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Abstract

Given a constant number d of n × n matrices with total m non-infinity entries, we
show how to construct in (essentially optimal) Õ(mn+ n2) time a data structure that can
compute in (essentially optimal) Õ(n2) time the distance product of these matrices after
incrementing the value (possibly to infinity) of a constant number k of entries.

Our result is obtained by designing an oracle for single source replacement paths that
is suited for short distances: Given a graph G = (V, E), a source vertex s, and a shortest
paths tree T of depth d rooted at s, the oracle can be constructed in Õ(mdk) time for any
constant k. Then, given an arbitrary set S of at most k = O(1) edges and an arbitrary vertex
t, the oracle in Õ(1) time either reports the length of the shortest s-to-t path in (V, E \ S)
or otherwise reports that any such shortest path must use more than d edges.

1 Introduction

The distance product A⊗ B of two n× n matrices A, B with entries in R∪∞ is the n× n matrix
C with C[i, j] =minn

`=1 A[i,`] + B[`, j]. It is well known that computing the distance product
is equivalent to solving All Pairs Shortest Paths (APSP). In particular, the distance product of
two n× n matrices with m non-infinity entries is equivalent to APSP in graphs with n vertices
and m edges. Both problems can be solved in Õ(nm+ n2) time and this is optimal under the
popular conjecture that there is no O((mn)1−ε) time algorithm for APSP.

In this paper, we consider the problem of maintaining a distance product of a constant
number of matrices subject to a constant number of entries being incremented. Namely, let k
and d be two constants. We are given n×n matrices A1, . . . , Ad with entries in R∪∞ such that
a total of m entries are non-infinity. A location increment is a quadruple (`, i, j,δ) corresponding
to entry A`[i, j] being increased by δ. Given a set S of k location increments, let C(S) be the
distance product A1 ⊗ · · · ⊗ Ad after applying these k location increments. A naïve solution is,
given S, to compute C(S) from scratch in Õ(nm+ n2) time. Instead, we prove that after an
Õ(nm+ n2) time preprocessing stage, given S we can compute C(S) in Õ(n2) time. We achieve
this by designing an efficient solution to the single source replacement paths problem that is
suited for short distances.

1.1 Single Source Replacement Paths

Given two vertices s and t and an edge e, a replacement path Ps,t,e is a shortest s-to-t path that
avoids e. In the Replacement Paths (RP) problem, we are given a graph G and a shortest path P
between two vertices s and t. The goal is to return the length of a replacement path Ps,t,e for
every edge e of P. Note that the size of the RP output is Θ(n). In the Single Source Replacement
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Paths (SSRP) problem, we are given a graph G and a shortest path tree T rooted at s. The goal
is to return the length of a replacement path Ps,t,e for every vertex t of G and every edge e of
T . Note that the size of the SSRP output is Θ(n2).

Arbitrary edge weights. The naïve solution to both RP and SSRP is to remove each edge e
(in RP e ∈ P and in SSRP e ∈ T) one at a time, and compute a shortest path tree each time.
For general directed graphs with n vertices, m edges, and arbitrary edge weights, this can
easily be done in O(mn+ n2 lg n) time. The fastest known algorithm is O(mn+ n2 lg lg n) [13],
and the existence of an O((mn)1−ε) algorithm seems unlikely: First, Hershberger et al. [15]
showed that in the path-comparison model of computation of Karger et al. [17] SSRP requires
Ω(mn) comparisons. Second, Vassilevska Williams and Williams [24] showed that a subcubic
O(n3−ε) time RP algorithm implies a subcubic time algorithm for All-Pairs Shortest Paths (APSP).
Therefore, in directed dense graphs with arbitrary edge weights, the cubic time complexity of
both RP and SSRP seems unavoidable.

Unweighted graphs and undirected graphs. For unweighted directed graphs, Roditty and
Zwick [21] showed that RP can be solved in Õ(m

p
n). Their algorithm was randomized and

was recently derantomized by Alon Chechik and Cohen [1]. For undirected graphs, Malik et
al. [18] and Nardelli et al. [19, 20] showed that RP can be solved in near linear Õ(m) time.
Finally, for undirected unweighted graphs, Chechik and Cohen [8] presented a randomized
Õ(m
p

n+ n2) time algorithm for SSRP along with a matching conditional lower bound (based
on the hardness of Boolean Matrix Multiplication).

Bounded integral weights. When the edge weights are integers in [−M , M], there are faster
algorithms for both RP and SSRP that are based on fast matrix multiplication. Weimann and
Yuster [22] described a randomized Õ(Mn1+ 2

3ω) algorithm for RP which was later improved by
Vassilevska Williams [25] to Õ(Mnω). As for SSRP, Grandoni and Vassilevska Williams [14]
presented an Õ(Mnω) time randomized algorithm for positive integral edge weights in [1, M],
and an Õ(M

1
4−ω n2+ 1

4−ω ) time randomized algorithm for positive and negative integral weights
in [−M , M]. Observe that with positive weights, the same Õ(Mnω) bound is known for both
RP and SSRP. This is also the best known bound for Single-Source Shortest Paths (SSSP) [26].
With negative weights however, there is currently a gap between RP and SSRP with the latter
having an Õ(M

1
4−ω n2+ 1

4−ω ) bound matching the best known bound for All-Pairs Shortest Paths
(APSP) [27]. Grandoni and Vassilevska Williams [14] conjectured that the reason for this gap
is that the SSRP problem with negative weights is as hard as APSP.

Distance sensitivity oracles. In the more general version of the problem, we wish to design
a data structure (a distance sensitivity oracle) that is not restricted to a single source. That is,
can return the length of Ps,t,e given any two vertices s, t and any edge e. In the most general
setting, such an oracle could handle multiple failures (i.e. given vertices s, t and a set of at most
k edges return the shortest s-to-t path that avoids all edges in the set). Distance sensitivity
oracles have been extensively studied. In particular, Grandoni and Vassilevska Williams [14]
showed a reduction from (single-fault) distance sensitivity oracles to the SSRP problem.

A naïve distance sensitivity oracle is to precompute and store for every vertex v and for
every set of edges F with |F | ≤ k, the distances from v to all other vertices in G \ F . This
requires O(n2 · mk) space and Õ(k) query. The first nontrivial distance sensitive oracle for
a single edge failure (k = 1) in directed graphs was given by Demetrescu et al. [11] who
obtained space O(n2 log n) and query time O(log n). This was extended in [10] to a single
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edge or vertex failure with space O(n2 log n), query time O(1), and preprocessing time Õ(mn2).
Later, Karger and Bernstein improved the preprocessing time (while keeping the space and
query time unchanged), first to O(n2pm) in [3] and then to Õ(mn) in [4]. For two failures, an
oracle of size O(n2 log3 n) with query time O(log n) and polynomial preprocessing time was
given Duan and Pettie [12]. For k failures, an oracle of size O(n2 · nk) with query time O(k2)
was given by Chechik et al. [9].

Improved oracles are known for bounded integral edge weights [14, 23] (with faster
preprocessing time at the cost of a polynomial query time), and when we are willing to settle
for approximate distances [2,5,6,7,9].

1.2 Our results

We consider the SSRP problem in directed graphs with arbitrary (positive and negative) edge
weights. We assume that the graph contains no negative weight cycles.

• In Section 2 we refine the Θ̃(mn) known upper and lower bounds for SSRP to be
parametrized by the (unweighted) depth d of the shortest path tree T . Namely, if
we only wish to compute replacement paths to vertices of depth at most d then (1) there
is a deterministic Õ(md) time algorithm for SSRP, and (2) an O((md)1−ε) time SSRP
algorithm for any d is unlikely as it implies an O((mn)1−ε) time algorithm for SSSP with
negative weights. The lower bound is quite trivial and the upper bound could be easily
obtained by using [10, Corollary 4]. We give a slightly different solution than [10] that
we can then extend to multiple faults.

• In Section 3 we show how to handle SSRP with k faults. Namely, how to compute for every
t and every set of k edges the weight of a shortest s-to-t path that avoids all the k edges
in the set. We give a deterministic O((m+ n log n)(d log n)k) time algorithm for the case
where we know that all replacement paths contain at most d vertices. For instance, the
family of DAG’s (directed acyclic graphs) of depth d has this property. In fact, we give a
single source distance sensitivity oracle with preprocessing time O((m+n log n)(d log n)k)
and query time O(k logk n). Given an arbitrary set of at most k faulty edges and an
arbitrary vertex t the oracle reports the s-to-t distance that avoids all the k edges or
otherwise reports that such path must use more than d edges. We use our oracle for the
case when k = O(1) and then the preprocessing is Õ(mdk) and the query time is Õ(1).

• In Section 4 we use our oracle to solve the problem of maintaining a distance product.
Given n× n matrices A1, . . . , Ad with entries in R∪∞ where m entries are non-infinity,
we show how to construct in O((nm+ n2 log n)(d log n)k) time a data structure that can
compute in O(n22kk logk n) time the distance product C = A1 ⊗ · · · ⊗ Ad after k entries
are changed (to a larger, possibly infinite value). This is interesting when both k and d
are constants as then: (1) The construction time is Õ(mn+ n2) and is optimal under the
conjecture that there is no O((mn)1−ε) time algorithm for APSP with real edge lengths on
graphs with n vertices and m edges, and (2) The query time is Õ(n2) and is optimal up to
logarithmic factors since even for d = 3 a single fault can change all the n2 entries of C .

2 SSRP with a Single Fault

We assume that the (unweighted) depth of the shortest paths tree T rooted at s is d (otherwise,
we consider the first d levels of T). We can compute T in O(md) time by running d iterations
of Bellman-Ford (i.e. stopping at the iteration when no edges are relaxed). We then use the
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standard trick of Johnson [16] to reweigh the edges of the graph to become nonnegative.
Namely, we add to the weight of edge (u, v) the s-to-u distance and subtract the s-to-v distance.
This reweighing does not change the identity of shortest paths nor of replacement paths (and
their original length can be recovered from their new length in constant time). Moreover, the
new weights of all edges in T are zero.

After reweighing, we partition the edges of T into d levels according to their (unweighted)
depth. Then, for each level ` we compute in O(m log n+ n log2 n) time the replacement paths
Ps,t,e of all vertices t of G and all edges e of level `. To achieve this, observe that we can restrict
the paths Ps,t,e to visit at most one edge of T that is of level `. Otherwise, if Ps,t,e first visits
edge (u, v) and later edge (u′, v′) (both of level `) then there is an alternative path to u′ that is
of length zero and does not visit any level-` edge (the s-to-u′ path in T).

To compute all Ps,t,e of level-` edges e, we therefore apply the following procedure: We
consider the level-` edges as distinct binary strings with O(log n) bits and proceed in O(log n)
iterations. In the i’th iteration we run Dijkstra’s algorithm from s on the graph obtained from G
by removing all level-` edges whose i’th bit is 1. We then do the same with the graph obtained
from G by removing all level-` edges whose i’th bit is 0. Now, suppose that a certain Ps,t,e
uses the level-` edge e′ (and no other level-` edges). Since e and e′ differ in at least one bit,
we know that in one of the Dijkstra runs in which e was removed e′ survived. So Ps,t,e was
captured then.

There are d levels and for each of them we run Dijkstra’s algorithm O(log n) times so the
overall time is Õ(md). We summarize our result in the following theorem.

Theorem 1. Given a directed graph G with m arbitrary weighted edges and a shortest paths tree
of depth d rooted at s, there is a deterministic Õ(md) time algorithm for the SSRP problem from
vertex s.

Lower bound. We now show that in real-weighted graphs, for any d, an algorithm that finds
all replacement paths from s to every vertex of depth at most d in O((md)1−ε) time1 implies an
algorithm for Single-Source Shortest Paths (SSSP) with negative weights in O((mn)1−ε) time.

Clearly, finding the replacement paths to all shortest paths of at most d edges is at least
as hard as finding all shortest paths of at most d edges. If the latter could be solved in
O((md)1−ε) time then we could apply it n/d times to solve SSSP with negative weights in
O((md)1−ε · (n/d)) = O(m1−εn) time. After each iteration, for every vertex v that was reached
we add a directed edge (s, v) whose length is the s-to-v distance (if there was already an (s, v)
edge then we just change its length). The new graph still has O(m) edges but has the property
that the number of edges in each shortest path decreases by d − 1, so after O(n/d) iterations
we are done.

3 SSRP with Multiple Faults

In this section we give a single source distance sensitivity oracle with preprocessing time
O((m+ n log n)(d log n)k) and query time O(k logk n). Given an arbitrary set S of at most k
faulty edges and an arbitrary vertex t a query reports the s-to-t distance that avoids all the k
edges or otherwise reports that any such path must use more than d edges.

The data structure. Let G = (V, E) denote the input graph and s denote the source vertex.
Suppose that |V | = n, |E| = m and each e ∈ E is uniquely represented by a binary string

1In fact, it is enough to assume O(m1−εd).
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(e1, . . . , er) where r = dlog me. Our data structure is represented by a perfect q-ary tree Q with
k+ 1 levels where q = 2rd. Shortest paths information is held only in the leaves of Q which
are at level k and internal vertices are used in order to traverse the tree to the correct leaf at
query time. Each vertex of Q is associated with a label QF for some subset F ⊆ E of edges. The
label of the root of Q is QE . Let G[F] denote the subgraph of G consisting of the edges F and
let TF denote a shortest path tree of G[F] rooted at s. Let AF be an array indexed by V where
AF [v] is the level of vertex v in TF (s has level zero). In every internal vertex of Q with label
QF we store the entire array AF .

We next show how to construct and label the children of an internal vertex QF given its
corresponding array AF and its shortest paths tree TF . Since QF has 2rd children, we consider
each child QF ′ as a triple (`, j, b) where 0 ≤ ` < d, 1 ≤ j ≤ r and b ∈ {0,1}. F ′ ⊂ F is
obtained from F by removing all edges e = (u, v) where u is in level ` of TF (i.e. AF [u] = ` and
AF [v] = `+ 1) and furthermore e j = b (i.e. the jth bit in the binary representation of e is b).
We also remove any edge of F whose head is in level larger than d (we do not care about such
edges as recall that we are only interested in shortest paths trees having depth at most d). This
uniquely defines F ′. We say that the child QF ′ is the (`, j, b)-child of QF .

Finally, we define the information kept in the leaves of Q. Consider some leaf labeled QF .
Recall that we may assume that all our edges have nonnegative weight as we have initially
used Johnson’s reweighing trick on the input graph, as described in the previous section. The
information kept in the leaf QF is just the result of a Dijkstra run from s in G[F]. Recall also
that we can recover the original lengths before the reweighing in constant time per length.

The query. First observe that if a distance sensitivity oracle can handle exactly k faults, then it
can be used to handle at most k faults as well (one simple way to see this is by adding “dummy
edges” and using them to complement queries with fewer than k edges to queries with precisely
k edges). We therefore describe how to use the tree Q to answer a query (S, t) where S ⊂ E is
an arbitrary set of exactly k edges and t ∈ V is an arbitrary vertex, and we seek the length of a
shortest s-to-t path in the graph G[E \ S]. By considering the root QE of Q and the array AE we
locate an edge e = (u, v) ∈ S with minimum AE[u] among all heads of the edges in S (if there
are ties, we pick e arbitrarily). Suppose AE[u] = ` and e = (e1, . . . , er). We recursively call the
r children (`, j, e j) for j = 1, . . . , r providing each recursive call the query (S \ e, t). Each of
the r recursive calls will provide an answer (a candidate answer for the query), we pick the
smallest and return this as the query’s answer. More generally, when we are presently at vertex
QF of level p in Q, we have a partial query of the form (S′, t) where S′ ⊆ S, |S′| = k − p. If
p = k we are at a leaf of Q so we just return in O(1) time the length of the shortest s-to-t path
in G[F] that is stored in QF . Otherwise, p < k and QF is an internal vertex of Q, so we recurse
as described above.

Runtime. Running d iterations of Bellman-Ford and using Johnson’s trick is done initially
and requires O(md) time. The information stored at each vertex of Q is obtained by a single
Dijkstra run on a graph with n vertices and at most m edges. As the number of vertices of Q is
O((d log n)k), the total time to construct Q is O((m+ n log n)(d log n)k).

A query visits O(logk n) vertices of Q. In each visit, the edge e of the current set S′ with
minimum head level is located in O(k) time as |S′| ≤ k. At a leaf QF we spend only O(1) time
to get the length of the shortest s-to-t path in G[F]. Thus, a query takes O(k logk n) time.

Correctness. The query correctness follows from the following claim: Suppose we are
presently at vertex QF at level p of Q and our partial query is (S′, t). Then, the result re-
turned by this vertex to its caller is the length of a shortest s-to-t path in G[F] that uses at most
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d edges and avoids the edges in S′. We prove the claim by induction on k − p. For the base
case k− p = 0 so QF is a leaf and S′ = ;. Then indeed the information stored at QF contains
the length of the shortest s-to-t path in G[F] and this length is returned. Assuming the claim
holds for level k ≥ p+ 1> 0 we prove it holds for level p. So we are presently at an internal
vertex QF at level p of Q and our partial query is (S′, t) with |S′| = k − p. Let e = (u, v) ∈ S′

with AF [u] = ` minimum among all heads of the elements of S′. As shown in the previous
section, we may restrict to shortest s-to-t paths in G[F] which avoid S′ and contain at most
one edge whose head is at level ` of TF . Suppose that a certain such path P uses an edge
e′ = (u′, v′) whose head is at level ` of TF (and P uses no other edge whose head is at level `
of TF ). Suppose that the j’th bit in the binary representation of e differs from the j’th bit in the
binary representation of e′, that is e′ j = 1− e j. One of the children we recursively call is the
(`, j, e j) child of QF , labeled Q′F and provide it with the partial query (S′ \ e, t). Observe that all
the edges of P survived in F ′. By the induction hypothesis, this child will return the length of a
shortest s-to-t path in G[F ′] which avoids the edges in S′ \ e, namely it will return the length of
P. All other children we call return values that are at least as large as the length of P as in the
other calls, P might not have survived, nor any other shortest s-to-t path of G[F] that avoids
S′. As we are returning the minimum over all calls, we will correctly return the length of P.
We summarize our result in the following theorem.

Theorem 2. Let k be a fixed positive integer. Given a directed graph G with m arbitrary weighted
edges and a source vertex s, there is a deterministic distance sensitivity oracle which given a query
(S, t) where S is an arbitrary subset of k edges and t is an arbitrary vertex, returns in O(k logk n)
time (so Õ(1) for constant k) the shortest s-to-t path that avoids S or else reports that any such
path uses more than d edges. The time to construct the oracle is O((m+ n log n)(d log n)k) (so
Õ(mdk) for constant k).

4 Distance Product with Faults

Given n× n matrices A1, . . . , Ad with entries in R∪∞, we show how to construct in O((nm+
n2 log n)(d log n)k) time a data structure that can compute in O(n22kk logk n) time the distance
product C = A1 ⊗ · · · ⊗ Ad after k entries are changed (each to a larger, possibly infinite value).

Our data structure uses the distance sensitivity oracle from the previous section, but requires
an additional lemma (of independent interest) showing that any distance sensitivity oracle that
handles k faults with query time q can be used to obtain an edge increase distance oracle with
the same preprocessing time and query time O(2k · q). While we state this lemma for single
source distance sensitivity oracles, it is clear that it holds for multiple source distance sensitivity
oracles as well. Formally, a single source k edge-increase distance oracle for a graph G and a
source vertex s is a data structure that is given queries of the form (S, t) where t is an arbitrary
vertex and S is a set of k pairs (e1,δ1), . . . , (ek,δk) where ei is an edge and δi is a positive real,
possibly infinity. The query’s goal is to return the shortest s-to-t path in G after the weights of
ei increased by δi . Observe that a standard single source distance sensitivity oracle is a special
case, where all the δi are infinity.

Lemma 3. For a graph G, a source vertex s, and a number k, any k-fault single source distance
sensitivity oracle with query time q implies a k edge-increase single source distance oracle for G
and s using the same data structure and whose query time is O(2k · q).

Proof. We show how to process a query (S, t)where now S is a set of k pairs (e1,δ1), . . . , (ek,δk)
as above. Let G′ be the same as G but after the weight of each ei is increased by δi . Consider a
shortest s-to-t path P in G′. Let F = {e1, . . . , ek} and let F ′ = F ∩ P denote the set of edges of F
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used in P. Observe that P is also a shortest path in the graph G[E \ (F \ F ′)] (the original G
after the edges of F \ F ′ are removed). Therefore, if we query the distance sensitivity oracle
with query (F \ F ′, t) it will return the weight w of P in G[E \ (F \ F ′)]. Then the weight of
P in G′ is just w+

∑

ei∈F ′ δi. Of course, we do not know what is F ′ so we proceed as follows.
For each possible subset F ′ ⊆ F , query the distance sensitivity oracle with the query (F \ F ′, t).
Letting wF be its answer, set w∗F = wF +

∑

ei∈F ′ δi . Notice that if F ′ 6= F ∩ P then w∗F is at least
as large as the weight of P in G′. Taking the minimum of all the w∗F therefore correctly returns
the weight of P in G′. As we have queried the distance sensitivity oracle 2k times, the query
time of the k edge-increase single source distance oracle is O(2k · q).

The data structure. Given the matrices A1, . . . , Ad we construct an acyclic (d + 1)-layered
graph G as follows. The vertex set of G consists of d + 1 parts denoted V1, . . . , Vd+1 where
V` = {v`,1, . . . , v`,n}. There are edges only from a part V` to the next part V`+1. More precisely,
for each non-infinity entry of A`, say, A`[i, j] we add an edge from v`,i to v`+1, j with weight
A`[i, j]. Observe that any path in G contains at most d edges and any path from a vertex in V1
to a vertex in Vd+1 contains precisely d edges. Furthermore, G has n(d + 1) = O(n) vertices
and m edges. If C = A1 ⊗ · · · ⊗ Ad then C[i, j] is the weight of a shortest path in G from v1,i to
vd+1, j. Similarly, C(S)[i, j] is the weight of a shortest path in G from v1,i to vd+1, j after the k
edges corresponding to the location increments of S.

We apply Lemma 3 to the distance sensitivity oracle of Theorem 2 for n times, where
each time the graph is G and a distinct vertex of V1 is chosen for the source s. We thus
obtain n single source k edge-increase distance oracles. The time to construct all oracles is
therefore O((mn+ n2 log n)(d log n)k). Now suppose that S is a set of k location increments, or,
equivalently, we can view S as a set of k pairs (ex ,δx) for x = 1, . . . , k where ex is an edge of
G and δx is its increased weight. Then, by Theorem 2 and Lemma 3, each C(S)[i, j] can be
obtained in O(2kk logk n) time by querying the oracle corresponding to the source s = v1,i with
the query (S, j). We summarize our result in the following theorem.

Theorem 4. Given n× n matrices A1, . . . , Ad with entries in R∪∞ and with a total of m non-
infinity entries, one can construct in O((mn+ n2 log n)(d log n)k) time a data structure that given
a query S of k location increments, computes (deterministically) the distance product C(S) in
O(n2 · 2kk logk n) time.
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