
Graph decomposition of slim graphs

Yair Caro ∗ Raphael Yuster †

Abstract

A Graph G = (V,E) is called k-slim if for every subgraph S = (VS , ES) of G with s = |VS | ≥
k there exists K ⊂ VS , |K| = k, such that the vertices of VS \K can be partitioned into two

subsets, A and B, such that |A| ≤ 2
3s and |B| ≤ 2

3s and no edge of ES connects a vertex from A

and a vertex from B. k-slim graphs contain, in particular, the graphs with tree-width k. In this

paper we give an algorithm solving the H-decomposition problem for a large family of graphs H

which contains, among others, the stars, the complete graphs, and the complete r-partite graphs

where r ≥ 3. The algorithm runs in polynomial time in case the input graph is k-slim, where k is

fixed. In particular, our algorithm runs in polynomial time when the input graph has bounded

tree width k. Our results supply the first polynomial time algorithm for H-decomposition of

connected graphs H having at least 3 edges, in graphs with bounded tree-width.

1 Introduction

All graphs considered here are finite, undirected and simple. For the standard graph-theoretic

notations the reader is referred to [5]. Let G = (V,E) be a graph, and let 0.5 < α < 1. A partition

of V into three subsets K,A,B is called a (k, α)-separator if |K| = k and no edge of E connects a

vertex from A and a vertex from B. Furthermore, |A| ≤ α|V | and |B| ≤ α|V |. Small separators of

graphs have been studied extensively, see e.g. [11, 2].

We define the class of (k, α)-slim graphs, which are graphs G that have the property that every

subgraph of G with more than k vertices has a (k, α)-separator. It is easy to see that every (k, α)-

slim graph is also a (dk, 23)-slim graph where d = max{1, log 2/3logα }. Since in our applications k and α

will be fixed, we only consider (k, 23)-slim graphs, and call them k-slim. By a k-separator we always

mean a (k, 2/3)-separator. Note also that a k-slim graph does not have a 3k-connected subgraph,

since such a subgraph must contain at least 3k + 1 vertices, and hence cannot have a k-separator.

∗Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: zeac603@uvm.haifa.ac.il
†Department of Mathematics, University of Haifa-ORANIM, Tivon 36006, Israel. e-mail: raphy@math.tau.ac.il

1

The motivation behind the notion of slim graphs is the following. Given a k-slim graph G =

(V,E) with |V | ≥ k, one can always find a k-separator K,A,B. The induced subgraph on A ∪K
either contains less than, say, 6k vertices, or otherwise can be further separated into two appropriate

smaller parts. The same holds for B ∪ K. Thus the graph G can be recursively separated in a

balanced manner until one obtains parts with, say, at most 6k vertices. This recursive k-separation

makes slim graphs suitable for dynamic programming techniques, assuming the solution to the

problem at hand for the input graph can be efficiently derived from solutions to the problem on

the smaller parts.

There are many well-known non-trivial families of graphs which are k-slim, for some fixed

values of k. For example, trees are 1-slim. This follows from the fact that in every tree T on n

vertices there is a vertex v such that every connected component of T \ {v} has size at most 2n/3.

Generalizing the concept of a tree, Robertson and Seymour, in their series of works about graph

minors, introduced the concept of the tree-width of a graph [13]. The graphs with tree-width 1

are the forests and the graphs with tree-width 2 contain the series-parallel graphs. Graphs with

tree-width k are also called partial k-trees as they can be viewed as subgraphs of chordal graphs

with clique size k + 1. It is shown in [14] that graphs with tree-width k have a (k, 23)-separator.

Hence, since every subgraph of a graph with tree-width k also has tree-width k, it follows that

graphs with tree-width k are k-slim. Thus, for fixed k, any polynomial algorithm that applies to

k-slim graphs also applies to graphs with tree-width k. We currently have no proof that a k-slim

graph also has tree-width f(k) for some function f that depends only on k, but we believe this to

be true.

Many graph-theoretic problems which are hard for general graphs can be solved in polynomial

time for graphs with bounded tree-width. See, e.g. [13] and [7] for examples of such problems.

These algorithms require that the input graph be given together with its tree-decomposition. Given

the tree-decomposition, these algorithms usually apply some divide-and-conquer technique where

the division uses the fact that the solution for the problem can be derived by solving constantly

many subproblems on each of the subgraphs induced by the members of subtrees at a given node.

Extending a result of Courcelle [6], it is shown by Arnborg et al. in [3] that each graph-theoretic

problem that is expressible by an Extended Monadic Second-Order formula, can be solved in linear

time on graphs with bounded tree-width. Such problems include, for example, the Hamiltonian

Circuit problem, the graph k-colorability problem (where k is fixed) and the H-factor problem

(which is to determine if the input graph has a spanning subgraph whose connected components

are isomorphic to some fixed graph H). Many other problems fall into this category. It is therefore

interesting to devise algorithms for graph-theoretic problems that are not expressible in Extended

2

Monadic Second-Order logic, which run in polynomial time in case the input graph has bounded

tree-width. In this paper we give such an algorithm for many cases of the following well-studied

graph-theoretic problem:

The H-decomposition problem: Let H be a fixed graph. Given a graph G, is there a set L of

edge-disjoint subgraphs of G such that each member of L is isomorphic to H, and every edge of G

appears in a member of L. If such a set L exists, we say that G has an H-decomposition.

It was shown by Dor and Tarsi in [9] that the H-decomposition problem is NP-Complete for every

graph H having a connected component with at least three edges. In particular, it is NP-Complete

if H is a connected graph with at least three edges. Thus, even if H is a star on h ≥ 4 vertices,

the problem is NP-Complete. Furthermore, the H-decomposition problem is not expressible in

Extended Monadic Second-Order logic. This follows from the even stronger fact, pointed to us by

M. Fellows, that the H-decomposition problem is not finite state even when H is a tree by using

the methods shown in [1] and in [10]. We can, however, show the following:

Theorem 1.1 Let k be a fixed integer, and let H be a star. There exists a polynomial time algo-

rithm that, given a k-slim graph G, finds an H-decomposition of G if one exists.

We can also solve the H-decomposition problem for a much-wider class of graphs H: Let H be a

connected graph such that if S is any nonempty set of vertices of H whose deletion disconnects H

(or leaves H with one vertex), then S is not an independent set. We call such graphs robust. Thus,

complete graphs with 3 or more vertices are robust. Also, complete r-partite graphs with r ≥ 3 are

robust. A wheel on n ≥ 6 vertices and n− 1 spokes is robust, although it is not complete r-partite

for any r. Bipartite graphs are non-robust, as one may take S to be an entire vertex-class; in

particular, stars are non-robust. The property of being robust is monotone-increasing with respect

to edge addition.

Theorem 1.2 Let k be a fixed integer, and let H be a fixed robust graph. There exists a polynomial

time algorithm that, given a k-slim graph G, finds an H-decomposition of G if one exists.

Note that Theorem 1.1 and 1.2 apply, in particular, to graphs with tree-width k. In Section

2 we prove Theorem 1.1 and in Section 3 we prove Theorem 1.2. Concluding remarks and open

problems are presented in the final section.

2 Star decomposition in k-slim graphs

In this section we prove Theorem 1.1. Let H be a fixed star on h + 1 ≥ 3 vertices, and h leaves.

Note that a graph G has an H-decomposition iff one can orient the edges of G such that the out-

3

degree of every vertex is 0 mod h. It will be convenient to view the H-decomposition problem in

a more general setting, which is the following. A graph G is called partially-oriented if some of its

edges are oriented. An h-orientation of G is an orientation of the non-oriented edges of G such

that the out-degree of every vertex in the resulting directed graph is 0 mod h. We shall present an

algorithm that, given a partially-oriented graph, finds an h-orientation of it, if one exists. Clearly,

this algorithm also solves the H-decomposition problem, as the undirected graph G can be viewed

as a partially-oriented graph. Our algorithm will run in polynomial time in case the input graph is

k-slim, where k is fixed.

The key idea of our algorithm is the notion of a (K,A,B)-extension. Let G = (V,E) be a

partially-oriented k-slim graph, and let K,A,B be a k-separator of G. A (K,A,B)-extension of

G is a pair of two partially-oriented graphs GA = (VA, EA) and GB = (VB, EB) for which the

following hold:

1. VA = A ∪K ∪DA, VB = B ∪K ∪DB where DA is disjoint from A ∪K and DB is disjoint

from B ∪K.

2. Every edge e adjacent to a vertex of A in G, appears in GA. The orientation of e in GA

is the same as its orientation in G. If e was non-oriented in G it remains non-oriented in

GA. Similarly, every edge adjacent to a vertex of B in G, appears in GB, and with the same

orientation.

3. Every edge e connecting two vertices of K in G appears in both of GA and GB. If e is oriented

in G, it keeps the same orientation in both GA and GB. If e is not oriented in G, it becomes

oriented in GA and in GB, and the new orientation is the same in both GA and GB.

4. Every vertex v in DA is connected only to vertices of K, and the edges adjacent to v are all

oriented toward v. Similarly, every vertex v in DB is connected only to vertices of K, and

the edges adjacent to v are all oriented toward v. (Note that, in particular, DA and DB are

independent sets).

5. Let v ∈ K. Let RK(v) be the number of oriented edges that emanate from v toward a vertex

of K, in GA (or in GB, it is the same). Similarly put RA(v), RB(v), RDA
(v) and RDB

(v).

Note that, according to the previous paragraph, RDA
(v) is, in fact, the number of neighbors

of v in DA and, similarly, RDB
(v) is the number of neighbors of v in DB. Then, it is required

that RDA
(v) < h and RDB

(v) < h and that RK(v) + RDA
(v) + RDB

(v) = 0 mod h. Thus,

(RK(v) mod h) + RDA
(v) + RDB

(v) ∈ {0, h, 2h}. In particular, it follows that DA and DB

have at most k(h − 1) non-isolated vertices each, and since isolated vertices play no role

4

in our h-orientation, we may assume that DA and DB contain no isolated vertices. Thus

|DA|, |DB| ≤ k(h− 1).

Note that a (K,A,B)-extension is established by two sets of decisions. We first need to decide

how to orient the non-oriented edges of G, with both endpoints in K. We then need to define DA

and DB, namely their sizes and their adjacencies to K, such that item 5 in the list or requirements

stated above in satisfied.

Lemma 2.1 Let G be a partially-oriented k-slim graph and let K,A,B be a k-separator in G.

Then G has an h-orientation iff there exists a (K,A,B)-extension such that both GA and GB have

an h-orientation, and both GA and GB are k-slim.

Proof Assume first that G has an h-orientation, and denote it by G′. Thus, G′ is a directed graph

such that the outdegree of every vertex is 0 mod h. We must create a (K,A,B)-extension such that

both GA and GB are k-slim and both have an h-orientation. As noted in the paragraph preceding

the lemma, we must first decide on the orientation in GA and in GB of an edge e connecting two

vertices of K. Our decision will simply be the orientation of e in G′. We must now create DA

and DB and their adjacencies to K. For v ∈ K, let RA(v) denote the number of edges, modulo

h, of G′, directed from v toward a vertex of A. Similarly define RB(v) and RK(v). Clearly,

RA(v) +RB(v) +RK(v) ∈ {0, h, 2h}. Let XB(v) be a set of RB(v) vertices of B which are adjacent

to v in G′ via an edge directed from v. Similarly, define XA(v). Now put DA = ∪v∈KXB(v) and

DB = ∪v∈KXA(v). Every v ∈ K is adjacent in GA to every vertex of XB(v) via a directed edge

emanating from v. Likewise, every v ∈ K is adjacent in GB to every vertex of XA(v) via a directed

edge emanating from v. Note that the graphs GA and GB are subgraphs of G (although some

non-oriented edges of G may be oriented in GA or in GB). Thus, GA and GB are both k-slim. In

fact, the orientation of each oriented edge of GA and GB is the same as its orientation in G′. Let

G′A (G′B) be the directed graphs resulting from GA (GB) by orienting each non-oriented edge e of

GA (GB) in the same way as e is oriented in G′. We now show that the outdegree of every vertex

of G′A (G′B) is 0 mod h, thus showing that GA and GB have an h-orientation. Indeed, let v ∈ G′A.

If v ∈ A we have no problem since its outdegree in G′A is identical to its outdegree in G′. If v ∈ DA

then its outdegree is 0. If v ∈ K then, by the fact that RB(v) is equal modulo h to the number of

edges emanating from v toward a vertex of B in G′, we have that the outdegree of v in G′A is equal

modulo h to the outdegree of v in G′, which is 0 mod h. Similar arguments hold when v ∈ G′B.

We now assume that there exists a (K,A,B)-extension such that both GA and GB have an

h-orientation. We must show that G also has an h-orientation. Let G′A and G′B be h-orientations

of GA and GB respectively. We create an h-orientation G′ of G as follows. Let e be an undirected

5

edge in G. If e has an endpoint in A then e also appears in GA. The orientation of e in G′ will be

the same as its orientation in G′A. Similarly, if e has an endpoint in B then its orientation in G′ will

be the same as its orientation in G′B. If both endpoints of e belong to K then e appears in both

GA and GB, and it is oriented in the same way in both GA and GB, and this orientation will be

the orientation of e in G′. We must now show that the outdegree of every vertex of G′ is 0 mod h.

If v ∈ A then its outdegree in G′ is the same as its outdegree in G′A, which is 0 mod h. A similar

argument holds if v ∈ B. If v ∈ K, let RA(v) be the number of edges emanating from v toward

A in G′A. Analogously, define RB(v), RK(v), RDA
(v) and RDB

(v). Note that RK(v), RDA
(v) and

RDB
(v) are also the number of edges emanating from v toward the respective classes in GA and GB,

while RA(v) and RB(v) only apply to G′A and G′B. Now, since GA and GB are a (K,A,B)-extension,

we know that RK(v) +RDA
(v) +RDB

(v) = 0 mod h. Also, since G′A and G′B are h-orientations we

have RA(v) + RK(v) + RDA
(v) = 0 mod h, and RB(v) + RK(v) + RDB

(v) = 0 mod h. It follows

from these three equalities that RA(v) +RB(v) +RK(v) = 0 mod h. But RA(v) +RB(v) +RK(v)

is exactly the outdegree of v in G′. 2

Lemma 2.2 Let k be a fixed positive integer. Let G = (V,E) be a partially-oriented graph on n

vertices, where n > 12kh. A k-separator K,A,B of G, if it exists, can be found in O(n) time, or

otherwise we can decide in O(n) time that G is not k-slim. Furthermore, if K,A,B is a k-separator

of G then there are at most (kh)2kh2(k2) (K,A,B)-extensions, and they can all be generated in

constant time.

Proof If G is k-slim, a k-separator K,A,B of G exists. Such a K can be found in linear O(V +E)

time (under our assumption that k is fixed), by applying an algorithm that uses flow techniques

[14]. Once K is found, the connected components of G \K can be computed in linear time, using

Breadth First Search. Each connected component can then be assigned to either A or B in a greedy

manner, while maintaining that |A|, |B| ≤ (2/3)n. The fact that O(V + E) = O(n) follows from

the result of Mader in [12], which states that a graph on n vertices with no k-connected subgraph

has O(nk) edges, and from the fact, mentioned in the introduction, that k-slim graphs have no

3k-connected subgraphs. If our algorithm failed to find K within the required running time, then

we may halt it and output that G is not k-slim.

Given the K,A,B-separator, we now show how all (K,A,B)-extensions can be constructed in

constant time. Let P be the set of all the non-oriented edges that have both of their endpoints in

K. In each (K,A,B)-extension, all the edges of P must be oriented. There are exactly 2|P | ways to

orient P , and they can all be generated in O(2|P |) time. Since |P | ≤
(k
2

)
, this is O(2(k2)). We now

let P ′ be a particular orientation of P , and show how to create all (K,A,B)-extensions in which the

6

edges of P have the orientation P ′. This is done as follows. We create two sets of k(h− 1) vertices

each, which we call DA and DB, and which are initially isolated. For each v ∈ K we can compute

in constant time the value RK(v) which is the number of edges emanating from v toward a vertex

of K, taken modulo h. (In fact, we could have computed the RK(v)’s when we generated each

orientation of P). We must now decide upon the values RDA
(v) and RDB

(v) for each v ∈ K. Each

of these values is at most h− 1, and we must also have that RDA
(v) +RDB

(v) +RK(v) = 0 mod h.

Thus there are exactly h ways to select the mutual values of RDA
(v) and RDB

(v). Thus, there are

at most hk choices for the set of 2k values of RDA
(v) and RDB

(v) for all v ∈ K simultaneously.

Clearly these sets of numbers can be computed in constant time. Fixing such a set, we must select

RDA
(v) vertices from DA and RDB

(v) vertices from DB for each v ∈ K and connect them with v

via an edge emanating from v. Once this is done for all v ∈ K, we delete from DA and DB the

vertices that are still isolated. Thus, we have obtained a (K,A,B)-extension. There are exactly

∏
v∈K

(
k(h− 1)

RDA
(v)

)(
k(h− 1)

RDB
(v)

)
<

(
kh

h

)2k

ways to select the adjacent vertices in DA and DB for all v ∈ K simultaneously, although some of the

resulting extensions may be isomorphic. Once again, since k and h are constants, these extensions

can be generated in constant time. Summing up, we have that there are at most
(kh
h

)2k
hk extensions

which agree with P ′, and thus there are at most(
kh

h

)2k

hk2(k2) ≤ (k(kh)h−1)2khk2(k2) ≤ (kh)2kh2(k2)

(K,A,B)-extensions. 2

Proof of Theorem 1.1: Our algorithm receives a partially-oriented n-vertex graph G = (V,E)

as input, and returns with one of the following three possible results:

1. An h-orientation of G.

2. An announcement ’G does not have an h-orientation’.

3. An announcement ’G is not k-slim’.

Furthermore, our algorithm runs in time which is polynomial in n. The algorithm proceeds as

follows. If n ≤ 12kh we compute an h-orientation of G, if it exists, with brute force. If it does not

exist we output that G does not have an h-orientation. If n > 12kh, we either find a k-separator

K,A,B of G, or decide that G is not k-slim. This can be done in O(n) time by Lemma 2.2. If

7

we have managed to compute a separator, we continue computing, in constant time, all (K,A,B)-

extensions. Let GA = (VA, EA) and GB = (VB, EB) be the pair of graphs of a given extension.

Then,

|VA| = |A|+ k + |DA| ≤ (2/3)n+ k + k(h− 1) ≤ (3/4)n.

Similarly, |VB| ≤ (3/4)n. We recursively apply our h-orientation algorithm on GA and GB, and

do this for all possible extensions. According to Lemma 2.1 we know that if at least one extension

in which both GA and GB are k-slim satisfies that both GA and GB have an h-orientation, then

G also has an h-orientation. If no extension in which both GA and GB are k-slim satisfies this,

then G does not have an h-orientation. Note that some of the extensions that we generate may

result in non-slim graphs GA or GB, even if G is k-slim. Let T (n) be the overall running time

of the algorithm. T (n) measures the number of instructions that the algorithm performs on an

input of size n, under any valid computation model (say, the RAM model). Let C1 be a positive

integer such that T (n) ≤ C1 whenever n ≤ 12kh. According to Lemma 2.2 and our recursive

implementation we have that T (n) ≤ C2n+ 2C3T (0.75n) where C2 and C3 are absolute constants.

C2n represents the running time of computing the separator. C3 represents the time to compute

all possible extensions. 2T (0.75n) represents the running time over the two subproblems GA and

GB that correspond to a given extension. It is shown in [8] (there called the Master Theorem)

that such functions like T (n) are polynomial in n, where the degree of the polynomial is O(logC3),

which, in our case, is O(kh log kh). 2

3 Robust decompositions of k-slim graphs

In this section we prove Theorem 1.2. From here on we let H be a fixed robust graph on h vertices.

Let G be a k-slim graph, and let K,A,B be a k-separator of G.

The algorithm for solving the H-decomposition problem is, in fact, a special case of a more

general algorithm. In order to describe the general algorithm we need several definitions. Denote

the edge-set ofH by EH = {1, . . . , p}. Thus, |EH | = p. A graphG = (V,E) is called partially-labeled

if every edge e ∈ E is associated with a label l(e) = lG(e) where either l(e) = ∅ (a non-labeled edge)

or l(e) = (c, i) where c is the color of e, chosen from a finite set of possible colors, and i ∈ {1, . . . , p}
is the role of e. Furthermore, if l(e) = (c, i) and l(e′) = (c, j) then i 6= j. In other words, no two

labeled edges have the same label. A labeled H-decomposition of a partially-labeled graph G is an

H-decomposition whose members possess the following two additional properties:

1. If l(e) = (c, i) then e plays the role of the edge i of H in the H-decomposition.

8

2. If l(e) = (c, i) and l(e′) = (c, j) then e and e′ belong to the same member of the H-

decomposition.

Every member of a labeled H-decomposition of G is called label-isomorphic to H, since labeled

edges are mapped to their roles under the isomorphism. Our algorithm will solve the labeled

H-decomposition problem. Note that such a solution implies a solution to the (unlabeled) H-

decomposition problem if we initially define lG(e) = ∅ for all e ∈ E.

As in the previous section, the key ingredient in the algorithm is the notion of a (K,A,B)-

extension of a partially-labeled graph. This is defined as follows. Let G = (V,E) be partially-

labeled, and let K,A,B be a k-separator of G. Let F be the set of colors used in the labels of

the edges of G. Let F∗ ⊂ F be the set of colors that are used in a label of an edge which has an

endpoint in A and also in a label of an edge which has an endpoint in B. A (K,A,B)-extension

of G is a set of two partially labeled graphs, GA = (VA, EA) and GB = (VB, EB) for which the

following six requirements hold:

1. VA = A ∪K ∪DA, VB = B ∪K ∪DB where DA is disjoint from A ∪K and DB is disjoint

from B ∪K.

2. Every edge e adjacent to a vertex of A in G, appears in GA. Also, lG(e) = lGA
(e) (i.e. the

edge e keeps its label). Similarly, every edge e adjacent to a vertex of B in G, appears in GB,

and keeps the same label.

3. Every edge e connecting two vertices of K appears in at least one of GA and GB, and it may

appear in both. Let EK denote the edges with both endpoints in K, which appear in both

GA and GB. If e /∈ EK (i.e. e appears only in GA or only in GB), then e keeps its label. If

e ∈ EK and lG(e) 6= ∅, then e keeps its label. If e ∈ EK and lG(e) = ∅ then e becomes labeled

in GA and GB and lGA
(e) = lGB

(e). Note that in any case, every edge of EK must be labeled

in GA and GB, and with the same label in both.

4. Every vertex of DA may only be adjacent to other vertices of DA or to vertices of K. Similarly,

vertices of DB may only be adjacent to vertices of DB ∪K. No vertex of DA or DB may be

isolated.

5. Let FK = {c | e ∈ EK , lGA
(e) = (c, i)} be the set of colors used by the labels of the edges of

EK . Every edge adjacent to DA ∪DB must be labeled with a color from FK . Furthermore,

it is required that F∗ ⊂ FK , and also that FK ∩ (F \ F∗) = ∅. Hence, if a color c appears

(in G) in an edge adjacent to A and also in an edge adjacent to B, then there must be at

least one edge of EK that has the color c (in GA and GB). If c does not have this property

9

(e.g. if c does not appear in an edge adjacent to A) then c does not appear in EK . Note that

FK \ F∗ are new colors that do not appear in G.

6. Let c ∈ FK . Let Ac (Bc) be the subgraph of GA (GB) which is induced by the edges whose

color is c. Note that Ac and Bc may share a few edges, namely those edges of Ek which

are colored with c. Let A∗c (B∗c) be the subgraph of Ac (Bc) induced by the edges of Ek

and the edges adjacent to DA (DB). Let Hc be the graph union of A∗c and B∗c . Then, it is

required that Hc be label-isomorphic to H. Furthermore, it is also required that Ac (Bc) be

label-isomorphic to the subgraph of H induced by the roles of the edges of Ac (Bc).

Corollary 3.1 In any (K,A,B)-extension, |DA|, |DB| ≤
(k
2

)
h.

Proof According to requirement 6 in the definition of a (K,A,B)-extension, every edge which is

adjacent to DA belongs to some graph Hc, for c ∈ FK . Thus, there are at most h vertices of DA

which have adjacent edges colored with c, for c ∈ FK . Since |FK | ≤ |EK | ≤
(k
2

)
, and since no edge

of DA is isolated, we have |DA| ≤
(k
2

)
h. Similar arguments hold for DB. 2

Note that a (K,A,B)-extension is established by the following decisions. We first need to

decide, for each edge with both endpoints in K, if it belongs to GA or GB or both. The common

edges form the set EK , and we must then label those edges of EK which were not labeled in G.

When assigning these labels care must be taken to preserve a proper labeling, and that each color

of F∗ will indeed appear in EK (if these conditions cannot be satisfied then our choice of EK is not

valid, since no (K,A,B)-extension has this choice as the set of common edges of GA and GB). We

must then define DA and DB by creating these sets, and joining them (via properly labeled edges

whose colors are taken from Fk) among themselves or to vertices of K.

Lemma 3.2 Let G = (V,E) be a partially-labeled k-slim graph and let K,A,B be a k-separator in

G. Then G has a labeled H-decomposition iff there exists a (K,A,B)-extension such that both GA

and GB have a labeled H-decomposition, and both GA and GB are k-slim.

Proof Assume first that G has a labeled H-decomposition. Let G1, . . . G|E|/p be the members of

such a decomposition. Let F be the set of colors used in the partial labeling of G. We may assume

that F = {1, . . . , t} where t ≤ |E|/p. We may thus assume that Gc contains all the edges whose

color is c (Gc may also contain unlabeled edges), for c = 1, . . . , t. Gc has all its edges unlabeled for

c = t+ 1, . . . , |E|/p. We now define a (K,A,B)-extension of G such that both GA and GB have a

labeled H-decomposition. For c = 1, . . . , |E|/p let Ac and Bc be the subgraphs of Gc induced by

the edges adjacent to A and B respectively. Let Kc be the subgraph of Gc induced by the edges

10

both of whose endpoints belong to K. We create a set of |B| vertices which we call D′A, where

each vertex of D′A is assigned to a vertex of B. Hence, for each x ∈ B there is a unique vertex

b(x) ∈ D′A. Similarly, we create |A| vertices which we call D′B where each is assigned to a vertex of

|A|. Hence, for each x ∈ A there is a unique vertex a(x) ∈ D′B. The following process will connect

some of the vertices of D′A to vertices of D′A ∪ K and some of the vertices of D′B to vertices of

D′B ∪K. The vertices of D′A and D′B that remain disconnected at the end of the process will be

discarded and the remaining vertices of D′A and D′B will form DA and DB respectively. We now

define our process of creation of GA and GB, which is done for each c = 1, . . . , |E|/p.

1. The edges of Ac belong only to GA and the edges of Bc belong only to GB.

2. If Ac is empty then the edges of Kc (if there are any) belong only to GB.

3. Otherwise, if Bc is empty then the edges of Kc (if there are any) belong only to GA.

4. Otherwise, both Ac and Bc are non-empty. This means that c ∈ F∗. In this case the edges of

Kc belong to both GA and GB, i.e. they belong to EK . Note that, crucially, Kc is non-empty

since H is robust, and thus Gc, being isomorphic to H, is also robust. Now consider an edge

e = (x, y) ∈ Gc, and suppose e is mapped to the edge i of H under the labeled isomorphism

between Gc and H. Exactly one of the following six possibilities applies to e:

(a) If e ∈ Kc and e is labeled, we do nothing.

(b) If e ∈ Kc and e is unlabeled, we must now label it because e ∈ EK . We thus put

lGA
(e) = lGB

(e) = (c, i).

(c) If e ∈ Ac and x ∈ A and y ∈ A we create the edge (a(x), a(y)) (this is an edge connecting

two vertices of D′B in GB), and we label it (c, i).

(d) If e ∈ Ac and x ∈ A and y ∈ K we create the edge (a(x), y) in GB, and label it (c, i).

(e) If e ∈ Bc and x ∈ B and y ∈ B we create the edge (b(x), b(y)) (this is an edge connecting

two vertices of D′A in GA), and we label it (c, i).

(f) If e ∈ Bc and x ∈ B and y ∈ K we create the edge (b(x), y) in GA, and label it (c, i).

Note, in particular, that all the edges of Kc are labeled and their color is c. This fact shows

that every color in F∗ appears in EK , which is one of our requirements from an extension.

Clearly, the graph GA that we have constructed is isomorphic to a subgraph of G, and thus GA is

k-slim. The same holds for GB. Our construction also shows that GA and GB form a (K,A,B)-

extension. Note also that each c such that Ac 6= ∅ defines a unique subgraph isomorphic to Gc

11

in GA, which is also label isomorphic to H, and that the union of these subgraphs coincides with

GA. Thus GA has a labeled H-decomposition. Similar arguments show that GB has a labeled

H-decomposition.

For the other direction, we assume that we have a (K,A,B)-extension such that both GA and

GB have a labeled H-decomposition. We construct a labeled H-decomposition L of G as follows.

Consider a member G′ of the H-decomposition of GA that contains no edge from EK . We claim

that G′ does not contain any edge which is adjacent to DA. To see this, note that if GA contained

some edge e which is adjacent to some vertex of DA, then e must be labeled. In particular, e is

colored by some color c. But our requirement from an extension is that c ∈ Fk. Thus there is some

edge e′ ∈ Ek which has the color c. Since e′ /∈ G′ this means that there is another member G′′

of the labeled H-decomposition containing e′. Hence two distinct members contain edges having

the same color c. This cannot happen in a labeled H-decomposition. We have thus shown that G′

is entirely a subgraph of G, and we make G′ a member of L. Note also that the labels of G′ in

G are identical to its labels is GA, thus G′ is label-isomorphic to H. Similarly, a member of the

H-decomposition of GB that contains no edge from EK will also be a member of L.

Finally, let G′ be a member of the H-decomposition of GA that contains an edge e ∈ EK . Since

e must be labeled in GA, we assume l(e) = (c, i). Thus, all labeled edges of G′ are colored with

c. Let G′′ be the member of the H-decomposition of GB that contains e. Such a member must

exist since edges of EK appear in both GA and GB. Since the label of e in G′′ is also (c, i), we

have that G′′ contains all the edges of GB that are colored with c. Let Ac (Bc) be the edges of G′

(G′′) which are adjacent to vertices of A ∪K (B ∪K), and which are not in EK . Let Kc be the

common edges of G′ and G′′ (namely the edges belonging to EK and whose color is c). Let DAc and

DBc be the edges of G′ and G′′ which are adjacent to vertices of DA and DB respectively. Clearly,

Ac cupKc ∪DAc are all the edges of G′ and Bc ∪Kc ∪DBc are all the edges of G′′. We know from

item 6 in the list of requirements from an extension that the graph Hc induced by Kc ∪DAc ∪DBc

is label-isomorphic to H, and every edge in it is labeled. Let G∗ be the subgraph of G induced

by Ac ∪ Bc ∪Kc. Clearly, every labeled edge of G∗ is colored with c. It remains to show that G∗

is label-isomorphic to H, since we can then add G∗ to L. We first show how to map every edge

e ∈ G∗. If e ∈ Ac ∪Kc, let i be the edge of EH that e is mapped to under the labeled isomorphism

between G′ and H. If e ∈ Bc ∪Kc let i be the edge of EH that e is mapped to under the labeled

isomorphism between G′′ and H. (Note that if e ∈ Kc there is no conflict in the definition of i,

since e ∈ EK in this case and it is thus labeled in G′ and G′′, and with the same label in both). In

any case, we map e to i in the labeled isomorphism between G∗ and H that we are constructing.

We must now show that our mapping is one-to-one. Suppose e and f are two distinct edges of G∗,

12

where e is mapped to i and f is mapped to j. If {e, f} ⊂ Ac ∪Kc or {e, f} ⊂ Bc ∪Kc then, clearly,

i 6= j. If e ∈ Ac and f ∈ Bc then i cannot be a role of an edge of DAc ∪Kc. Thus, i must be a role

of some edge of DBc (here we use the fact that Hc is label-isomorphic to H, and all p distinct roles

appear in Hc). Similarly, j must be a role of some edge of DAc. Thus, once again, i 6= j. We have

shown that our mapping is one-to-one. The fact that this mapping is a graph isomorphism between

G∗ and H is a straightforward consequence of the fact that Hc, G
′ and G′′ are all label-isomorphic

to H. 2

The next lemma is similar to Lemma 2.2 in the previous section.

Lemma 3.3 Let k be a fixed positive integer. Let G = (V,E) be a partially-labeled graph on n

vertices, where n > 12k2h. A k-separator K,A,B of G, if it exists, can be found in O(n) time, or

otherwise we can decide in O(n) time that G is not k-slim. Furthermore, if K,A,B is a k-separator

of G then:

1. Let F∗ be the set colors that appear in a label of an edge adjacent to A and also in a label of

an edge adjacent to B. Then F∗ can be computed in O(n) time.

2. If |F∗| >
(k
2

)
then G does not have a labeled H-decomposition.

3. If |F∗| ≤
(k
2

)
then all the (K,A,B)-extensions can be computed in constant time.

Proof The first part of the lemma is identical to the first part of Lemma 2.2, and so we continue

with the second part.

1. We scan the edges adjacent to A and create a list of all colors used in these edges. Similarly,

we create a list of all colors used by edges adjacent to B. These operations take time which

is proportional to the number of edges adjacent to A and B, which is O(n). Since there are

O(n) elements in each of these two lists, the lists can be sorted in O(n) time with bucket sort,

and then their intersection can be computed in O(n) time, producing F∗.

2. In every (K,A,B)-extension, every member of F∗ must appear in a color of a label of some

edge of EK (recall that EK are the edges which are shared between GA and GB and have

both of their endpoints in K). Since, clearly, |EK | ≤
(k
2

)
, it follows that if |F∗| >

(k
2

)
then

there is no (K,A,B)-extension. Thus, according to Lemma 3.2, G does not have a labeled

H-decomposition.

3. We now assume that |F∗| ≤
(k
2

)
and show that the number of (K,A,B)-extensions can be

bounded by a constant, and how We must first decide, for each edge with both endpoints

in K, if it will belong to GA or GB or both. There are at most 3(k2) such choices. Fixing

13

such a choice, we denote by EK the common edges of GA and GB, and we must label each

non-labeled edge of EK . The colors in these labels may only be taken from F∗ or may be new

colors that are not used in G. In a proper extension, each color in F∗ must appear in an edge

of EK . Thus, there are at most |EK | − |F∗| new colors. Altogether, each non-labeled edge of

EK may be assigned a color from a set of at most |EK | ≤
(k
2

)
possible colors. We must also

assign a role for each non-labeled edge of EK . There are p possible roles. Thus, the number of

ways to label all non-labeled edges of EK is at most (
(k
2

)
p)|EK |. Once a labeling is determined

we must check its validity. If a color of F∗ does not appear in EK , the labeling is not valid.

Also, if the same label appears in an edge of EK , and in another edge of G, (there are at most(k
2

)
p edges of G which may have a label that appears also in a vertex of EK), the labeling is

not valid. Since k and p are fixed, and since F∗ has already been computed, these validity

checks can be done in constant time; in fact, in O(k2p) time. Consider a labeling of EK which

passed these validity tests. Let FK be the set of colors used in the labels of the edges of EK .

We must now define the sets DA and DB, and their adjacent edges. Note that, according

to item 6 in the list of requirements of a K,A,B-extension, the graph induced by EK and

the adjacent edges to DA and DB (all these edges are labeled in the extension), is simply an

edge-disjoint union of graphs Hc which are label-isomorphic to H, for all c ∈ FK . We must

therefore consider all the possible ways to generate such an edge-disjoint union. This is done

as follows: Let Kc be the set of edges of EK which are colored by c. Let Ac and Bc be the

edges adjacent to A and B respectively, which are colored by c (if c is a new color then Ac

and Bc are empty). Let Rc be the set of roles of Kc. Rc is non-empty since Kc is non-empty.

Let X ′c be the set of roles in Ac and let Y ′c be the set of roles in Bc. We compute all possible

triples Rc, Xc, Yc such that X ′c ⊂ Xc and Y ′c ⊂ Yc, and Rc∪Xc∪Yc = {1, . . . , p} = EH , and Xc

and Yc are non-empty. For every such triple, we check whether the subgraph of H induced by

Rc separates H such that the subgraph of H induced by Xc is separated from the subgraph

induced by Yc. Such a triple is called good. For each c ∈ FK let Rc, Xc, Yc be a good triple.

Such a set of triples naturally defines DA and DB and their adjacencies, since for each c, a

good triple Rc, Xc, Yc defines Hc. Checking that a set of |FK | good triples is edge-disjoint

can also be done in constant time, since these are graphs of constant size, and there is a

constant number of them. For each such valid set, we must also verify whether the subgraph

of G induced by Kc ∪Ac ∪Bc contains a spanning subgraph which is label-isomorphic to the

subgraph of H induced by the roles of Kc ∪ Ac ∪ Bc. For each c ∈ FK there are at most 2p

triples Rc, Xc, Yc, as for each role that does not appear in Rc ∪X ′c ∪ Y ′c we must decide if it

appears in Xc or Yc. Thus, there are at most 2p|FK | ways to obtain a valid extension, after

14

deciding upon EK and its labeling. Altogether, there are at most

3(k2) · (
(
k

2

)
p)|EK | · 2p|FK | ≤ 3k

2
(k2p)k

2
(2p)k

2
= (3k2p2p)k

2
.

2

Having proved Lemmas 3.3 and 3.2, the proof of Theorem 1.2 is almost identical to the proof

of Theorem 1.1. Let G = (V,E) be an n-vertex graph which is k-slim. Our algorithm proceeds

as follows. If n ≤ 12k2h we compute an H-decomposition in G, if it exists, with brute force.

Otherwise, we find a k-separator K,A,B of G in O(n) time. This can be done by Lemma 3.3. We

then compute, in constant time, all (K,A,B)-extensions. Let GA = (VA, EA) and GB = (VB, EB)

be the pair of graphs of a given extension. Then,

|VA| = |A|+ k + |DA| ≤ (2/3)n+ k +

(
k

2

)
h ≤ (2/3)n+ k2h ≤ (3/4)n.

Similarly, |VB| ≤ (3/4)n. We recursively apply the labeled H-decomposition algorithm on GA and

GB, and do this for all possible extensions. According to Lemma 3.2 we know that if at least

one extension in which both GA and GB are k-slim satisfies that both GA and GB have a labeled

H-decomposition, then G also has a labeled H-decomposition. If no extension in which both GA

and GB are k-slim satisfies this, then G does not have a labeled H-decomposition. Let T (n) be the

overall running time of the algorithm. T (n) measures the number of instructions that the algorithm

performs on an input of size n, under any valid computation model (say, the RAM model). Let

C1 be a positive integer such that T (n) ≤ C1 whenever n ≤ 12k2h. According to Lemma 3.3

and our recursive implementation we have that T (n) ≤ C2n + 2C3T (0.75n) where C2 and C3 are

absolute constants. C2n represents the running time of computing the separator and the set F∗.
C3 represents the time to compute all possible extensions. 2T (0.75n) represents the running time

over the two subproblems GA and GB that correspond to a given extension. As in Theorem 1.1,

we use the result in [8] to obtain that T (n) is polynomial in n, where the degree of the polynomial

is O(logC3), which, in our case, is O(k2p log(k2p)). 2

4 Concluding remarks and open problems

The class of graphs H for which we have a polynomial time algorithm solving the H-decomposition

problem in k-slim graphs, consists of the robust graphs and the stars. It is an interesting open

problem if this can be extended to all fixed graphs H. In particular, is the problem polynomial

in case H = P4, the path on 4 vertices. Note that P4 is not a star and is non-robust as one can

take the second vertex of the path as an independent separator. A relaxation of this open problem

15

(but not necessarily a simpler one) is to assume the stricter requirement that the input graph has

tree-width k.

In case the input graph G is assumed to be with bounded tree-width, and also with bounded

maximum degree, the H-decomposition problem can be expressed with a monadic second order

formula, and thus the problem can be solved in linear time in this case. However, this is not very

exciting as this family of graphs is very limited.

Arnborg, Lagergren and Seese note, and demonstrate, in [3] that extended monadic second

order logic captures many natural graph-theoretic problems. Our result shows that there are

natural graph theoretic problems that are not known to be expressible in this logic, and are still

efficiently solvable in graphs with bounded tree-width k, and even in the larger family of k-slim

graphs.

Finally, we note that almost every graph is robust, where by ”almost every” we mean that

a random graph on h vertices is robust with probability tending to one as h tends to infinity

(we assume the G(n, 1/2) model). This is because the maximal independent set is almost always

O(log h), while the vertex-connectivity of the random graph is almost always linear in h (cf. [4]).

Thus, say, for every two positive integers k and h, the family of h-vertex graphs for which edge-

decomposition can be solved in k-slim graphs in polynomial time contains, say, 99 percent of all

h-vertex graphs, provided h > h0 where h0 is an absolute constant.

5 Acknowledgment

The authors thank the referee for important comments and suggestions, and for pointing out to us

that the H-decomposition problems which we handle are not finite-state.

References

[1] K. Abrahamson and M. Fellows, Finite automata, bounded treewidth and well-quasiordering,

In: Graph Structure Theory, N. Robertson and P. Seymour eds. AMS Contemporary Math.

147 (1993), 539-564.

[2] N. Alon, P. D. Seymour and R. Thomas, A separator theorem for non-planar graphs, Journal

of the American Mathematical Society 3 (1990), 801-808.

[3] S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable graphs, Journal

of Algorithms 12 (1991), 308-340.

16

[4] B. Bollobás, Random Graphs, Academic Press, 1985.

[5] J. A. Bondy and U.S. R. Murty, Graph Theory with Applications, Macmillan Press, London,

1976.

[6] B. Courcelle, The monadic second order logic of graphs III: Treewidth, forbidden minors and

complexity issues, Report 8552, University Bordeaux 1, 1988.

[7] C.J. Colbourn and E.S. El-Mallah, Partial k-tree algorithms, Congressus Numerantium 64

(1988) 105-119.

[8] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to algorithms, The MIT Press,

1990.

[9] D. Dor and M. Tarsi, Graph decomposition is NPC - A complete proof of Holyer’s conjecture,

Proceedings of the 20th ACM Symposium on the Theory of Computing, ACM Press (1992),

252-263.

[10] M. Fellows, M. Hallett and H. Wareham, DNA Physical Mapping: three ways difficult, Pro-

ceedings of the 1st Annual European Symposium on Algorithms, Springer Verlag LNCS vol.

726 (1993), 157-168.

[11] R. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM Journal of

Computing 36 (1979), 177-189.

[12] W. Mader, Connectivity and edge connectivity in finite graphs, In: Surveys in Combinatorics,

B. Bollobás, Ed. Cambridge University Press, London, 1979.

[13] N. Robertson and P. Seymour, Graph minors II. Algorithmic aspects of tree-width, Journal of

Algorithms 7 (1986), 309-322.

[14] N. Robertson and P. Seymour, Graph minors XIII. The disjoint paths problem, Manuscript,

1986.

17

