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Abstract. In the Maximum Subset Matching problem, which general-
izes the maximum matching problem, we are given a graph G = (V, E)
and S ⊂ V . The goal is to determine the maximum number of vertices
of S that can be matched in a matching of G. Our first result is a new
randomized algorithm for the Maximum Subset Matching problem that
improves upon the fastest known algorithms for this problem. Our algo-
rithm runs in Õ(ms(ω−1)/2) time if m ≥ s(ω+1)/2 and in Õ(sω) time if
m ≤ s(ω+1)/2, where ω < 2.376 is the matrix multiplication exponent, m
is the number of edges from S to V \ S, and s = |S|. The algorithm is
based, in part, on a method for computing the rank of sparse rectangular
integer matrices.
Our second result is a new algorithm for the All-Pairs Shortest Paths
(APSP) problem. Given an undirected graph with n vertices, and with
integer weights from {1, . . . , W} assigned to its edges, we present an
algorithm that solves the APSP problem in Õ(Wnω(1,1,µ)) time where
nµ = vc(G) is the vertex cover number of G and ω(1, 1, µ) is the time
needed to compute the Boolean product of an n×n matrix with an n×nµ

matrix. Already for the unweighted case this improves upon the previous
O(n2+µ) and Õ(nω) time algorithms for this problem. In particular, if a
graph has a vertex cover of size O(n0.29) then APSP in unweighted graphs
can be solved in asymptotically optimal Õ(n2) time, and otherwise it can
be solved in O(n1.844vc(G)0.533) time.
The common feature of both results is their use of algorithms developed
in recent years for fast (sparse) rectangular matrix multiplication.

1 Introduction

A matching in a graph is a set of pairwise disjoint edges. A maximum matching is
a matching of largest possible size. The problem of finding a maximum matching
is fundamental in both practical and theoretical computer science.

The first polynomial time algorithm for finding a maximum matching in a
general graph was obtained by Edmonds [6]. The currently fastest deterministic
algorithms for this problem run in O(mn1/2) time (see [13, 2, 19, 7]), where m and



n are the number of edges and vertices, respectively, in the input graph. For dense
graphs, better randomized algorithms are known. Lovász [12] showed that the
cardinality of a maximum matching can be determined, with high probability,
by computing the rank of a matrix. In particular, checking whether a graph
has a perfect matching amounts to checking whether a determinant of a certain
matrix, whose construction involves randomization, is nonzero. This randomized
algorithm can be implemented to run in O(nω) time, where ω is the exponent
of fast matrix multiplication. Coppersmith and Winograd [5] showed that ω <
2.376. Recently, Mucha and Sankowski [14] solved a long standing open problem
and showed that a maximum matching can be found, with high probability, in
O(nω) time.

Our first main result in this paper concerns a natural generalization of the
maximum matching problem. For a graph G = (V,E) and a subset of vertices
S ⊂ V , let f(S) denote the maximum possible number of vertices in S that can
be matched in a matching of G. Notice that if S = V then f(S) is simply the size
of a maximum matching of G. In general, however, not every maximum matching
of G saturates the maximum possible number of vertices of S (e.g. consider a
triangle where S consists of two vertices) and, conversely, not every matching
that saturates f(S) vertices of S can be extended to a maximum matching (e.g.
consider a path of length 3 where S consists of the two internal vertices). Thus,
the MAXIMUM SUBSET MATCHING problem is a true generalization of the
maximum matching problem.

Maximum Subset Matching also has natural applications. Consider a graph
modeling a social network, the vertices being the members of the network and
the edges being the symmetric social relations. There are two types of members:
privileged members (e.g. registered customers) and non-privileged members. Our
goal is to socially match the maximum number of privileged members.

We present an efficient randomized algorithm for computing f(S). The run-
ning time of our algorithm is expressed in terms of s = |S| and the number of
edges connecting S to V \ S, denoted by m. There could be as many as Θ(s2)
edges inside S, and hence the graph may have as many as Θ(m + s2) edges
(clearly we may assume that V \S is an independent set). As usual in matching
algorithms, we assume that the graph has no isolated vertices.

Theorem 1. Let G = (V,E) be a graph and let S ⊂ V , where |S| = s and
there are m edges from S to V \ S. Then, there is a randomized algorithm that
computes f(S) w.h.p. in time

Õ

({
ms

ω−1
2 if m ≥ s

ω+1
2 ,

sω if m ≤ s
ω+1

2

)
.

To evaluate the running time obtained in Theorem 1 we compare our algorithm
to known existing matching algorithms. First notice that for the current best
upper bound of ω, which is less than 2.376, we have that if m ≥ s1.688 the
algorithm runs in O(ms0.688) time, and if m ≤ s1.688 the algorithm runs in
O(s2.376) time. Notice that the running time is not expressed as a function of



|V | = n and that n may be as large as s+m. Maximum Subset Matching can be
solved via maximum weighted matching algorithms as follows. Assign to every
vertex with both endpoints in S weight 2, and edges from S to V \ S weight 1.
Then, clearly, a maximum weighted matching has weight f(S). The algorithm of
Gabow and Tarjan [7] is currently the fastest algorithm for maximum weighted
matching in general graphs. In our setting, it runs in Õ(

√
n(m + s2)) time (here

m + s2 is our upper bound on the total number of edges), which is worse than
the running time of the algorithm of Theorem 1 for a wide range of parameters
(in fact, if ω = 2 + o(1) as conjectured by many researchers, then it is never
better, for any valid combination of the parameters s,m, n). It is not known
how to apply Lovás’z randomized maximum cardinality matching algorithm to
the weighted case. Even if it were possible, the obtained running time would
only be Õ(nω).

We now turn to our second main result. In the All-Pairs Shortest Paths
(APSP) problem, which is one of the most fundamental algorithmic graph prob-
lems, we are given a graph G = (V,E) with V = {1, . . . , n}, and our goal is to
compute the distance matrix of G. This is an n×n matrix D where D(i, j) is the
length of a shortest path from i to j, for all i, j = 1, . . . , n. We also require a con-
cise n×n data structure so that given a pair i, j, a shortest path from i to j can
be constructed in time which is proportional to the number of edges it contains.
In the most fundamental case, the graph is undirected and unweighted; this is
the main case we address in this paper (more generally, we allow the weights to
be positive integers). The currently fastest algorithms for the APSP problem are
either the simple obvious O(nm) algorithm (here m = |E|) consisting of breadth
first search from each vertex, or, as m gets larger, a randomized algorithm of
Seidel [16] that solves the problem in Õ(nω) time. This algorithm also has a
deterministic version [8, 1]. Shoshan and Zwick [17] proved that if the graph has
positive weights from {1, . . . ,W} then APSP can be solved, deterministically, in
Õ(Wnω) time.

Is there a natural graph parameter for which there exists an algorithm whose
running time is expressed in terms of it and which always performs at least as
well as the Õ(nω) algorithm, and is generally faster? Our main result shows that
there is one.

Let vc(G) be the vertex cover number of G, that is the smallest possible
cardinality of a subset S ⊂ V so that V \S is an independent set. The fact that
vc(G) is NP -Hard to compute is well known and its decision version is one of the
canonical examples for NP-Completeness. It is also well known, and trivial, that
vc(G) can be approximated to within a factor of two, in linear time (simply take
all the vertices in a maximal matching with respect to containment). Our main
result shows that if G is an undirected graph with n vertices and vc(G) = nµ

then the APSP problem can be solved in time Õ(Wnω(1,1,µ)), where each weight
is taken from {1, . . . ,W}. Here ω(1, 1, µ) is the rectangular matrix multiplication
exponent. Namely, it is the number of algebraic operations needed to multiply an
n×n matrix with an n×nµ matrix over an arbitrary ring (hence, ω = ω(1, 1, 1)).



Theorem 2. There is an APSP algorithm that, given an undirected n-vertex
graph G with weights from {1, . . . ,W} and vc(G) = nµ, runs in Õ(Wnω(1,1,µ))
time. In particular, if W is constant and vc(G) ≤ n0.294 then the algorithm runs
in asymptotically optimal Õ(n2) time and, if vc(G) > n0.294 then the algorithm
runs in O(n1.844vc(G)0.533) time.

In our proof of Theorem 2 we construct the distance matrix in the guaranteed
running time. It is also possible to obtain a concise data structure representing
the paths, by using witnesses for (rectangular) matrix multiplication, as shown in
[1]; the details of this latter construction, which is quite standard, will appear in
the full version of this paper. In Section 2 we list the known results for ω(1, 1, µ).
In particular, Coppersmith [4] proved that ω(1, 1, µ) = 2 + o(1) for µ < 0.294,
and that, assuming ω = ω(1, 1, 1) > 2, then ω(1, 1, µ) < ω(1, 1, 1) for all µ < 1
(see Lemma 2 in the next section). Thus, at present, our algorithm is faster
than the O(nω) algorithm for all unweighted graphs having a vertex cover of
size n1−ε. We also note that the proof of Theorem 2 does not assume that
we can compute vc(G) precisely. As mentioned earlier, there is a Θ(m + n)
2-approximation algorithm for vc(G), which suffices for our purposes.

The rest of this paper is organized as follows. As both of our main results, al-
though having completely different proofs, rely on fast rectangular matrix multi-
plication, we present in Section 2 the facts we need about fast rectangular matrix
multiplication algorithms. In Section 3 we address our first main result on the
maximum subset matching problem and prove Theorem 1. The APSP problem
in undirected graphs is addressed in Section 4 where Theorem 2 is proved. The
final section contains some concluding remarks and open problems.

2 Fast (sparse) rectangular matrix multiplication

We start this section by presenting some parameters related to fast rectangular
matrix multiplication. Our assumption is that the input matrices are given to us
in sparse representation, that is as a collection of triplets (row, column, value)
listing all positions where the matrix is non-zero. Thus, the size of the repre-
sentation of an input matrix is linear in the number of non-zero entries of the
matrix.

Let M(a, b, c) be the minimal number of algebraic operations needed to mul-
tiply an a × b matrix by a b × c matrix over an arbitrary ring R. Let ω(r, s, t)
be the minimal exponent for which M(nr, ns, nt) = O(nω(r,s,t)). Recall that
ω = ω(1, 1, 1) < 2.376 [5]. The best bounds available on ω(1, µ, 1), for 0 ≤ µ ≤ 1
are summarized in the following results. Before stating them we need to define
two more constants, α and β, related to rectangular matrix multiplication.

Definition 1. α = max{ 0 ≤ µ ≤ 1 | ω(1, µ, 1) = 2 + o(1) } , β =
ω − 2
1− α

.

Lemma 1 (Coppersmith [4]). α > 0.294 .



It is not difficult to see that Lemma 1 implies the following theorem. A proof
can be found, for example, in Huang and Pan [10].

Lemma 2.

ω(1, µ, 1) = ω(1, 1, µ) = ω(µ, 1, 1) ≤
{

2 + o(1) if 0 ≤ µ ≤ α,
2 + β(µ− α) + o(1) otherwise.

Notice that Coppersmith’s result implies that if A is an n × n0.294 matrix
and B is an n0.294 × n matrix then AB can be computed in O(n2+o(1)) time
(assuming ring operations take constant time), which is essentially optimal since
the product is an n × n matrix that may contain no zero elements at all. Note
that with ω = 2.376 and α = 0.294 we get β ' 0.533. If ω = 2 + o(1), as
conjectured by many, then α = 1. (In this case β is not defined, but also not
needed.)

We now present results for fast sparse matrix multiplication. The running
times of these algorithms are expressed in terms of α, β, and ω.

Lemma 3 (Yuster and Zwick [21]). The product of two n×n matrices over
a ring R, each with at most m non-zero elements, can be computed in time

O(min{ m
2β

β+1 n
2−αβ
β+1 + n2+o(1) , nω }).

Note that for ω = 2.376, α = 0.294, and β = 0.533, the algorithm runs in
O(min{m0.7n1.2 + n2+o(1) , n2.376}) time (in fact, by “time” we assume that
each algebraic operation in the ring takes constant time; if not, then the running
time should be multiplied by the time needed for an algebraic operation).

It is possible to extend the method of [21] to rectangular matrices. This was
explicitly done in [11]. To simplify the runtime expressions, we only state the
case where A and BT (where A and B are the two matrices being multiplied)
have the same dimensions, as this case suffices for our purposes.

Lemma 4 (Kaplan, Sharir, and Verbin [11]). Let A be an n×r matrix and
let B be an r×n matrix, over a ring R, each with at most m non-zero elements.
Then AB can be computed in time

O




mn
ω−1

2 if m ≥ n
ω+1

2 ,

m
2β

β+1 n
2−αβ
β+1 if n1+ α

2 ≤ m ≤ n
ω+1

2 ,
n2+o(1) if m ≤ n1+ α

2

 .

Notice that the value of r in the statement of Theorem 4 is irrelevant since our
sparse representation (and the fact that a common all-zero column of A and BT

can be discarded without affecting the product) implies that r = O(m).
Finally, a word about Boolean matrix multiplication. Although not properly a

ring, all of the results in this section also apply to Boolean matrix multiplication.
This is easy to see; simply perform the operations over Zn+1. A non-zero value
is interpreted as 1. As each algebraic operation in Zn costs only Θ(log n) time
it is not surprising that some researchers actually define ω as the exponent of
Boolean matrix multiplication.



3 Maximum Subset Matching

Let G = (V,E) be an undirected graph with V = {1, . . . , n}. With each edge
e ∈ E we associate a variable xe. Define the skew adjacency matrix (also known
as the Tutte matrix) At(G) = (aij) by

aij =

+xe, if e = ij, i < j and (i, j) ∈ E;
−xe, if e = ij, i > j and (i, j) ∈ E;
0, otherwise.

Tutte [18] showed that At(G) is non-singular if and only if G has a perfect
matching. This was generalized later by Lovász [12] who proved that:

Lemma 5. The size of a maximum matching in G is 1
2rank(At(G)).

This fact, together with some additional non-trivial ideas, leads to an O(nω) time
randomized algorithm for deciding whether a graph has a perfect matching, and,
much later, to O(nω) time randomized algorithms that actually find a maximum
matching [14, 9].

Our first lemma is a generalization of Lemma 5. For a graph G = (V,E)
and a subset S ⊂ V , let At(S, G) denote the sub-matrix of At(G) obtained by
taking only the rows corresponding to vertices of S. Thus, At(S, G) is an s× n
matrix where s = |S| and n = |V |. Recalling the definition of f(S) from the
introduction we prove:

Lemma 6.
f(S) = rank(At(S, G)).

Proof. We first prove that f(S) ≤ rank(At(S, G)). Consider the case where
s−f(S) is even (the odd case is proved analogously). We may assume that n−s
is even since otherwise, we can alway add an additional isolated vertex to V \ S
without affecting the rank of At(S, G) nor the value f(S). We add edges to G so
that V \ S induces a complete graph, and denote the new graph by G′. Clearly,
the cardinality of the maximum matching of G′ is (n − s + f(S))/2. Thus, by
Lemma 5, rank(At(G′)) = n− s + f(S). In particular, we must have that

rank(At(S, G′)) ≥ rank(At(G′))− (n− s) = f(S).

But At(S, G′) and At(S, G) are the same matrix, hence rank(At(S, G)) ≥ f(S).
We next prove that f(S) ≥ rank(At(S, G)). Suppose that rank(At(S, G)) =

r. We have to show that at least r vertices of S can be saturated by a matching.
As the rank is r there is an r × r sub-matrix of At(S, G)), call it B, which is
nonsingular. Let the rows of B correspond to S′ (notice that S′ ⊂ S), and the
columns to U , which is some set of vertices, possibly intersecting S′. It suffices
to show that there is a matching covering the vertices in S′. In the expansion of
the determinant of B we get r! products (with signs). Each product corresponds
to an oriented subgraph of G obtained by orienting, for each xij in the product,
the edge from i (the row) to j (the column). This gives a subgraph in which



the out-degree of every vertex of S′ is 1 and the indegree of every vertex of
U is 1. Thus any connected component is either a directed path, all of whose
vertices are in S′ besides the last one which is in U \ S′, or a cycle, all of whose
vertices are in S′. The crucial point now is that if there is an odd cycle in this
subgraph, then the contribution of this term to the determinant is zero, as we
can orient the cycle backwards and get the same term with an opposite sign (we
do it only for the lexicographically first such cycle in the subgraph, to make sure
this is well defined; this will pair the terms that cancel). As the determinant is
nonzero, there is at least one such subgraph in which all components are either
paths or even cycles, and hence there is a matching saturating all vertices in S′,
as needed. ut

Our algorithm computes f(S) by computing rank(At(S, G)) with high prob-
ability which, by Lemma 6, amounts to the same thing. Computing the rank of
a symbolic matrix (such as At(S, G)) directly is costly. Each algebraic operation
is performed in a ring of multivariate polynomials of high degree, and cannot,
therefore, be performed in constant (or, close to constant) time. By using a result
of Zippel [23] and Schwartz [15], Lovász [12] proved the following.

Lemma 7. If G is a graph with n vertices and we replace each variable of At(G)
with a random integer from {1, . . . , R} then the rank of the resulting matrix equals
rank(At(G)) with probability at least 1− n/R. Similarly, if B is any given sub-
matrix of At(G) then the rank of the resulting sub-matrix equals the rank of B,
with probability at least 1− n/R.

For a complex matrix A, let A∗ denote, as usual, the Hermitian transpose of
A (some researchers also denote it by AH). If A is a real matrix then A∗ = AT .
We need to recall the following simple fact from linear algebra.

Fact 8 Let A be a complex matrix, then A∗A and A have the same kernel.

Indeed, suppose A∗Ax = 0, then, using the Hermitian product, < Ax, Ax > =
< A∗Ax, x >= 0, whence Ax = 0. Notice that the assertion may fail for general
fields, as can be seen, for instance, by the p × p matrix over Fp, all of whose
entries are equal to 1.

We need the following result of Hopcroft and Bunch [3] which asserts that
Gaussian Elimination of a matrix requires asymptotically the same number of
algebraic operations needed for matrix multiplication. Notice that a by-product
of Gaussian elimination is the matrix rank.

Lemma 9. Let A be an n × n matrix over an arbitrary field. Then rank(A)
can be computed using O(nω) algebraic operations. In particular, if each field
operation requires Θ(K) time then rank(A) can be computed in O(Knω) time.

An important proposition which is obtained by combining Lemma 9, Lemma
4, Fact 8, and one additional idea, is the following:

Theorem 3. Let A be an s×n matrix having at most m non-zero integer entries
located in an s× (n− s) sub-matrix (the other s2 entries may be all non-zero),



and suppose that the largest absolute value of an entry is R. Then, rank(A) can
be computed, w.h.p., in time

Õ

({
(log R)ms

ω−1
2 if m ≥ s

ω+1
2 ,

(log R)sω if m ≤ s
ω+1

2

)
.

Proof: Let A2 be the s × (n − s) sub-matrix containing at most m non-zero
entries, and let A1 be the remaining s× s sub-matrix. Clearly,

B = AAT = A1A
T
1 + A2A

T
2 .

We first compute A1A
T
1 using O(sω) algebraic operations and in O((log R)sω)

time, as each algebraic operation requires O(log R) time. We compute A2A
T
2

using Lemma 4. This can be done in the time stated in Lemma 4, multiplied
by log R. We have therefore computed B. Notice that B is an s × s matrix,
and each entry in B has absolute value at most nR2. Furthermore, by Fact 8,
rank(B) = rank(A). Now, suppose rank(B) = t. Thus, B has a t× t sub-matrix
B′ whose rank is t, and hence det(B′) 6= 0. On the other hand, by Hadamard
Inequality |det(B′)| ≤ (tn2R4)t/2 < (nR)2n. Since an integer x has O(log x)
prime divisors, choosing a random prime p = O((nR)2) guarantees that, w.h.p.,
det(B′) 6= 0 also in Fp, and, in particular, rank(B) = t also in Fp. We compute
rank(B) using Lemma 9, using O(sω) algebraic operations, where each algebraic
operation in Fp requires O(log n + log r) time. Thus, in time Õ((log R)sω). The
overall running time of the algorithm is

Õ




(log R)(sω + ms
ω−1

2 ) if m ≥ s
ω+1

2 ,

(log R)(sω + m
2β

β+1 s
2−αβ
β+1 ) if s1+ α

2 ≤ m ≤ s
ω+1

2 ,
(log R)(sω + s2+o(1)) if m ≤ s1+ α

2


= Õ

({
(log R)ms

ω−1
2 if m ≥ s

ω+1
2 ,

(log R)sω if m ≤ s
ω+1

2

)
.

ut
Completing the proof of Theorem 1: We are given a graph G = (V,E) and
a subset S ⊂ V , where |S| = s and there are m edges between S and V \S. Our
goal is to compute f(S).

We construct the Tutte sub-matrix At(S, G) and replace each variable with
an integer from {1, . . . , n2}, uniformly at random. Denote the obtained inte-
ger matrix by A. By Lemma 7, with probability at least 1 − 1/n, rank(A) =
rank(At(S, G)). Thus, we need to compute rank(A). Notice, however, that A is
an s× n integer matrix with at most m non-zero entries in an s× (n− s) sub-
matrix. Furthermore, the absolute value of each entry of A is at most R = n2.
Thus, by Theorem 3 we can compute rank(A) in the stated running time. ut

It is important to notice that computing rank(A) directly in Theorem 1,
without computing AAT , is costly. The fastest algorithms for computing the
rank of an s×n matrix directly require the use of Gaussian elimination, and can



be performed using O(nsω−1) algebraic operations [3]. Gaussian elimination,
however, cannot make use of the fact that the matrix is sparse (namely, in
our terms, make use of m as a parameter to its running time). This can be
attributed to the negative result of Yannakakis [20] who proved that controlling
the number of fill-ins (entries that were originally zero and become non-zero
during the elimination process) is an NP-Hard problem.

4 All Pairs Shortest Paths in graphs with an s-vertex
cover

In this section we prove Theorem 2. Suppose G = (V,E) is an undirected graph
and S ⊂ V is a vertex cover of G. The weight of each edge is an integer from
{1, . . . ,W}. We denote S = {1, . . . , s} and T = V \S = {s + 1, . . . , n}. Our goal
is to obtain the distance matrix D = Dn×n whose rows and columns are indexed
by V , where D(x, y) is the length of a shortest path connecting x and y.

For an nα × nβ matrix A and an nβ × nγ matrix B, both with entries in
{0, . . . ,K} ∪ {∞}, we define the distance product C = A ? B to be C(i, j) =
Minnβ

k=1A(i, k) + B(k, j). Yuval [22] observed that C can be computed in time
O(Knω(α,β,γ)). The idea of his proof is to replace each entry z with (nβ + 1)z

(and infinity with 0), compute the usual product C ′ of the resulting matrices A′

and B′ , and deduce C(i, j) by considering C ′(i, j) as a number written in base
nβ + 1. In fact, this argument can be stated more generally as follows:

Lemma 10. For an nα × nβ matrix A and an nβ × nγ matrix B, both with
entries in {0, . . . ,K}∪ {∞}, let c(i, j, q) denote the number of distinct indices k
for which A(i, k)+B(k, j) = q, Then, all the numbers c(i, j, q) for i = 1, . . . , nα,
j = 1, . . . , nγ and q = 0, . . . , 2K can be computed in Õ(Knω(α, β, γ)) time.

Denote by A the adjacency matrix of G where the rows are indexed by S and
the columns by V . Thus, A is an s × n matrix and A(i, j) = w(i, j) if ij ∈ E,
A(i, i) = 0, and otherwise A(i, j) = ∞, for i = 1, . . . , s and j = 1, . . . , n. We first
compute the distance product B = A ? AT . This can be done in Õ(Wnω(µ,1,µ))
time where s = nµ, using Lemma 10. We consider B as the adjacency matrix
of a weighted undirected graph G′ whose vertex set is S. Notice that the weight
of each edge of G′ is between 1 and 2W . The weight w′(i, j) corresponds to a
shortest path connecting i with j in G, among all paths with at most two edges.

We solve the APSP problem in G′. This can be done in Õ(Wsω) time using
the algorithm of Shoshan and Zwick [17]. Denote the output distance matrix
by D′. Clearly, D′(i, j) = D(i, j) for i = 1, . . . , s and j = 1, . . . , s. Indeed, in a
shortest path from i to j in G we can short-circuit any two consecutive edges
(i1, i2, i3) where i2 ∈ T with the direct edge (i1, i3) which is an edge of G′,
without increasing the length of the path.

We now remain with the problem of computing D(i, j) where at least one
of i or j is in T . By symmetry we shall assume that i < j. Consider first the
case i ∈ S and j ∈ T . In the beginning of the algorithm we can choose (in linear
time), for each j ∈ T , an arbitrary neighbor f(j) ∈ S. We have already computed



D(i, f(j)); hence suppose that D(i, f(j)) = `. As our graph is undirected we have
that if ` = ∞ then also D(i, j) = ∞. Otherwise, for each neighbor v of j,

|D(i, v)− `| ≤ 2W.

Let xh denote the number of neighbors v of j with D(i, v)+w(v, j) = `−2W +h,
for h = 1, . . . , 5W . Clearly, if we can determine all the xh then, if h′ is the smallest
index for which xh′ > 0 then D(i, j) = `− 2W + h.

We propose two methods for computing the xh’s. The first method is suitable
(in our setting) when W is constant, but is presented here since it is also appli-
cable in situations where the set of possible distances is not consecutive and not
necessarily constant, thus we believe it may find other applications. Let D(k) be
the matrix obtained from D′ by replacing each entry z with zk. We shall demon-
strate the method in case W = 1 (the unweighted case). The generalization is
not difficult. Consider the regular integer products Ck = AT D(k) for k = 0, . . . , 4
(for the sake of accuracy, we replace infinities with zeros when performing the
integer product). Thus, C0(j, i) is just the number of neighbors of j that can
reach i. Namely, C0(j, i) = x1 + x2 + x3 + x4 + x5. Similarly, Ck(j, i) is just the
sum of the distances from each of these neighbors to i, each distance taken to
the k’th power. Namely,

Ck(j, i) = (`− 2)kx1 + (`− 1)kx2 + `kx3 + (` + 1)kx4 + (` + 2)kx5.

Considering the x1, x2, x3, x4, x5 as unknown variables, we have a system of five
linear equations whose coefficient matrix is just the 5× 5 Vandermonde matrix
with generators `− 2, `− 1, `, ` + 1, ` + 2. It is well known that this system has
a unique solution (all of our generators are distinct, and even consecutive). This
Vandermonde method becomes more inefficient if W is not constant, but each
linear system can be solved in O(W 2) time.

The second method uses truncated distance matrices. Let D̂′ be the matrix
obtained from D′ by replacing each entry z with z mod 5W . We apply Lemma
10 to the product AT ? D̂′, and obtain, in particular, the values c(i, j, q) for
q = 0, . . . , 6W − 1. Notice that each finite entry in A is between 0 and W
and each finite entry in D̂′ is between 0 and 5W − 1. We claim that we can
determine the xh from these values. Indeed, each contribution to c(i, j, q) is due
to a neighbor v so that (D(i, v) mod 5W ) + w(v, j) = q. But this determines
D(i, v) + w(v, j), and hence a corresponding xh, uniquely, since we know that
all the possible D(i, v) are between `− 2W and ` + 2W , thus, in a 4W interval,
and we know that 1 ≤ w(v, j) ≤ W , which is another interval of length W .

We have thus shown how to compute all of the distances D(i, j) for i ∈ S
and j ∈ T precisely. In particular, we have determined the first s rows of D in
Õ(Wnω(1,µ,µ)) time. Denote these first s rows of D by D′′. To determine the
distances D(i, j) where i ∈ T and j ∈ T , we simply repeat the above procedure
using the truncated distance matrix D̂′′ (instead of D̂′) and applying Lemma 10
to the product AT ? D̂′′. The running time now is Õ(Wnω(1,µ,1)).

We have shown how to correctly compute the final distance matrix D. What
remains is to determine the running time of the algorithm. As noted in the



introduction, if vc(G) = nµ then finding a vertex cover S with s ≤ 2nµ vertices
can be easily done in O(n2) time. Overall, the algorithm consists of three distance
products (three applications of Lemma 10), and one application of the algorithm
of Shoshan and Zwick. The most time consuming operation is Õ(Wnω(1,µ,1)),
and hence the result follows. ut

5 Concluding remarks

We presented two new algorithms for two fundamental problems in algorithmic
combinatorics. Both of these algorithms are based on rectangular matrix mul-
tiplication, but each is combined with different tools from combinatorics and
linear algebra. It is plausible that for Maximum Subset Matching this is not the
end of the road. The possibility of a faster algorithm remains (whether using fast
matrix multiplication or not). This, however, is not the case for our APSP result.
Namely, no algorithm that is expressed in terms of n and vc(G) can outperform
the algorithm of Theorem 2. Assuming vc(G) = s, no algorithm can perform
faster than the time needed to multiply two Boolean matrices of orders n × s
and s× n.

To see this, consider the following simple reduction. Let A be an n×s Boolean
matrix and let B be an s×n Boolean matrix. Create a graph with 2n+s vertices,
consisting of sets X = {x1, . . . , xn}, Y = {y1, . . . , ys}, Z = {z1, . . . , zn}. There
is an edge from xi ∈ X to yj ∈ Y if an only if A(i, j) = 1. Similarly, there is an
edge from yi ∈ Y to zj ∈ Z if an only if B(i, j) = 1. Notice that Y is a vertex
cover of the created graph. Clearly, the shortest path from xi to zj has length 2
if and only if in the product C = AB we have C(i, j) = 1.

Another interesting remark, pointed out by one of the referees of this paper,
is that Theorem 3 can be extended to finite fields. To do so note, first that by
the Cauchy Binet formula, if A has full row-rank, call it r, and D is a random
diagonal matrix with independent variables in its diagonal, then the determinant
of ADAT is a nonzero polynomial of degree r in these variables. This implies that
in general for D as above, the rank of ADAT is equal to that of A. If the field is
large enough (much larger than the rank), then by the results of Zippel [23] and
Schwartz [15] this implies that substituting random elements of the field for the
diagonal entries of D would give, with high probability, a matrix with the same
rank as that of A. Otherwise, we can substitute random elements in a sufficiently
large extension field, noting that this involves only an extra logarithmic factor
in the complexity.
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