Second Neighborhood via First Neighborhood in Digraphs

Guantao Chen *
Department of Mathematics and Statistics
Georgia State University
Atlanta, GA 30303

Jian Shen
Department of Mathematics
Southwest Texas State University
San Marcos, TX 78666

Raphael Yuster
Department of Mathematics
University of Haifa-Oranim
Tivon 36006, 36006

Abstract

Let D be a simple digraph without loops or digons. For any $v \in$ $V(D)$, the first out-neighborhood $N^{+}(v)$ is the set of all vertices with out-distance 1 from v and the second neighborhood $N^{++}(v)$ of v is the set of all vertices with out-distance 2 from v. We show that every simple digraph without loops or digons contains a vertex v such that $\left|N^{++}(v)\right| \geq$ $\gamma\left|N^{+}(v)\right|$, where $\gamma=0.657298 \ldots$ is the unique real root of the equation $2 x^{3}+x^{2}-1=0$.

1 Introduction

All digraphs considered in this article are finite and without loops or multiple edges. We also assume that all digraphs do not have digons, i.e. both (u, v) and (v, u) are arcs. Let $D=(V, A)$ denote a digraph with vertex set V and arc set A. For any vertex $v \in V(G)$, let $N^{+}(v)=\{w:(v, w) \in A\}$ and $d^{+}(v)=$ $\left|N^{+}(v)\right|$ (the outdegree of v). For any subgraph H, let $N_{H}^{+}(v)=N^{+}(v) \cap V(H)$ and $d_{H}^{+}=\left|N_{H}^{+}(v)\right|$. For any $W \subset V$, we let $G[W]$ denote the subgraph induced by W and $N_{W}^{+}(v)=N_{G[W]}^{+}(v)$ and $d_{W}^{+}(v)=d_{G[W]}^{+}(v)$. Let $N^{-}(v)=\{u$: $(u, v) \in A\}$. Similarly, we define $d^{-}(v)$ (the indegree of v), $N_{H}^{-}(v), d_{H}^{-}(v)$, $N_{W}^{-}(v)$, and $d_{W}^{-}(v)$. For any $S \subset V$, we define $N^{+}(S)=\cup_{s \in S} N^{+}(s)-S$ and $N^{-}(S)=\cup_{s \in S} N^{-}(s)-S$. For any $v \in V$, let $N^{++}(v)=N^{+}\left(N^{+}(v)\right)$ and $d^{++}(v)=\left|N^{++}(v)\right|$. Let r be a positive integer, a digraph D is named r-regular if $d^{+}(v)=d^{-}(v)=r$ for all $v \in V(D)$. For any two disjoint vertex sets X, $Y \subseteq V$, we let $E(X, Y)$ denote the arcs from X to Y and $e(X, Y)=|E(X, Y)|$. Since we assume that D does not have any digon, we have that

$$
e(X, Y)+e(Y, X) \leq|X| \times|Y|
$$

[^0]for any two disjoint vertex sets X and Y.
For the purpose of this article, all cycles considered here are direct cycles. The girth, denoted by $g(D)$, of a digraph D is the length of shortest direct cycle if D contains a cycle. Naturally, one can expect the girth of a graph will be small if the digraph either large minimum indegree or large minimum outdegree or both. The following three conjectures express this phenomenon.

Conjecture 1 ([2]) If D is an r-regular digraph on n vertices, then the girth $g(D) \leq\lceil n / r\rceil$.

Conjecture 2 If D is a digraph on n vertices with $\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \leq r$, then the girth $g(D) \leq\lceil n / r\rceil$.

Conjecture 3 ([5]) If D is a digraph on n vertices with $\delta^{+}(D) \geq r$, then $g(D) \leq\lceil n / r\rceil$.

Conjecture 2 implies Conjecture 1 and Conjecture 3 implies Conjecture 2. Conjecture 2 has been well-known although who originally made the conjecture is unknown to us. Behzad, Chartran, and Wall [2] constructed examples showing that Conjecture 1 is best possible, so are Conjectures 2 and 3 . While all three conjectures are unsolved, some progresses have been made. Conjecture 1 has been verified for $r=2$ by Behzad [1], for $r=3$ by Bermond [3], for vertex-transitive digraph by Hamidoune [10]. Conjecture 2 has been verified for $r \leq 4$ by Hamidoune [11]. Conjecture 3 has been verified for $r=2$ By Caccetta and Häggkivist [5], for $r=3$ by Hamidoune [12], and for $r=4,5$ by Hoáng and Read [13].

Let D be a digraph on n vertices with $\delta^{+}(D) \geq r$. Chvátal and Szemerédi [6] proved that $g(D) \leq \min \{2 n /(r+1), n / r+2500\}$. Nishimura [15] proved that $g(G) \leq n / r+304$. Recently, Shen [17, 18] showed that $g(G) \leq \min \{\lceil n / r\rceil, n / r+73,2 r-2\}$. As a consequence, Conjecture 3 is true for $n \geq 2 r^{2}-3 r+1$.

Recently, people became particularly interested in a special case of Conjecture 3: Any digraph with n vertices and minimum outdegree at least $n / 3$ contains a triangle. By a triangle, we shall mean a directed cycle of length 3. Let c be the minimum positive real number such that every digraph D on n vertices with $\delta^{+} \geq c n$ contains a triangle. Caccetta and Haggkvist [5] showed that $c \leq(3-\sqrt{5}) / 2=0.3819 \ldots$, Bondy [4] showed that $c \leq(2 \sqrt{6}-3) / 5=0.3797 \ldots$, Shen $[16]$ showed that $c \leq 3-\sqrt{7}=0.3542 \ldots$ Let β be the minimum positive real number such that every digraph D on n vertices with $\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq \beta n$ contains a triangle. Graaf, Schrijver, and Seymour [9] showed that $\beta \leq 0.3487 \ldots$ In fact, they showed that a upper bound of β can be obtained from the inequality:

$$
\left(\frac{4}{\alpha^{2}}-\frac{2}{\alpha}\right) x^{2}-\left(\frac{24}{\alpha^{2}}-\frac{16}{\alpha}\right) x+\left(\frac{36}{\alpha^{2}}-\frac{30}{\alpha}+1\right)>0
$$

where α can be chosen to be any number greater than or equal to c. By choosing $\alpha=3-\sqrt{7}$ in the above inequality, Shen [16] showed that $\beta \leq$ 0.3477....

2 The Second Neighborhood Conjecture

Seymour (see [7]) put forward the following conjecture which would implies the case $r=\lceil n / 3\rceil$ of Conjecture 2.

Conjecture 4 ([7]) For any digraph D, there exists a vertex v such that $d^{++}(v) \geq d^{+}(v)$.

Fisher [8] showed that Conjecture 4 is true if D is a tournament, which is conjectured to be true by Dean [7]. Kaneko and Locke [14] and others verified Conjecture 4 for digraphs with maximum degree at most 6 . Another approach to Conjecture 4 is to determinate the maximum value of c such that there is a vertex v satisfying $d^{++}(v) \geq c d^{+}(v)$ for every digraph D. The relation between this parameter and minimum outdegree condition for a digraph containing a triangle is stated below.

Proposition 5 If β is a positive real number such that, for every digraph D, there exists a vertex v such that $d^{++}(v) \geq \beta d^{+}(v)$, then any digraph D on n vertices has a triangle if $\min \left\{\delta^{+}(D), \delta^{+}(D)\right\} \geq \frac{n}{2+\beta}$.

Proof: Let D be a digraph on n vertices with minimum outdegree $\delta^{+}(D) \geq$ $\frac{n}{2+\beta}$. Since

$$
\sum_{v \in V} d^{-}(v)=\sum_{v \in V} d^{+}(v) \geq \frac{n^{2}}{2+\beta},
$$

there is a vertex u such that $d^{-}(u) \geq \frac{n}{2+\beta}$. Thus, we have that

$$
\begin{aligned}
\left|N^{+}(u)\right| & \geq \frac{n}{2+\beta} \\
\left|N^{-}(u)\right| & \geq \frac{n}{2+\beta}, \text { and } \\
\left|N^{++}(u)\right| & \geq \beta\left|N^{+}(u)\right| \geq \frac{\beta n}{2+\beta} .
\end{aligned}
$$

Hence,

$$
\left|N^{+}(u)\right|+\left|N^{-}(u)\right|+\left|N^{++}(u)\right| \geq n,
$$

which implies that $N^{-}(u) \cap N^{++}(u) \neq \emptyset$ since $N^{+}(u) \cap\left(N^{-}(u) \cup N^{++}(u)\right)=\emptyset$. Then, D contains a triangle.

Taking $\beta=1$, we see that Conjecture 4 implies the case of $n / r \leq 3$ in Conjecture 2. Let $\gamma=0.657298 \ldots$ be the unique real root of $2 x^{3}+x^{2}-1=0$. The purpose of this paper is to prove the following result.

Theorem 6 For any digraph D, there exists a vertex $v \in V(D)$ such that $d^{++}(v) \geq \gamma d^{+}(v)$, where $\gamma=0.657298 \ldots$ is the unique real root of $2 x^{3}+x^{2}-$ $1=0$.

Proof: We will prove Theorem 6 by induction on the number of vertices. Theorem 6 is trivial for digraphs with 1 or 2 vertices. Suppose that D is a digraph on n vertices. Assume, to the contrary, D does not contain a vertex v such that $\left|N^{++}(v)\right| \geq \gamma\left|N^{+}(v)\right|$.

Let u be a vertex of D with minimum outdegree, i.e. $d^{+}(u)=\delta^{+}(D)$. Let D^{*} be the sub-digraph induced by $N^{+}(u)$. For convenience, let $A=N^{+}(u)$, $B=N^{++}(u), a=|A|$, and $b=|B|$. We will show that $e(A, B)+e(B, A)>a b$, a contradiction to that D does not contain any digon.

By our assumption, the following inequality holds,

$$
\begin{equation*}
b=d^{++}(u)<\gamma d^{+}(u)=\gamma a . \tag{1}
\end{equation*}
$$

Since $a=d^{+}(u)=\delta^{+}(D)$, then $d_{A}^{+}(x)+d_{B}^{+}(x)=d^{+}(x) \geq d^{+}(u)=a$ for every vertex $x \in A$. Since D does not contain any digon, we have that $\sum_{x \in A} d^{+}(x) \leq a(a-1) / 2$. Thus,

$$
\begin{equation*}
e(A, B)=\sum_{x \in A} d_{B}^{+}(x) \geq \sum_{x \in A}\left(a-d_{A}(x)\right) \geq a^{2}-a(a-1) / 2>a^{2} / 2 . \tag{2}
\end{equation*}
$$

Since $|A|=a<n$, by induction hypothesis, there is a vertex $x \in N(u)$ such that $\left|N_{A}^{++}(x)\right| \geq \gamma\left|N_{A}^{+}(x)\right|$. Let $X=N_{A}^{+}(x), Y=N^{+}(x)-A=N^{+}(x) \cap B$, and $d=|Y|$. Since $|A-X| \geq\left|N_{A}^{++}(x)\right| \geq \gamma|X|$, then $(1+\gamma)|X| \leq a$. Thus,

$$
|X| \leq \frac{1}{1+\gamma} a \leq \frac{2 a}{3}
$$

where the last inequality follows since $\gamma \geq 1 / 2$. Since $d^{+}(x) \geq \delta^{+}(D)=d^{+}(u)$,

$$
\begin{equation*}
d=|Y|=\left|N^{+}(x)\right|-|X| \geq a-\frac{2 a}{3}=\frac{a}{3} . \tag{3}
\end{equation*}
$$

For every $y \in Y$, since $d^{++}(x)<\gamma d^{+}(x)$ and $d_{A}^{++}(x) \geq \gamma d_{A}^{+}(x)$, we have

$$
d_{V-A-Y}^{+}(y) \leq d^{++}(x)-d_{A}^{++}(x)<\gamma d^{+}(x)-\gamma d_{A}^{+}(x)=\gamma|Y|=\gamma d
$$

Using the inequalities

$$
\begin{align*}
d^{+}(y) \geq \delta^{+}(D) & =d^{+}(u)=a, \text { and } \tag{4}\\
\sum_{y \in Y} d_{Y}^{+}(y) & \leq d(d-1) / 2, \tag{5}
\end{align*}
$$

we obtain the following inequalities.

$$
\begin{align*}
e(Y, A) & =\sum_{y \in Y} d_{A}^{+}(y) \tag{6}\\
& \geq \sum_{y \in Y}\left(a-d_{V-A-Y}^{+}(y)-d_{Y}^{+}(y)\right) \quad(\text { by } 4) \tag{7}\\
& \geq(a-\gamma d) d-\sum_{y \in Y} d^{+}(y) \tag{8}\\
& \geq(a-\gamma d) d-d(d-1) / 2 \quad(\text { by } 5) \tag{9}\\
& >(a-\gamma d-d / 2) d . \tag{10}
\end{align*}
$$

Combining (1), (2) and (10), we obtain that

$$
\begin{align*}
\gamma a^{2} & >a b \tag{11}\\
& \geq e(A, B)+e(B, A) \tag{12}\\
& \geq e(A, B)+e(Y, A) \tag{13}\\
& \geq a^{2} / 2+(a-\gamma d-d / 2) d . \tag{14}
\end{align*}
$$

where $a / 3 \leq d \leq \gamma a$.
Let $f(z)=a^{2} / 2+(a-\gamma z-z / 2) z=-\left(\gamma+\frac{1}{2}\right) z^{2}+a z+\frac{a^{2}}{2}$. Since $f(z)$ is a quadratic function with a negative leading coefficient, the following inequality holds.

$$
\begin{equation*}
f(z)>\min \{f(a / 3), f(\gamma a)\} \text { for all } z \in(a / 3, \gamma a) . \tag{15}
\end{equation*}
$$

Thus, $\gamma a^{2}>\min \{f(a / 3), f(\gamma a)\}$.
A simple calculation gives us that

$$
f(a / 3)=\frac{a^{2}(7-\gamma)}{9}
$$

Solving $\gamma a^{2}>\frac{a^{2}(7-\gamma)}{9}$, we obtain that $\gamma>0.7$, a contradiction.
Also, a simple calculation gives us that

$$
f(\gamma a)=\frac{a^{2}\left(-2 \gamma^{3}-\gamma^{2}+2 \gamma+1\right)}{2}
$$

Simplify the inequality

$$
\gamma a^{2}>\frac{a^{2}\left(-2 \gamma^{3}-\gamma^{2}+2 \gamma+1\right)}{2}
$$

we obtain that $2 \gamma^{3}+\gamma^{2}-1>0$, which contradicts that γ is the unique real root of the equation $2 x^{3}+x^{2}-1=0$.

Corollary 7 If D is a digraph on n vertices and $\min \left\{\delta^{+}(D), \delta^{+}(D)\right\} \geq 0.3764 n$, then D contain a triangle.

Proof: By Theorem 6 and Proposition 5, we have that D contains a triangle if $\delta^{+}(D) \geq \frac{n}{2+\beta}$. Corollary 7 follows immediately from the fact that $\beta=$ 0.657298....

References

[1] Behzad M., Minimally 2-regular digraphs with given girth, J. Math. Soc. Japan 25(1973) 1-6.
[2] Behzad, M., G. Chartran, and C. Wall, On minimum regular graphs with given girth, Fund. Math 69(1970) 227-231.
[3] Bermond, J.C., 1-graphs réguliers de girth donné, Cahiers du C.E.R.O. Bruxelles 17(1975) 123-135.
[4] Bondy, J.A., Counting subgraphs: A new approach to the CaccettaHäggksvist conjecture, Discrete Math. 165/166(1997) 71-80.
[5] Caccetta, L., and R. Häggkvist, On minimal digraphs with given girth, Prof. 9th Southeaster Conf. on Combinatorics, Graph Theory and Computing (1978) 181-187.
[6] Chvátal, V., and E. Szemerédi, Short cycles in directed graphs, J. Combin. Theory, Ser. B 35(1983) 323-327.
[7] Dean, N., and B.J. Latka, Squaring the tournament-an open problem, Congressus Numberantium, 109(1995) 73-80.
[8] Fisher, D.C., Squaring a tournament: a proof of Dean's conjecture, J. Graph Theory vol 23, no 1(1996) 43-48
[9] Graaf, de M., A. Schrijver, and P.D. Seymour, Directed triangles in directed graphs, Discrete Math. 110(1992) 279-282.
[10] Hamidoune, Y.O., An application of connectivity theory in graphs to factorization of elements in groups, Eur. J. Combin. 2(1981) 349-355.
[11] Hamidoune, Y.O., A note on the girth of digraphs, Combinatorica 2(1982) 143-147.
[12] Hamidoune, Y.O., A note on minimal directed graphs with given girth, J. Combin. Theory, Ser. B 43(1987) 343-348.
[13] Hoáng, C.T., and B. Reed, A note on short cycles in digraphs, Discrete Math. 66(1987) 103-107.
[14] Kaneko, Y., and S.C. Locke, Notes on Seymour's second neighborhood conjecture, Abstracts of 33 Southeastern International Conference on Combin. Graph Theory, and Computing, Baton Rouge, 2002.
[15] Nishimura, T., Short cycles in digraphs, Discrete Math. 72(1988) 295-298.
[16] Shen, J., Directed triangles in digraphs, J. Combin. Theory Ser. B, Vo. 74, no. 2(1998)405-407.
[17] Shen, J., On the girth of digraphs, Discrete Math. 211(2000) 167-181.
[18] Shen, J., On the Ceccetta-Häggkivist conjecture, Graphs Combin. 18(2002) 645-654.

[^0]: *Supported by NSF grant No. DMS-0070059

