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Abstract

Let A and B two n × n matrices over a ring R (e.g., the reals or the integers) each containing at most m

non-zero elements. We present a new algorithm that multiplies A and B using O(m0.7n1.2 + n2+o(1)) alge-

braic operations (i.e., multiplications, additions and subtractions) over R. The naive matrix multiplication

algorithm, on the other hand, may need to perform Ω(mn) operations to accomplish the same task. For

m ≤ n1.14, the new algorithm performs an almost optimal number of only n2+o(1) operations! For m ≤ n1.68,

the new algorithm is also faster than the best known matrix multiplication algorithm for dense matrices

which uses O(n2.38) algebraic operations. Obtaining a fast sparse matrix multiplication algorithm that beats

the naive method even for very sparse matrices was a long standing open problem. The new algorithm is

obtained using a surprisingly straightforward combination of a simple combinatorial idea and existing fast

rectangular matrix multiplication algorithms. We also obtain improved algorithms for the multiplication

of more than two sparse matrices. As the known fast rectangular matrix multiplication algorithms are far

from being practical, our result, at least for now, is only of theoretical value.

1 Introduction

The multiplication of two n×n matrices is one of the most basic algebraic problems and considerable effort was

devoted to obtaining efficient algorithms for the task. The naive matrix multiplication algorithm performs

O(n3) operations. Strassen [Str69] was the first to show that the naive algorithm is not optimal, giving

an O(n2.81) algorithm for the problem. Many improvements then followed. The currently fastest matrix

multiplication algorithm, with a complexity of O(n2.38), was obtained by Coppersmith and Winograd [CW90].

More information on the fascinating subject of matrix multiplication algorithms and its history can be found

in Pan [Pan85] and Bürgisser et al. [BCS97]. An interesting new group theoretic approach to the matrix

multiplication problem was recently suggested by Cohn and Umans [CU03]. For the best available lower

bounds see Shpilka [Shp03] and Raz [Raz03].

Matrix multiplication has numerous applications in combinatorial optimization in general, and in graph algo-

rithms in particular. Fast matrix multiplication algorithms can be used, for example, to obtain fast algorithms

for finding simple cycles in graphs [AYZ95, AYZ97, YZ04], for finding small cliques and other small subgraphs

[NP85], for finding shortest paths [Sei95, SZ99, Zwi02], for obtaining improved dynamic reachability algo-

rithms [DI00, RZ02], and for matching problems [MVV87, RV89, Che97]. Other applications can be found in

[Cha02, KS03], and this list is not exhaustive.

In many cases, the matrices to be multiplied are sparse, i.e., the number of non-zero elements in them is

negligible compared to the number of zeros in them. For example if G = (V,E) is a directed graph on n

vertices containing m edges, then its adjacency matrix AG is an n×n matrix with only m non-zero elements (1’s

in this case). In many interesting cases m = o(n2). Unfortunately, the fast matrix multiplication algorithms
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mentioned above cannot utilize the sparsity of the matrices multiplied. The complexity of the algorithm

of Coppersmith and Winograd [CW90], for example, remains O(n2.38) even if the multiplied matrices are

extremely sparse. The naive matrix multiplication algorithm, on the other hand, can be used to multiply two

n×n matrices, each with at most m non-zero elements, using O(mn) operations (see next section). Thus, for

m = O(n1.37), the sophisticated matrix multiplication algorithms of Coppersmith and Winograd [CW90] and

others do not provide any improvement over the naive matrix multiplication algorithm.

In this paper we show that the sophisticated algebraic techniques used by the fast matrix multiplication

algorithms can nevertheless be used to speed-up the computation of the product of even extremely sparse

matrices. More specifically, we present a new algorithm that multiplies two n × n matrices, each with at

most m non-zero elements, using O(m0.7n1.2 + n2+o(1)) algebraic operations. (The exponents 0.7 and 1.2 are

derived, of course, from the current 2.38 bound on the exponent of matrix multiplication, and from bounds

on other exponents related to matrix multiplications, as will be explained in the sequel.) There are three

important things to notice here:

(i) If m ≥ n1+ǫ, for any ǫ > 0, then the number of operations performed by the new algorithm is o(mn),

i.e., less then the number of operations performed, in the worst-case, by the naive algorithm.

(ii) If m ≤ n1.14, then the new algorithm performs only n2+o(1) operations. This is very close to optimal as

all n2 entries in the product may be non-zero, even if the multiplied matrices are very sparse.

(iii) If m ≤ n1.68, then the new algorithm performs only o(n2.38), i.e., fewer operations than the fastest

known matrix multiplication algorithm.

In other words, the new algorithm improves on the naive algorithm even for extremely sparse matrices (i.e.,

m = n1+ǫ), and it improves on the fastest matrix multiplication algorithm even for relatively dense matrices

(i.e., m = n1.68).

The new algorithm is obtained using a surprisingly straightforward combination of a simple combinatorial idea,

implicit in Eisenbrand and Grandoni [EG03] and Yuster and Zwick [YZ04], with the fast matrix multiplication

algorithm of Coppersmith and Winograd [CW90], and the fast rectangular matrix multiplication algorithm

of Coppersmith [Cop97]. It is interesting to note that a fast rectangular matrix multiplication algorithm for

dense matrices is used to obtain a fast matrix multiplication algorithm for sparse square matrices.

As mentioned above, matrix multiplication algorithms are used to obtain fast algorithms for many different

graph problems. We note (with some regret . . . ) that our improved sparse matrix multiplication algorithm

does not yield, automatically, improved algorithms for these problems on sparse graphs. These algorithms

may need to multiply dense matrices even if the input graph is sparse. Consider for example the computation

of the transitive closure of a graph by repeatedly squaring its adjacency matrix. The matrix obtain after the

first squaring may already be extremely dense. Still, we expect to find many situations in which the new

algorithm presented here could be useful.

In view of the above remark, we also consider the problem of computing the product A1A2 · · ·Ak of three

or more sparse matrices. As the product of even very sparse matrices can be completely dense, the new

algorithm for multiplying two matrices cannot be applied directly in this case. We show, however, that some

improved bounds may also be obtained in this case. Our results here are less impressive, however. For

k = 3, we improve, for certain densities, on the performance of all existing algorithms. For k ≥ 4 we get no

worst-case improvements at the moment, but such improvements will be obtained if bounds on certain matrix

multiplication exponents are sufficiently improved.

The problem of computing the product A1A2 · · ·Ak of k ≥ 3 rectangular matrices, known as the chain matrix

multiplication problem, was, of course, addressed before. The main concern, however, was finding an optimal
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way of parenthesizing the expression so that a minimal number of operations will be performed when the

naive algorithm is used to successively multiply pairs of intermediate results. Such an optimal placement of

parentheses can be easily found in O(k3) time using dynamic programming (see, e.g., Chapter 15 of [CLRS01]).

A much more complicated algorithm of Hu and Shing [HS82, HS84] can do the same in O(k log k) time. An

almost optimal solution can be found in O(k) time using a simple heuristic suggested by Chin [Chi78]. It

is easy to modify the simple dynamic programming solution to the case in which fast rectangular matrix

multiplication algorithm is used instead of the naive matrix multiplication algorithm. It is not clear whether

the techniques of Hu and Shing and of Chin can also be modified accordingly. Cohen [Coh99] suggests an

interesting technique for predicting the non-zero structure of a product of two or more matrices. Using her

technique it is possible to exploit the possible sparseness of the intermediate products.

All these techniques, however, reduce the computation of a product like A1A2A3 into the computation of

A1A2 and then (A1A2)A3, or to the computation of A2A3 and then A1(A2A3). We show that, for certain

densities, a faster way exists.

The rest of the paper is organized as follows. In the next section we review the existing matrix multiplication

algorithms. In Section 3 we present the main result of this paper, i.e., the improved sparse matrix multipli-

cation algorithm. In Section 4 we use similar ideas to obtain an improved algorithm for the multiplication of

three or more sparse matrices. We end, in Section 5, with some concluding remarks and open problems.

2 Existing matrix multiplication algorithms

In this short section we examine the worst-case behavior of the naive matrix multiplication algorithm and

state the performance of existing fast matrix multiplication algorithms.

2.1 The naive matrix multiplication algorithm

Let A and B be two n × n matrices. The product C = AB is defined as follows cij =
∑n

k=1 aikbkj , for

1 ≤ i, j ≤ n. The naive matrix multiplication algorithm uses this definition to compute the entries of C

using n3 multiplications and n3 − n2 additions. The number of operations can be reduced by avoiding the

computation of products aikbkj for which aik = 0 or bkj = 0. In general, if we let āk be the number of non-zero

elements in the k-th column of A, and b̄k be the number of non-zero elements in the k-th row of B, then the

number of multiplications that need to be performed is only
∑n

k=1 āk b̄k. The number of additions required is

always bounded by the required number of multiplications. This simple sparse matrix multiplication algorithm

may be considered folklore. It can also be found in Gustavson [Gus78].

If A contains at most m non-zero entries, then
∑n

k=1 āk b̄k ≤ (
∑n

k=1 āk)n ≤ mn. The same bound is obtained

when B contains at most m non-zero entries. Can we get an improved bound on the worst-case number of

products required when both A and B are sparse? Unfortunately, the answer is no. Assume that m ≥ n and

consider the case āi = b̄i = n, if i ≤ m/n, and āi = b̄i = 0, otherwise. (In other words, all non-zero elements

of A and B are concentrated in the first m/n columns of A and the first m/n columns of B.) In this case
∑n

k=1 ākb̄k = (m/n) · n2 = mn. Thus, the naive algorithm may have to perform mn multiplications even if

both matrices are sparse. It is instructive to note that the computation of AB in this worst-case example

can be reduced to the computation of a much smaller rectangular product. This illustrates the main idea

behind the new algorithm: When the naive algorithm has to perform many operations, rectangular matrix

multiplication can be used to speed up the computation.

To do justice with the naive matrix multiplication algorithm we should note that in many cases that appear in

practice the matrices to be multiplied have a special structure, and the number of operations required may be
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much smaller than mn. For example, if the non-zero elements of A are evenly distributed among the columns

of A, and the non-zero elements of B are evenly distributed among the rows of B, we have āk = b̄k = m/n,

for 1 ≤ k ≤ n, and
∑n

k=1 āk b̄k = n · (m/n)2 = m2/n. We are interested here, however, in worst-case bounds

that hold for any placement of non-zero elements in the input matrices.

2.2 Fast matrix multiplication algorithms for dense matrices

Let M(a, b, c) be the minimal number of algebraic operations needed to multiply an a × b matrix by a b × c

matrix over an arbitrary ring R. Let ω(r, s, t) be the minimal exponent ω for which M(nr, ns, nt) = O(nω+o(1)).

We are interested here mainly in ω = ω(1, 1, 1), the exponent of square matrix multiplication, and ω(1, r, 1),

the exponent of rectangular matrix multiplication of a particular form. The best bounds available on ω(1, r, 1),

for 0 ≤ r ≤ 1 are summarized in the following theorems:

Theorem 2.1 (Coppersmith and Winograd [CW90]) ω < 2.376 .

Next, we define two more constants, α and β, related to rectangular matrix multiplication.

Definition 2.2 α = max{ 0 ≤ r ≤ 1 | ω(1, r, 1) = 2 } , β =
ω − 2

1− α
.

Theorem 2.3 (Coppersmith [Cop97]) α > 0.294 .

It is not difficult to see that these Theorems 2.1 and 2.3 imply the following theorem. A proof can be found,

for example, in Huang and Pan [HP98].

Theorem 2.4 ω(1, r, 1) ≤

{

2 if 0 ≤ r ≤ α,

2 + β(r − α) otherwise.

Corollary 2.5 M(n, ℓ, n) = n2−αβ+o(1)ℓβ + n2+o(1) .

All the bounds in the rest of the paper will be expressed terms of α and β. Note that with ω = 2.376 and

α = 0.294 we get β ≃ 0.533. If ω = 2, as conjectured by many, then α = 1. (In this case β is not defined, but

also not needed.)

3 The new sparse matrix multiplication algorithm

Let A∗k be the k-th column of A, and let Bk∗ be the k-th row of B, for 1 ≤ k ≤ n. Clearly AB =
∑

k A∗kBk∗.

(Note that A∗k is a column vector, Bk∗ a row vector, and A∗kBk∗ is an n× n matrix.) Let ak be the number

of non-zero elements in A∗k and let bk be the number of non-zero elements in Bk∗. (For brevity, we omit

the bars over ak and bk used in Section 2.1. No confusion will arise here.) As explained in Section 2.1, we

can naively compute AB using O(
∑

k akbk) operations. If A and B each contain m non-zero elements, then
∑

k akbk may be as high as mn. (See the example in Section 2.1.)

For any subset I ⊆ [n] let A∗I be the submatrix composed of the columns of A whose indices are in I and

let BI∗ the submatrix composed of the rows of B whose indices are in I. If J = [n] − I, then we clearly

have AB = A∗IBI∗ + A∗JBJ∗. Note that A∗IBI∗ and A∗JBJ∗ are both rectangular matrix multiplications.
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Algorithm SMP(A,B)

Input: Two n× n matrices A and B.

Output: The product AB.

1. Let ak be the number of non-zero elements in A∗k, the k-th column of A, for 1 ≤ k ≤ n.

2. Let bk be the number of non-zero elements in Bk∗, the k-th row of B, for 1 ≤ k ≤ n.

3. Let π be a permutation for which aπ(1)bπ(1) ≥ aπ(2)bπ(2) ≥ . . . ≥ aπ(n)bπ(n).

4. Find an 0 ≤ ℓ ≤ n that minimizes M(n, ℓ, n) +
∑

k>ℓ aπ(k)bπ(k).

5. Let I = {π(1), . . . , π(ℓ)} and J = {π(ℓ + 1), . . . , π(n)}.

6. Compute C1 ← A∗IBI∗ using the fast dense rectangular matrix multiplication.

7. Compute C2 ← A∗JBJ∗ using the naive sparse matrix multiplication algorithm.

8. Output C1 + C2.

Figure 1: The new fast sparse matrix multiplication algorithm.

Recall that M(n, ℓ, n) is the cost of multiplying an n × ℓ matrix by an ℓ× n matrix using the best available

rectangular matrix multiplication algorithm.

Let π be a permutation for which aπ(1)bπ(1) ≥ aπ(2)bπ(2) ≥ . . . ≥ aπ(n)bπ(n). A permutation π satisfying this

requirement can be easily found in O(n) time using radix sort. The algorithm chooses a value 1 ≤ ℓ ≤ n,

in a way that will be specified shortly, and sets I = {π(1), . . . , π(ℓ)} and J = {π(ℓ + 1), . . . , π(n)}. The

product A∗IBI∗ is then computed using the fastest available rectangular matrix multiplication algorithm, using

M(n, ℓ, n) operations, while the product A∗JBJ∗ is computed naively using O(
∑

k>ℓ aπ(k)bπ(k)) operations. The

two matrices A∗IBI∗ and A∗JBJ∗ are added using O(n2) operations. We naturally choose the value ℓ that

minimizes M(n, ℓ, n)+
∑

k>ℓ aπ(k)bπ(k)). (This can easily be done in O(n) time by simply checking all possible

values.) The resulting algorithm, which we call SMP, is given in Figure 1. We now claim:

Theorem 3.1 Algorithm SMP(A,B) computes the product of two n×n matrices over a ring R, with m1 and

m2 non-zero elements respectively, using at most

O(min{ (m1m2)
β

β+1 n
2−αβ

β+1
+o(1) + n2+o(1) , m1n , m2n , nω+o(1) })

ring operations.

If m1 = m2 = m, then the first term in the bound above becomes m
2β

β+1 n
2−αβ

β+1
+o(1). It is easy to check that

for m = O(n1+ α
2 ), the number of operations performed by the algorithm is only n2+o(1). It is also not difficult

to check that for m = O(n
ω+1

2
−ǫ), for any ǫ > 0, the algorithm performs only o(nω) operations. Using the

currently best available bounds on ω,α and β, namely ω ≃ 2.376, α ≃ 0.294, and β ≃ 0.536, we get that the

number of operations performed by the algorithm is at most O(m0.7n1.2 +n2+o(1)), justifying the claims made

in the abstract and the introduction.

The proof of Theorem 3.1 relies on the following simple lemma:

Lemma 3.2 For any 1 ≤ ℓ < n we have
∑

k>ℓ aπ(k)bπ(k) ≤
m1m2

ℓ
.
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Proof: Assume, without loss of generality, that a1 ≥ a2 ≥ . . . ≥ an. Let 1 ≤ ℓ < n. We then clearly have
∑

k>ℓ aπ(k)bπ(k) ≤
∑

k>ℓ akbk. Also ℓ aℓ+1 ≤
∑

k≤ℓ ak ≤ m1. Thus aℓ+1 ≤ m1/ℓ. Putting this together we get

∑

k>ℓ

aπ(k)bπ(k) ≤
∑

k>ℓ

akbk ≤ aℓ+1

∑

k>ℓ

bk ≤
m1

ℓ
m2 =

m1m2

ℓ
.

2

We are now ready for the proof of Theorem 3.1.

Proof: (of Theorem 3.1) We first examine the two extreme possible choices of ℓ. When ℓ = 0, the naive

matrix multiplication algorithm is used. When ℓ = n, a fast dense square matrix multiplication algorithm is

used. As the algorithm chooses the value of ℓ that minimized the cost, it is clear that the number of operations

performed by the algorithm is O(min{m1n , m2n , nω+o(1) }).

All that remains, therefore, is to show that the number of operations performed by the algorithm is also

O((m1m2)
β

β+1 n
2−αβ

β+1
+o(1) + n2+o(1)). If m1m2 ≤ n2+α, let ℓ = m1m2/n

2. As ℓ ≤ nα, we have,

M(n, ℓ, n) +
∑

k>ℓ

aπ(k)bπ(k) ≤ n2+o(1) +
m1m2

ℓ
= n2+o(1) .

If m1m2 ≥ n2+α, let ℓ = (m1m2)
1

β+1n
αβ−2
β+1 . It is easy to verify that ℓ ≥ nα, and therefore

M(n, ℓ, n) = n2−αβ+o(1)ℓβ = (m1m2)
β

β+1 n
2−αβ

β+1
+o(1)

,

∑

k>ℓ

aπ(k)bπ(k) ≤
m1m2

ℓ
= (m1m2)

1− 1
β+1n

2−αβ

β+1 = (m1m2)
β

β+1 n
2−αβ

β+1 .

Thus, M(n, ℓ, n) +
∑

k>ℓ aπ(k)bπ(k) = (m1m2)
β

β+1n
2−αβ

β+1
+o(1)

. As the algorithm chooses the value of ℓ that

minimizes the number of operations, this completes the proof of the theorem. 2

4 Multiplying three or more matrices

In this section we extend the results of the previous section to the product of three or more matrices. Let

A1, A2, . . . , Ak be n × n matrices, and let mr, for 1 ≤ r ≤ k be the number of non-zero elements in Ar. Let

B = A1A2 · · ·Ak be the product of the k matrices. As the product of two sparse matrices is not necessarily

sparse, we cannot use the algorithm of the previous section directly to efficiently compute the product of more

than two sparse matrices. Nevertheless, we show that the algorithm of the previous section can be generalized

to efficiently handle the product of more than two matrices.

Let Ar = (a
(r)
ij ), for 1 ≤ r ≤ k, and B = A1A2 · · ·Ak = (bij). It follows easily from the definition of matrix

multiplication that

bij =
∑

r1,r2,...,rk−1

a
(1)
i,r1

a(2)
r1,r2
· · · a(k−1)

rk−2rk−1
a

(k)
rk−1j . (1)

It is convenient to interpret the computation of bij as the summation over paths in a layered graph, as shown

(for the case k = 4) in Figure 2. More precisely, the layered graph corresponding to the product A1A2 · · ·Ak

is composed of k + 1 layers V1, V2, . . . , Vk+1. Each layer Vr, where 1 ≤ r ≤ k + 1 is composed of n vertices vr,i,

for 1 ≤ i ≤ n. For each non-zero element ar
ij in Ar, there is an edge vr,i → vr+1,j in the graph labelled by

the element ar
ij. The element bij of the product is then the sum over all directed paths in the graph from v1,i

to vk+1,j of the product of the elements labelling the edges of the path.
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a
(1)
42

A1 A2 A3 A4

a
(4)
43

a
(4)
27

a
(2)
86

a
(1)
58

a
(2)
24

a
(3)
44

a
(3)
62

Figure 2: A layered graph corresponding to the product A1A2A3A4.

Algorithm SCMP given in Figure 3 is a generalization of the variant of algorithm SMP given in the previous

section for the product of two matrices. The algorithm starts by setting ℓ to (
∏k

r=1 mr)
1

k−1+β n
αβ−2

k−1+β , where mr

in the number of non-zero entries in Ar, for 1 ≤ r ≤ k. (Note that when k = 2, we have ℓ = (m1m2)
1

β+1n
αβ−2
β+1 ,

as in the proof of Theorem 3.1.) Next, the algorithm lets Ir be the set of indices of the ℓ rows of Ar with

the largest number of non-zero elements, ties broken arbitrarily, for 2 ≤ r ≤ k. It also lets Jr = [n] − Ir be

the set of indices of the n − ℓ rows of Ar with the smallest number of non-zero elements. The rows of Ar

with indices in Ir are said to be the heavy rows of Ar, while the rows of Ar with indices in Jr are said to

be light rows. The algorithm is then ready to do some calculations. For every 1 ≤ r ≤ k, it computes

Pr ← (A1)∗J2
(A2)J2J3

· · · (Ar)Jr∗
. This is done by enumerating all the corresponding paths in the layered

graph corresponding to the product. The matrix Pr is an n×n matrix that gives the contribution of the light

paths, i.e., paths that do not use elements from heavy rows of A2, . . . , Ar, to the prefix product A1A2 · · ·Ar.

Next, the algorithm computes the suffix products Sr ← Ar · · ·Ak, for 2 ≤ r ≤ k, using recursive calls to the

algorithm. The cost of these recursive calls, as we shall see, will be overwhelmed by the other operations

performed by the algorithm. The crucial step of the algorithm is the computation of Br ← (Pr−1)∗Ir(Sr)Ir∗,

for 2 ≤ r ≤ k, using the fastest available rectangular matrix multiplication algorithm. The algorithm then

computes and outputs the matrix (
∑k

r=2 Br) + Pk.

Theorem 4.1 Let A1, A2, . . . , Ak be n×n matrices each with m1,m2, . . . ,mk non-zero elements, respectively,

where k ≥ 2 is a constant. Then, algorithm SCMP(A1, A2, . . . , Ak) correctly computes the product A1A2 · · ·Ak

using

O

(

(
∏k

r=1 mr)
β

k−1+β n
(2−αβ)(k−1)

k−1+β
+o(1)

+ n2+o(1)

)

algebraic operations.

Proof: It is easy to see that the outdegree of a vertex vr,j is the number of non-zero elements in the j-th row

of Ar. We say that a vertex vr,j is heavy if j ∈ Ir, and light otherwise. (Note that vertices of Vk+1 are not

classified as light or heavy. The classification of V1 vertices is not used below.) A path in the layered graph is

said to be light if all its intermediate vertices are light, and heavy if at least one of its intermediate vertices

is heavy.

Let a
(1)
i,s1

a
(2)
s1,s2 · · · a

(k−1)
sk−2sk−1a

(k)
sk−1j be one of the terms appearing in the sum of bij given in (1). To prove the

correctness of the algorithm we show that this term appears in exactly one of the matrices B2, . . . , Bk and Pk

7



Algorithm SCMP(A1, A2, . . . , Ak)

Input: n× n matrices A1, A2, . . . , Ak.

Output: The product A1A2 · · ·Ak.

1. Let ℓ = (
∏k

r=1 mr)
1

k−1+β n
αβ−2

k−1+β .

2. Let Ir be the set of indices of ℓ rows of Ar with the largest number of non-zero

elements, and let Jr = [n]− Ir, for 2 ≤ r ≤ k.

3. Compute Pr ← (A1)∗J2
(A2)J2J3

· · · (Ar)Jr∗
by enumerating all corresponding paths,

for 1 ≤ r ≤ k.

4. Compute Sr ← Ar · · ·Ak, for 2 ≤ r ≤ k, using recursive calls to the algorithm.

5. Compute Br ← (Pr−1)∗Ir(Sr)Ir∗ using the fastest available rectangular matrix multi-

plication algorithm, for 2 ≤ r ≤ k.

6. Output (
∑k

r=2 Br) + Pk.

Figure 3: Computing the product of several sparse matrices.

which are added up to produce the matrix returned by the algorithm. Indeed, if the path corresponding to

the term is light, then the term appears in Pk. Otherwise, let vr,jr be the first heavy vertex appearing on the

path. The term then appears in Br and in no other product. This completes the correctness proof.

We next consider the complexity of the algorithm. As mentioned, the outdegree of a vertex vr,j is equal to

the number of non-zero elements in the j-th row of Ar. The total number of non-zero elements in Ar is mr.

Let dr be the maximum outdegree of a light vertex of Vr. The outdegree of every heavy vertex of Vr is then

at least dr. As there are ℓ heavy vertices, it follows that dr ≤ mr/ℓ, for 2 ≤ r ≤ k.

The most time consuming operations performed by the algorithm is the computation of

Pk ← (A1)∗J2
(A2)J2J3

· · · (Ak)Jk∗

by explicitly going over all light paths in the layered graph, and the k − 1 rectangular products

Br ← (Pr−1)∗Ir(Sr)Ir∗ , for 2 ≤ r ≤ k .

The number of light paths in the graph is at most m1 ·d2d3 · · · dk. Using the bounds we obtained on the dr’s,

and the choice of ℓ we get that the number of light paths is at most

m1 ·d2d3 · · · dk ≤ (
∏k

r=1 mr)/ℓ
k−1

≤ (
∏k

r=1 mr)

[

(
∏k

r=1 mr)
− k−1

k−1+β n
(2−αβ)(k−1)

k−1+β

]

= (
∏k

r=1 mr)
β

k−1+β n
(2−αβ)(k−1)

k−1+β .

Thus, the time taken to compute Pk is O((
∏k

r=1 mr)
β

k−1+β n
(2−αβ)(k−1)

k−1+β ). (Computing the product of the

elements along a path requires k operations, but we consider k to be a constant.)

As |Ir| = ℓ, for 2 ≤ r ≤ k, the product (Pr−1)∗Ir(Sr)Ir∗ is the product of an n× ℓ matrix by an ℓ× n matrix

whose cost is M(n, ℓ, n). Using Corollary 2.5 and the choice of ℓ made by the algorithm we get that

M(n, ℓ, n) = n2−αβ+o(1)ℓβ + n2+o(1) = n2−αβ+o(1)

[

(
∏k

r=1 mr)
β

k−1+β n
(αβ−2)β
k−1+β

]

+ n2+o(1)
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= (
∏k

r=1 mr)
β

k−1+β n
(2−αβ)(1− β

k−1+β
)+o(1)

+ n2+o(1) = (
∏k

r=1 mr)
β

k−1+β n
(2−αβ)(k−1)

k−1+β
+o(1)

+ n2+o(1) .

Finally, it is easy to see that the cost of computing the suffix products Sr ← Ar · · ·Ak, for 2 ≤ r ≤ k, using

recursive calls to the algorithm, is dominated by the cost of the other operations performed by the algorithm.

(Recall again that k is a constant.) This completes the proof of the theorem. 2

There are two alternatives to the use of algorithm SCMP for computing the product A1A2 · · ·Ak. The first

it to ignore the sparsity of the matrices and multiply the matrices in O(nω) time. The second is to multiply

the matrices, one by one, using the naive algorithm. As the naive algorithm uses at most O(mn) operations

when one of the matrices contains only m non-zero elements, the total number of operations in this case

will be O((
∑k

i=r mr)n). For simplicity, let us consider the case in which each one of the matrices A1, . . . , Ak

contains m non-zero elements. A simple calculation then shows that SCMP is faster then the fast dense

matrix multiplication algorithm for

m ≤ n
k−1+ω

k ,

and that it is faster than the naive matrix multiplication algorithm for

m ≥ max{n
k−β(1+(k−1)α)−1

(k−1)(1−β) , n1+o(1)} .

For k = 2, these bounds coincide with the bounds obtained in Section 3. For k = 3, with the best available

bounds on ω,α and β, we get that SCMP is the fastest algorithm when n1.24 ≤ m ≤ n1.45. For smaller values

of m the naive algorithm is the fastest, while for larger values of m the fast dense algorithm is the fastest.

Sadly, for k ≥ 4, with the current values of ω,α and β, the new algorithm never improves on both the naive

and the dense algorithms. But, this may change if improved bounds on ω, and especially on α, are obtained.

5 Concluding remarks and open problems

We obtained an improved algorithm for the multiplication of two sparse matrices. The algorithm does not

rely on any specific structure of the matrices to be multiplies, just on the fact that they are sparse. The

algorithm essentially partitions the matrices to be multiplied into a dense part and a sparse part and uses a

fast algebraic algorithm to multiply the dense parts, and the naive algorithm to multiply the sparse parts. We

also discussed the possibility of extending the ideas to the product of k ≥ 3 matrices. For k = 3 we obtained

some improved results. The new algorithms were presented for square matrices. It is not difficult, however,

to extend them to work on rectangular matrices.

The most interesting open problem is whether it is possible to speed up the running time of other operations

on sparse matrices. In particular, is it possible to compute the transitive closure of a directed graph on n

vertices with m edges in o(mn) time? In particular, is there an O(m1−ǫn1+ǫ) algorithm for the problem, for

some ǫ > 0?
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