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Abstract

Let H be a k-uniform hypergraph with n vertices. A strong r-coloring is a partition of the

vertices into r parts, such that each edge of H intersects each part. A strong r-coloring is called

equitable if the size of each part is dn/re or bn/rc. We prove that for all a ≥ 1, if the maximum

degree of H satisfies ∆(H) ≤ ka then H has an equitable coloring with k
a ln k (1 − ok(1)) parts.

In particular, every k-uniform hypergraph with maximum degree O(k) has an equitable coloring

with k
ln k (1−ok(1)) parts. The result is asymptotically tight. The proof uses a double application

of the non-symmetric version of the Lovász Local Lemma.
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1 Introduction

All hypergraphs considered here are finite. For standard terminology the reader is referred to [5].

Let H be a k-uniform hypergraph with n vertices. A strong r-coloring is a partition of the vertices

of H into r parts, such that each edge of H intersects each part. (A weak r-coloring is a coloring

where no edge is monochromatic.) A strong r-coloring is called equitable if the size of each part is

dn/re or bn/rc. The study of equitable colorings is motivated by scheduling applications in which

some tasks are required to perform at the same time. A good survey on equitable colorings is given

in [8]. See also [4, 7] for other related results in the graph-theoretic case. Let c(H) denote the

maximum possible number of parts in a strong coloring of H. Let ec(H) denote the maximum

possible number of parts in an equitable coloring of H. Trivially, 1 ≤ ec(H) ≤ c(H) ≤ k. In

general, k could be large and still ec(H) = c(H) = 1, if we do not impose upper bounds on the

maximum degree. Consider the complete k-uniform hypergraph on 2k vertices. Trivially, it has

c(H) = 1, and the maximum degree is less than 4k. In this paper we prove that c(H) and ec(H) are
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quite large if the maximum degree is bounded by a polynomial in k. In fact, we get the following

asymptotically tight result:

Theorem 1.1 If a ≥ 1, and H is a k-uniform hypergraph with maximum degree at most ka, then

ec(H) ≥ k
a ln k (1 − ok(1)). The lower bound is asymptotically tight. For all a ≥ 1, there exist

k-uniform hypergraphs H with maximum degree at most ka and c(H) ≤ k
a ln k (1 + ok(1)).

The tightness is shown by exhibiting a random hypergraph with appropriate parameters. Alon [1]

has shown that there exist k-uniform hypergraphs with n vertices and maximum degree at most k

that do not have a vertex cover (transversal) of size less than (n ln k/k)(1 − ok(1)). In particular,

no strong coloring (moreover an equitable one) could have more than (k/ ln k)(1+ok(1)) parts. For

completeness, we give a general argument valid for all a ≥ 1 in Section 3. The proof of the main

result appears in Section 2. The final section contains some concluding remarks.

2 Proof of the main result

In the proof of Theorem 1.1 we need to use the Lovász Local Lemma [6] in its strongest form, known

as the nonsymmetric version. Here it is, following the notations in [2] (which also contains a simple

proof of the lemma). Let A1, . . . , An be events in an arbitrary probability space. A directed graph

D = (V,E) on the set of vertices V = [n] is called a dependency digraph for the events A1, . . . , An

if for each i, i = 1, . . . , n, the event Ai is mutually independent of all the events {Aj : (i, j) /∈ E}.

Lemma 2.1 (The Local Lemma, nonsymmetric version) If x1, . . . , xn are real numbers so

that 0 ≤ xi < 1 and Pr[Ai] ≤ xi
∏

(i,j)∈E(1− xj) for all i = 1, . . . , n, then, with positive probability

no event Ai occurs. �

If the maximum outdegree in D is at most d ≥ 1 and each Ai has Pr[Ai] ≤ p then, by assigning

xi = 1/(d+ 1) we immediately obtain:

Corollary 2.2 (The Local Lemma, symmetric version) If p(d + 1) ≤ 1/e then with positive

probability no event Ai occurs. �

Proof of Theorem 1.1: Let a ≥ 1 be any real number, and let ε > 0 be small. Throughout

the proof we assume k is sufficiently large as a function of a and ε. Let k be so large that there

is an integer between k
(1+ε2/4)a ln k

and k
(1+ε2/8)a ln k

. Thus, for some γ ∈ [ε2/8 , ε2/4], the number

t = k
(1+γ)a ln k is an integer. Now, let H = (V,E) be a hypergraph with n vertices and ∆(H) ≤ ka.

We will show that there exists an equitable coloring of H with k
(1+γ)a ln k −d

√
γ k
a ln ke > (1− ε) k

a ln k

colors.

Assume that we have the set of colors {1, . . . , t}. It will be convenient to deal with the finite

set of hypergraphs having n < 2k ln k separately. We begin with the general case.
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2.1 The general case: n > 2k ln k

In the first phase of the proof we color most of the vertices (that is, we obtain a partial coloring)

such that certain specific properties hold. In the second phase we color the vertices that were not

colored in the first phase and show that we can do it carefully enough to obtain a strong t-coloring.

In the third phase we show how to modify our coloring to obtain an equitable coloring.

2.1.1 First Phase

Our goal in this phase is to achieve a partial coloring with several essential properties:

Lemma 2.3 There exists a partial coloring of H with the colors {1, . . . , t} such that the following

four conditions hold:

1. Every edge contains at least kγ/5 uncolored vertices.

2. Every edge has at most d10/γe colors that do not appear on its vertex set.

3. Put z = dk1−aγ/4e. For each v ∈ V , and for each sequence of z distinct colors c1, . . . , cz and

for each sequence of z distinct edges containing v denoted f1, . . . , fz, at least one fi has an

element colored ci.

4. Every color appears on at least n (1+γ/4)a ln k
k vertices.

Proof: We let each vertex v ∈ V choose a color from {1, . . . , t} randomly. The probability to

choose color i is p = (1+γ/2)a ln k
k for i = 1, . . . , t and the probability of remaining uncolored is,

therefore, q = 1 − pt = γ
2(1+γ) . For an edge f , let Af denote the event that f contains less than

kγ/5 uncolored vertices. Let Bf denote the event that f has more than d10/γe colors missing from

its vertex set. For a vertex v, let Cv denote the event that there exist z distinct edges f1, . . . , fz

each fi contains v, and there exist z distinct colors c1, . . . , cz, such that ci is missing from fi for each

i = 1, . . . , z. For a color c, let Dc denote the event that the color c appears on less than n (1+γ/4)a ln k
k

vertices. We must show that with positive probability, none of the 2|E|+ |V |+ t events above hold.

The following four claims provide upper bounds for the probabilities of the events Af ,Bf , Cv, Dc.

Claim 2.4 Pr[Af ] < 1
k5a

.

Proof: Let Xf denote the random variable counting the uncolored elements of f . The expectation

of Xf is E[Xf ] = kq. Since each vertex chooses its color independently we have by a common

Chernoff inequality (cf. [2])

Pr [Af ] = Pr

[
Xf <

kγ

5

]
≤ Pr

[
Xf <

kq

2

]
= Pr

[
Xf <

E[Xf ]

2

]
<

e−2(E[Xf ]/2)2/k = e−k
2q2/(2k) = e−kq

2/2 <<
1

k5a
. �
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Claim 2.5 Pr[Bf ] < 1
k5a

.

Proof: Fix s = d10/γe distinct colors. The probability that none of them appear on f is precisely

(1− sp)k. Now,

(1− sp)k =

(
1−

s(1 + γ
2 )a ln k

k

)k
<

1

kas+asγ/2
.

As there are
(
t
s

)
< ks possible sets of s distinct colors we get that

Pr[Bf ] <

(
t

s

)
1

kas+asγ/2
<

1

kasγ/2
≤ 1

k5a
. �

Claim 2.6 Pr[Cv] <
1
k5a

.

Proof: If the degree of v is less than z there is nothing to prove. Otherwise, fix a set of z distinct

colors {c1, . . . , cz} and z distinct edges containing v, denoted {f1, . . . , fz}. We begin by computing

the probability that for each i = 1, . . . , z, ci does not appear on an element of fi. Denote this

probability by ρ = ρ(v, f1, . . . , fz, c1, . . . , cz). For every vertex u let du be the number of edges fi,

1 ≤ i ≤ z, that contain u. By the definition of the event Cv we know that if Cv holds then there is

a set of du colors none of which was assigned to u. The probability of this is 1− dup. Thus

ρ =
∏
u

(1− dup) ≤ e−pΣudu = e−pΣi|fi| = e−pkz =
1

ka(1+γ/2)z
.

There are exactly (t)z < (k/ ln k)z ordered sets of z distinct colors. Thus, the probability that

f1, . . . , fz each miss a distinct color is less than (k/ ln k)z/ka(1+γ/2)z. There are at most
(bkac

z

)
distinct subsets of z edges containing v. This, together with Stirling’s formula, gives

Pr[Cv] <

(
bkac
z

)
kz

(ln k)z ka(1+γ/2)z
<

(
eka

z

k

ka(1+γ/2) ln k

)z
≤
( e

kaγ/4 ln k

)z
<<

1

k5a
. �

Claim 2.7 Pr[Dc] <
1

en/k
.

Proof: Let Xc denote the number of vertices that received the color c. Clearly, E[Xc] = pn =

n (1+γ/2)a ln k
k . Put β = naγ ln k

4k . We shall use the Chernoff inequality (cf. [2])

Pr[Xc − pn < −β] < e−β
2/(2pn).

In our case

Pr[Dc] = Pr[Xc − pn < −β] < e−β
2/(2pn) = e

−na ln k
k

( γ2

32(1+γ/2)
)
<

e−
na ln k
k

( γ
2

33
) =

1

k(an/k)(γ2/33)
≤ 1

k(n/k)(γ2/33)
<

1

en/k
. �

We now construct a dependency digraph for all the events of the form Af , Bf , Cv, Dc (we refer

to the events as “type A”, “type B”, “type C”, and type “D” respectively). Consider an event Af .
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Let E(f) denote the set of edges of H that are disjoint from f . Let V (f) denote the set of vertices

of H that do not appear on any edge that intersects f . Clearly Af is mutually independent of all

the 2|E(f)|+ |V (f)| events of the form Ag, Bg or Cv which correspond to the elements of E(f) and

V (f). Since there are at most ka+1 edges intersecting f and since there are at most ka+2 vertices

in these edges, the outdegree in the dependency graph from Af to other events of type A is at

most ka+1. Similarly the outdegree in the dependency graph from Af to other events of type B is

at most ka+1, and to events of type C it is at most ka+2. Since Af depends on all events of type

D, we have that the outdegree is t. This explains the first line of Table 1 (the dependency table).

The other elements in the table are determined similarly. Note that events of type D depend on

all other events (the fourth line in Table 1). In order to apply Lemma 2.1 we need to assign a

source \ target Af Bf Cv Dt

Af ka+1 ka+1 ka+2 t

Bf ka+1 ka+1 ka+2 t

Cv k2a+1 k2a+1 k2a+2 t

Dt |E| |E| n t

Table 1: The maximum possible outdegrees in the dependency digraph

coefficient to each event in the dependency digraph (the coefficients correspond to the xi in Lemma

2.1). To each event of type A, B or C we assign the coefficient 3/k5a. To each event of type D we

assign the coefficient 1/en/2k. It remains to show that the conditions in Lemma 2.1 hold for each

event. For events of type A we must show that

Pr[Af ] <
3

k5a

(
1− 3

k5a

)ka+1 (
1− 3

k5a

)ka+1 (
1− 3

k5a

)ka+2 (
1− 1

en/2k

)t
. (1)

Indeed, recall that n > 2k ln k so (1−1/en/2k)k−1 > e−1. Using Claim 2.4 and the relation t < k−1,

we find that the right side of (1) exceeds

3

k5a

(
1− 3

k5a

)3ka+2

e−1 >
3

k5a
· 0.99 · e−1 >

1

k5a
> Pr[Af ].

The analogous inequalities for events of type B and C follow similarly from Claims 2.5 and 2.6

respectively. Finally, consider events of type D. We must show that

Pr[Dc] <
1

en/2k

(
1− 3

k5a

)2|E|+n(
1− 1

en/2k

)t
. (2)

In any k-uniform hypergraph we have |E| ≤ n∆/k. Thus, in our case, 2|E| + n ≤ 3ka−1n. Using

Claim 2.7 and again the relation (1− 1/en/2k)k−1 > e−1, we find that the right side of (2) exceeds

1

en/2k

(
1− 3

k5a

)3ka−1n

e−1 >
1

en/2k

(
1− 3

k5a

)( k
5a

3
−1) 18n

k4a+1

e−1 >
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1

en/2k
e−

18n
k4a+1−1 >

1

en/2k
1

en/2k
=

1

en/k
> Pr[Dc].

According to Lemma 2.1, with positive probability, none of the events in the dependency digraph

hold. We have completed the proof of Lemma 2.3.

2.1.2 Second Phase

Fix a partial coloring satisfying the four conditions in Lemma 2.3. For an edge f , let M(f) denote

the set of missing colors from f . By Lemma 2.3 we know that |M(f)| ≤ d10/γe. For a vertex v,

let S(v) = ∪v∈fM(f). We claim that |S(v)| ≤ d10/γe(z − 1) ≤ 11z/γ. To see this, notice that

if |S(v)| > d10/γe(z − 1) then there must be at least z distinct edges containing v, say, f1, . . . , fz

and z distinct colors c1, . . . , cz such that ci does not appear on fi for i = 1, . . . , z. However, this is

impossible by the third requirement in Lemma 2.3. In the second phase we only color the vertices

that are uncolored after the first phase. Let v be such a vertex. We let v choose a random color

from S(v) with uniform distribution. The choices made by distinct vertices are independent. (In

case S(v) = ∅ we can assign an arbitrary color to v.) Let f ∈ E be any edge, and let c ∈ M(f).

Let Af,c denote the event that after the second phase, c still does not appear as a color on a vertex

of f . Our goal is to show that with positive probability, none of the events Af,c for f ∈ E and

c ∈M(f) hold. This will give a strong t-coloring of H (although not necessarily an equitable one).

Let T (f) be the subset of vertices of f that are uncolored after the first phase. By Lemma 2.3

we have |T (f)| ≥ kγ/5. If c ∈ M(f) we have that for each u ∈ T (f), the color c appears on S(u).

Hence,

Pr[Af,c] = Πu∈T (f)

(
1− 1

|S(u)|

)
≤ Πu∈T (f)

(
1− γ

11z

)
≤

(
1− γ

11z

)kγ/5
< e−

kγ2

55z < e−k
aγ/4 γ

2

110 <<
1

ka+2
.

Since each event Af,c is mutually independent of all other events but those that correspond to edges

that intersect f , we have that the dependency digraph of the events has maximum outdegree at

most d10/γeka+1 < ka+2/e − 1. Since 1
ka+2 ((ka+2/e − 1) + 1) = 1/e we have, by Corollary 2.2,

that with positive probability none of the events of the form Af,c hold. In particular, there exists

a strong t-coloring of H.

2.1.3 Third Phase

Assume the color classes of the strong t-coloring obtained after the second phase are V1, . . . , Vt

where |Vi| ≥ |Vi+1|, i = 1, . . . , t− 1. By Lemma 2.3 we know that |Vi| ≥ n (1+γ/4)a ln k
k , i = 1, . . . , t.

Let s = d√γk/(a ln k)e and let W = V1 ∪ · · · ∪ Vs. Clearly

n− |W | = |V \W | = |Vs+1 ∪ · · · ∪ Vt| ≥ (t− s)n
(1 + γ

4 )a ln k

k
= n

(
1 + γ

4

1 + γ

)
−
sn(1 + γ

4 )a ln k

k
.
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Hence,

|W | ≤ n
(

1−
1 + γ

4

1 + γ

)
+
sn(1 + γ

4 )a ln k

k
< γn+

sn(1 + γ
4 )a ln k

k
.

In particular, |Vs| ≤ |W |/s < γn/s+ n(1 + γ/4)a ln k/k. It follows that ||Vi| − |Vj || < γn/s for all

s + 1 ≤ i < j ≤ t. Hence, it suffices to show that |W | ≥ (t − s)γn/s since we can then transfer

all the vertices in the color classes V1, . . . , Vs to the color classes Vs+1, . . . , Vt such that after the

transfer, the t− s remaining classes form an equitable partition (the strong coloring stays proper,

of course). Indeed,

|W | > sn
a ln k

k
= s2n

a ln k

sk
≥ nγ k2

a2(ln k)2

a ln k

sk
= nγ

k

sa ln k
> n

tγ

s
> (t− s)nγ

s
.

We have shown how to obtain an equitable coloring with t−s = k
(1+γ)a ln k−d

√
γ k
a ln ke > (1−ε) k

a ln k

colors.

2.2 The finite case: n < 2k ln k

As in the proof for the general case, let each vertex choose a color randomly and independently,

each color with probability p where p = (1+γ/2)a ln k
k for i = 1, . . . , t and the probability of remaining

uncolored is q = 1−pt = γ
2(1+γ) . As in the proof of Claim 2.4, the probability that an edge contains

less than kγ/5 uncolored vertices is less than 1/k5a. There are |E| ≤ nka/k ≤ 2ka ln k edges.

Hence, the expected number of edges with less than kγ/5 edges is less than 1/k3. Thus, with

probability at least 1 − 1/k3, all edges have at least kγ/5 uncolored vertices. As in the proof of

Claim 2.7, the probability that a color appears on less than na ln k(1 + γ/4)/k vertices is less than
1

k(n/k)(γ
2/33)

. Unlike Claim 2.7 we cannot bound this number from above by e−n/k; instead, since

n ≥ k (otherwise there are no edges at all), we can bound it with k−γ
2/33. Since there are t < k

colors, the expected number of colors that appear on less than na ln k(1 + γ/4)/k vertices is less

than k1−γ2/33. Thus, with probability at least 2/3 there are less than 3k1−γ2/33 such colors. Finally,

let X count the number of pairs (e, c) where e ∈ E and c is a color that is missing from e. Clearly,

E[X] = |E|t(1− p)k < 2ka ln k · k · k−a(1+γ/2) = 2k1−aγ/2 ln k < 2k1−γ/4 <
kγ

15
.

Hence, with probability at least 2/3, X < kγ/5.

We have proved that with probability at least 1− 1/k3 − 1/3− 1/3 > 0 all the following occur

simultaneously:

1. All edges have at least kγ/5 uncolored vertices.

2. At least t− 3k1−γ2/33 colors appear each on at least na ln k(1 + γ/4)/k vertices.

3. The number of pairs (e, c) of edges e and colors c such that c is missing from e is less than

kγ/5.
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Fix a partial coloring with all these properties. Trivially we can make it a strong coloring by

assigning a color c that is missing from an edge e to one of the uncolored vertices of e, and we

can do it greedily to all such (e, c) pairs. We therefore obtain a strong t-coloring of H, where,

in addition, at least t − 3k1−γ2/33 colors appear each on at least na ln k(1 + γ/4)/k vertices. We

can now use the same arguments as in the third phase of the general case and obtain an equitable

coloring. The only difference is that instead of t we only use t− r colors where r is the number of

color classes having less than na ln k(1 +γ/4)/k vertices. Thus, t− r ≥ t−3k1−γ2/33 > t(1−γ/33),

and it is easily seen that all computations in the third phase hold when replacing t with t(1−γ/33).

�

3 A random hypergraph “construction”

Let a ≥ 1 and let ε > 0. Let n = k2a. For simplicity we assume n is an integer in order to avoid

floors and ceilings. We select k sufficiently large to justify this assumption and the assumptions

that follow. Let m = (1− ε)k3a−1 (again, assume m is an integer). Consider the random k-uniform

hypergraph on the vertex set [n] with m randomly selected edges f1, . . . , fm. Each edge fi is

chosen uniformly from all
(
n
k

)
possible edges. The m choices are independent (thus, the same edge

can be selected more than once). The expected degree of a vertex v (including multiplicities) is

mk/n = (1− ε)ka. Notice that for k sufficiently large we have, using a Chernoff inequality, that the

degree of v is greater than ka with probability less than 1/(2k2a) = 1/(2n). Hence, with probability

greater than 0.5 the maximum degree is at most ka. Put t = (1−2ε)na ln k/k. Again, we assume t is

an integer. We show that with probability greater than 0.5, no t-subset of vertices is a vertex cover.

This proves the existence of hypergraphs H with ∆(H) ≤ ka and c(H) ≤ (1 + ok(1))k/(a ln k).

Fix X ⊂ [n] with |X| = t. For each edge fi we have, assuming k is sufficiently large,

Pr[fi ∩X = ∅] =
(n− t)(n− t− 1) · · · (n− t− k + 1)

n(n− 1) · · · (n− k + 1)
>

(
1− t

n− k + 1

)k
>

(
1− t

(1− ε)n

)k
=

(
1− (1− 2ε)a ln k

(1− ε)k

)k
>

(
1− (1− ε)a ln k

k

)k
>

1

2
e−(1−ε)a ln k =

1

2ka(1−ε) .

Since each edge is selected independently we have

Pr[X is a vertex cover] <

(
1− 1

2ka(1−ε)

)m
.

There are
(
n
t

)
possible choices for X. It suffices to show that(

n

t

)(
1− 1

k2a(1−ε)

)m
<

1

2
.
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Indeed, for k sufficiently large(
n

t

)(
1− 1

2ka(1−ε)

)m
<
(en
t

)t(
1− 1

2ka(1−ε)

)(1−ε)k3a−1

=

(
ek

(1− 2ε)a ln k

)(1−2ε)k2a−1 ln k (
1− 1

2ka(1−ε)

)(1−ε)k3a−1

=

((
ek

(1− 2ε)a ln k

)(1−2ε) ln k (
1− 1

2ka(1−ε)

)(1−ε)ka
)k2a−1

<
(
eln2 ke−k

aε(1−ε)/2
)k2a−1

<<
1

2
. �

4 Concluding remarks

In the proof of Theorem 1.1 we require that ∆(H) ≤ ka for some fixed a ≥ 1. It is possible

(although the computations get somewhat more complicated) to prove Theorem 1.1 when a is not

necessarily a constant but satisfies a = a(k) = o(k/ ln k). In other words, ∆(H) is allowed to be

any subexponential function of k.

The proof of Theorem 1.1 is not algorithmic. It is, however, possible to obtain a polynomial

time (in the number of vertices of the hypergraph, and not in its uniformity) algorithm that yields

an equitable partition with (1−ok(1))ck/(a ln k) parts where c is a fixed small constant (depending

only on a). This can be done by using the method of Beck for the two coloring of hypergraphs

[3] and generalizing it to more colors. We also need to take care that the coloring obtained be

equitable (Beck’s algorithm does not guarantee this). However, Beck’s algorithm can be modified

so as to guarantee that all colors use roughly the same number of colors, and then we can use the

approach from the third phase of our proof to show that by sacrificing only a small fraction of the

colors we can make the partition equitable using the remaining colors. Notice that the third phase

can easily be implemented in polynomial time.

A special case of Theorem 1.1 yields an interesting result about graphs. Let G be a k-regular

graph. If k is sufficiently large, then G has an equitable coloring with (1 − ok(1))(k/ ln k) colors

such that each color class is a total dominating set (a total dominating set D is a subset of the

vertices that has the property that each vertex v ∈ G has a neighbor in D). To see this, we can

construct a hypergraph H from the graph G as follows. For each vertex v ∈ G, let N(v) denote

the neighborhood of v. The vertices of H are those of G and the edges are all the sets N(v). Note

that H is k-uniform and ∆(H) = k. Theorem 1.1 applied to H gives the desired result about G.
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