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Abstract

Let H be a fixed graph. An H-decomposition of Kn is a coloring of the edges of Kn such

that every color class forms a copy of H. Each copy is called a member of the decomposition.

The resolution number of an H-decomposition L of Kn, denoted χ(L), is the minimum number

t such that the color classes (i.e. the members) of L can be partitioned into t subsets L1, . . . , Lt,

where any two members belonging to the same subset are vertex-disjoint. A trivial lower bound

is χ(L) ≥ n−1

d
where d is the average degree of H. We prove that whenever Kn has an H-

decomposition, it also has a decomposition L satisfying χ(L) = n−1

d
(1 + on(1)).

1 Introduction

All graphs and hypergraphs considered here are finite, undirected, simple, and have no isolated

vertices. For standard graph-theoretic terminology the reader is referred to [2]. Let H and G be

two graphs. An H-decomposition of G is a coloring of the edges of G, where each color class forms

a copy of H. Each copy is called a member of the decomposition. An H-decomposition of Kn is

called an H-design of n elements. H-designs are central objects in the area of Design Theory (cf.

[3] for numerous results and references).

For a graph H, let v(H), e(H) and gcd(H) denote, respectively, the number of vertices, the

number of edges and the greatest common divisor of the degree sequence of H. If there is an

H-decomposition of Kn, then, trivially, e(H) divides
(n
2

)
and gcd(H) divides n− 1. In fact, Wilson

has proved in a seminal result appearing in [9], that for every fixed graph H, if n is sufficiently

large then these necessary conditions are also sufficient for the existence of an H-decomposition of

Kn. For the rest of this paper we shall assume that these two necessary divisibility conditions hold.

Let L be an H-decomposition of Kn. The resolution number of L, denoted χ(L), is the minimum

number t such that the members of L can be partitioned into t subsets L1, . . . , Lt, where any two

members of L belonging to the same subset are vertex-disjoint. The use of χ follows from the
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obvious fact that χ(L) is the chromatic number of the intersection graph of the members of L.

The resolution number of H, denoted χ(H,n), is the minimum possible value of χ(L), ranging

over all H-decompositions of Kn. Trivially, χ(H,n) ≥ (n−1)v(H)
2e(H) since in any decomposition, the

average number of members containing a vertex of Kn is precisely (n−1)v(H)
2e(H) . We say that Kn has

a resolvable H-decomposition (also known as a resolvable H-design) if χ(H,n) = (n−1)v(H)
2e(H) . There

may be many distinct H-decompositions of Kn, and these decompositions may vary significantly

in their properties. Some may be far from being resolvable. However, it has been proved by Ray-

Chaudhuri and Wilson [7] that if H = Kk, n is a sufficiently large integer divisible by k, and n− 1

is divisible by k − 1, then there exists a resolvable Kk-decomposition of Kn. Namely, the
(n
2

)
/
(k
2

)
members of the decomposition can be partitioned into (n− 1)/(k − 1) subsets, where each subset

consists of n/k vertex-disjoint copies of Kk (such a subset is called a Kk-factor of Kn). On the other

hand, there are also non-resolvable Kk-decompositions of Kn. Some explicit constructions can be

found in [3]. If H is an arbitrary graph, there is no analog to the Ray-Chaudhuri-Wilson theorem

(namely, that the existence of the necessary conditions guarantees a resolvable H-decomposition of

Kn for n sufficiently large). In fact, it is not difficult to show that for some graphs H no resolvable

H-decomposition exists. Examples, which are easily verified, are H = K1,t where t ≥ 3 is odd.

Our main result is that the obvious lower bound for χ(H,n) is asymptotically tight for every

H.

Theorem 1.1 Let H be a fixed graph with h vertices and m edges. Then,

χ(H,n) = (n− 1)
h

2m
(1 + on(1)).

As mentioned above, we cannot omit the error term completely, for general graphs H. The on(1)

error term in our proof of Theorem 1.1 is, in fact, a power nβ of n, where β = β(H) is strictly less

than 0.

Although in every H-decomposition there are at least (n − 1) h
2m members sharing a common

vertex, we are able to prove that, for infinitely many n, there are H-decompositions of Kn in which

every vertex appears in exactly (n− 1) h
2m members (note that this claim is interesting only if H is

non-regular). Furthermore, for any two vertices of Kn, the number of members containing both of

them is bounded. This is an easy corollary of the following theorem:

Theorem 1.2 There exists a universal constant C such that if H is a fixed graph with h vertices

and m edges and x′ ≥ C · min{m4/3, h2} then there exists a nonempty regular graph G on x′

vertices, which has an H-decomposition L with the property that every vertex of G appears in the

same number of members of L.

By applying Wilson’s Theorem to G we get a G-decomposition of Kn. We now H-decompose

each G so that the properties of Theorem 1.2 hold. This results in an H-decomposition of Kn
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in which every vertex appears in exactly (n − 1) h
2m members. By applying Wilson’s theorem to

a complete graph Kk which, in turn, is G-decomposable, we get a Kk-decomposition of Kn. We

now G-decompose each Kk, and H-decompose each resulting G, and obtain an H-decomposition

of Kn which also has the additional property that any two vertices of Kn appear together in O(k)

members.

2 Proof of the main result

The proof of Theorem 1.1 requires a few lemmas. We first show that if Kn is H-decomposable,

then it can also be decomposed into H-decomposable cliques whose sizes are bounded. Let F be a

(possibly infinite) family of integers. Let gcd(F ) denote the largest positive integer which divides

each number in F . Let F1 = {n − 1 | n ∈ F} and let F2 = {n(n − 1)/2 | n ∈ F}. A pairwise

balanced design is a partition of the complete graph into cliques (also called blocks). In [10] Wilson

has proved the following:

Lemma 2.1 (Wilson [10]) Let F be a finite family of positive integers. Then, there exists n0 =

n0(F ) such that if n > n0, gcd(F1) divides n−1 and gcd(F2) divides
(n
2

)
then there exists a pairwise

balanced design of Kn, such that the size of each block belongs to F . 2

Let H be a graph, and let T = {n | Kn is H-decomposable}. T is infinite but, obviously, gcd(T1)

and gcd(T2) are finite. Thus, there are finite subsets Tα ⊂ T and T β ⊂ T such that gcd(Tα1 ) =

gcd(T1) and gcd(T β2 ) = gcd(T2). Putting F = Tα ∪ T β yields a finite set of positive integers such

that if k ∈ F then Kk is H-decomposable, and if Kn is H-decomposable then gcd(F1) divides n−1

and gcd(F2) divides
(n
2

)
. Applying Lemma 2.1 to this F we get:

Corollary 2.2 For every graph H there is a finite set of positive integers F = F (H) and a positive

integer N1 = N1(H), such that if n > N1 and Kn is H-decomposable, then Kn is also decomposable

into H-decomposable cliques whose sizes belong to F . 2

Recall that an h-uniform hypergraph is a collection of h-sets (the edges) of some n-set (the

vertices). The degree deg(x) of a vertex x in a hypergraph is the number of edges containing x. A

matching in a hypergraph is a set of pairwise disjoint edges. The chromatic index of a hypergraph

S, denoted q(S), is the smallest integer q such that the set of edges of S can be partitioned into

q matchings. A powerful theorem of Pippenger and Spencer [6] gives an asymptotically sharp

estimate of q(S) when S is a uniform hypergraph in which any two vertices appear together in a

small number of edges. Better estimates for the error term have been proved subsequently in [4],

[5]. Here we state the theorem in a slightly weaker form which suffices for our purposes.

Lemma 2.3 ([6], [4], [5]) Let h and C be positive integers and let α < 1 and ε < 1 be positive

real numbers. There exist N0 = N0(h,C, α, ε) and 0 < β = β(h,C, α, ε) < 1 such that the following

holds: If S is an h-uniform hypergraph with n > N0 vertices and:
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1. There exists d > εn such that for every x ∈ S, |deg(x)− d| < dα.

2. Any two vertices appear together in at most C edges.

Then, q(S) ≤ d+ dβ. 2

Let H have h vertices and m edges. Every H-decomposition of Kn defines an n-vertex h-uniform

hypergraph whose edges correspond to the vertices of each member of the decomposition. Clearly,

the chromatic index of this hypergraph is exactly the resolution number of the decomposition.

It is our goal to show that there always exists an H-decomposition of Kn whose corresponding

hypergraph satisfies the conditions of Lemma 2.3 with α = 0.6, C = C(H), ε = ε(H) and d =

(n− 1) h
2m . For this purpose, we need the following simple lemma.

Lemma 2.4 For every a > 0 there exists a T = T (a) such that if t > T and X1, . . . , Xt are

t mutually independent discrete random variables taking values between 0 and a, and µ is the

expectation of X = X1 + . . .+Xt then

Pr[|X − µ| > t0.51] <
1

t2
.

Proof: Several (related) proofs relying on some standard known bounds for large deviations can

be given. Here we describe one that follows from Theorem 4.2 on page 90 of [1]. Let A be the

set of reals, and put B = {1, 2, . . . , t}. Let g : B 7→ A be a random function obtained by defining

g(i) = Xi/a for each i ∈ B. Define Bi = {1, 2, . . . , i} and put L(g) =
∑
i∈B g(i) ( = X/a). Notice

that if g and g′ differ only on Bi+1 − Bi, then |L(g) − L(g′)| ≤ 1. Therefore, by Theorem 4.2 on

page 90 of [1], for every λ > 0,

Pr[|L(g)− E(L(g))| ≥ λ
√
t] < 2e−λ

2/2.

Since here L(g) = X/a and E(L(g)) = µ/a, the desired result follows by taking λ = t0.01/a, and a

sufficiently large T . 2

Proof of Theorem 1.1 Fix F and N1 as in corollary 2.2. Now, define C = b k−1δ(H)c where k = k(H)

is the largest integer in F , and δ(H) is the minimum degree of H. Define ε = h
3m and note that

ε < 1. Define α = 0.6. Let β = β(h,C, α, ε) and N0 = N0(h,C, α, ε) be defined as in Lemma

2.3. For each f ∈ F , let Lf be a fixed H-decomposition of Kf . Picking a random vertex of Kf ,

let Yf denote the random variable corresponding to the number of members of Lf containing the

randomly selected vertex. Note that, trivially, each Yf attains values between 1 and f − 1 ≤ k− 1.

Let T be defined as in Lemma 2.4, applied to the constant a = k − 1. Finally, define

N = max{N0 , N1 , T (k − 1) ,

(
2m

h

)10

, 2k2}.

We show that if n > N and Kn is H-decomposable then χ(H,n) ≤ d + dβ where d = (n − 1) h
2m .

This will establish Theorem 1.1. Assume, therefore, that Kn is H-decomposable. Since n > N1
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we know, by Corollary 2.2, that Kn is also decomposable to H-decomposable cliques whose sizes

belong to F . Let L∗ be such a clique decomposition, and let Q ∈ L∗. Since Q is a clique isomorphic

to some Kf , there are f ! different ways to decompose Q to copies of H using Lf , each corresponding

to a permutation of the vertices of Q. For each Q ∈ L∗ we randomly choose such a permutation.

All the |L∗| choices are independent, and each choice is done according to a uniform distribution.

Combining all these |L∗| random H-decompositions, we obtain an H-decomposition L of Kn.

Claim 1: With positive probability, each vertex of Kn appears in at least d− dα members of L and

in at most d+ dα members of L.

Proof: Fix a vertex x of Kn. Let deg(x) denote the number of members of L which contain x.

Let Q1, . . . , Qt be the cliques of L∗ which contain x, and let f1, . . . , ft be their corresponding sizes.

Clearly, f1 + . . . + ft = n − 1 + t. For i = 1, . . . , t, let Xi be the number of members of L which

contain x and whose edges belong to Qi. Clearly,
∑t
i=1Xi = deg(x). Each Xi is a random variable

whose expectation is exactly the average number of members of Lfi which contain a vertex of Kfi .

Thus, E[Xi] = (fi − 1) h
2m , and consequently

E[deg(x)] =
t∑
i=1

(fi − 1)
h

2m
= (n− 1)

h

2m
= d.

Furthermore, each Xi has the same distribution as the random variable Yfi , and X1, . . . , Xt are

independent. Since t ≥ (n− 1)/(k − 1) > T we have by Lemma 2.4 that:

Pr
[
|deg(x)− d| > t0.51

]
<

1

t2
.

Since n > N ≥ (2mh )10 we have that t0.51 < d0.6. Also note that t2 ≥ (n− 1)2/(k − 1)2 > n. Thus,

Pr
[
|deg(x)− d| > d0.6

]
<

1

n
.

Since there are n vertices to consider, it follows that with positive probability, for every vertex x

of Kn, |deg(x)− d| ≤ d0.6 = dα. 2

Claim 2: Any two vertices of Kn appear together in at most C members of L.

Proof: If a member of L contains the vertices x and y, then the member belongs to the H-

decomposition of the unique clique X ∈ L∗ which contains the edge (x, y). Since X has at most k

vertices, there are at most C = b(k − 1)/δ(H)c such members. 2

Claims 1 and 2, together with the facts that N > N0 and that d > εn show that, with positive

probability, the conditions of Lemma 2.3 are satisfied for the hypergraph corresponding to the

decomposition L. Hence, there exists an H-decomposition L of Kn satisfying χ(L) ≤ d+ dβ. 2

Proof of Theorem 1.2: The vertices of H may be partitioned into two sets A and B where A

consists of all vertices whose degree is at least m1/3. Clearly, |A| ≤ 2m2/3. It is a well known

theorem of Singer [8] that the abelian group Zx has a subset S of Θ(
√
x) elements such that all
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possible differences (in Zx) between any two elements of S, are distinct. We call S a difference set.

Now let x be the smallest integer greater than 2m4/3 + h such that Zx has a difference set of size

|A|. Clearly, x = Θ(m4/3). We shall map the vertices of H to distinct elements of Zx, such that if

(a, b) and (c, d) are two distinct edges then a − b 6= c − d mod x and a − b 6= d − c mod x. First,

we map the vertices of A to some fixed difference set of Zx having size |A|, using an arbitrary one

to one mapping. Next, we assign values to the remaining vertices of B one by one, maintaining

the required property. This is possible, since at each stage, the next vertex of B to be mapped,

denoted y, should be connected to a subset T of at most deg(y) < m1/3 already mapped vertices.

Each vertex of T introduces at most 2z values to which y cannot be mapped, where z ≤ m is the

number of edges of H connecting two previously mapped vertices. Altogether y cannot be mapped

to at most 2z · deg(y) < 2m4/3 ≤ x − h elements of Zx. Thus, there are at least h elements of Zx

to which y can be mapped. At least one of these elements is not assigned to a previously mapped

vertex, so we map y to such an element.

We now consider a graph G whose vertices are the elements of Zx. The edges are defined as follows.

For each edge uv of H, let a and b be the elements of Zx which were assigned to u and v respectively,

in the mapping defined above. For i = 0, . . . , x − 1, all the pairs (a + i, b + i) are edges of G. It

follows that G is 2m-regular, and has an H-decomposition into x members. In fact, every vertex

of G plays the role of each vertex of H exactly once. Clearly, for x′ > x, the same arguments hold.

The bound m4/3 in Theorem 1.2 can be replaced by the bound h2 which results by mapping

the vertices of H injectively into a difference set of size at least h in Zx′ . Such a set exists provided

x′ ≥ Ω(h2). 2

3 Concluding remarks and open problems

1. As mentioned in the introduction, we cannot avoid an error term in the statement of Theorem

1.1, since there are graphs with no resolvable decomposition. The error term in the proof of

Theorem 1.1 is O(nβ) for some β < 1. It is plausible, however, that the error term is bounded

by a function of H. Namely,

Conjecture 3.1

χ(H,n) ≤ (n− 1)
h

2m
+ C(H).

2. Theorem 1.2 and the comment following it, show that for every graph H with h vertices

and m edges, there is a regular graph G having O(Min{m4/3 , h2}) vertices which has an

H-decomposition L in which every vertex is contained in the same number of members of

L. Let us call such a decomposition a regular decomposition. We may now define f(h,m) to

be the smallest integer t such that for every graph H with h vertices and m edges, and for

every t′ ≥ t, there are regular graphs with t′ vertices which have a regular H-decomposition.
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Similarly, we may restrict ourselves to some specific families of graphs, such as the family of

trees, and define, for a family F of graphs, fF (h,m) to be the smallest integer t such that

for every graph H ∈ F with h vertices and m edges, and for every t′ ≥ t, there are regular

graphs with t′ vertices which have a regular H-decomposition.

Therefore, f(h,m) = O(Min{m4/3 , h2}). It is interesting to find more accurate upper and

lower bounds for f(h,m). It is not difficult to show that f(h,m) = Θ(h2) when m =
(h
2

)
− 1.

A greedy algorithm shows that fFd
(h,m) ≤ (1+2d2)h where Fd is the family of d-degenerate

graphs. In particular, for trees we get fF1(h, h−1) ≤ 3h, while an easy lower bound, resulting

from stars, is 2h− 2. It may be interesting to close this gap.

3. The main result of [6] easily implies that every Kk-decomposition of Kn is nearly resolvable,

that is, for each such decomposition L, χ(L) = (1 + on(1))n−1k−1 . This is not the case for other

graphs H. Thus, for example, it is easy to see that for the path of length 2, H = K1,2,

and for every n such that 2 divides
(n
2

)
, there is an H-decomposition L of Kn in which n− 1

members of L are incident with a single vertex, implying that χ(L) ≥ n − 1 ( > 3(n−1)
4 ).

Therefore, L is not nearly resolvable.

Our main result here shows, however, that for every fixed graph H, even though there may be

some H-decompositions of Kn which are not nearly resolvable, there always exist ones that

are.
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