi = Vi \ T and Wj = Vj \ T for i 6= j. Let Gi be the subgraph

induced by Vi, and suppose that an APSP solution for Gi is given for all i = 1, . . . , k. Then, an

APSP solution for G can be computed in O(n2t) time.

Proof: We show how to compute the n× n distance matrix of G given the distance matrices of the

Gi in the claimed running time. (The construction of the n× n predecessor matrix representing the

shortest paths given the predecessor matrices of the Gi can be computed similarly in the same time.)

Let T = ∩i=1,...,kVi and let Wi = Vi \ T . Thus, V = T ∪W1 ∪ · · · ∪Wk is a partition of V . Let

Di denote the given distance matrix of Gi for i = 1, . . . , k. Thus, Di(u, v) = δi(u, v) is the distance

from u to v in Gi where u, v ∈ Vi. Let D denote the distance matrix of G.

We initially compute D(u, v) in the case where both u, v ∈ T . Define a complete directed graph

GT on the vertices of T by setting the edge length of (u, v) to be

wGT (u, v) =
k

min
i=1

δi(u, v).

As k is constant and since the Di are given, the directed graph GT is constructed in O(t2) time.

Next, we solve the APSP problem in GT in O(t3) time using, say, the Floyd-Warshall algorithm.

Let DT be the resulting distance matrix of GT . We claim that D(u, v) = DT (u, v) for all u, v ∈ T .

Indeed, any shortest path from u to v in G is constructed of segments of shortest paths, where each

segment is a shortest path in some Gi from some vertex x ∈ T to some vertex y ∈ T . Since the

length of this segment is (at least) the length of the single edge in GT from x to y, the claim follows.

We next compute D(u, v) where u ∈ T and v ∈ V \T . Suppose v ∈Wi. Either there is a shortest

path in G from u to v that is entirely contained in Gi, or else there is a shortest path formed by the

two segments from u to some z ∈ T and from z to v, where the latter is entirely contained in Gi.

Notice that the distance of the first segment is already computed as DT (u, z) and the distance of the

second segment is Di(z, v). It follows that

D(u, v) = min
z∈T

DT (u, z) +Di(z, v).

We therefore get that all the values D(u, v) where u ∈ T and v ∈ V \ T can be computed in O(nt2)

time. Similarly, we compute D(v, u) where u ∈ T and v ∈ V \ T .

Finally, we compute the remaining D(u, v) where u, v ∈ V \ T . Either there is a shortest path

from u to v that contains a vertex of T , or else u, v belong to the same Wi and there is a shortest

path from u to v that is entirely contained in Gi. Thus, setting D′(u, v) = minz∈T D(u, z) +D(z, v)

we have that, in case u and v are in distinct Wi then D(u, v) = D′(u, v). In case D(u, v) are in the

same Wi then D(u, v) = min{Di(u, v) , D′(u, v)}. We therefore get that all the values D(u, v) where

u, v ∈ V \ T can be computed in O(n2t) time.

5

3 Proof of the main result

Throughout this section we assume that H is any fixed graph, G is an n-vertex directed graph with

integer edge lengths, s ∈ V (G) is a designated source vertex, and −L is the smallest edge length

appearing in G. We show how to compute the distance from s to each vertex of G in the time stated

in Theorem 1.1. The computation of the actual shortest paths (in the form of a predecessor tree)

will be evident from the description. We also assume that G has no negative length cycles reachable

from s. The algorithm can be easily modified to detect such a cycle if at least one exists.

Let 1/2 ≥ γ > 0 be a fixed parameter to be chosen later, and let r be a function of n to be chosen

later. We follow the four steps algorithm from [12] and apply the lemmas from the previous section

in the appropriate places.

Before specifying each step in detail, we first give a short outline. In the first step we apply

Lemma 2.3 on the H-minor free graph G to obtain O(n/r) regions where each region has O(r)

vertices and O(r(2−γ)/3) boundary vertices. The second step is applied on each region R separately.

We apply the partition of Lemma 2.1 to get three pieces T1, T2, T3 so that each piece contains a 2/3-

fraction of R and a 2/3-fraction of the boundary B(R). The goal is now to construct the complete

graph HR whose vertices are B(R) and whose edges capture shortest path distances in R. This is

achieved by first recursively computing HT1 , HT2 , and HT3 and then merging them together into HR.

This merging process is described in Lemma 2.4. In the third step, we run the SSSP algorithm of

Goldberg on the graph G after replacing each region R with HR. This gives the SSSP distances to all

boundary vertices. In the fourth step, we compute the SSSP distances to all non-boundary vertices.

To obtain this, we use a construction of Cohen [3] that adds edges (according to the distances found

in step 3) to G so that every u-to-v shortest path is of length O(log(r)). After this is done, one can

use the Bellman-Ford algorithm on the new graph quickly (as only log(r) Bellman-Ford iterations

are needed). The detailed description of the algorithm follows.

First step: We apply Lemma 2.3 and obtain an (r, r(2−γ)/3)-division of G in O(n1+γ) time. We

obtain a set R of O(n/r) regions, where each R ∈ R has |R| ≤ r vertices, and has boundary B(R)

with |B(R)| = O(r(2−γ)/3).

Second step: The step applies the following procedure to each region R ∈ R. As in [12], the goal

here is to obtain an auxiliary graph HR with the following properties. The vertex set of HR is B(R),

and for each ordered pair of vertices u, v ∈ B(R) there is an edge (u, v) in HR whose length is the

distance from u to v in R. In particular, HR is a complete directed graph (possibly with some edges

having infinite length). However, the way we construct HR is different from that in [12] since we

must avoid the näıve (say, Floyd-Warshall) application of APSP on a graph of size O(r(2−γ)/3), as

this is too time consuming.

We will show how to create HR in Õ(r11/6−2γ/3) time. Using Lemma 2.1 we find an O(
√
r)

separator XR for R that breaks R into three pieces T1, T2, T3 so that each piece contains a 2/3-

fraction of R and a 2/3-fraction of B(R). (By “breaks” we mean that after removing XR from R

the remaining vertices are partitioned to T1, T2, and T3.) Such a separator can be obtained by first

6

finding an O(
√
r)-separator that breaks R into two pieces, each containing at most a 2/3-fraction of

R, and then finding an O(
√
r)-separator of the part that contains more than half of the vertices of

B(R), so that no more than a 2/3-fraction of the elements of B(R) remain in a part after removing

this second separator (note that here we use weighted separators).

Now define Ri = Ti ∪ XR for i = 1, 2, 3 and notice that the boundary of Ri is (contained in)

XR ∪ (B(R) ∩ Ti), and thus define B(Ri) = XR ∪ (B(R) ∩ Ti). Consider next each Ri as a new

(smaller) region, and apply the procedure recursively to obtain auxiliary graphs HRi for i = 1, 2, 3.

How do we compute HR, given the recursive computations of the HRi? Notice that the union of the

HRi is a delta system with common intersection XR whose cardinality is t = O(
√
r). Furthermore,

the HRi ’s are complete directed graphs and the edge lengths of each HRi constitute an APSP solution

for the HRi . Thus, an APSP solution for the union of the HRi can be computed, by Lemma 2.4

(with n = O(r(2−γ)/3) in the statement of the lemma) in time

O(r1/2 · (r(2−γ)/3)2) = O(r11/6−2γ/3). (1)

Since the union of the HRi ’s contains B(R) (and possibly some other vertices of XR \ B(R), we

construct HR by setting, for all ordered pairs u, v ∈ B(R), the length of (u, v) to be the distance

from u to v in the union of the HRi (this distance is given to us from the APSP solution), and this

distance is clearly also the distance from u to v in R, as required. Notice that the O(·) notation

should be replaced with Õ(·) when summing up the running time over all the recursive calls, as

this summation adds a logarithmic factor to the running time. Thus, the overall time required to

create the HR is Õ(r11/6−2γ/3), as stated. The time to create all the HR for all regions is, therefore,

Õ(nr(5−4γ)/6).

Third Step: We compute distances from s to all the vertices in ∪R∈RB(R). This is done by

replacing each region R with the complete directed graph HR. (Notice that an edge (u, v) may have

multiplicity now, since both u and v may appear together in more than one B(R). Notice also that

we assume that s belongs to some B(R) (when performing the first step, we have at least one region

R for which s ∈ R, so we can artificially add s to B(R), if it is not already there). The number of

edges in the replaced graph (with multiplicities) is

O
(n
r

(r(2−γ)/3)2
)

= O(nr(1−2γ)/3).

The number of vertices in the replaced graph is O(nr r
(2−γ)/3). The smallest possible edge length in

the replaced graph is trivially not smaller than −nL. By applying Goldberg’s O(
√
NM logK) single

source shortest path algorithm for graphs with N vertices, M edges, and smallest weight −K on our

replaced graph, the distances from s to all the vertices in ∪r∈RB(R) can be computed in time

Õ(n3/2r(1−5γ)/6 logL).

Fourth Step: We remain with the need to compute, for each region R, the distance from s to the

vertices of R \ B(R). For this purpose, we construct an augmented graph GR which is obtained

7

from R by adding edges, and preserves the distances. That is, if u, v ∈ R then δR(u, v) = δGR(u, v).

However, the important feature of GR is that each distance can be obtained via a path of GR that

has only O(log r) edges. Cohen [3] exhibits an efficient construction of such an augmentation, but

one can also use the construction described in the conference version of [12]. Indeed, in the second

step, while recursively creating HR from the HRi ’s, we can also create GR recursively from GRi ’s by

defining GR to be the union of HR and the GRi ’s. An inductive argument shows that distances of

R are preserved in GR, and that each distance in GR is obtained via a path consisting of O(log r)

edges (corresponding to the depth of the recursion). Furthermore, the recursion shows that GR

has O(r(4−2γ)/3 log r) edges (indeed, recall that HR is a complete directed graph with O(r(2−γ)/3)

vertices).

Having constructed GR, we obtain G′R by adding a new source vertex sR with an edge from sR to

each vertex of B(R) whose length is the distance from s as computed in the third step. Computing

SSSP from sR in G′R using Bellman-Ford requires only O(log r) = O(log n) iterations, and each

iteration is linear in the number of edges of G′R which is O(r(4−2γ)/3 log r). Thus, shortest paths

in G′R are computed in Õ(r(4−2γ)/3) time for each region, and in Õ(nr(1−2γ)/3) time for all regions.

Clearly, the computed distance from sR to a vertex v ∈ R \B(R) equals the distance from s to v in

G.

Considering all four steps, the overall running time of the algorithm is

Õ(max{n1+γ , nr(5−4γ)/6 , n3/2r(1−5γ)/6 logL , nr(1−2γ)/3}) =

Õ(max{n1+γ , nr(5−4γ)/6 , n3/2r(1−5γ)/6 logL}).

For a given fixed γ, the optimal choice for r is n3/(4+γ) (in fact, it is n3/(4+γ)(logL)6/(4+γ), but we

ignore this negligible improvement in the exponent of logL) which now means that the running time

is

Õ(max{n1+γ , n
13−2γ
8+2γ logL}).

Optimizing with γ =
√

11.5− 3 < 0.392 the running time of the algorithm is

Õ(n
√
11.5−2 logL) ≤ O(n1.392 logL)

as required.

It is interesting to note that the proof of Theorem 1.1 yields a non-trivial complexity bound also

when applied to multiple sources. Indeed, the first and second step are not affected by the number

of sources. The third and fourth step can be applied to each source separately. Thus, if we wish to

compute distances from a set of nα sources to each vertex of the graph, the time required is

Õ(max{n1+γ , nr(5−4γ)/6 , n3/2+αr(1−5γ)/6 logL , n1+αr(1−2γ)/3}).

It is easy to see that for small values of α this is significantly more beneficial than just performing the

whole algorithm separately from each source, and is faster than any other presently known method.

8

4 Concluding remarks and open problems

Our algorithm for single source shortest paths in H-minor free directed graphs uses varying separator

sizes, and utilizes a tradeoff between the size of and the complexity of finding a separator. It would

be interesting to find other applications of this method. One such result, for the maximum matching

problem, appears in [25], although in that result the size of the separator is not varying.

References

[1] N. Alon, P.D. Seymour, and R. Thomas. A separator theorem for nonplanar graphs. J. Amer.

Math. Soc., 3(4):801–808, 1990.

[2] R.E. Bellman. On a routing problem. Quart. Appl. Math., 15:87–90, 1958.

[3] E. Cohen. Efficient parallel shortest-paths in digraphs with a separator decomposition. Proc.

5th Annual Symposium on Parallel Algorithms and Architectures (SPAA), 57–67, 1993.

[4] E.W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1:269–271,

1959.

[5] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths, and near

linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006.

[6] L.R. Ford and D.R. Fulkerson. Flows in networks. Princeton Univ. Press, Princeton, NJ, 1962.

[7] G.N. Frederickson. Fast Algorithms for shortest paths in planar graphs, with applications. SIAM

J. Comput., 16(6):1004–1022, 1987.

[8] M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network optimiza-

tion algorithms. Journal of the ACM, 34:596–615, 1987.

[9] H.N. Gabow. Scaling Algorithms for Network Problems. J. Comput. Syst. Sci., 31(2):148–168,

1985.

[10] H.N. Gabow and R.E. Tarjan. Faster Scaling Algorithms for Network Problems. SIAM J.

Comput., 18(5):1013–1036, 1989.

[11] A.V. Goldberg. Scaling algorithms for the shortest paths problem. Proc. 4th ACM-SIAM Sym-

posium on Discrete Algorithms (SODA), 222–231, 1993.

[12] M.R. Henzinger, P.N. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for

planar graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997. See Also: Proc. 26th ACM Symposium

on Theory of Computing (STOC), 27–37, 1994.

9

[13] P. Klein, S. Mozes, and O. Weimann, Shortest paths in directed planar graphs with nega-

tive lengths: a linear-space O(n log2 n)-time algorithm. Proc. 20th ACM-SIAM Symposium on

Discrete Algorithms (SODA), 236–245, 2009.

[14] C. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta Mathematicae,

15:271–283, 1930.

[15] R.J. Lipton, D.J. Rose, and R.E. Tarjan. Generalized nested dissection. SIAM J. Numerical

Analysis, 16(2):346–358, 1979.

[16] R.J. Lipton and R.E. Tarjan. A separator theorem for planar graphs. SIAM J. Applied Math.,

36(2):177–189, 1979.

[17] L. Lovász. Graph minor theory. Bull. Amer. Math. Soc., 43(1):75–86, 2006.

[18] W. Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Ann.,

174:265-268, 1967.

[19] B. Reed and D.R. Wood. Fast separation in a graph with an excluded minor. Proc. of the

2005 European Conference on Combinatorics, Graph Theory and Applications (EUROCOMB),

45–50, 2005.

[20] N. Robertson and P.D. Seymour. Graph minors. VIII. A Kuratowski theorem for general sur-

faces. J. Combin. Theory Ser. B, 48(2):255–288, 1990.

[21] N. Robertson and P.D. Seymour. Graph minors. XX. Wagner’s conjecture. J. Combin. Theory

Ser. B, 92(2):325–357, 2004.

[22] S. Tazari and M. Müller-Hannemann. A faster shortest-paths algorithm for minor-closed graph

classes. Proc. 34th International Workshop on Graph-Theoretic Concepts in Computer Science

(WG) LNCS 5344, 360–371, 2008.

[23] C. Thomassen. Kuratowski’s theorem. J. Graph Theory, 5:225–241, 1981.

[24] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen, 114(1):570–

590, 1937.

[25] R. Yuster and U. Zwick. Maximum matching in graphs with an excluded minor. Proc. 18th

ACM-SIAM Symposium on Discrete Algorithms (SODA), 108–117, 2007.

10

