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Abstract

Let k ≤ n be two positive integers, and let F be a field with characteristic p. A sequence

f : {1, . . . , n} → F is called k-constant, if the sum of the values of f is the same for every

arithmetic progression of length k in {1, . . . , n}. Let V (n, k, F ) be the vector space of all k-

constant sequences. The constant sequence is, trivially, k-constant, and thus dim V (n, k, F ) ≥ 1.

Let m(k, F ) = min∞n=k dim V (n, k, F ), and let c(k, F ) be the smallest value of n for which

dim V (n, k, F ) = m(k, F ). We compute m(k, F ) for all k and F and show that the value

only depends on k and p and not on the actual field. In particular we show that if p 6 | k (in

particular, if p = 0) then m(k, F ) = 1 (namely, when n is large enough, only constant functions

are k constant). Otherwise, if k = prt where r ≥ 1 is maximal, then m(k, F ) = k − t. We

also conjecture that c(k, F ) = (k − 1)t + φ(t), unless p > t and p divides k, in which case

c(k, F ) = (k − 1)p + 1 (in case p 6 | k we put t = k), where φ(t) is Euler’s function. We prove

this conjecture in case t is a multiple of at most two distinct prime powers. Thus, in particular,

we get that whenever k = qs11 q
s2
2 where q1, q2 are distinct primes and p 6= q1, q2, then every

k-constant sequence is constant if and only if n ≥ q2s11 q2s22 − qs1−11 qs2−12 (q1 + q2−1). Finally, we

establish an interesting connection between the conjecture regarding c(k, F ) and a conjecture

about the non-singularity of a certain (0, 1)-matrix over the integers.

1 Introduction

Consider any function f : X → G where X is an arbitrary set and G is an arbitrary abelian group.

Given a family F ⊂ 2X of subsets of X, we say that f is uniform on F if there exists α ∈ G

such that for every Y ∈ F the sum (in G) of the values of f on the elements of Y is α. As a

trivial example, one can take X to be any set, f being any constant function, and F being all

the subsets of X with cardinality 7. Clearly, f is uniform on F . When G = F is a field, we can
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define V (X,F , F ) to be the vector space of all uniform functions. (It is trivial to verify that V is,

indeed, a vector space over F ). V is called the uniformity space of (X,F) over F . The dimension

of V is called the uniformity dimension of (X,F) over F . We can associate V (X,F , F ) with a

(0, 1)-matrix H as follows. The columns of H are indexed by the elements of X, the rows by the

elements of F , and for x ∈ X and Y ∈ F we have H(Y, x) = 1 if and only if x ∈ Y . Clearly, dim V

can be computed from the rank of H since V is spanned by the union of the solutions to Hx = J

or Hx = 0 (J denotes the all-one column vector in F |F|, and dim V depends on whether J belongs

to the column space of H). Note that H can be viewed as an incidence matrix of a hypergraph.

The problem of determining or computing the uniformity space of specific combinatorial struc-

tures has been studied by several researchers. For example, in [5] the problem of determining the

Zero-Sum (mod 2) bipartite Ramsey numbers of a bipartite graph G was solved by determining

the uniformity space of the family of all bipartite subgraphs of Kn,n which are isomorphic to G,

over the field Z2 (in fact, over any field). See also [6] for a determination of the uniformity space of

the family of all subgraphs of Kn isomorphic to a specific graph G over any field. Another recent

application of uniformity space is the characterization of the Zm-well-covered graphs of girth at

least 6 [4]. A graph G is a magic graph if the uniformity space of all the maximal stars in G contains

a one-to-one function from the edge-set of G to a field. Some papers considering magic graphs are

[10, 11, 7, 13]. Computing the rank of incidence matrices of hypergraphs has been investigated by

several researchers (cf. [2, 8, 14]) and these results may sometimes be helpful in solving combina-

torial problems which rely on the characterization of an appropriate uniformity space. Weighted

well-covered graphs are graphs with real-valued weights on the vertices such that all maximal (w.r.t.

containment) independent sets have the same weight. In other words, the uniformity space (over

the reals) of all maximal independent sets is non-trivial. These graphs have been studied in [3].

Other papers relating to uniformity space are [9] and [12].

In this paper we consider the uniformity aspects of fixed length arithmetic progressions in

sequences. Consider a sequence of n elements a1, . . . , an of some field F . The sequence is called

k-constant (we assume k ≤ n) if the sum of the values of all subsequences formed by an arithmetic

progression of length k of 1, . . . , n is the same. k-constant arithmetic progressions in the field

Z2 are discussed in [1]. Since every sequence corresponds to a function f : {1, . . . , n} → F , we

have that the set of all k-constant sequences forms a vector space which is the uniformity space

V (X,F , F ) where X = {1, . . . , n} and F is the set of all arithmetic progressions of length k of

X. Clearly, V (X,F , F ) is only a function of n, k and F , so we shall use the notation V (n, k, F ).

Since any constant sequence is k-constant, we trivially have dim V (n, k, F ) ≥ 1. Since, obviously
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f(i) = f(i+ k), it is also immediate to verify that for every n ≥ k

k = dim V (k, k, F ) ≥ dim V (n, k, F ) ≥ dim V (n+ 1, k, F ) ≥ 1. (1)

Thus, it is natural to define the following two parameters:

1. m(k, F ) = min∞n=k dim V (n, k, F ).

2. c(k, F ) = min{n | dim V (n, k, F ) = m(k, F )}.

The purpose of this paper is to determine m(k, F ) and c(k, F ). It turns out that these values are

only functions of k and the characteristic of F and not of the actual field being used. Let p denote

the characteristic of F . The value of m(k, F ) is determined in the following theorem:

Theorem 1.1 If p = 0 or gcd(p, k) = 1 then m(k, F ) = 1. Otherwise, let k = prt where r ≥ 1 is

maximal, then m(k, F ) = k − t.

Note that Theorem 1.1 shows that if p = 0 or gcd(p, k) = 1 then, for n ≥ c(k, F ) the only k-constant

sequences are the constant sequences. On the other hand, if p is a prime factor of k then there

always exist infinite non-constant sequences which are k-constant (except when k = p = 2), and,

in fact, there are k − t− 1 such sequences which are linearly independent.

The problem of determining c(k, F ) turns out to be much harder. We are currently unable to

determine it precisely for every k, but there is a wide spectrum of integers for which we can. If

p 6= 0 put k = prt where gcd(p, t) = 1, and if p = 0 put t = k (Thus, t = k if and only if p is not a

prime factor of k). The following theorem determines c(k, F ) whenever t has at most two distinct

prime factors:

Theorem 1.2 If t = qr11 q
r2
2 where r1 ≥ 0 and r2 ≥ 0 and q1, q2 are primes, then:

• if p < t or gcd(p, k) = 1 then c(k, F ) = (k − 1)t+ φ(t), where φ denotes Euler’s function

• otherwise, c(k, F ) = (k − 1)p+ 1.

Examples:

1. Theorem 1.2 holds for every k < 30, and for any field, since 30 is the smallest number which

is a multiple of three distinct primes. In fact, there are exactly six numbers between 1 and

100 which are multiples of more than two distinct prime powers.

2. If F is any field with characteristic 2 then Theorem 1.2 holds for any k < 105.
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3. If k = qs where q 6= p is a prime then c(k, F ) = q2s − qs−1. (Recall that φ(qs) = qs − qs−1).
If, on the other hand, k = ps, we have c(k, F ) = ps+1 − p+ 1.

4. If k = qs11 q
s2
2 where q1, q2 are distinct primes, which are distinct from p then we have, together

with Theorem 1.1, that every k-constant function is constant if and only if n ≥ q2s11 q2s22 −
qs1−11 qs2−12 (q1 + q2 − 1).

5. If k = 6 and p = 3 then c(6, F ) = 16. If p = 2 then c(6, F ) = 17. Otherwise, c(6, F ) = 32.

We conjecture that Theorem 1.2 holds for every k:

Conjecture 1.3 For every positive integer k, if p < t or gcd(p, k) = 1 then c(k, F ) = (k−1)t+φ(t).

Otherwise, c(k, F ) = (k − 1)p+ 1.

We establish an interesting connection between Conjecture 1.3 and a conjecture about (0, 1)-

matrices over the integers. Let n and k be two positive integers where k divides n. We define the

divisor matrix An,k as follows: An,k has n columns and φ(k) rows, and An,k(i, j) = 1 if and only if

k divides i − j. Now define the primary divisor matrix An to be the union of the rows of all An,k

for every k which divides n (for uniqueness, we assume that if k1 < k2 are two divisors of n, the

rows of An,k1 appear before the rows of An,k2 . Note that An is square since
∑
k | n φ(k) = n. The

following conjecture is simple to state (but, unfortunately, much harder to prove):

Conjecture 1.4 det(An) ∈ {1,−1}. Namely, An is non-singular over any field.

A slightly stronger version of this conjecture is that det(An) = 1 if n is odd and det(An) = −1 if

n is even. Since An can be constructed easily, one can use a computer to verify the conjecture for

small n. We have verified it for all n < 180. We can prove conjecture 1.4 for every n which has at

most two distinct prime factors:

Theorem 1.5 If n has at most two distinct prime factors then An is non-singular over any field.

The relationship between An and c(k, F ) is established in the following theorem:

Theorem 1.6 If At is non singular over F then:

• if p < t or gcd(p, k) = 1 then c(k, F ) = (k − 1)t+ φ(t),

• otherwise, c(k, F ) = (k − 1)p+ 1.

Thus, we see that Theorem 1.2 is a corollary of Theorems 1.5 and 1.6. Hence, we only need to prove

the latter two theorems. Another interesting consequence of Theorem 1.6 is that if Conjecture 1.4
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is true then so is Conjecture 1.3. This is rather intriguing since conjecture 1.4 bears no relevance

to fields; it is only stated over the integers.

The rest of this paper is organized as follows. In section 2 we investigate the properties of the

matrices An and prove Theorem 1.5. In Section 3 we prove Theorems 1.1 and 1.6.

2 Primary divisor matrices

In this section we consider the primary divisor matrix An and prove Theorem 1.5. We first need to

recall a few definitions. For a square (0, 1)-matrix B of order n, the permanent of B, denoted by

Perm(B) is the number of permutations σ of 1, . . . , n for which Πn
i=1B(i, σ(i)) = 1. The following

observations are immediate:

1. If Perm(B) = 1 then det(B) ∈ {1,−1}. Thus, B is non-singular over every field.

2. Perm(B) is odd if and only if det(B) is odd. Thus, Perm(B) is odd if and only if B is

non-singular over each field with characteristic 2.

Note, however that for every odd prime p, there exist (0, 1)-matrices with det(B) = p. Such a

matrix has, of course, an odd permanent but is singular over every field with characteristic p.

Unfortunately, primary divisor matrices may have permanents larger than 1. For example, the

matrix A12 shown in Table 1 has Perm(A12) = 3, while det(A12) = −1. In fact, the permanent of

An can get quite large if n has many divisors.

If v = (v1, . . . , vn) ∈ Fn is any vector, and k > 0 divides n, we say that v is k-periodic if for

each i = 1, . . . , n−k, vi = vi+k. Trivially, v is n-periodic, and the only vectors which are 1-periodic

are the constant vectors. The period of v, denoted µ(v) is the smallest k for which v is k-periodic.

For example, v = (1, 1, 0, 1, 1, 0, 1, 1, 0) has µ(v) = 3. Clearly, µ(v) is the greatest common divisor

of all the periods of v. The following lemma highlights the role of Euler’s function in the definition

of the divisor matrix An,k.

Lemma 2.1 Let F be a field. If v is the result of a non-trivial linear combination over F of the

row vectors of An,k, then µ(v) = k.

Proof: If k = 1 the lemma is trivial, so we assume k > 1. By definition, the matrix An,k has full

row rank φ(k) over F . Since v results from a non-trivial linear combination over F of the rows of

An,k we have v 6= 0. Every row of An,k is k-periodic. Thus, v is also k-periodic. Assume, for the

sake of contradiction, that µ(v) = s < k. Hence, s properly divides k. Let p be the smallest prime

which divides k. Then s ≤ k/p. Also, φ(k) ≤ k−k/p, and therefore k−φ(k) ≥ k/p. It follows that
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A6,3 = 1 0 0 1 0 0
0 1 0 0 1 0

A7 =

1 1 1 1 1 1 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

A9 =

1 1 1 1 1 1 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

A12 =

1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

Table 1: Some divisor matrices and primary divisor matrices

k − φ(k) ≥ s. The rows of An,k have, simultaneously, k − φ(k) consecutive zeroes in the columns

φ(k) + 1, . . . , k. Thus, v also has zeroes in these columns, and, in particular, v has s consecutive

zeros. Since v is s-periodic, it follows that v = 0, a contradiction. 2

We prove Theorem 1.5 in two stages. We first prove it for primes and prime powers (this part

is rather easy) and we then prove it for multiples of two distinct prime powers (in this part the

arguments are more complex).

Lemma 2.2 If q is a prime and s ≥ 0 then Perm(Aqs) = 1.

Proof: We prove the Lemma by induction on s. The case s ≤ 1 is simple. The only permutation

σ which gives Πn
i=1Aq(i, σ(i)) = 1 is the permutation σ = (q, 1, 2, . . . , q−1) (cf. e.g. Table 1 for the

case q = 7). Since the sign of this permutation is sgn(σ) = (−1)q−1, we also get that det(Aq) = 1

unless q = 2 in which case det(A2) = −1. Assume the lemma holds for s− 1. We show it holds for

s. The intersection between the last φ(qs) rows and the first φ(qs) columns of Aqs is the identity

matrix. Since φ(qs) = qs − qs−1, it suffices to show that the permanent of the matrix A′ formed

by the intersection of the first qs−1 rows and the last qs−1 columns of Aqs has perm(A′) = 1 (cf.

e.g. Table 1 for the case q = 3 and s = 2). However, since each of the first qs−1 rows of Aqs is

qs−1 periodic, we have that A′ = Aqs−1 . By the induction hypothesis we have perm(Aqs−1) = 1,

completing the proof. Note also that since the determinant of the identity matrix is 1, and since

we are looking at consecutive rows whose number is even, we also have det(Aqs) = det(Aqs−1).

Consequently, det(Aqs) = 1 unless q = 2 in which case det(A2s) = −1. 2

In order to complete the proof of Theorem 1.5 we need a lemma about semi-periodic vectors.

A vector w = (w1, . . . , wz) of length z is called x semi-periodic if wi = wi+x for i = 1, . . . , z − x.

6



Note that in this definition we do not require that x divides z.

Lemma 2.3 If w = (w1, . . . , wz) is both x semi-periodic,and y semi-periodic, where z ≥ x + y −
gcd(x, y), then w is gcd(x, y) periodic.

Proof: We assume x ≤ y and x does not divide y (otherwise the lemma is trivial). Put d =

gcd(x, y), and let x = ad and y = bd. Put b = sa + r where 1 ≤ r < a. Clearly, gcd(a, r) =

gcd(a, b) = 1. Denote (w1, . . . , wx) by A1A2 · · ·Aa where the Ai are vectors of length d. Since w

is x semi-periodic it suffices to prove that A1 = · · · = Aa. Let u = x + y − d ≤ z and consider

w′ = (wsx+1, . . . , wy, wy+1, . . . , wu). Note that y = sx + rd and u = y + (a − 1)d. Since w′ is x

semi-periodic we have w′ = A1A2 · · ·ArAr+1 · · ·AaA1 · · ·Ar−1. Since w′ is y semi-periodic we have

w′ = A1A2 · · ·ArA1 · · ·Aa−rAa−r+1 · · ·Aa−1. So, Ai = A(i+r) mod a. From gcd(a, r) = 1 it follows

that A1 = · · · = Aa. 2

We are now ready to complete the proof of Theorem 1.5.

Proof of Theorem 1.5: Let n = qs11 q
s2
2 where q1 < q2 are primes and s1, s2 are two nonnegative

integers. Let F be an arbitrary field. We must show that An is non-singular over F . We prove the

theorem by induction on s2. If s2 = 0 then n = qs11 . If s1 = 0 the result is trivial, and if s1 > 0

then n is a prime power, and according to Lemma 2.2 Perm(An) = 1, so An is non-singular over

F . We now assume that the theorem holds for s2− 1, and show that it holds for s2. The proof will

be established by showing that any nontrivial linear combination over F of the rows of An does

not yield the vector 0. Each row of An belongs to some An,k, and is uniquely defined by k and j

where 1 ≤ j ≤ φ(k) is the first nonzero position in the row. The row corresponding to k and j is

denoted by vk,j . Clearly, µ(vk,j) = k. We partition the set of rows of An into two parts, Q1 and

Q2 according to the following rule:

Q1 = {vk,j | k divides qs11 q
s2−1
2 }.

All other rows of An belong to Q2. Thus,

Q2 = {vk,j | qs22 divides k}.

(For example, if n = 36 where q1 = 2 and q2 = 3, s1 = 2 and s2 = 2, we have that Q1 is formed by

the rows belonging to A36,1, A36,2,A36,3, A36,4,A36,6 and A36,12 while Q2 contains the rows of A36,9,

A36,18 and A36,36). Consider any vector v which is the result of a nontrivial linear combination of

the rows of An. We must show that v 6= 0. Put

v =
∑
k | n

φ(k)∑
j=1

λk,jvk,j .
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We may write v = u1 + u2 where ui is the part of the linear combination consisting of the rows of

Qi. Namely:

u1 =
∑

k | qs11 q
s2−1
2

φ(k)∑
j=1

λk,jvk,j u2 =
∑
q
s2
2 | k

φ(k)∑
j=1

λk,jvk,j .

Assume first that the linear combination forming u2 is trivial. It suffices to show that u1 6= 0. The

vectors forming u1 all belong to Q1, and hence they are all qs11 q
s2−1
2 periodic. Thus, considering

only the first qs11 q
s2−1
2 columns in these vectors, we have a nontrivial linear combination of the rows

of A
q
s1
1 q

s2−1
2

, which, by the induction hypothesis, results in a nonzero vector. Hence, u1 has at least

one nonzero component.

We may now assume that the linear combination forming u2 is nontrivial. Since all the vectors

belonging to Q1 are qs11 q
s2−1
2 periodic, we have that u1 is also qs11 q

s2−1
2 periodic. Therefore, it suffices

to show that u2 is not qs11 q
s2−1
2 periodic. Let i be the maximal integer such that k = qs22 q

i
1, and

λk,j 6= 0 for some 1 ≤ j ≤ φ(k). Clearly, i ≥ 0 exists. Let k = qs22 q
i
1 and put u∗ =

∑φ(k)
j=1 λk,jvk,j .

Since u∗ is a nontrivial linear combination of the rows of An,k, we have, by Lemma 2.1, µ(u∗) = k.

Consider first the case i = 0. In this case u∗ = u2. Since k = qs22 , we have

k 6 | qs11 q
s2−1
2

and, therefore, u∗ cannot be qs11 q
s2−1
2 periodic, and we are done. We now assume that i > 0. Put

u = u2 − u∗. Each vector in the linear combination forming u is qs22 q
i−1
1 periodic, and therefore,

putting y = qs22 q
i−1
1 , we also have that u is y periodic (it is possible that u has smaller periods, in

fact, it is possible that u = 0). Assume, for the sake of contradiction, that u2 is qs11 q
s2−1
2 periodic.

Since u2 = u+ u∗ we have, by the maximality of i, that u2 is also qs22 q
i
1 periodic. Put x = qs2−12 qi1.

Since

gcd(qs11 q
s2−1
2 , qs22 q

i
1) = qs2−12 qi1 = x

we have that u2 is also x-periodic. Now, put z = k − φ(k). In any linear combination of rows of

An,k, and in particular, in u∗, there are k−φ(k) = z consecutive zeroes in columns φ(k) + 1, . . . , k.

Thus, u2 coincides with u in these columns. Let w be the partial vector of length z of u2 consisting

of these columns. Since u2 is x-periodic, we have that w is x semi-periodic. Since u is y-periodic,

we have that w is also y semi-periodic. Recalling the definitions of x, y, z we see that

z = k − φ(k) = qs2−12 qi1 + qs22 q
i−1
1 − qs2−12 qi−11 = x+ y − gcd(x, y)

We can therefore use lemma 2.3 and obtain that w is gcd(x, y) = qs2−12 qi−11 periodic. Since w

is of length z, and since z ≥ y, and since u contains w as an interval, we have that u is also
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gcd(x, y) = qs2−12 qi−11 periodic. Since u2 is x-periodic, and since u∗ = u2−u we have that u∗ is also

x-periodic. This, however, is a contradiction since µ(u∗) = k while

gcd(x, k) = gcd(qs2−12 qi1 , q
s2
2 q

i
1) = x < k. 2

3 Arithmetic progressions and primary divisor matrices

In this section we use the properties of primary divisor matrices to prove Theorem 1.6. We shall

begin, however, with proving Theorem 1.1, which is easier. Let f = (a1, . . . , an) be a sequence of a

field F . Given positive integers i, d and k, where i+ (k−1)d ≤ n, we let f(i, d, k) denote the arith-

metic subsequence (a.s. for short) of f which consists of the elements ai, ai+d, ai+2d, . . . , ai+(k−1)d.

Since k will usually be fixed, we shall use the notation f(i, d) whenever there is no confusion. If f

is k-constant, let s(f) denote the common value of all a.s. of length k. Clearly s(f) = a1 + . . .+ak.

By considering f(i, 1) for i = 2, . . . , n − k + 1, we immediately obtain that if i ≡ j mod k then

ai = aj . Thus, f is k semi-periodic (we use ”semi” here for consistency with the definition in Sec-

tion 2, since k does not necessarily divide n), and is determined by its first k elements a1, . . . , ak.

In this section we shall, therefore, always assume that the sequences are k semi-periodic. Moreover,

given a k semi-periodic sequence f , we do not need to test all the a.s. in order to determine if f is

k-constant. It suffices to test only a.s. of the form f(i, d) where 1 ≤ i ≤ k and 1 ≤ d < k. We shall

make use of these facts with no further mention.

Proof of Theorem 1.1: Let F be a field with characteristic p, and let k be a fixed positive

integer. Throughout the proof we shall assume n ≥ k2. We consider first the simple case where

p = 0 or gcd(p, k) = 1. Let f be a k-constant sequence of F , with n elements. We will show that

f must be constant, thereby obtaining m(k, F ) = 1. For each i = 1, . . . , k we have the a.s. f(i, k)

(the last element is ai+k(k−1) and i+ k(k− 1) ≤ k2 ≤ n). Since all the elements of f(i, k) are equal

to ai, we have that s(f) = kai for each i = 1, . . . , k. Since k 6= 0 in F , we have a1 = a2 = . . . = ak.

It follows that f is constant and therefore m(k, F ) = 1.

We now assume that k = prt where r ≥ 1 is maximal (i.e. gcd(t, p) = 1). We must show that

m(k, F ) = k − t. Our first claim is that every k-constant sequence f must have s(f) = 0. Indeed,

since n ≥ k2 > p(k − 1) + 1 we may look at the a.s. f(1, p). Since p divides k, this a.s. shows

s(f) = p(a1 + ap+1 + . . . + ak−p+1). However, since p = 0 in F , this gives s(f) = 0. Next, we

show that m(k, F ) ≤ k − t. Consider the a.s. f(i, t) of an arbitrary k-constant sequence f , for all

i = 1, . . . , t. Since t divides k, and since s(f) = 0, these a.s. show that

t(ai + ai+t + . . .+ ak−t+i) = 0 ∀ i = 1, . . . , t.
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Since gcd(t, p) = 1, we have t 6= 0 in F . Thus, the last equation is equivalent to

ai + ai+t + . . .+ ak−t+i = 0 ∀ i = 1, . . . , t. (2)

(2) is a homogeneous system of t linear equations with k variables, whose corresponding matrix

has full row rank (it contains the identity matrix It). Thus, the space of solutions of (2), which

contains V (n, k, F ), has dimension k − t. It follows that m(k, F ) ≤ k − t. In order to show that

m(k, F ) = k − t it suffices to show that if f is a k semi-periodic sequence which satisfies (2), then

it is also k-constant. Consider f(i, d) where 1 ≤ i ≤ k and 1 ≤ d ≤ k. We must show that the sum

of the elements of f(i, d) is zero. Put z = gcd(k, d) and put x = i mod z where 1 ≤ x ≤ z. Clearly,

by periodicity, we have that the sum of the elements of f(i, d) is:

z · (ax + ax+z + ax+2z + . . .+ ax+k−z). (3)

We distinguish two cases:

1. p divides d. In this case, z = gcd(k, d) is a multiple of p, so z = 0 in F . Thus, (3) is zero.

2. p does not divide d. Hence, z = gcd(k, d) = gcd(t, d). In this case (3) is a linear combination

of the rows of system (2). This can be seen by taking the sum of the rows x, x + z, x +

2z, . . . , x+ t− z, and multiplying the result by the scalar z 6= 0 in F . 2

Before we prove Theorem 1.6 we need the two following lemmas:

Lemma 3.1 If At is non-singular over F , and z divides t, then the set of rows of At which are

z-periodic span every z-periodic vector of length t over F .

Proof: The rows of At which are z-periodic are the union of the rows belonging to the matrices

At,x where x divides z. There are, altogether,
∑
x | z φ(x) = z such rows. Since At is non-singular

over F , this set of rows has full row rank, namely z. Since each of these z rows is z-periodic, we

can restrict our attention to the first z columns, thereby obtaining a z by z non-singular matrix.

Hence, the rows span every z-periodic vector over F . 2

For three positive integers k, j, i where j divides k and 1 ≤ i ≤ j, define the vector vk,j,i as

follows: vk,j,i = (x1, . . . , xk) where xs = j if s = i mod j. Otherwise, xs = 0. For example,

v12,4,3 = (0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0). Now, given t and k where t divides k we define three matrices

as follows: Bk,t is the matrix whose rows are all the vk,j,i where 1 ≤ j < t, j divides t and

i = 1, . . . , j, or j = t and i = 1, . . . , φ(t) − 1. Ck,t is the same as Bk,t with one additional row,

which is vk,t,φ(t). Dk,t is the same as Ck,t with the additional rows vk,t,i for i = φ(t) + 1, . . . , t. Note

that Bk,t, Ck,t and Dk,t all have k columns, while the number of rows of Bk,t (and therefore also
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the number of rows of Ck,t and Dk,t), may be substantially larger than k. For example, B60,60 has

123 rows, C60,60 has 124 rows and D60,60 has 168 rows. However, the crucial observation is the

following:

Lemma 3.2 Let k be an integer and let F be a field with characteristic p. Assume that t divides

k, and either p = 0 or gcd(p, t) = 1. If At is non-singular over F then the rank of Bk,t over F is

t− 1 and the ranks of Ck,t and Dk,t over F are t.

Proof: Each row of Dk,t (and thus, of Ck,t and Bk,t) is of the form vk,j,i, and since j divides t,

the rows are t-periodic. Hence, it suffices to prove that the matrix Bt,t has rank t − 1 and the

matrices Ct,t and Dt,t have ranks t. Each row of Dt,t is j-periodic for some j which divides t. Thus,

according to Lemma 3.1, it is spanned by the rows of At. It follows that the rank of Dt,t is at

most t. On the other hand, each row of At belongs to some divisor matrix At,j , and is, therefore,

equal to some j−1vt,j,i. Note that j−1 exists since j 6= 0 in F , as j divides t and either p = 0 or

gcd(p, t) = 1. Hence, the rank of At (which is t by the assumption) is at most the rank of Ct,t.

Consequently, the ranks of Ct,t and Dt,t are both t. Now, for Bt,t the argument is the same except

that we ignore the last row of At. 2

Proof of Theorem 1.6: Let k be a positive integer, and let F be a field of characteristic p.

k = prt, where gcd(t, p) = 1. If p = 0 then we define t = k. Assume that At is non-singular over F .

We must show that if t > p or gcd(p, k) = 1 then c(k, F ) = (k− 1)t+ φ(t), and otherwise (namely,

if t < p | k) then c(k, F ) = (k − 1)p+ 1.

Consider first the case where p = 0 or gcd(p, k) = 1. In this case, we must show that c(k, F ) =

(k − 1)k + φ(k), assuming Ak is non-singular over F . Recall that, by Theorem 1.1, m(k, F ) = 1.

We will show that if n = (k−1)k+φ(k)−1 then dim V (n, k, F ) > 1, and when n = (k−1)k+φ(k)

then dim V (n, k, F ) = 1. Assume first that n = (k − 1)k + φ(k) − 1. Consider the homogeneous

linear system of equations

Bk,k(a1, . . . , ak)
T = 0. (4)

According to Lemma 3.2, Bk,k has rank k − 1, and, therefore, the system (4) has a nontrivial

solution f = (a1, . . . , ak) ∈ F k. We may identify f with a k semi-periodic sequence with n elements

in the obvious manner. Note first that f is linearly independent with the all-one constant sequence

of length n. This is because a1 + . . . + ak = 0, while, in the constant sequence, the corresponding

sum is k, and k 6= 0 in F . We now show that f ∈ V (n, k, F ). Indeed, consider any a.s. f(i, d)

where 1 ≤ i ≤ k and 1 ≤ d ≤ k. We must show that in any such a.s. the sum of the elements is the

same (in fact, it is zero). Put z = gcd(k, d) and put x = i mod z where 1 ≤ x ≤ z. Then, the sum

of the elements of f(i, d) is given in (3). However, if z < k then (3) corresponds to the expression
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vk,z,x(a1, . . . , ak)
T which is the left hand side of one of the equations in the system (4). So, in this

case, (3) is zero. Now, if z = k this means that z = d = k, but since n = (k − 1)k + φ(k) − 1 we

can only have i = 1, . . . , φ(k)− 1. So, in this case, (3) corresponds to the equation kai = 0, which,

once again, is one of the equations in the system (4). So, also here, (3) is zero. We have proved

that dim V (n, k, F ) > 1 since V (n, k, f) contains f as well as the all-one constant sequence, and

they are linearly independent.

We now assume that n = (k− 1)k+φ(k). Consider the following linear system of equations over F

Ck,k(a1, . . . , ak)
T = αJT , (5)

where J is the all-one vector, and α ∈ F . According to Lemma 3.2, the rank of Ck,k is k, and,

therefore, the system (5) has at most one solution. In fact, it has exactly one solution since the

constant assignment ai = α/k for i = 1, . . . , k solves it. On the other hand, given any k-constant

sequence f with s(f) = α, each equation in the system (5) corresponds to at least one a.s. of f .

Namely, the equation vk,z,x(a1, . . . , ak)
T = α corresponds to the a.s. f(x, z). (Note that the last

index of f(x, z) is x+ (k − 1)z and x+ (k − 1)z ≤ φ(k) + (k − 1)k = n since either z < k or z = k

but then x ≤ φ(k)). It follows that f must be constant. Thus, dim V (n, k, F ) = 1.

We now consider the case p > 0 and p divides k, but p < t. We must show c(k, F ) = (k−1)t+φ(t).

By theorem 1.1, m(k, F ) = k − t. Assume first that n = (k − 1)t + φ(t) − 1. As in the proof of

Theorem 1.1, if f is any k-constant sequence, the a.s. f(1, p) shows that s(f) = 0. We use here the

fact that the last index of f(1, p) is (k − 1)p + 1 ≤ (k − 1)t + φ(t) − 1 = n so f(1, p) is indeed an

a.s. of f . Consider the linear system

Bk,t(a1, . . . , ak)
T = 0. (6)

By Lemma 3.2, Bk,t has rank t−1. Thus, the system (6) has k−(t−1) = k−t+1 linearly independent

solutions. Each such solution f = (a1, . . . , ak) is identified with a k semi-periodic sequence of length

n. We show that f is k-constant, thereby obtaining that dim V (n, k, F ) ≥ k−t+1. Indeed, consider

an a.s. f(i, d), where 1 ≤ i ≤ k and 1 ≤ d ≤ k. we must show that the sum of the elements of

f(i, d) (which is expressed in (3)) is zero. If d is a multiple of p we are done since z = gcd(k, d) = 0

in F so (3) is zero. Otherwise, z = gcd(k, d) = gcd(t, d) and so the equation vk,z,x(a1, . . . , ak)
T = 0

which is one of the equations in (6) shows that in this case (3) is zero (we use here that fact that z

divides t and thus, either z < t or z = t but, if z = t then also z = t = d so the last index in f(i, d)

is i+ (k− 1)t and since n = (k− 1)t+φ(t)− 1 we have i ≤ φ(t)− 1 so x = i in this case, and vk,z,x

is, indeed, one of the lines of Bk,t). Now assume that n = (k − 1)t + φ(t). We consider the linear

system

Ck,t(a1, . . . , ak)
T = 0. (7)
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By lemma 3.2, Ck,t has rank t, so there are exactly k− t linearly independent solutions to (7). As in

the previous case, we identify each solution with a k semi-periodic sequence of length n, and show, in

the same way as before, that each such sequence is k-constant, and therefore, dim V (n, k, F ) ≥ k−t.
On the other hand, in every k-constant sequence, the elements (a1, . . . , ak) of the sequence form

a solution to (7), (same proof as the proof in the case p = 0 or gcd(p, k) = 1 above). Thus,

dim V (n, k, F ) = k − t.
The remaining case is when p > t and p divides k. We must show that c(k, F ) = (k − 1)p+ 1. By

theorem 1.1, m(k, F ) = k − t. Assume first that n = (k − 1)p. Consider the linear system over F

Dk,t(a1, . . . , ak)
T = 0. (8)

By Lemma 3.2, Dk,t has rank t. Thus, the system (8) has k − t linearly independent solutions. As

before, each solution is identified with a k semi-periodic sequence of length n and, as shown in the

above cases, each such sequence f is k-constant, and, in fact, s(f) = 0. However, there is another

sequence which is also k-constant and is linearly independent of the solutions of (8). This sequence

is the sequence with a1 = . . . = at = 1 while at+1 = . . . = ak = 0. It is easy to check that the sum

of each a.s. of the form f(i, d) is exactly t and t 6= 0 in F . This is because we must have d < p

(since n = (k−1)p), and therefore, z = gcd(k, d) = gcd(t, d) so in (3) there are exactly t/z elements

in the interval a1, . . . , at appearing there, and (3) gives that the sum is z · t/z = t. We have proved

that dim V (n, k, F ) ≥ k − t + 1. However, when n = (k − 1)p + 1, each k-constant sequence also

contains the a.s. f(1, p) which, as already shown, forces s(f) = 0. Hence, the system (8) still shows

that dimV (n, k, F ) ≥ k − t but now, in every k-constant sequence, the elements a1, . . . , ak must

also be a solution to (8), so dim V (n, k, F ) = k − t. 2
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