Generating a d-dimensional linear subspace efficiently

Raphael Yuster *

Abstract

We present an algorithm for computing a d-dimensional
subspace of the row space of a matrix. For an n X n matrix A
with m nonzero entries and with rank(A) > d the algorithm
generates a d X m matrix with full row rank and which is
a subspace of Rows(A). If rank(A) < d the algorithm
generates a rank(A) X n row-equivalent matrix. The running
time of the algorithm is

O(min{nZ—Q/wml/wdw—2+l/w , nde—Q})

where w < 2.376 is the matrix multiplication exponent. An
immediate corollary of the algorithm is the construction
of a row-reduced equivalent matrix of A, and hence the
computation of rank(A), in time

O(min{n*~?*“m"“rank(A)* >/ | n*rank(A)*7%}).

We note that the running time is sub-quadratic if d <
(n2/m)0.528

1 Introduction

Computing the rank of a matrix, and, more generally,
generating a row-reduced equivalent matrix is one of
the most basic computational algebraic problems and
considerable effort is devoted to obtaining efficient al-
gorithms for these tasks (see, e.g. [5]). One approach is
naturally through Gaussian elimination. An old result
of Hopcroft and Bunch [1] asserts that Gaussian elim-
ination of a matrix requires asymptotically the same
number of algebraic operations needed for matrix mul-
tiplication. It follows, in particular, that the algebraic
complexity of rank computation of an n X n matrix over
a field is O(n*) where w < 2.376 is the matriz multi-
plication exponent [2]. In fact, no faster algorithm is
known for general n X n matrices.

If A is sparse and has only m < n? non-zero
entries, it seems likely at first glance that computing
a row-reduced matrix should be easier. Unfortunately,
it is generally not known to be the case. This can be
attributed to the negative result of Yannakakis [9] who
proved that controlling the number of fill-ins (entries
that were originally zero and become non-zero during
the Gaussian elimination process due to pivoting) is
an NP-Hard problem. The situation is somewhat
better if we allow randomness. A seminal result of

Wiedemann [8] implies, in particular an O(nm) Monte
Carlo algorithm for solving a sparse linear system over
a field. In particular the rank can be computed in
O(mn) time which is faster than Gaussian elimination
if m = o(n*~1!). A randomized Las Vegas algorithm for
computing the null-space basis (and hence the rank)
of a matrix was obtained by Eberly et al [3]. The
expected running time of their algorithm in the case
where m = ©(n) is O(n*~"/“=1) < O(n>28).

The row-reduced matrix of a matrix A has rank(A)
rows. In particular, any set of d rows (of the row reduced
matrix) where d < rank(A) spans a d-dimensional sub-
space of Rows(A) (the row space of A). The main result
of this paper shows that generating a d-dimensional sub-
space of Rows(A) requires (in some cases significantly)
less time than just computing the whole row-reduced
matrix. In particular our result shows that if Rank(A)
is relatively small then a row-reduced matrix can be
found quickly. Another consequence is that queries of
the form rank(A) > d can be answered much faster (de-
pending on d) than just computing the rank. Our main
result is the following.

THEOREM 1.1. Let A be an n X n matriz over an
arbitrary field, containing m nonzero entries, and let
d < n be a positive integer. There is an algorithm
that computes a d X n matriz with full row rank and
which is a subspace of Rows(A). If rank(A) < d the
algorithm generates a corresponding rank(A) x n row-
reduced matriz. The running time of the algorithm is

O(min{n272/wml/wdw72+1/w , n2dw72}))

As usual in algorithms that manipulate matrices, each
algebraic operation in the field (addition, subtraction,
multiplication, and division) has unit cost. If the field
is finite and its number of elements is polynomial in 7,
then this also amounts to actual bit complexity (up to
logarithmic factors).

An obvious consequence of Theorem 1.1 is that it
can be used to answer queries of the form rank(A) > d
in the claimed running time. Another easy corollary
of Theorem 1.1 is that a row-reduced matrix of A, and
hence rank(A), can be computed in time which is a

Department of Mathematics, University of Haifa, Haifa function of the rank. This is achieved, say, by applying
31905, Israel. E-mail: raphy@math.haifa.ac.il Theorem 1.1 only O(log(n)) times with different values
467 Copyright © by SIAM.

Unauthorized reproduction of this article is prohibited.

of d, binary searching for the correct rank. We thus
have the following.

COROLLARY 1.1. Let A be an n X n matriz over an
arbitrary field, with m nonzero entries. There is an
algorithm that computes a row-reduced matriz of A in
time

O(min{n?=2/m/rank(A)*~*1/< | n*rank(4)*~2})

If the matrix A is dense, say with m = ©(n?) then
the running time in theorem 1.1 is O(n?d*~2%) <
O(n%d®37). For every d = n'~¢ this is faster than
just performing Gaussian elimination from scratch. But
even more efficiency is obtained when the matrix is
sparse. For any m = n®>~¢ we see that for sufficiently
small values of d one can do better than O(n?d%37%) and,
in fact, for even smaller values of d the running time is
even better than O(n?) (as usual, it is assumed that the
input matrix is given in a sparse representation). More

precisely, if
n2 0.528 n2 m
d<|— < | —
m m

then the running time becomes sub-quadratic and if
d < n?/m the running time is

2\ ~ %
2 w—2 [N
O (n d <md> >

It is interesting to note that most, if not all, known
matrix multiplication based algorithms do not exploit
sparseness beyond some threshold of the form m? where
B is a constant strictly less than 1 (e.g. [10]) while the
algorithm of Theorem 1.1 exploits sparseness already
when m = n2~¢ for any e.

The proof of Theorem 1.1 is composed of two parts.
The first part is a procedure that reduces the problem
of computing a d-dimensional subspace of the row space
of a sparse matrix to the problem of computing a d-
dimensional subspace of the row space of a dense, but
smaller, rectangular matrix. The second part computes
a d-dimensional subspace of the row space of a (possibly
dense) rectangular matrix by repeatedly filtering out
non-essential rows and replacing other rows with an
equivalent set of rows spanning the same subspace. This
part essentially uses the fact that matrices can be viewed
as linear matroids.

2 Reducing sparse matrices to smaller dense
rectangular matrices

We need the following result of Hopcroft and Bunch [1]
asserting that Gaussian elimination of a matrix requires

468

asymptotically the same number of algebraic operations
needed for matrix multiplication. Recall that Gaussian
elimination of a matrix B produces a reduced row-
equivalent matrix. That is, a matrix with the same
number of columns but with only rank(B) rows, and
with full row rank.

LEMMA 2.1. Let B be an £ X n rectangular matriz over
an arbitrary field. Then Gaussian elimination of B can
be computed using O(nt“~1) algebraic operations.

We note that by using fast rectangular matrix multipli-
cation [4] it is possible to improve the exponent a bit in
the case where { is significantly smaller than n. How-
ever, the improvement is negligible in our case and so
we do not consider it further.

For the rest of this section A is an n X n matrix over
an arbitrary field, containing m non-zero entries, and d
is a positive integer not larger than n?/m. The element
of A in row 7 and column j is denoted by a;;. We assume
that the matrix is given with its sparse representation.
That is, there are n linked lists R(z) for i = 1,...,n,
where the i’th list contains items representing the non-
zero elements of row 4, sorted according to column
index. Each item is therefore of the form (j, a;;). Notice
that it is straightforward to create the corresponding
column lists C(j) for j = 1,...,n in linear O(m) time
(we may assume that m > n otherwise an entire row
and column could be deleted).

LEMMA 2.2. Let A be an nxn matriz over an arbitrary
field, containing m non-zero entries, and let d be a
positive integer not larger than n?/m. For any s with
d < s < n there is an algorithm that constructs a matrix
L with at most d[n/s| rows and n columns with the
following properties. If rank(A) < d then L is row-
equivalent to A. If rank(A) > d then Rows(L) is
a subspace of Rows(A) and Rows(L) has dimension
at least d. The running time of the algorithm is

O(ms*~1).

Proof. We partition the rows of A into n/s rectangular
matrices, each with s rows and n columns (we ignore
rounding issues as these have no effect on the asymptotic
nature of the result). Denote the rectangular matrices
by Ai,...,A; where t = n/s. Thus, A; consists of the
first s rows of A, A, consists of the next s rows of A, and
so on. Clearly, a sparse representation of A; is obtained
by just selecting the corresponding s row lists. Notice
also that all the sparse column lists of all the A;’s can
be generated from the column lists of A in total time
Oo(m).

Let ¢; denote the number of non-zero columns of

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

A;. Clearly,

t
(2.1) dei<m.

i=1

We can compact the A; by just discarding the zero
columns of A;, thereby obtaining a matrix B; with s
rows and ¢; columns. We do need to record the indices of
the zero columus, or, equivalently, let ¢;(5) be the index
of the j’th non-zero column of A;. That is, column j of
B; is column ¢;(j) of A;.

Having constructed the B;’s, we now perform Gaus-
sian elimination on each of them, thus obtaining re-
duced equivalent matrices C; with ¢; columns and with
rank(B;) = rank(A4;) rows for ¢ = 1,...,¢. By Lemma
2.1 the time required to construct C; is O(c;s71).
Thus, by (2.1), the overall running time required to con-
struct all the C; is

(2.2) O(ms“ 1) .
Let D; be the matrix obtained from C; by taking the
first d rows of C;. If C; has less than d rows (this
happens if rank(4;) < d) then just let D, = C;.
Expanding D; by plugging in the zero columns of A;
in the appropriate locations (using the recorded values
¢i(j)) we obtain a matrix L; with n columns. Now, if
rank(A;) < d then L; is row-equivalent to A; (it spans
the same row space as A;). Otherwise, L; is a d X n
matrix spanning a d-dimensional subspace of Rows(A;).
Finally, take L to be the union of all the L;.
Notice that L has at most dt = dn/s rows and n
columns. Furthermore, if rank(A) < d then L is row-
equivalent to A, as each L; must be row-equivalent to
each A;. Otherwise, if rank(A) > d then either L
is row-equivalent to A or else Rows(L) is a subspace
of Rows(A) with dimension at least d. As the most
time consuming operation of the algorithm is (2.2), the
lemma follows.

3 Proof of the main result

LEMMA 3.1. Let L be an £ X n matriz over an arbitrary
field and let d be a positive integer not greater than
£/2. There is an algorithm that constructs a matriz L'
with at most £/2 rows and n columns with the following
properties. If rank(L) < d then L' is row-equivalent
to L. If rank(L) > d then Rows(L') is a subspace of
Rows(L) and Rows(L') has dimension at least d. The
running time of the algorithm is O({nd“~2).

Proof. We partition the rows of L into t = |¢/2d]
rectangular matrices Ay, ..., A;, each with 2d rows and
n columns (the last matrix A; may have more than 2d
rows but less than 4d rows). Thus, A; consists of the
first 2d rows of L, A5 consists of the next 2d rows of L,

469

and so on. We perform Gaussian elimination on each
of the A; thus obtaining reduced equivalent matrices C;
with n columns and with rank(A4;) rows fori =1,...,t.
By Lemma 2.1 the time required to construct C; is
O(nd“~1). Thus, the overall running time required to
construct all the C; is

(3.3) O(tnd*~) = O(tnd*~2) .

Let L; be the matrix obtained from C; by taking the
first d rows of C;. If C; has less than d rows (this
happens if rank(A;) < d) then just let L; = C;.
Now, if rank(A;) < d then L; is row-equivalent to A;.
Otherwise, L; is a d xn matrix spanning a d-dimensional
subspace of Rows(A;). Finally, take L’ to be the union
of all the L;. Notice that L’ has at most dt < ¢/2 rows
and n columns. Furthermore, if rank(L) < d then L’ is
row-equivalent to L, as each L; must be row-equivalent
to each A;. Otherwise, if rank(L) > d then either L’
is row-equivalent to L or else Rows(L’) is a subspace
of Rows(L) with dimension at least d. As the most
time consuming operation of the algorithm is (3.3), the
lemma follows.

Proof of Theorem 1.1: We are given an n x n matrix
A containing m nonzero entries, and a positive integer
d. If d < n?/m we apply Lemma 2.2 with a value
of s between d and n that will be chosen later after
optimization. The result of this application is a matrix
Lo with n column and ¢y < d|n/s] columns satisfying
the conditions of the lemma. If d > n?/m we do not
apply Lemma 2.2. In this case we simply set Ly = A
and ¢y = n. Thus, we can now assume that in any case,
Ly is an £y x n matrix so that if rank(A) < d then Ly is
row-equivalent to A and if rank(A) > d then Rows(Lg)
is a subspace of Rows(A) and Rows(Lg) has dimension
at least d.

We now check if d < ¢y/2. If so, we apply Lemma
3.1 to Ly and obtain a matrix L, with ¢; < ¢y/2 rows
and n columns with the properties guaranteed by the
lemma. We repeatedly apply Lemma 3.1 to L; as long
as d < ¢;/2 and obtain the next matrix L;1q1. We
halt when d > ¢;/2. After halting, we perform a final
Gaussian elimination to L; and obtain the matrix B. If
B has more than d rows, the output of the algorithm is
just the first d rows of B. Otherwise, the output of the
algorithm is B.

The correctness of the algorithm follows from two
facts. At any stage of the algorithm, the rows of
the present matrix L; form a subspace of Rows(A),
and hence also at the end Rows(B) is a subspace of
Rows(A). Thus, if B has at least d rows then the final
output is just a d-dimensional subspace of Rows(A). On
the other hand, if Rank(A) < d then each of the L;, as
well as the final B, is row-equivalent to A.

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

For the running time of the algorithm, consider first
the case when d > n2/€. In this case /5 = n and the
application of Lemma 3.1 on L; requires O(4n?d“~?)
time. After O(logn) applications we finally compute
B in O(nd*~1) time by Lemma 2.1. Thus, the overall
running time is O(n?d“~2), as required.

Consider next the case when d < n?/f. The
application of Lemma 2.2 that constructs Lg requires

time is O(n?**(«“=2)). This should be compared to
the O(n®) algorithm from [6], or to the O(n'/?m)
algorithm of of Michali and Vazirani [7] (the fastest
known algorithm for maximum matching in terms
of n and m for sufficiently sparse graphs) which, in
this case, also takes O(n®) time.

O(ms“~1) time. As {y < d|n/s|, the application of References

Lemma 3.1 on L; requires O(z5:n?d*~!) time. After
O(log n) applications we finally compute B in O(nd“~1!)

time by Lemma 2.1. Thus, the overall running time is

1
O(ms*~! + —n2d“1) .
s
Choosing the optimal value for s which is s =
(d“~'n%/m)Y/« (notice that indeed s > d for this
choice) we obtain that the overall running time in this
case is O(n?~2/@m!/wq@=2+1/2) " as required. |

4 Concluding remarks and open problems

e Naturally, it would be interesting to improve the
time complexity of Theorem 1.1. A possible ap-
proach would be to make sure that the matrix L in
Lemma 2.2 is also relatively sparse, assuming that
A is such. We know that such an L exists (after
all, there trivially exist d rows of A that form a d-
dimensional subspace of Rows(A)), however we do
not yet know how to find such an L. A possibly
easier task is to improve the running time in The-
orem 1.1 if we just settle for the seemingly easier
problem of answering the query “rank(A) >d 7.

e An example of an interesting application of our
main result is for the maximum matching problem
in graphs. Given an n-vertex undirected graph with
m edges, Lovasz has shown that computing the ex-
act cardinality of a maximum matching with high
probability, amounts to computing the rank of an
n x n matrix with O(m) non-zero entries over a fi-
nite field whose number of elements is polynomial
in n. Hence, this leads to an O(n*) randomized
algorithm for computing the cardinality of a maxi-
mum matching [6].

Now, suppose we just want to know, say, if there
is a matching of cardinality at least d? Then, we
can use the algorithm of Theorem 1.1 to answer
this question. In some cases, this leads to the
fastest known method for this task. For example,
suppose that m = n“"Y2 and d = n® where
a € (w—1/2,2) (to avoid trivialities we must
assume that m = o(nd) otherwise there trivially
exist d independent edges). In this case the running

470

[1] J. Bunch and J. Hopcroft. Triangular factorization and
inversion by fast matrix multiplication. Mathematics
of Computation, 28:231-236, 1974.

[2] D. Coppersmith and S. Winograd. Matrix multiplica-
tion via arithmetic progressions. Journal of Symbolic
Computation, 9:251-280, 1990.

[3] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann,
and G. Villard. Faster inversion and other black box
matrix computations using efficient block projections.
Proceedings of the International Symposium on Sym-
bolic and Algebraic Computation (ISSAC) ACM Press,
2007

[4] X. Huang and V.Y. Pan. Fast rectangular matrix mul-
tiplications and applications. Journal of Complexity,
14:257-299, 1998.

[5] E. Kaltofen and G. Villard. On the complexity of
computing determinants. Computational Complexity,
378:91-130, 2004.

[6] L. Lovdsz. On determinants, matchings, and random
algorithms. In: Fundamentals of computation theory,
Vol. 2 pages 565-574, Akademie-Verlag, Berlin, 1979.

[7] S. Micali and V.V. Vazirani. An O(\/m |E|) algo-
rithm for finding maximum matching in general graphs.
Proceedings of the 21°* IEEE Symposium on Founda-
tions of Computer Science (FOCS), 17-27, 1980.

[8] D.H. Wiedemann. Solving sparse linear equations
over finite fields. IEEE Transactions on Information
Theory, 32(1):54-62, 1986.

[9] M. Yannakakis. Computing the minimum fill-in is NP-
complete. SIAM Journal on Algebraic and Discrete
Methods, 2(1):77-79, 1981.

[10] R. Yuster and U. Zwick. Fast sparse matrix multiplica-
tion. ACM Transactions on Algorithms, 1:2-13, 2005.

Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

