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Abstract

An [n, k, r]-partite graph is a graph whose vertex set, V , can be partitioned into n pairwise-

disjoint independent sets, V1, . . . , Vn, each containing exactly k vertices, and the subgraph in-

duced by Vi ∪ Vj contains exactly r independent edges, for 1 ≤ i < j ≤ n. An independent

transversal in an [n, k, r]-partite graph is an independent set, T , consisting of n vertices, one

from each Vi. An independent covering is a set of k pairwise-disjoint independent transversals.

Let t(k, r) denote the maximal n for which every [n, k, r]-partite graph contains an independent

transversal. Let c(k, r) be the maximal n for which every [n, k, r]-partite graph contains an

independent covering. We give upper and lower bounds for these parameters. Furthermore,

our bounds are constructive. These results improve and generalize previous results of Erdös,

Gyárfás and  Luczak [5], for the case of graphs.
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1 Introduction

All graphs considered here are finite, undirected and simple. Let k, r and n be positive integers

with r ≤ k. An [n, k, r]-partite graph is a graph, G = (V,E), whose vertex set is partitioned

into n pairwise-disjoint independent sets, V1, . . . , Vn, where |Vi| = k for i = 1, . . . n, and for each

1 ≤ i < j ≤ n, the subgraph of G induced by Vi ∪ Vj contains exactly r independent edges. Note

that an [n, k, r]-partite graph contains kn vertices and r
(n
2

)
edges. Therefore, for any valid fixed

value of r, if k = w(n) where 0 < w(n) → ∞ is any function, then |E| = o(|V |2) and hence the

graph is sparse.

An independent transversal in an [n, k, r]-partite graph is an independent set, T = {v1, . . . vn},

where vi ∈ Vi. An independent covering is a set, C = {T1, . . . Tk}, of pairwise-disjoint independent

transversals. Note that this implies that every vertex of G belongs to exactly one of the Ti’s.

Given 1 ≤ r ≤ k, let t(k, r) denote the maximal n for which every [n, k, r]-partite graph contains

an independent transversal. Let c(k, r) be the maximal n for which every [n, k, r]-partite graph

contains an independent covering. The purpose of this paper is to estimate these parameters. We

give upper and lower bounds for these parameters, and in some cases, obtain exact values.

In [5], Erdös, Gyárfás and  Luczak considered the value of t(k, 1). They have shown that

(1 + o(1))(2e)−1 <
t(k, 1)

k2
< (1 + o(1)).

We improve the lower bound considerably and show that

(1 + o(1))0.65 <
t(k, 1)

k2
. (1)

The proof of [5] uses the Lovász Local Lemma ([6] see also [1]), and it is non-constructive. That

is, for a sufficiently large k, given an [n, k, 1]-partite graph satisfying, say, n < 0.99k2/(2e), the
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proof does not yield an efficient algorithm for finding an independent transversal, although we

know it exists. Our proof is constructive, and by applying it, we can efficiently find an independent

transversal in any [0.65k2, k, 1]-partite graph. We also generalize the result for the case where r > 1.

In fact, we have the following theorem.

Theorem 1.1 Let g(1) = 0.65, g(r) = 0.52/r for r ≥ 2. For every 0 < C < g(r), there exists

a positive integer K = K(C) such that for every k ≥ K, t(k, r) ≥ bCk2c. Furthermore, given an

[n, k, r]-partite graph, G, with n ≤ Ck2, we can find an independent transversal in G in polynomial

(in k) time.

Note that Theorem 1.1 implies that for all fixed r ≥ 1

t(k, r)

k2
> (1 + o(1))g(r). (2)

Note also that Theorem 1.1 applies to fixed values of r. By applying the Local Lemma in a similar

way to the proof in [5] we can obtain the following alternative lower bound for t(k, r) which is valid

for all 1 ≤ r ≤ k

Theorem 1.2

t(k, r) >
1

2re
k2. (3)

The lower bound established in (2) is better than the one established in (3) for all fixed r. In

addition, the bound in (2) is constructive, while the bound in (3) is not. The proof of Theorem 1.1

is probabilistic, and in it we introduce an iterative method that enables us to show, like in the Local

Lemma, that none of a set of rare events holds. We believe that the method used in the proof of

Theorem 1.1 may be applied to other similar combinatorial problems. Our proof is constructive in
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the sense that it implies an efficient randomized algorithm for finding the independent transversal.

We mention how it can be derandomized, and hence obtain the second part of Theorem 1.1.

A constructive upper bound of (1 + o(1))k2 for t(k, 1) is described in [5]. We conjecture that

t(k, r) ≤ (1 + ok(1))k2/r for all 1 ≤ r ≤ k. (Here ok(1) denotes a quantity tending to zero as

k →∞.) We are able to prove this for a very wide range of values of r.

Theorem 1.3 For every ε > 0, if 432
ε2

log k ≤ r ≤ ε
3k then t(k, r) < (1 + ε)k2/r.

Turning our attention to independent coverings, it turns out that in this case we can establish

the exact values of c(k, 1) and c(k, 2). In fact, proving that c(k, 1) = k is rather simple. Somewhat

surprising is the fact that c(k, 2) = k as well, but the proof in this case is more difficult. In fact,

we show the following:

Theorem 1.4 If 1 ≤ r ≤ k, then k ≥ c(k, r) ≥ min{k, k − r + 2}.

Note that when r approaches k, the theorem is not tight. In fact, we conjecture that for all k ≥ 4,

c(k, r) = k for all r = 1, . . . , k 1. Note that since, clearly, c(k, r) is a monotone decreasing function

of r, it suffices to prove the following.

Conjecture 1.5 For all k ≥ 4 it holds that c(k, k) = k.

Currently, we do not even know the exact value of c(k, 3) for all k.

The remainder of this paper is organized as follows. In section 2 we prove the lower bounds

on t(k, r), namely Theorems 1.1 and 1.2. In section 3 we discuss upper bounds for independent

transversals and prove Theorem 1.3. In section 4 we study independent coverings and prove The-

orem 1.4.
1In the original version of this paper we conjectured this also for k = 3, but this is easily seen wrong as observed

by MacKeigan; a simple computer program verifies shows that already c(4, 4) = 4)
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2 Lower bounds for independent transversals

We begin this section by proving Theorem 1.2, since we require it as an ingredient in the proof of

Theorem 1.1. The proof of Theorem 1.2 is based on the Lovász Local Lemma and, in fact, it is

merely a generalization of the proof presented in [5] for the case r = 1, and is also very similar to

the proof of Proposition 5.3 in Chapter 5 of [1].

Proof of Theorem 1.2 Let G be an [n, k, r]-partite graph with n < 1 + (2re)−1k2. We

pick, from each vertex class of G, randomly and independently a single vertex according to a

uniform distribution. Let T be the random set of vertices picked. We must show that with positive

probability, T is an independent transversal. For each edge e of G, let Ae be the event that T

contains both endpoints of T . We clearly have Prob[Ae] = 1/k2. Note that Ae is independent of all

the events corresponding to edges whose endpoints do not lie in any of the two vertex classes of the

endpoints of e. Hence, Ae is independent of all but at most 2r(n − 2) + r − 1 other events. Now,

since k−2e(2r(n− 2) + r) = k−2er(2n− 3) < 1, we infer from the Local Lemma that with positive

probability, no event Ae holds. This means that, with positive probability, T is an independent

transversal. 2

The following lemma establishes the properties that we require from g(r) in Theorem 1.1.

Lemma 2.1 For an integer r ≥ 1 and 0 < x < g(r), we have

(1− r + re−x)2x > x− 1/r + e−rx/r.

Proof Put x = c/r. For r ≥ 2 it suffices to prove that if 0 < c < 0.52 then

1− r + re−c/r > (1− 1/c+ e−c/c)1/2.
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The r.h.s. is a monotone increasing function of c in the interval (0,∞) and is less than 0.48 for

c = 0.52. For the l.h.s. we can use the inequality e−y > 1 − y, and obtain that 1 − r + re−c/r >

1− c > 0.48. Note that the constant 0.52 is not tight for small r (since e−y > 1− y is not tight for

large y). In fact, for r = 1 we may even choose the constant 0.65, which respects the definition of

g(1). 2

The next lemma can easily be proved by applying l′Hôpital′s rule.

Lemma 2.2 For every ε > 0 and every r ≥ 1, there exists a positive real M = M(ε, r) such that if

k > M then

1− (1− 1

k
)r/k <

r

(1− ε)k2
.

Proof of Theorem 1.1 Let r ≥ 1, and 0 < C < g(r) be fixed. We must show that there exists

an integer K = K(C) such that for every k ≥ K, we have t(k, r) ≥ Ck2.

Let ε > 0 be chosen such that the following holds:

(1− ε)(1− r + r(1− ε)2e−C)2C ≥ C − (1− ε)3(1/r − e−rC/r). (4)

The existence of ε is guaranteed by Lemma 2.1. For i ≥ 0, put Ci = C(1− ε)i, and let l ≥ 0 be the

minimal integer for which Cl < (2er)−1. For i ≥ 0 and positive integer x, we define the function

ki(x) recursively, as follows: k0(x) = x and for i ≥ 1 we define

ki(x) = dki−1(x)(1− r + r(1− ε)2e−Ci−1)e. (5)

Note that we have 0 < ki(x) ≤ ki−1(x) for all i ≥ 1 and for all x ≥ 1. Furthermore,

ki(x) ≥ x(1− r + r(1− ε)2e−C)i. (6)

We can therefore define the following three constants K1,K2 and K3.
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1. K1 is the least positive integer for which kl(K1) > M(ε, r) where M(ε, r) is defined in Lemma

2.2.

2. K2 is the least positive integer for which

(1− 1

kl(K2)
)kl(K2) >

1− ε
e

.

3. K3 is the least positive integer such that for all k > kl(K3) and all 1 ≤ i ≤ l

(1− ε)(1− e−rCi) ≤ 1− (1− 1

k
)rbCik

2c/k

holds. (Note that if we did not insist on the floor function in the above inequality, the

inequality would hold for all k > 0 even without the (1− ε) factor).

Next, we put

γ =
ε(1− ε)2(1− e−rC)

rC − (1− ε)3(1− e−rC)
. (7)

Note that if we replace C with Ci for any i > 0 in (7) we obtain a value which is greater than γ.

Let K4 be the least positive integer which has the property that for every k ≥ K4

rCk2e−kl(k)(2ε
2(1−ε)2e−2C) <

γ

2
. (8)

By (6) K4 exists. Finally, we put K = max{K1,K2,K3,K4}.

Let k ≥ K, and put ki = ki(k). We will show that t(ki, r) ≥ bCik2i c for i = 0, . . . l, which, for i = 0,

implies the theorem. We will show this by induction on i, starting from i = l and descending toward

i = 0. For the basis of our induction, we need to show that t(kl, r) ≥ Clk2l . This is indeed the case

since Cl < (2er)−1, and Theorem 1.2 applies. We now assume that t(ki+1, r) ≥ bCi+1k
2
i+1c, and we

show that this implies that t(ki, r) ≥ bCik2i c. Let G be an [n, ki, r]-partite graph with n = bCik2i c,
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and denote its vertex classes by V1, . . . , Vn, where Vj = {vj1, . . . , vjki} for j = 1, . . . , n. Let d(vjt)

denote the degree of the vertex vjt in G, and let dj−1(vjt) denote the number of neighbors of vjt

in V1 ∪ . . . ∪ Vj−1. We pick from each vertex class of G, randomly and independently, a single

vertex according to a uniform distribution. Let T = {u1, . . . , un} be the random set of vertices

picked. We now construct the independent set T ′ ⊂ T which contains all vertices uj such that none

of u1, . . . , uj−1 are adjacent to uj . We call a vertex class Vj good if uj ∈ T ′. Let pj denote the

probability that Vj is good. Clearly

pj =
1

ki

ki∑
t=1

(1− 1

ki
)d
j−1(vjt).

Since
∑ki
t=1 d

j−1(vjt) = r(j − 1), we have by convexity,

pj ≥ (1− 1

ki
)
r(j−1)
ki .

If X is the number of good vertex classes we have

E(X) ≥
n∑
j=1

(1− 1

ki
)
r(j−1)
ki =

1− (1− 1/ki)
rn/ki

1− (1− 1/ki)r/ki
≥ (1−ε)k

2
i

r
(1−(1−1/ki)

rn/ki) ≥ (1−ε)2k
2
i

r
(1−e−rCi)

(9)

The third inequality in (9) follows from Lemma 2.2 by the fact that k ≥ K1 and therefore ki =

ki(k) ≥ kl(k) ≥ kl(K1) > M(ε, r). The rightmost inequality in (9) similarly follows from the fact

k ≥ K3 and hence ki ≥ kl(K3).

We will need to use the following easily proved probabilistic fact:

Claim: Let X be a random variable where 0 ≤ X ≤ n always holds, and E(X) = µ. Then

Prob[X ≤ (1− ε)µ] ≤ n− µ
n− (1− ε)µ

.

Proof of claim: Put p = Prob[X ≤ (1− ε)µ]. Then µ = E(x) ≤ (1− p)n+ p(1− ε)µ. The claim

clearly follows.
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Let A be the event that there are at least (1− ε)3(k2i /r)(1− e−rCi) good vertex classes. By the last

claim and by (9) with µ = E(X),

Prob[A] ≥ Prob[X ≥ (1− ε)µ] ≥ 1− n− µ
n− (1− ε)µ

= (10)

ε(µ/n)

1− (1− ε)(µ/n)
≥ ε(1− ε)2(1− e−rCi)
rCi − (1− ε)3(1− e−rCi)

≥ γ.

We can easily partition G into a union of r spanning graphs of G, G1, . . . Gr, each being an [n, ki, 1]-

partite graph. That is, each edge of G appears in exactly one of the graphs Gs, for s = 1, . . . , r.

Let d(s)(vjt) denote the degree of the vertex vjt in Gs. Let X
(s)
j be the number of vertices of Vj

that are not adjacent in Gs to any vertex of T . Let X
(s)
jt be the indicator random variable whose

value is 1 if no neighbor of vjt in Gs is in T , and 0 otherwise. Clearly, X
(s)
j =

∑ki
t=1X

(s)
jt and

E(X
(s)
j ) =

ki∑
t=1

Prob[X
(s)
jt = 1] =

ki∑
t=1

(1− 1

ki
)d

(s)(vjt).

Since
∑ki
t=1 d

(s)(vjt) = n− 1, we again have by convexity that

E(X
(s)
j ) ≥ ki(1−

1

ki
)
n−1
ki ≥ ki(1−

1

ki
)Ciki ≥ ki(1− ε)Cie−Ci ≥ ki(1− ε)e−Ci .

The third inequality follows from the fact that k > K2 and hence ki ≥ kl(K2). The rightmost

inequality follows follows from Ci ≤ C < g(r) < 1. The crucial point to observe is that the r.v’s

X
(s)
j1 , . . . , X

(s)
jki

are independent since in Gs there is only one edge between any two vertex classes.

We may therefore use the large deviation result of Chernoff [4] (see also [1] appendix A), to obtain

that

Prob[X
(s)
j < (1− ε)2kie−Ci ] < e

− 2(ε(1−ε)kie
−Ci )2

ki = e−ki(2ε
2(1−ε)2e−2Ci ). (11)

Let B
(s)
j be the event that X

(s)
j ≥ (1− ε)2kie−Ci , and let B = ∩j,sB(s)

j . By (11) we have that

Prob[B] ≤ rne−ki(2ε2(1−ε)2e−2Ci ). (12)
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We will now show that Prob[A∩B] > 0. In fact, we will show something slightly stronger, namely

that Prob[B] < 0.5Prob[A]. Indeed, by (12) and (10) it suffices to show that

rne−ki(2ε
2(1−ε)2e−2Ci ) <

γ

2
. (13)

This is true however since k ≥ K4 and therefore

rne−ki(2ε
2(1−ε)2e−2Ci ) ≤ rCik2i e−kl(2ε

2(1−ε)2e−2Ci ) ≤ rCk2e−kl(k)(2ε2(1−ε)2e−2C) <
γ

2

where the last inequality follows from (8).

We have shown that with some constant small probability, which depends only on C, both events

A and B occur. We now fix a transversal T for which both A and B occur. Let I ⊂ {1, . . . , n} be

the set of indices of the non-good vertex classes. Note that since event A occurs, we have

n′ = |I| ≤ n− (1− ε)3k
2
i

r
(1− e−rCi) ≤ Cik2i (1− (1− ε)3 1

rCi
(1− e−rCi)).

We claim that each non-good vertex class Vj for j ∈ I, contains a subset Wj ⊂ Vj of cardinality

exactly ki+1, such that every vertex of Wj has no neighbor in T . This is true since the fact that

event B occurs implies, in particular, that the events B
(s)
j occur for s = 1, . . . , r, which implies that

there are at most ki − (1 − ε)2kie−Ci vertices in Vj that have a neighbor in Gs that is also in T ,

and hence there are at least

dki − r(ki − (1− ε)2kie−Ci)e = ki+1

vertices in Vj that have no neighbor in T . Let us denote by G′ the induced n′-partite subgraph of

G on the vertex classes Wj for j ∈ I. G′ is a spanning subgraph of some [n′, ki+1, r]-partite graph.

The crucial point is that any independent transversal of G′ may be extended to an independent

transversal of G by taking, for each j /∈ I, the vertex of Vj that appears in T (recall that these are
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the vertices of T ′). To complete the proof we only need to show that G′ contains an independent

transversal. We can use the induction hypothesis for i + 1 if we can show that n′ ≤ bCi+1k
2
i+1c.

Indeed, by (4) and from the fact that Ci < C we obtain

n′ ≤ Cik2i (1− (1− ε)3 1

rCi
(1− e−rCi)) ≤ Cik2i (1− ε)(1− r + r(1− ε)2e−Ci)2

= Ci+1(ki(1− r + r(1− ε)2e−Ci))2 ≤ Ci+1k
2
i+1.

This completes the induction step and the proof of the non-algorithmic part of the theorem.

A polynomial (O(k4) time) randomized algorithm proceeds as follows. We randomly select the

transversal T , and check in O(V +E) = O(k3) time whether events A and B both occur. Recall that

we have shown that they both occur with a small (but constant, depending only on C) probability.

Hence the expected number of trials until we get a transversal T for which both events A and B

occur, is constant. We now apply the inductive step using recursion. The number of recursion

steps is exactly l, which is, again, a constant depending only on C. However, at the lowest level

of recursion (with kl vertices in each vertex class), we need to apply the Local Lemma, which is

non-algorithmic. Fortunately, it was shown by Beck in [2] that in some cases (including our Local

Lemma proof), a constructive algorithmic version of the lemma can be obtained (with running

time o(k4l ) = o(k4) in our case), but at the price of a significant decrease in the constants. That

is, the (2re)−1 constant in Theorem 1.2 is replaced by a much smaller constant c = c(r). However,

we could easily have modified the definition of l to be the smallest nonnegative integer such that

Cl < c(r), (with the remainder of the proof intact).

To obtain a deterministic version of our randomized algorithm, we need to show how to build

T deterministically so that events A and B occur. Once again, this can be done by a standard

technique of derandomization, namely that of conditional probabilities (cf. [1]). This is due to the
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fact that the algorithm needs to make n choices (select a vertex from each vertex class), where

prior to the selection of the first vertex, the probability that the event A∩B will occur is a positive

constant. Assuming that the algorithm selected vertices from V1, . . . , Vj in such a way that the

probability that A∩B will occur in a random selection of vertices from the remaining vertex classes

Vj+1, . . . , Vn is some constant c, a vertex is selected from Vj+1 in such a way that the probability

that A∩B will occur in a random selection of vertices from Vj+2, . . . , Vn will be at least c. Clearly,

at least one vertex of Vj+1 must have this property. Therefore, each vertex of Vj+1 is examined,

and the conditional probability corresponding to it is estimated, and the vertex with the largest

conditional probability estimate (which must be larger than c) is selected. 2

3 Upper bounds for independent transversals

As mentioned in the introduction, it is shown in [5] that t(k, 1) ≤ (1 + o(1))k2, where the bound

is obtained by an explicit construction based on affine planes of order k + 1, whenever they exist.

However, even for r = 2 we have no explicit construction which achieves a non-trivial upper bound.

A probabilistic construction achieving t(k, r) ≤ (1 + o(1))2k2 ln k/r is obtained by randomly

constructing [n, k, r]-partite graphs, where r independent edges between every two vertex classes

are selected randomly and independently among all possible choices of r independent edges. Each

transversal has a probability of (1 − r/k2)(
n
2) of being independent, which is less than 1/kn when

n > 2k2 ln k/r. Hence, there exists such a graph with no independent transversal. This construction

is far from being optimal for large r. In particular, it is easy to see that t(k, k) = k. Taking k

vertex-disjoint complete k+1 vertex graphs, one uniquely obtains a [k+1, k, k]-partite graph having

no independent transversal. A greedy algorithm can easily construct an independent transversal
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in very [k, k, k]-partite graph. In fact, we can show that whenever log k = o(r), t(k, r) ≤ Ck2/r.

Theorem 1.3 says that with the additional restriction that r = o(k), we have C = 1 + o(1). When

r is close to k we can show that C = 9/8 + o(1). We do not prove this here since we conjecture

that t(k, r) = (1 + o(1))k2/r for all 1 ≤ r ≤ k. Note that Theorem 1.3 establishes this for many

values of r. However, it does not give an explicit construction.

Proof of Theorem 1.3. Let ε > 0. (We also implicitly assume ε ≤ 1). Let k and r be positive

integers such that 432 log k/ε2 ≤ r ≤ εk/3. Note that we may assume k ≥ 432. Let n be a positive

integer satisfying n = 0 mod k + 1 and

(1 +
ε

2
)
k2

r
+ 1 ≤ n ≤ (1 + ε)

k2

r
.

Such an n exists since εk2/(2r) ≥ k + 2. Consider an [n, k, k]-partite graph G whose vertex classes

are V1, . . . , Vn and Vi = {vi1, . . . , vik}. Let Lj = {v1j , . . . , vnj}, j = 1, . . . , k. We partition each

Lj , randomly and independently into n/(k + 1) pairwise-disjoint subsets of size k + 1 each. Let

Kj,1, . . . ,Kj,n/(k+1) be the random partition of Lj . Construct a complete graph on the vertices of

each Kj,p, j = 1, . . . , k, p = 1, . . . , n/(k + 1). These cliques define the edges of G. Clearly, the

independence number of G is kn/(k+1). Hence, it does not contain an independent transversal. We

now show that with positive probability G is an [n, k, r]-partite graph. Clearly, the edges between

each two vertex classes are independent. For two vertex classes Vx, Vy, the probability that vx,j

and vy,j are connected is k/(n − 1). Hence if Xx,y is the number of edges between them, then

E(Xx,y) = k2/(n−1). Our aim is to show that Prob[Xx,y > r] < 1/
(n
2

)
, which implies the theorem.

By our choice of n we have

r

1 + ε
≤ k2

n
≤ µ = E(Xx,y) =

k2

n− 1
≤ r

1 + ε/2
=

2r

2 + ε
.
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By the Chernoff estimates [4] we have that if a > 0,

Prob[Xx,y − µ > a] < e−a
2/(2µ)+a3/(2µ2).

Hence if a = rε/(2 + ε) we have

Prob[Xx,y > r] = Prob[Xx,y − 2r/(2 + ε) > rε/(2 + ε)] ≤ Prob[Xx,y − µ > rε/(2 + ε)] <

e
− r

2ε2(2+ε)

(2+ε)24r
+
r3ε3(1+ε)2

(2+ε)32r2 = e
−r( ε2

4(2+ε)
− ε

3(1+ε)2

2(2+ε)3
)
< e
−432( 1

8+4ε
− ε(1+ε)

2

2(2+ε)3
) log k

<

e−432
1

4·33
log k = k−4 ≤ r2

k4(1 + ε)2
≤ n−2 < 1/

(
n

2

)
.

2

4 Independent coverings in sparse partite graphs

In this section we prove Theorem 1.4. Let us start with the upper bound, which is easy. We need

to show that c(k, r) ≤ k. Since, clearly, c(k, r + 1) ≤ c(k, r), it suffices to show that c(k, 1) ≤ k.

Indeed consider an [n, k, r]-partite graph that contains a Kn (a clique of order n). That is, in every

vertex class there is only one non-isolated vertex and the set of all non-isolated vertices forms a

clique. Clearly, any independent covering must contain at least n independent transversals. This

is possible only if n ≤ k. Consequently, c(k, 1) ≤ k.

In order to prove the lower bound, we will show that for all k ≥ r ≥ 2, any [k − r + 2, k, r]-

partite graph contains an independent covering. This implies that any [n, k, r]-partite graph with

n ≤ k − r + 2 also contains an independent covering (since it is an induced subgraph of some

[k− r+ 2, k, r]-partite graph). In particular, we will have c(k, r) ≥ k− r+ 2. For r = 2, this implies

that c(k, 2) ≥ k. On the other hand, we have seen that k ≥ c(k, 1) ≥ c(k, 2), so c(k, 1) = c(k, 2) = k.

(Thus we have c(k, 1) = k without proving it directly).
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Let k ≥ 3 and let k ≥ r ≥ 2 (the case k = r = 2 is trivial). Let G be a [k − r + 2, k, r]-partite

graph with vertex classes V1, . . . , Vk−r+2. Note that the maximum degree of a vertex in G is at

most k − r + 1, and any vertex class has at most r vertices with degree k − r + 1. We distinguish

between two cases.

Case 1: every vertex class has exactly r vertices of degree k − r + 1 each. Let H be the induced

subgraph of G consisting of all these r(k− r+ 2) vertices. H is a (k− r+ 2)-partite graph. Let H ′

be obtained from H by adding edges that connect vertices in the same vertex class. The degree of

every vertex in H ′ is exactly (r − 1) + (k − r + 1) = k. However, H ′ does not contain a clique of

order max{r + 1, k − r + 3} ≤ k + 1 since the set of edges connecting two distinct vertex classes is

independent (it is a matching). Hence by a theorem of Brooks (cf. [3]), H ′ is k-colorable. Assume

that the colors are {1, . . . , k}. Consider a vertex class Vj . The r vertices of it with degree k− r+ 1

received r distinct colors in H ′. Color the remaining k− r vertices of Vj (which must all be isolated

vertices) arbitrarily by the k − r remaining colors. This is done for j = 1, . . . k − r + 2. It is easy

to see that for i = 1, . . . , k, the set of vertices colored by the color i is an independent transversal.

Case 2: at least one vertex class has at most r − 1 vertices of degree k − r + 1. We may assume

that Vk−r+2 is such a class. We start coloring the vertex classes with k colors, beginning with V1.

Our coloring has the property that each vertex class that has been colored has exactly one vertex

colored by each color, and the set of vertices colored by a specific color is independent. Assume

we have already colored V1, . . . , Vj , where j < k − r + 2. We now need to match k colors to the k

vertices of Vj+1, and remain with a proper coloring. Define a bipartite graph H as follows: One

vertex class of H is Vj+1, and the other is the set of colors K = {1, . . . , k}. A vertex v ∈ Vj+1 is

connected in H to a color i ∈ K iff no neighbor of v is already colored by i. Clearly, our aim is to
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obtain a perfect matching in H. Let S ⊂ Vj+1 be nonempty. Let T ⊂ K be the set of neighbors

in H of the vertices of S. Put s = |S| and t = |T |. Our aim is to show that s ≤ t, which implies,

by Hall’s condition (cf. [3]), that H contains a perfect matching. There are at least s(k − t) edges

adjacent to the vertices of S in G, and whose other endpoint is already colored. This is because

each vertex of S is adjacent in G to at least one vertex whose color is i for each i ∈ K \ T . On

the other hand, there are at most j · s vertices adjacent to the vertices of S in G, and whose other

endpoint is colored. Hence, we must have

j ≥ k − t. (14)

If s ≤ r, we must have s ≤ t. Otherwise, we would have j ≤ k−r+1 ≤ k−s+1 ≤ k− t. According

to (14) this is possible only if j = k − r + 1, s = r and t = s− 1. However, this means that there

are r vertices in Vk−r+2 (namely the set S), each of degree exactly k− r+ 1, which contradicts our

assumption for case 2.

We now remain with the case s > r. Assume first that s ≥ k − r + 2. In this case we have at

least s(k − t) edges going from S to the set of j(k − t) vertices whose colors are in K \ T . Hence,

at least one vertex colored by a color from K \ T is adjacent to at least s/j vertices of S. But

s ≥ k − r + 2 > k − r + 1 ≥ j, and this is impossible in a sparse partite graph. Next, assume

that s < k − r + 1. We will show that if t < s, then s(k − t) > r(k − r + 1) which is clearly

a contradiction as there are at most r(k − r + 1) edges adjacent to Vj+1. Indeed, if t < s then

(k− r+ 2)(s− r) > (s+ 1)(s− r) ≥ s(t+ 2− r)− r, which is equivalent to s(k− t) > r(k− r+ 1).

Finally, we remain with the case that s = k − r + 1. If j < k − r + 1 or t < s − 1 we may again

derive a contradiction by showing, in the same way, that s(k − t) > rj. The only remaining case
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to handle is

s = k − r + 1, t = s− 1 = k − r, j = k − r + 1. (15)

Our aim is to show that this case could have been avoided by a careful choice of the coloring of

V1 and V2 (we assume k − r + 2 > 2, since the case r = k is trivial, a perfect matching in the

bipartite complement of V1 ∪ V2 is also an independent covering in this case). Let us denote by

Wl ⊂ Vl for l = 1, . . . , k − r + 1, the set of vertices of Vl colored by a color from K \ T . Note that

|Wl| = k− t = k−(k−r) = r. There are r(k−r+1) vertices in ∪k−r+1
l=1 Wl and each has at most one

neighbor in S. On the other hand, each vertex of S has at least k − t = r neighbors in ∪k−r+1
l=1 Wl.

Since s = k− r+ 1 it follows that each vertex of ∪k−r+1
l=1 Wl has exactly one neighbor in S, and each

vertex of S has exactly r neighbors in ∪k−r+1
l=1 Wl, one from each color of K \T . Furthermore, since

there are exactly r(k−r+1) = rs edges adjacent to Vk−r+2, it follows that the vertices of Vk−r+2\S

are isolated, and that there are no edges between S and ∪k−r+1
l=1 Vl \Wl. Note that this is an explicit

configuration that could have been recognized prior to the beginning of the coloring of V1. That

is, we could have checked whether, in fact, Vk−r+2 has exactly k− r+ 1 non-isolated vertices, each

of degree exactly r, (and denote this set by S) and that there are exactly r neighbors of S in each

vertex class Vl for l = 1, . . . , k− r+ 1 (and denote this set by Wl). If such a configuration does not

exist, we are done. If it does exist (and we have shown how to recognize it prior to the beginning

of the coloring of the first vertex class), we will show how we could have colored the vertex classes

in such a way that ∪k−r+1
l=1 Wl contains vertices with more than r colors. In fact, as we mentioned

before, we will show how we can color V1 and V2 in such a way that W1 ∪W2 contains more than

r colors. Let w ∈ V2 \W2. Since r ≥ 2 there exists u ∈ W1 such that w and v are not connected.

Color v and w with the same color. Now we note that the bipartite complement of V1 \ {v} and
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V2 \{w} has minimum degree k−2, and k−1 vertices in each vertex class. Since k ≥ 3, it contains

a perfect matching, which determines the coloring of the other k − 1 pairs. Note that W1 ∪W2

contains at least r + 1 colors. The coloring of V3 etc. proceeds as before, and we are guaranteed

that the situation in (15) will not occur. 2
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[5] P. Erdös, A. Gyárfás and T.  Luczak, Independent transversals in sparse partite hypergraphs,

Combinatorics, Probability and Computing 3 (1994), 293-296.

17



[6] P. Erdös and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related

questions, Infinite and Finite Sets (A. Hajnal et al., eds.), North-Holland, Amsterdam (1975),

609-628.

18


